1
|
Heydemann L, Ciurkiewicz M, Störk T, Zdora I, Hülskötter K, Gregor KM, Michaely LM, Reineking W, Schreiner T, Beythien G, Volz A, Tuchel T, Meyer Zu Natrup C, Schünemann LM, Clever S, Henneck T, von Köckritz-Blickwede M, Schaudien D, Rohn K, Schughart K, Geffers R, Kaneko MK, Kato Y, Gross C, Amanakis G, Pavlou A, Baumgärtner W, Armando F. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat Commun 2025; 16:2080. [PMID: 40021627 PMCID: PMC11871369 DOI: 10.1038/s41467-025-57267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term consequences of SARS-CoV-2 infection affect millions of people and strain public health systems. The underlying pathomechanisms remain unclear, necessitating further research in appropriate animal models. This study aimed to characterize the trajectory of lung regeneration over 112 days in the male hamster model by combining morphological, transcriptomic and functional readouts. We demonstrate that in the acute phase, SARS-CoV-2 Delta-infected, male, aged hamsters show a severe impairment of lung function at rest. In the chronic phase, similar impairments persisted up to 7 weeks post-infection but were only evident after exercise on a rodent treadmill. The male hamster model recapitulates chronic pulmonary fibrotic changes observed in many patients with respiratory long COVID, but lacks extra-pulmonary long-term lesions. We show that sub-pleural and interstitial pulmonary fibrosis as well as alveolar bronchiolization persist until 112 dpi. Interestingly, CK8+ alveolar differentiation intermediate (ADI) cells are becoming less prominent in the alveolar proliferation areas from 28 dpi on. Instead, CK14+ airway basal cells and SCGB1A1+ club cells, expressing cell proliferation markers, mainly populate alveolar bronchiolization areas at later time-points. We postulate that pulmonary fibrosis and SCGB1A1+ club cell-rich areas of alveolar bronchiolization represent potential risk factors for other diseases in long-COVID survivors.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | | | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Asisa Volz
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tamara Tuchel
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Christian Meyer Zu Natrup
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Sabrina Clever
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Management, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research (HZI), Brunswick, Germany
| | - Mika K Kaneko
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Carina Gross
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany.
| | - Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
3
|
Hsieh TB, Jin JP. Evolution and function of calponin and transgelin. Front Cell Dev Biol 2023; 11:1206147. [PMID: 37363722 PMCID: PMC10285543 DOI: 10.3389/fcell.2023.1206147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Calponin and transgelin (originally named SM22) are homologous cytoskeleton proteins that regulate actin-activated myosin motor functions in smooth muscle contraction and non-muscle cell motility during adhesion, migration, proliferation, phagocytosis, wound healing, and inflammatory responses. They are abundant cytoskeleton proteins present in multiple cell types whereas their physiological functions remain to be fully established. This focused review summarizes the evolution of genes encoding calponin and transgelin and their isoforms and discusses the structural similarity and divergence in vertebrate and invertebrate species in the context of functions in regulating cell motility. As the first literature review focusing on the evolution of the calponin-transgelin family of proteins in relevance to their structure-function relationship, the goal is to outline a foundation of current knowledge for continued investigations to understand the biological functions of calponin and transgelin in various cell types during physiological and pathological processes.
Collapse
Affiliation(s)
- Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Vakaloglou KM, Mouratidou M, Keramidioti A, Zervas CG. Differential Expression of Drosophila Transgelins Throughout Development. Front Cell Dev Biol 2021; 9:648568. [PMID: 34322481 PMCID: PMC8311604 DOI: 10.3389/fcell.2021.648568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022] Open
Abstract
Transgelins are a conserved family of actin-binding proteins involved in cytoskeletal remodeling, cell contractility, and cell shape. In both mammals and Drosophila, three genes encode transgelin proteins. Transgelins exhibit a broad and overlapping expression pattern, which has obscured the precise identification of their role in development. Here, we report the first systematic developmental analysis of all Drosophila transgelin proteins, namely, Mp20, CG5023, and Chd64 in the living organism. Drosophila transgelins display overall higher sequence identity with mammalian TAGLN-3 and TAGLN-2 than with TAGLN. Detailed examination in different developmental stages revealed that Mp20 and CG5023 are predominantly expressed in mesodermal tissues with the onset of myogenesis and accumulate in the cytoplasm of all somatic muscles and heart in the late embryo. Notably, at postembryonic developmental stages, Mp20 and CG5023 are detected in the gut's circumferential muscles with distinct subcellular localization: Z-lines for Mp20 and sarcomere and nucleus for CG5023. Only CG5023 is strongly detected in the adult fly in the abdominal, leg, and synchronous thoracic muscles. Chd64 protein is primarily expressed in endodermal and ectodermal tissues and has a dual subcellular localization in the cytoplasm and the nucleus. During the larval-pupae transition, Chd64 is expressed in the brain, eye, legs, halteres, and wings. In contrast, in the adult fly, Chd64 is expressed in epithelia, including the alimentary tract and genitalia. Based on the non-overlapping tissue expression, we predict that Mp20 and CG5023 mostly cooperate to modulate muscle function, whereas Chd64 has distinct roles in epithelial, neuronal, and endodermal tissues.
