1
|
Astrocyte specific proteins content in the different parts of the rat and mongolian gerbil brain during ontogenesis. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2
|
Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. Int J Neurosci 2020; 130:1183-1191. [PMID: 32064981 DOI: 10.1080/00207454.2020.1730830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective: In present study, we aimed to clarify effect of aging on the susceptibility of brain tissue to neurodegeneration induced by ischemia.Methods: Damage induced by oxygen-glucose deprivation (OGD) followed by reoxygenation (REO) were compared in cortical slices prepared from young (3 months of age) and aged (22-24 months of age) male Sprague Dawley rats.Results: After incubation of the slices in an oxygen and glucose containing control condition, 2,3,5-triphenyl tetrazolium chloride (TTC) staining intensity was found significantly high in aged cortical slices. Although thirty minutes incubation of the slices in OGD medium followed by REO (OGD-REO) caused similar decline in TTC staining in young and aged cortical slices, staining intensity was still significantly higher in the slices prepared from aged animals. Thirty minutes of OGD-REO, on the other hand, also caused more increase in lactate dehydrogenase (LDH) leakage from young slices. While water contents of the slices were almost equal under control condition, it was significantly high in young cortical slices after OGD-REO incubations. In contrary to these findings, OGD and REO caused more increases in S100B output from aged rat cortical slices. S100B levels in brain regions including the cerebral cortex were also found higher in aged rats.Conclusion: All these results indicate that, cortical slices prepared from aged male rats are significantly less responsive to in vitro OGD-REO induced alterations. Since protein S100B outputs were almost doubled from aged cortical slices, a possible involvement of this enhanced S100B output seems to be likely.
Collapse
Affiliation(s)
- Zulfiye Gul
- Faculty of Medicine, Department of Medical Pharmacology, Bahcesehir University, Istanbul, Turkey
| | - Celaleddin Demircan
- Faculty of Medicine, Department of Internal Medicine, Uludag University, Bursa, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
3
|
Huang J, Xie Y, Sun X, Zeh HJ, Kang R, Lotze MT, Tang D. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev 2015; 24:3-16. [PMID: 25446804 DOI: 10.1016/j.arr.2014.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/25/2022]
Abstract
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases.
Collapse
|
4
|
Age-related alterations in the expression of genes and synaptic plasticity associated with nitric oxide signaling in the mouse dorsal striatum. Neural Plast 2015; 2015:458123. [PMID: 25821602 PMCID: PMC4364378 DOI: 10.1155/2015/458123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/18/2023] Open
Abstract
Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old) to old (18-24 months of age) animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO) synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor) was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD) and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age). Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.
Collapse
|
5
|
Ilieş I, Sîrbulescu RF, Zupanc GK. Indeterminate body growth and lack of gonadal decline in the brown ghost knifefish (Apteronotus leptorhynchus), an organism exhibiting negligible brain senescence. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brown ghost knifefish (Apteronotus leptorhynchus (Ellis in Eigenmann, 1912)) is the only vertebrate organism identified thus far that exhibits negligible brain senescence. The present study examines the basic growth patterns of this species, testing the hypothesis that indeterminate growth and lack of reproductive senescence correlate with negligible senescence. Analysis of length–mass relationships revealed negative allometric growth in males and isometric growth in females. Total length at first sexual maturity was 13.5 cm in males and 12.0 cm in females, whereas gonadal mass was 0.02 g in males and 0.2 g in females. Modelling of total length as a function of the number of otolith rings using attenuating growth equations revealed that lengths of up to 26.8 cm in males and 20.2 cm in females can be reached, indicating that the fish continue to grow throughout life. Gonadal mass increased significantly with age in sexually immature individuals of both sexes. In sexually mature fish, gonadal mass showed a marginal increase with age in males and no change in females. The demonstration of indeterminate growth of the fish and of the lack of gonadal regression with age has important implications for the characterization of brown ghost knifefish as a model of negligible senescence.
Collapse
Affiliation(s)
- Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 134 Mugar Life Science Building, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ruxandra F. Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 134 Mugar Life Science Building, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Günther K.H. Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 134 Mugar Life Science Building, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Traniello IM, Sîrbulescu RF, Ilieş I, Zupanc GKH. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol 2013; 74:514-30. [PMID: 24293183 DOI: 10.1002/dneu.22145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well-established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age-related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long-term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain.