Collapse
Affiliation(s)
- Katerina M. Vakaloglou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Maria Mouratidou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Athina Keramidioti
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
5
|
Ono S. Diversification of the calponin family proteins by gene amplification and repeat expansion of calponin-like motifs. Cytoskeleton (Hoboken) 2021; 78:199-205. [PMID: 34333878 PMCID: PMC8958760 DOI: 10.1002/cm.21683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022]
Abstract
The calponin family proteins in vertebrates, including calponin and transgelin (also known as SM22 or NP25), regulate actin-myosin interaction and actin filament stability and are involved in regulation of muscle contractility and cell migration. Related proteins are also present in invertebrates and fungi. Animals have multiple genes encoding calponin family proteins with variable molecular features, which are often expressed in the same tissues or cells. However, functional studies of this class of proteins have been reported only in limited species. Through database searches, I found that the calponin family proteins were diversified in animals by gene amplification and repeat expansion of calponin-like (CLIK) motifs, which function as actin-binding sequences. Transgelin-like proteins with a single CLIK motif are the most primitive type and present in fungi and animals. In many animals, additional calponin family proteins containing multiple CLIK motifs, as represented by vertebrate calponins with three CLIK motifs, are present. Interestingly, in several invertebrate species, there are uncharacterized calponin-related proteins with highly expanded repeats of CLIK motifs (up to 23 repeats in mollusks). These variable molecular features of the calponin family proteins may be results of evolutionary adaptation to a broad range of cell biological events.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Wu J, Wang YY, Yang XW, Zhang XT, Tang JY. Biochemical Features and Physiological Roles of hNP22 in the Central Nervous System. Front Cell Dev Biol 2021; 9:634710. [PMID: 33748120 PMCID: PMC7969789 DOI: 10.3389/fcell.2021.634710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
hNP22, a novel neuron-specific protein that interacts with both actin filaments and microtubules, was found to be highly homologous to the smooth muscle cell cytoskeleton-associated proteins human SM22α and rat acidic calponin. In recent years, functions of hNP22 such as the promotion of neural differentiation and enhancement of neural plasticity, have been described, as well as potential roles of hNP22 in schizophrenia and alcohol-related brain damage (ARBD). Because of the potential roles of hNP22 in neuronal processes and its potential implications in diseases, hNP22 has emerged as a research target. In this paper, we review the gene structure, possible modifications, and functions of the hNP22 protein, as well as its potential clinical significance. Based on its physical structure and previous studies, we speculate that hNP22 has potential biological functions in neurological disorders, such as schizophrenia and ARBD.
Collapse
Affiliation(s)
- Ji Wu
- Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Yun-Yi Wang
- University of Oxford, Oxford, United Kingdom
| | - Xi-Wen Yang
- Shanghai Literature Institute of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Tian Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Yi Tang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Jo S, Kim HR, Mun Y, Jun CD. Transgelin-2 in immunity: Its implication in cell therapy. J Leukoc Biol 2018; 104:903-910. [PMID: 29749649 DOI: 10.1002/jlb.mr1117-470r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Transgelin-2 is a small 22-kDa actin-binding protein implicated in actin dynamics, which stabilizes actin structures and participates in actin-associated signaling pathways. Much curiosity regarding transgelin-2 has centered around its dysregulation in tumor development and associated diseases. However, recent studies have shed new light on the functions of transgelin-2, the only transgelin family member present in leukocytes, in the context of various immune responses. In this review, we outlined the biochemical properties of transgelin-2 and its physiological functions in T cells, B cells, and macrophages. Transgelin-2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. Transgelin-2 in B cells also participates in the stabilization of T cell-B cell conjugates. While transgelin-2 is expressed at trace levels in macrophages, its expression is highly upregulated upon lipopolysaccharide stimulation and plays an essential role in macrophage phagocytosis. Since transgelin-2 increases T cell adhesion to target cells via boosting the "inside-out" costimulatory activation of leukocyte function-associated antigen 1, transgelin-2 could be a suitable candidate to potentiate the antitumor response of cytotoxic T cells by compensating for the lack of costimulation in tumor microenvironment. We discussed the feasibility of using native or engineered transgelin-2 as a synergistic molecule in cell-based immunotherapies, without inducing off-target disturbance in actin dynamics in other cells.
Collapse
Affiliation(s)
- Suin Jo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - YeVin Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
9
|
Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol Rep 2018; 70:322-330. [DOI: 10.1016/j.pharep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
10
|
Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics 2014; 11:149-65. [PMID: 24476357 DOI: 10.1586/14789450.2014.860358] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transgelin is an abundant protein of smooth muscle cells, where its role has been primarily studied. As a protein affecting dynamics of the actin cytoskeleton via stabilization of actin filaments, transgelin is both directly and indirectly involved in many cancer-related processes such as migration, proliferation, differentiation or apoptosis. Transgelin was previously reviewed as a tumor suppressor; however, recent data based on a number of proteomics studies indicate its pro-tumorigenic role, for example, in colorectal or hepatocellular cancer. We summarize these contradictory observations in both clinical and functional proteomics projects and analyze the role of transgelin in tumors in detail. Generally, the expression and biological role of transgelin seem to differ among various types of tumor cells and stroma, and possibly change during tumor progression. We also overview the recent data on transgelin-2, a sequence homolog of transgelin, whose role in the tumor development might be contradictory to the role of transgelin.
Collapse
Affiliation(s)
- Monika Dvorakova
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | | | | |
Collapse
|
11
|
The effect of enterovirus 71 immunization on neuropathogenesis and protein expression profiles in the thalamus of infected rhesus neonates. Virology 2012; 432:417-26. [PMID: 22819834 DOI: 10.1016/j.virol.2012.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is a major pathogen that causes hand-foot-mouth disease (HFMD). Our previous studies have demonstrated that the complete process of pathogenesis, which may include tissue damage induced by host inflammatory responses and direct tissue damage caused by viral infection, can be observed in the central nervous system (CNS) of animals infected in the laboratory with EV71. Based on these observations, the neuropathogenesis and protein expression profiles in the thalamic tissues of EV71-infected animals were further analyzed in the present study. Changes in protein expression profiles following immunization with the inactivated EV71 vaccine followed by virus challenge were observed and evaluated, and their physiological roles in viral pathogenesis are discussed. Taken together, the results of these experiments provide evidence regarding the neuropathogenesis and molecular mechanisms associated with EV71 infection and identify several protein indicators of pathogenic changes during viral infection.
Collapse
|
12
|
Tsai YS, Aguan K, Pal NR, Chung IF. Identification of single- and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS One 2011; 6:e24259. [PMID: 21909426 PMCID: PMC3164723 DOI: 10.1371/journal.pone.0024259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023] Open
Abstract
Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases.
Collapse
Affiliation(s)
- Yu-Shuen Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, India
| | - Nikhil R. Pal
- Electronics & Communication Sciences Unit, Indian Statistical Institute, Calcutta, India
- * E-mail: (I-FC); (NRP)
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (I-FC); (NRP)
| |
Collapse
|
13
|
Buchtová M, Kuo WP, Nimmagadda S, Benson SL, Geetha-Loganathan P, Logan C, Au-Yeung T, Chiang E, Fu K, Richman JM. Whole genome microarray analysis of chicken embryo facial prominences. Dev Dyn 2010; 239:574-91. [PMID: 19941351 DOI: 10.1002/dvdy.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The face is one of the three regions most frequently affected by congenital defects in humans. To understand the molecular mechanisms involved, it is necessary to have a more complete picture of gene expression in the embryo. Here, we use microarrays to profile expression in chicken facial prominences, post neural crest migration and before differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative polymerase chain reaction (QPCR) and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jüch M, Smalla KH, Kähne T, Lubec G, Tischmeyer W, Gundelfinger ED, Engelmann M. Congenital lack of nNOS impairs long-term social recognition memory and alters the olfactory bulb proteome. Neurobiol Learn Mem 2009; 92:469-84. [DOI: 10.1016/j.nlm.2009.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/19/2009] [Accepted: 06/10/2009] [Indexed: 12/21/2022]
|
15
|
Ryge J, Westerdahl AC, Alstrøm P, Kiehn O. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord. PLoS One 2008; 3:e3415. [PMID: 18923679 PMCID: PMC2566599 DOI: 10.1371/journal.pone.0003415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/18/2008] [Indexed: 12/29/2022] Open
Abstract
Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.
Collapse
Affiliation(s)
- Jesper Ryge
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JR); (OK)
| | - Ann-Charlotte Westerdahl
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JR); (OK)
| |
Collapse
|
16
|
Pape M, Doxakis E, Reiff T, Duong CV, Davies A, Geissen M, Rohrer H. A function for the calponin family member NP25 in neurite outgrowth. Dev Biol 2008; 321:434-43. [PMID: 18652818 DOI: 10.1016/j.ydbio.2008.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/19/2022]
Abstract
The neuronal protein 25 (NP25), a member of the calponin (CaP) protein family, has previously been identified as neuron-specific protein in the adult rat brain. Here, we show an early onset of NP25 expression in the chick embryo neural tube. NP25 represents, together with NeuroM, one of the earliest markers for postmitotic neurons. To elucidate its function in the developing nervous system, NP25 was overexpressed in E5 and E9 sensory neurons, E7 sympathetic neurons and PC12 cells that show different endogenous NP25 expression levels. Whereas E5 and E9 sensory neurons and PC12 cells, which express low endogenous levels of NP25, responded by enhanced neurite outgrowth, a reduction of neurite length was observed in sympathetic neurons, which already express high endogenous levels of NP25. Knockdown of NP25 in sensory neurons using NP25 siRNA resulted in shorter neurites, whereas reduction of NP25 expression in sympathetic neurons led to increased neurite length. These results suggest a dynamic function for NP25 in the regulation of neurite growth, with an optimal level of NP25 required for maximal growth.
Collapse
Affiliation(s)
- Manuela Pape
- Max-Planck-Institute for Brain Research, Deutschordenstr. 46, 60528 Frankfurt/M, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur Neuropsychopharmacol 2006; 16:521-37. [PMID: 16517129 DOI: 10.1016/j.euroneuro.2006.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/28/2022]
Abstract
Chronic administration of antidepressants is required for their efficacy, suggesting the involvement of long-term modifications. As the impact of antidepressant treatment on the brain molecular machinery is not completely understood, we performed a proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine, with an NK1 receptor antagonist, GR205171, and a CRF receptor 1 antagonist, DMP696. After 2D electrophoresis, protein expression levels were compared with both univariate and multivariate statistical analyses and identified by mass spectrometry. All treatments modified levels of actin isoforms, whereas both fluoxetine and GR205171 reduced synapsin II. Fluoxetine treatment increased ERK2 and NP25 and decreased vacuolar ATP synthase. After GR205171 treatment, protein disulphide isomerase A was reduced; dynamin 1 and aldose reductase increased. DMP696 modulated DRP2, pyruvate kinase, LDH and ATP synthase. Although each compound induced a specific pattern of protein modulation, data suggest that antidepressants share the ability of modulating neural plasticity.
Collapse
|
18
|
Mei B, Li C, Dong S, Jiang CH, Wang H, Hu Y. Distinct gene expression profiles in hippocampus and amygdala after fear conditioning. Brain Res Bull 2005; 67:1-12. [PMID: 16140156 DOI: 10.1016/j.brainresbull.2005.03.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/17/2005] [Accepted: 03/28/2005] [Indexed: 11/23/2022]
Abstract
It is well known that the hippocampus and amygdala are involved in the formations of fear conditioning memories, and both contextual and cued fear memory requires activation of the NMDA receptors. However, the global molecular responses in the hippocampus and amygdala have not been investigated. By applying high-density microarrays containing 11,000 genes and expressed sequence tags, we examined fear conditioning-induced gene expression profiles in these two brain regions at 0.5, 6, and 24 h. We found that 222 genes in the amygdala and 145 genes in the hippocampus showed dynamic changes in their expression levels. Surprisingly, the overall patterns of gene expression as well as the individual genes for the amygdala and hippocampus were drastically different and only small number of genes exhibited the similar regulation in both brain regions. Based on expression kinetics, the genes from the amygdala can be further grouped into eight unique clusters, whereas the genes from the hippocampus were placed into six clusters. Therefore, our study suggests that different genomic responses are initiated in the hippocampus and amygdala which are known to play distinct roles in fear memory formation.