Collapse
Affiliation(s)
- Ian M Traniello
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | |
Collapse
|
7
|
Tomassoni D, Nwankwo IE, Gabrielli MG, Bhatt S, Muhammad AB, Lokhandwala MF, Tayebati SK, Amenta F. Astrogliosis in the brain of obese Zucker rat: a model of metabolic syndrome. Neurosci Lett 2013; 543:136-41. [PMID: 23545209 DOI: 10.1016/j.neulet.2013.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
Metabolic syndrome (MetS) is a disorder characterized primarily by the development of insulin resistance. Insulin resistance and subsequent hyperinsulinemia, originating from abdominal obesity, increases the risk of cerebrovascular and cardiovascular disease and all-cause mortality. Obesity is probably a risk factor for Alzheimer's disease and vascular dementia and is associated with impaired cognitive function. The obese Zucker rat (OZR) represents a model of type 2 diabetes exhibiting a moderate degree of arterial hypertension and of increased oxidative stress. To clarify the possible relationships between MetS and brain damage, the present study has investigated brain microanatomy in OZRs compared with their littermate controls lean Zucker rats (LZRs). Male OZRs and LZRs of 12 weeks of age were used. Their brain was processed for immunochemical and immunohistochemical analysis of glial fibrillary acidic protein (GFAP). In frontal and parietal cortex of OZRs a significant increase in the number of GFAP immunoreactive astrocytes was observed. Similar findings were found in the hippocampus, where an increased number of GFAP immunoreactive astrocytes were detected in the CA1 and CA3 subfields and dentate gyrus of OZRs compared to the LZRs. These findings indicating the occurrence of brain injury accompanied by astrogliosis in OZRs suggest that these rats, developed as an animal model of type 2 diabetes, may also represent a model for assessing the influence of MetS on brain. The identification of neurodegenerative changes in OZRs may represent the first step for better characterizing neuronal involvement in this model of MetS and possible treatment for countering it.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamada J, Jinno S. Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity. Neuroscience 2012; 226:119-29. [PMID: 22982625 DOI: 10.1016/j.neuroscience.2012.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to exert various functions, e.g., cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In this study, we aimed to investigate whether S100A6 might be linked to glutamate toxicity using three animal models and pharmacological interventions. We first examined the age-related changes in S100A6 immunoreactivity in the mouse hippocampus, considering that an important negative aspect of brain aging is linked to increased extracellular glutamate. The surface area of S100A6-positive (+) astrocytes was significantly larger in aged mice than in young mice, while the numbers of S100β+ astrocytes did not change with age. In the second experiment, we examined the alterations in S100A6 immunoreactivity in the injured hypoglossal nucleus, because glutamate toxicity is considered to contribute to neuronal death after axotomy. There was no apparent S100A6 immunoreactivity in the hypoglossal nucleus of sham control animals. However, intense labeling for S100A6 in activated astrocytes was observed in the axotomized hypoglossal nucleus of mice. Administration of ceftriaxone, an astrocyte glutamate transporter enhancer, to axotomized mice significantly decreased the immunoreactivity for S100A6. In the third experiment, we tested an animal model of epilepsy using kainic acid (KA), a glutamate analog. In the mouse hippocampus after KA injection, S100A6 immunoreactivity was significantly increased in astrocytes, and pyknotic changes were observed in CA3 pyramidal neurons. Treatment of MK-801, an N-methyl-d-aspartate receptor antagonist, counteracted the KA-induced increase in S100A6 immunoreactivity, and reduced the numbers of pyknotic neurons. Our results indicate that upregulation of astrocytic S100A6 in response to extracellular glutamate may be involved in neuronal damage under pathophysiological conditions.
Collapse
Affiliation(s)
- J Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
9
|
Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 2012; 322:241-9. [PMID: 22726353 DOI: 10.1016/j.jns.2012.05.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
Abstract
Arterial hypertension is the main risk factor for stroke and plays a role in the development of vascular cognitive impairment (VCI) and vascular dementia (VaD). An association between hypertension and reduced cerebral blood flow and VCI is documented and arterial hypertension in midlife is associated with a higher probability of cognitive impairment. These findings suggest that arterial hypertension is a main cause of vascular brain disorder (VBD). Spontaneously hypertensive rat (SHR) is the rat strain most extensively investigated and used for assessing hypertensive brain damage and treatment of it. They are normotensive at birth and at 6months they have a sustained hypertension. Time-dependent rise of arterial blood pressure, the occurrence of brain atrophy, loss of nerve cells and glial reaction are phenomena shared to some extent with hypertensive brain damage in humans. SHR present changes of some neurotransmitter systems that may have functional and behavioral relevance. An impaired cholinergic neurotransmission characterizes SHR, similarly as reported in patients affected by VaD. SHR are also characterized by a dopaminergic hypofunction and noradrenergic hyperactivity similarly as occurs in attention-deficit with hyperactivity disorder (ADHD). Microanatomical, neurochemical and behavioral data on SHR are in favor of the hypothesis that this strain is a suitable model of VBD. Changes in catecholaminergic transmission put forward SHR as a possible model of ADHD as well. Hence SHR could represent a multi-faced model of two important groups of pathologies, VBD and ADHD. As for most models, researchers should always consider that SHR offer some similarities with corresponding human pathologies, but they do not suffer from the same disease. This paper reviews the main microanatomical, neurochemical and behavioral characteristics of SHR with particular reference as an animal model of brain vascular injury.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy.