Collapse
Affiliation(s)
- Bing Mei
- Key Lab of Brain Functional Genomics, MOE & STCSM, Shanghai Institute of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road N., Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
19
|
Petryshen TL, Kirby A, Hammer RP, Purcell S, O'Leary SB, Singer JB, Hill AE, Nadeau JH, Daly MJ, Sklar P. Two quantitative trait loci for prepulse inhibition of startle identified on mouse chromosome 16 using chromosome substitution strains. Genetics 2005; 171:1895-904. [PMID: 15998716 PMCID: PMC1456091 DOI: 10.1534/genetics.105.045658] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/28/2005] [Indexed: 11/18/2022] Open
Abstract
Prepulse inhibition (PPI) of acoustic startle is a genetically complex quantitative phenotype of considerable medical interest due to its impairment in psychiatric disorders such as schizophrenia. To identify quantitative trait loci (QTL) involved in mouse PPI, we studied mouse chromosome substitution strains (CSS) that each carry a homologous chromosome pair from the A/J inbred strain on a host C57BL/6J inbred strain background. We determined that the chromosome 16 substitution strain has elevated PPI compared to C57BL/6J (P = 1.6 x 10(-11)), indicating that chromosome 16 carries one or more PPI genes. QTL mapping using 87 F(2) intercross progeny identified two significant chromosome 16 loci with LODs of 3.9 and 4.7 (significance threshold LOD is 2.3). The QTL were each highly significant independently and do not appear to interact. Sequence variation between B6 and A/J was used to identify strong candidate genes in the QTL regions, some of which have known neuronal functions. In conclusion, we used mouse CSS to rapidly and efficiently identify two significant QTL for PPI on mouse chromosome 16. The regions contain a limited number of strong biological candidate genes that are potential risk genes for psychiatric disorders in which patients have PPI impairments.
Collapse
Affiliation(s)
- Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Broad Institute of Harvard, 185 Cambridge Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Depaz IM, de Las Heras R, Kroon PA, Wilce PA. Changes in neuronal protein 22 expression and cytoskeletal association in the alcohol-dependent and withdrawn rat brain. J Neurosci Res 2005; 81:253-60. [PMID: 15948156 DOI: 10.1002/jnr.20563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The action of alcohol on neuronal pathways has been an issue of increasing research focus, with numerous findings contradicting the previously accepted idea that its effect is nonspecific. The human NP22 (hNP22) gene was revealed by its elevated expression in the frontal cortex of the human alcoholic. The sequences of hNP22 and the rat orthologue rNP22 contain a number of domains consistent with those of cytoskeletal-interacting proteins. Localization of rNP22 is restricted to the cytoplasm and processes of neurons and it colocalizes with elements of the microfilament and microtubule matrices including filamentous actin (F-actin), alpha-tubulin, tau, and microtubule-associated protein 2 (MAP2). Withdrawal of Wistar rats after alcohol dependence induced by alcohol vapor produced elevated levels of rNP22 mRNA and protein in the cortex, CA2, and dentate gyrus regions of the hippocampus. In contrast, there was decreased rNP22 expression in the striatum after chronic ethanol exposure. Chronic ethanol exposure did not markedly alter rNP22 colocalization with F-actin, alpha-tubulin, or MAP2, although colocalization at the periphery of the neuronal soma with F-actin was observed only after chronic ethanol exposure and withdrawal. Rat NP22 colocalization with MAP2 was reduced during withdrawal, whereas association with alpha-tubulin and actin was maintained. These findings suggest that the effect of chronic ethanol exposure and withdrawal on rNP22 expression is region selective. Rat NP22 may affect microtubule or microfilament function, thereby regulating the neuroplastic changes associated with the development of alcohol dependence and physical withdrawal.
Collapse
Affiliation(s)
- Iris M Depaz
- Alcohol Research Unit, Department of Biochemistry and Molecular Biosciences, School of Molecular and Microbial Sciences, University of Queensland, Australia
| | | | | | | |
Collapse
|
21
|
Witzmann FA, Arnold RJ, Bai F, Hrncirova P, Kimpel MW, Mechref YS, McBride WJ, Novotny MV, Pedrick NM, Ringham HN, Simon JR. A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 2005; 5:2177-201. [PMID: 15852343 PMCID: PMC1472619 DOI: 10.1002/pmic.200401102] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous findings from our laboratory and others indicate that two-dimensional gel electrophoresis (2-DE) can be used to study protein expression in defined brain regions, but mainly the proteins which are present in high abundance in glia are readily detected. The current study was undertaken to determine the protein profile in a synaptosomal subcellular fraction isolated from the cerebral cortex of the rat. Both 2-DE and liquid chromatography - tandem mass spectrometry (LC-MS/MS) procedures were used to isolate and identify proteins in the synaptosomal fraction and accordingly >900 proteins were detected using 2-DE; the 167 most intense gel spots were isolated and identified with matrix-assisted laser desorption/ionization - time of flight peptide mass fingerprinting or LC-MS/MS. In addition, over 200 proteins were separated and identified with the LC-MS/MS "shotgun proteomics" technique, some in post-translationally modified form. The following classes of proteins associated with synaptic function were detected: (a) proteins involved in synaptic vesicle trafficking-docking (e.g., SNAP-25, synapsin I and II, synaptotagmin I, II, and V, VAMP-2, syntaxin 1A and 1B, etc.); (b) proteins that function as transporters or receptors (e.g., excitatory amino acid transporters 1 and 2, GABA transporter 1); (c) proteins that are associated with the synaptic plasma membrane (e.g., post-synaptic density-95/synapse-associated protein-90 complex, neuromodulin (GAP-43), voltage-dependent anion-selective channel protein (VDACs), sodium-potassium ATPase subunits, alpha 2 spectrin, septin 7, etc.); and (d) proteins that mediate intracellular signaling cascades that modulate synaptic function (e.g., calmodulin, calcium-calmodulin-dependent protein kinase subunits, etc.). Other identified proteins are associated with mitochondrial or general cytosolic function. Of the two proteins identified as endoplasmic reticular, both interact with the synaptic SNARE complex to regulate vesicle trafficking. Taken together, these results suggest that the integrity of the synaptosomes was maintained during the isolation procedure and that this subcellular fractionation technique enables the enrichment of proteins associated with synaptic function. The results also suggest that this experimental approach can be used to study the differential expression of multiple proteins involved in alterations of synaptic function.
Collapse
Affiliation(s)
- Frank A Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mori K, Muto Y, Kokuzawa J, Yoshioka T, Yoshimura S, Iwama T, Okano Y, Sakai N. Neuronal protein NP25 interacts with F-actin. Neurosci Res 2004; 48:439-46. [PMID: 15041197 DOI: 10.1016/j.neures.2003.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 12/24/2003] [Indexed: 11/30/2022]
Abstract
Neuronal protein NP25 is a neuron-specific protein present in highly differentiated neural cells, but its functional properties have not been well characterized. NP25 shows high amino acid sequence homology with the smooth muscle cell cytoskeleton-associated proteins, SM22, mp20, and calponin. To gain an insight into the biological functions of NP25, we first examined its subcellular localization in the human neuroblastoma cell line, SK-N-SH. NP25 diffusely distributed in the cytoplasm and fiber-like staining was also observed. It showed that NP25 co-localized with F-actin on stress fibers. A co-sedimentation assay demonstrated that NP25 bound to filamentous actin. Further investigations using fluorescence resonance energy transfer (FRET) technique revealed intracellular binding of NP25 and actin. The significance of the interaction between NP25 and F-actin is discussed.
Collapse
Affiliation(s)
- Kenji Mori
- Department of Neurosurgery, Gifu University School of Medicine, Tsukasa-machi, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang XY, Yao JH, Cheng L, Wei DW, Xue JL, Lu DR. Molecular cloning and expression of a smooth muscle-specific gene SM22alpha in zebrafish. Biochem Biophys Res Commun 2004; 312:741-6. [PMID: 14680827 DOI: 10.1016/j.bbrc.2003.10.185] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Indexed: 01/12/2023]
Abstract
SM22alpha is a kind of 22-kDa protein which is exclusively expressed in smooth muscle containing tissues of the vertebrates. Here we report molecular cloning of a novel zebrafish SM22alpha gene. The full length of zebrafish SM22alpha cDNA is 1296bp and it encodes a polypeptide of 201 amino acids which shares 69.2%, 69.7%, 69.2%, 67.2%, and 61.2% overall identity with human, mouse, rat, chicken, and bovine SM22alpha, respectively. Characterization of zebrafish SM22alpha genomic sequence reveals that it spans 7.7kb and contains five exons and four introns. The expression pattern of SM22alpha in zebrafish embryonic development is studied by whole-mount in situ hybridization. Strong expression is observed in vascular, gut, swim bladder, branchial arches, and fin epidermis. Furthermore, we carry out gene knock-down by antisense morpholino oligonucleotide, which results in disappearance of yolk extension, caudal fin aberrance, and deficiency of circulation system in zebrafish embryo. Cross-section of SM22alpha-deficient embryo suggests that SM22alpha may play roles in smooth muscle cell morphology transform.
Collapse
Affiliation(s)
- Xue-yan Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Depaz I, Ito M, Matsumoto I, Niwa SI, Kroon P, Wilce PA. Expression of hNP22 Is Altered in the Frontal Cortex and Hippocampus of the Alcoholic Human Brain. Alcohol Clin Exp Res 2003; 27:1481-8. [PMID: 14506410 DOI: 10.1097/01.alc.0000086060.18032.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human neuronal protein (hNP22) is a gene with elevated messenger RNA expression in the prefrontal cortex of the human alcoholic brain. hNP22 has high homology with a rat protein (rNP22). These proteins also share homology with a number of cytoskeleton-interacting proteins. METHODS A rabbit polyclonal antibody to an 18-amino acid epitope was produced for use in Western and immunohistochemical analysis. Samples from the human frontal and motor cortices were used for Western blots (n = 10), whereas a different group of frontal cortex and hippocampal samples were obtained for immunohistochemistry (n = 12). RESULTS The hNP22 antibody detected a single protein in both rat and human brain. Western blots revealed a significant increase in hNP22 protein levels in the frontal cortex but not the motor cortex of alcoholic cases. Immunohistochemical studies confirmed the increased hNP22 protein expression in all cortical layers. This is consistent with results previously obtained using Northern analysis. Immunohistochemical analysis also revealed a significant increase of hNP22 immunoreactivity in the CA3 and CA4 but not other regions of the hippocampus. CONCLUSIONS It is possible that this protein may play a role in the morphological or plastic changes observed after chronic alcohol exposure and withdrawal, either as a cytoskeleton-interacting protein or as a signaling molecule.
Collapse
Affiliation(s)
- Iris Depaz
- Department of Biochemistry and Molecular Biology, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Zhang JCL, Helmke BP, Shum A, Du K, Yu WW, Lu MM, Davies PF, Parmacek MS. SM22beta encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression. Mech Dev 2002; 115:161-6. [PMID: 12049783 DOI: 10.1016/s0925-4773(02)00088-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytoskeletal proteins play important roles in regulating cellular morphology, cytokinesis and intracellular signaling. In this report, we describe a developmentally regulated gene encoding a novel cell lineage-restricted cytoskeletal protein, designated SM22beta. SM22beta shares high-grade sequence identity with the smooth muscle cell (SMC)-specific protein, SM22alpha, the neuron-specific protein, NP25, and the Drosophila melanogaster flight muscle-specific protein, mp20. The mouse SM22beta cDNA encodes a 199-amino acid polypeptide that contains a single conserved calponin-like repeat domain. During mouse embryonic development, the SM22beta gene is expressed in a temporally and spatially regulated pattern in the tunica media of arteries and veins, endocardium and compact layer of the myocardium, bronchial epithelium and mesenchyme of the lung, gastrointestinal epithelium and cartilaginous primordia. During postnatal development, SM22beta is co-expressed with SM22alpha in arterial and venous SMCs. In addition, SM22beta is expressed at high levels in the bronchial epithelium and lung mesenchyme, gastrointestinal epithelial cells and in the cartilagenous and periosteal layer of bones. Three-dimensional deconvolution microscopic analyses of A7r5 SMCs revealed that SM22beta co-localizes with SM22alpha to cytoskeletal actin filaments. Taken together, these data demonstrate that SM22beta is a novel actin-associated protein with a unique cell lineage-restricted pattern of expression.
Collapse
Affiliation(s)
- Janet C L Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cheon MS, Fountoulakis M, Dierssen M, Ferreres JC, Lubec G. Expression profiles of proteins in fetal brain with Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:311-9. [PMID: 11771754 DOI: 10.1007/978-3-7091-6262-0_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteomics is a powerful tool for evaluating differential protein expression comparing hundreds of proteins simultaneously. In the current study we performed "gene hunting" at the protein level and identified and quantified 10 protein spots in control and Down syndrome (DS) fetal brains. Using two-dimensional (2-D) electrophoresis of fetal brain proteins with subsequent MALDI-identification and quantification with specific software, we identified a series of poorly known proteins, in part hypothetical and orphans or poorly documented proteins. Hypothetical protein DKFZp564D177.1-human (fragment), one of these proteins was identified in fetal brain and was significantly decreased in DS (0.61+/-0.44, n = 7) compared to controls (3.43+/-1.83, n = 7). Septin 6, previously shown to be associated with synaptic vesicles, was present in all of 7 controls, but only in 1 out of 6 DS brains. We suggest that decreased protein levels of hypothetical protein DKFZp564D177.1-human (fragment) and lower prevalence of septin 6 could be involved in the maldevelopment of fetal DS brains. The other 8 proteins (WD repeat protein 1, novel protein highly similar to septin 2 homolog, septin 5, septin 2, DJ37E16.5 (novel protein similar to nitrophenylphosphatases from various organism), hypothetical 30.2 kDa protein, neuronal protein NP25, and DC7 protein (vacuolar sorting protein 29)) were comparable between controls and DS but could be identified in fetal and DS cortex, thus proposing them as tentative brain proteins.
Collapse
Affiliation(s)
- M S Cheon
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Fan L, Jaquet V, Dodd PR, Chen W, Wilce PA. Molecular cloning and characterization of hNP22: a gene up-regulated in human alcoholic brain. J Neurochem 2001; 76:1275-81. [PMID: 11238712 DOI: 10.1046/j.1471-4159.2001.00176.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics. A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Collapse
Affiliation(s)
- L Fan
- Department of Biochemistry, The University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
28
|
Zhang JC, Kim S, Helmke BP, Yu WW, Du KL, Lu MM, Strobeck M, Yu Q, Parmacek MS. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function. Mol Cell Biol 2001; 21:1336-44. [PMID: 11158319 PMCID: PMC99586 DOI: 10.1128/mcb.2001.21.4.1336-1344.2001] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SM22alpha is a 22-kDa smooth muscle cell (SMC) lineage-restricted protein that physically associates with cytoskeletal actin filament bundles in contractile SMCs. To examine the function of SM22alpha, gene targeting was used to generate SM22alpha-deficient (SM22(-/-LacZ)) mice. The gene targeting strategy employed resulted in insertion of the bacterial lacZ reporter gene at the SM22alpha initiation codon, permitting precise analysis of the temporal and spatial pattern of SM22alpha transcriptional activation in the developing mouse. Northern and Western blot analyses confirmed that the gene targeting strategy resulted in a null mutation. Histological analysis of SM22(+/-LacZ) embryos revealed detectable beta-galactosidase activity in the unturned embryonic day 8.0 embryo in the layer of cells surrounding the paired dorsal aortae concomitant with its expression in the primitive heart tube, cephalic mesenchyme, and yolk sac vasculature. Subsequently, during postnatal development, beta-galactosidase activity was observed exclusively in arterial, venous, and visceral SMCs. SM22alpha-deficient mice are viable and fertile. Their blood pressure and heart rate do not differ significantly from their control SM22alpha(+/-) and SM22alpha(+/+) littermates. The vasculature and SMC-containing tissues of SM22alpha-deficient mice develop normally and appear to be histologically and ultrastructurally similar to those of their control littermates. Taken together, these data demonstrate that SM22alpha is not required for basal homeostatic functions mediated by vascular and visceral SMCs in the developing mouse. These data also suggest that signaling pathways that regulate SMC specification and differentiation from local mesenchyme are activated earlier in the angiogenic program than previously recognized.
Collapse
Affiliation(s)
- J C Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sartore S, Franch R, Roelofs M, Chiavegato A. Molecular and cellular phenotypes and their regulation in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:235-320. [PMID: 10087911 DOI: 10.1007/3-540-64753-8_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S Sartore
- Department of Biomedical Sciences, University of Padua, Italy
| | | | | | | |
Collapse
|
30
|
Winder SJ, Allen BG, Clément-Chomienne O, Walsh MP. Regulation of smooth muscle actin-myosin interaction and force by calponin. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:415-26. [PMID: 9887965 DOI: 10.1111/j.1365-201x.1998.tb10697.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Smooth muscle contraction is regulated primarily by the reversible phosphorylation of myosin triggered by an increase in sarcoplasmic free Ca2+ concentration ([Ca2+]i). Contraction can, however, be modulated by other signal transduction pathways, one of which involves the thin filament-associated protein calponin. The h1 (basic) isoform of calponin binds to actin with high affinity and is expressed specifically in smooth muscle at a molar ratio to actin of 1:7. Calponin inhibits (i) the actin-activated MgATPase activity of smooth muscle myosin (the cross-bridge cycling rate) via its interaction with actin, (ii) the movement of actin filaments over immobilized myosin in the in vitro motility assay, and (iii) force development or shortening velocity in permeabilized smooth muscle strips and single cells. These inhibitory effects of calponin can be alleviated by protein kinase C (PKC)-catalysed phosphorylation and restored following dephosphorylation by a type 2A phosphatase. Three physiological roles of calponin can be considered based on its in vitro functional properties: (i) maintenance of relaxation at resting [Ca2+]i, (ii) energy conservation during prolonged contractions, and (iii) Ca(2+)-independent contraction mediated by phosphorylation of calponin by PKC epsilon, a Ca(2+)-independent isoenzyme of PKC.
Collapse
Affiliation(s)
- S J Winder
- Smooth Muscle Research Group, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
31
|
Stanier P, Abu-Hayyeh S, Murdoch JN, Eddleston J, Copp AJ. Paralogous sm22alpha (Tagln) genes map to mouse chromosomes 1 and 9: further evidence for a paralogous relationship. Genomics 1998; 51:144-7. [PMID: 9693045 DOI: 10.1006/geno.1998.5381] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SM22alpha (TAGLN) is one of the earliest markers of differentiated smooth muscle, being expressed exclusively in the smooth muscle cells of adult tissues and transiently in embryonic skeletal and cardiac tissues. We have identified and mapped the mouse Tagln gene and a closely related gene, Sm22alpha homolog (Tagln2). The chromosomal localization for Tagln was identified by linkage analysis to distal mouse chromosome 9 between D9Mit154 and D9Mit330, closely linked to the anchor locus D9Nds10. The localization of Tagln2 was also determined and was found to map between Fcgr2 and D1Mit149 on distal mouse chromosome 1. This localization is homologous to a region of human 1q21-q25 to which an EST representing human TAGLN2 was previously mapped. The two regions, distal mouse chromosome 1 and proximal mouse chromosome 9, and the human regions with conserved synteny (1q21-q25 and 11q22-qter) are believed to be paralogous, reflecting either conserved remnants of duplicated chromosomes or segments of chromosomes during vertebrate evolution.
Collapse
Affiliation(s)
- P Stanier
- Division of Paediatrics, Obstetrics and Gynaecology, Queen Charlotte's and Chelsea Hospital, Goldhawk Road, London, W6 OXG, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Martin RM, Chilton NB, Lightowlers MW, Gasser RB. Echinococcus granulosus myophilin--relationship with protein homologues containing "calponin-motifs". Int J Parasitol 1997; 27:1561-7. [PMID: 9467742 DOI: 10.1016/s0020-7519(97)00146-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myophilin, a smooth-muscle protein of the tapeworm Echinococcus granulosus, was recently postulated to be a member of the calponin family of proteins. A detailed genetic analysis revealed that 17 proteins had significant homology with the amino-acid sequence of the N-terminal region of myophilin and/or possessed one or more "calponin-motifs". Comparison of the amino-acid sequences of the N-terminus showed that the homologous proteins clustered into distinct groups based on the number of calponin-motifs. The calponin-motif of myophilin was genetically more similar to that present in the muscle protein mp20 of Drosophila melanogaster than to those in any other homologous proteins of vertebrates. The existence of a distinct motif which is "conserved" in other proteins across a range of species suggests an important functional role for the motif.
Collapse
Affiliation(s)
- R M Martin
- Department of Veterinary Science, University of Melbourne, Werribee, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Qian J, Hendrix M, Larsen WJ, Dorn GW, Lessard JL. Establishment and characterization of a conditionally immortalized smooth muscle/myometrial-like cell line. Mol Reprod Dev 1997; 47:284-94. [PMID: 9170108 DOI: 10.1002/(sici)1098-2795(199707)47:3<284::aid-mrd7>3.0.co;2-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel smooth muscle/myometrial-like cell line, SMU1-10, has been generated from the uterus of a H-2Kb-tsA58 transgenic mouse carrying a thermolabile SV40 large T-antigen gene. These cells grow continuously when maintained at the permissive temperature (33 degrees C) for the SV40 large T-antigen but stop dividing when placed at the non-permissive temperature (39 degrees C) and ultimately die within 3 weeks. All of the SMU1-10 cells produce smooth muscle alpha-actin (SMAA) at both 33 degrees C and 39 degrees C. A subset of the cells also contain smooth muscle gamma-actin (SMGA), a hallmark of smooth muscle differentiation, and the fraction of cells staining for this actin increases from about 1% when maintained for three days at 33 degrees C to as much as 30% at 39 degrees C over the same length of time. However, the appearance of SMGA in SMU1-10 cells appears to be regulated mainly at a post-transcriptional level since in situ hybridization indicates that all cells contain SMGA mRNA at both 33 degrees C and 39 degrees C. SMU1-10 cultures also contain smooth muscle myosin heavy chain (SM-MHC) and SM22 alpha, both of which are only found in smooth muscle of the adult mouse. Three additional smooth muscle (myometrium)-related markers, connexin 43, the thromboxane A2 receptor, and the progesterone receptor also are present in these cells. At the nonpermissive temperature for SV40 large T-antigen, the both level of SMGA mRNA and the number of cells staining for this actin are significantly increased in the presence of progesterone, a process that is similar to the upregulation of SMGA in the myometrium late in pregnancy. Overall, SMU1-10 cells provides a potentially useful in vitro model system to study smooth muscle/myometrial differentiation.
Collapse
Affiliation(s)
- J Qian
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
34
|
Pedersen WA, Kloczewiak MA, Blusztajn JK. Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A 1996; 93:8068-71. [PMID: 8755604 PMCID: PMC38876 DOI: 10.1073/pnas.93.15.8068] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.
Collapse
Affiliation(s)
- W A Pedersen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | |
Collapse
|
35
|
Li L, Miano JM, Mercer B, Olson EN. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Biophys Biochem Cytol 1996; 132:849-59. [PMID: 8603917 PMCID: PMC2120743 DOI: 10.1083/jcb.132.5.849] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SM22alpha is a putative calcium-binding protein that is expressed in cardiac, smooth, and skeletal muscle lineages during mouse embryogenesis and in adult smooth muscle cells (SMC). To define the mechanisms that regulate smooth muscle-specific gene transcription, we isolated the SM22alpha gene and analyzed its 5'-flanking region for elements that direct smooth muscle expression in transgenic mice. Using a series of promoter deletions, a region of the SM22alpha promoter containing 445 base pairs of 5'-flanking sequence was found to be sufficient to direct the specific expression of a lacZ transgene in mouse embryos in the vascular smooth, cardiac, and skeletal muscle lineages in a temporospatial pattern similar to the endogenous SM22alpha gene. However, in contrast to the endogenous gene, transgene expression was not detected in venous, nor visceral SMCs. This SM22alpha-lacZ transgene was therefore able to distinguish between the transcriptional regulatory programs that control gene expression in vascular and visceral SMCs and revealed heretofore unrecognized differences between these SMC types. These results suggest that distinct transcriptional regulation programs control muscle gene expression in vascular and visceral SMCs.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | |
Collapse
|
36
|
Li L, Miano JM, Cserjesi P, Olson EN. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res 1996; 78:188-95. [PMID: 8575061 DOI: 10.1161/01.res.78.2.188] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SM22 alpha is a calponin-related protein that is expressed specifically in adult smooth muscle. To begin to define the mechanisms that regulate the establishment of the smooth muscle lineage, we analyzed the expression pattern of the SM22 alpha gene during mouse embryogenesis. In situ hybridization demonstrated that SM22 alpha transcripts were first expressed in vascular smooth muscle cells at about embryonic day (E) 9.5 and thereafter continued to be expressed in all smooth muscle cells into adulthood. In contrast to its smooth muscle specificity in adult tissues, SM22 alpha was expressed transiently in the heart between E8.0 and E12.5 and in skeletal muscle cells in the myotomal compartment of the somites between E9.5 and E12.5. The expression of SM22 alpha in smooth muscle cells, as well as early cardiac and skeletal muscle cells, suggests that there may be commonalities between the regulatory programs that direct muscle-specific gene expression in these three myogenic cell types.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 75235-9148, USA
| | | | | | | |
Collapse
|
37
|
Samaha FF, Ip HS, Morrisey EE, Seltzer J, Tang Z, Solway J, Parmacek MS. Developmental pattern of expression and genomic organization of the calponin-h1 gene. A contractile smooth muscle cell marker. J Biol Chem 1996; 271:395-403. [PMID: 8550594 DOI: 10.1074/jbc.271.1.395] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calponin-h1 is a 34-kDa myofibrillar thin filament, actin-binding protein that is expressed exclusively in smooth muscle cells (SMCs) in adult animals. To examine the molecular mechanisms that regulate SMC-specific gene expression, we have examined the temporal, spatial, and cell cycle-regulated patterns of expression of calponin-h1 gene expression and isolated and structurally characterized the murine calponin-h1 gene. Calponin-h1 mRNA is expressed exclusively in SMC-containing tissues in adult animals. During murine embryonic development, calponin-h1 gene expression is (i) detectable in E9.5 embryos in the dorsal aorta, cardiac outflow tract, and tubular heart, (ii) sequentially up-regulated in SMC-containing tissues, and (iii) down-regulated to non-detectable levels in the heart during late fetal development. In addition, the gene is expressed in resting rat aortic SMCs, but its expression is rapidly down-regulated when growth-arrested cells reenter phase G1 of the cell cycle and proliferate. Calponin-h1 is encoded by a 10.7-kilobase single copy gene composed of seven exons, which is part of a multigene family. Transient transfection analyses demonstrated that 1.5 kilobases of calponin-h1 5'-flanking sequence is sufficient to program high level transcription of a luciferase reporter gene in cultured primary rat aortic SMCs and the smooth muscle cell line, A7r5. Taken together, these data suggest that the calponin-h1 gene will serve as an excellent model system with which to examine the molecular mechanisms that regulate SMC lineage specification, differentiation, and phenotypic modulation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- Gene Expression Regulation, Developmental
- Humans
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Multigene Family
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Phenotype
- Promoter Regions, Genetic
- Rats
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Calponins
Collapse
Affiliation(s)
- F F Samaha
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Martin RM, Gasser RB, Jones MK, Lightowlers MW. Identification and characterization of myophilin, a muscle-specific antigen of Echinococcus granulosus. Mol Biochem Parasitol 1995; 70:139-48. [PMID: 7637694 DOI: 10.1016/0166-6851(95)00020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A muscle-specific gene of Echinococcus granulosus has been identified and characterized. A lambda gt11 clone (10P1), containing an incomplete copy of the gene, was originally isolated from a larval E. granulosus cDNA library by serum antibodies from dogs infected with the parasite. The full-length cDNA sequence was obtained by PCR amplification of cDNA from an adult E. granulosus lambda gt22A library. Southern blot analysis indicated the presence of the gene as a single copy in the genome of E. granulosus and also detected homologous genes in genomic DNA of E. multilocularis and Taenia saginata. The 21.2-kDa protein deduced from the complete cDNA sequence contains two regions of 12 amino acids with similarity to the EF-hand motif of calcium binding proteins. Antibodies raised against the purified 10P1-GST fusion protein detected a 22-kDa antigen in the E. granulosus developmental stages examined. Immunoelectron microscopy localized the native protein in the muscle of the parasite. The amino-acid sequence of the E. granulosus protein shows significant homology to the muscle proteins mp20 of Drosophila melanogaster, chicken SM22 alpha and mammalian calponin, and also to the neuronal protein NP25 of rats. A conserved carboxy-terminal motif of 17 amino acids is present in all the homologous proteins and is proposed to be the characteristic feature of a novel protein family. The term myophilin is proposed for the E. granulosus protein due to its localization and homology to other muscle proteins.
Collapse
Affiliation(s)
- R M Martin
- University of Melbourne, Department of Veterinary Science, Werribee, Victoria, Australia
| | | | | | | |
Collapse
|
39
|
Wang R, Liew CC. The human BAT3 ortholog in rodents is predominantly and developmentally expressed in testis. Mol Cell Biochem 1994; 136:49-57. [PMID: 7854331 DOI: 10.1007/bf00931604] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A partial cDNA clone, RLC34, was isolated from a rat brain cDNA library. Its sequence exhibits high identity with BAT3 (88.4% and 94.9% for DNA and the deduced amino acid sequence, respectively), a gene located within the region of human major histocompatibility complex III (MCHIII region). RLC34 detected a transcript the same size in human and rat, similar to that reported for BAT3. Southern blot analysis of RLC34 showed similar restriction patterns as those of the human BAT3 gene. A panel of rodent tissue samples were examined and the RLC34 was found to be predominantly expressed in the germ cells of rodent testes. The expression is developmentally regulated with increased transcripts seen at 17-20 days after birth. Its testicular expression, its association with spermatogenesis, and its location in MCHIII suggest a correlation of RLC34 with the growth-reproduction complex (grc). This finding may also provide a clue to study the function of other genes localized in this area of the MCHIII region.
Collapse
Affiliation(s)
- R Wang
- Department of Clinical Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|