| | | | | |
Collapse
|
10
|
|
11
|
Abstract
The amygdala has received considerable attention because of its established role in specific behaviors and disorders such as anxiety, depression, and autism. Studies have revealed that the amygdala is a complex and dynamic brain region that is highly connected with other areas of the brain. Previous works have focused on neurons, demonstrating that the amygdala in rodents is highly plastic and sexually dimorphic. However, our more recent work explores sex differences in nonneuronal cells, joining a rich literature concerning glia in the amygdala. Prior investigation of glia in the amygdala can generally be divided into disease-related and hormone-related categories, with both areas of research producing interesting findings concerning glia in this important brain region. Despite a wide range of research topics, the collected findings make it clear that glia in the amygdala are sensitive and plastic cells that respond and develop in a highly region specific manner.
Collapse
|
12
|
Modi PK, Kanungo MS. Age-dependent expression of S100beta in the brain of mice. Cell Mol Neurobiol 2010; 30:709-16. [PMID: 20099023 PMCID: PMC11498891 DOI: 10.1007/s10571-009-9495-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
S100beta is a soluble calcium binding protein released by glial cells. It has been reported as a neurotrophic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and in long term potentiation in the adult brain. The ability of S100beta to modulate neuronal morphology raises the important question whether there is an age-related difference in the expression of S100beta in the cerebral and cerebellar cortices of AKR strain mice and is this change is region specific. Our RT-PCR and Western blotting experiments show that the expression of S100beta gene in the cerebral and cerebellar cortices starts from 0 day, peaks at about 45 days. However, in 70-week old mice its expression is significantly up-regulated as compared to that of 20-week old mice. S100beta follows the same age-related pattern in both cerebral and cerebellar cortices. These results suggest that S100beta is important for brain development and establishment of proper brain functions. Up-regulation of S100beta in old age may have some role in development of age-related pathological systems in the brain.
Collapse
Affiliation(s)
- Prashant K. Modi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - M. S. Kanungo
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
13
|
Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kang IJ, Won MH. Cyclooxygenase-2 immunoreactivity and protein level in the gerbil hippocampus during normal aging. Neurochem Res 2009; 35:99-106. [PMID: 19597708 DOI: 10.1007/s11064-009-0034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
Cyclooxygenases-2 (COX-2) is not only related to inflammation but also plays critical roles in brain development and synaptic signaling. In the present study, we investigated age-related changes in COX-2 immunoreactivity and protein levels in the gerbil hippocampus. In the hippocampal CA1 region (CA1) and dentate gyrus (DG), weak COX-2 immunoreactivity was observed at postnatal month 1 (PM 1), and COX-2 immunoreactivity was markedly increased at PM 18 and 24. In the CA2/3, COX-2 immunoreactivity was strong at PM 1. COX-2 immunoreactivities in the PM 3, 6 and 12 groups were decreased compared to that in the PM 1 group, and it was increased at PM 18 and 24. In addition, age-related changes in COX-2 levels were similar with immunohistochemical results in the CA2/3. These results suggest that COX-2 immunoreactivity and levels were high in the hippocampus of aged gerbils.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Mansour H, Chamberlain CG, Weible MW, Hughes S, Chu Y, Chan-Ling T. Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 2008; 7:526-40. [PMID: 18489730 DOI: 10.1111/j.1474-9726.2008.00402.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to investigate changes in astrocyte density, morphology, proliferation and apoptosis occurring in the central nervous system during physiological aging. Astrocytes in retinal whole-mount preparations from Wistar rats aged 3 (young adult) to 25 months (aged) were investigated qualitatively and quantitatively following immunofluorohistochemistry. Glial fibrillary acidic protein (GFAP), S100 and Pax2 were used to identify astrocytes, and blood vessels were localized using Griffonia simplicifolia isolectin B4. Cell proliferation was assessed by bromodeoxyuridine incorporation and cell death by TUNEL-labelling and immunolocalization of the apoptosis markers active caspase 3 and endonuclease G. The density and total number of parenchymal astrocytes in the retina increased between 3 and 9 months of age but decreased markedly between 9 and 12 months. Proliferation of astrocytes was detected at 3 months but virtually ceased beyond that age, whereas the proportion of astrocytes that were TUNEL positive and relative expression of active caspase 3 and endonuclease G increased progressively with aging. In addition, in aged retinas astrocytes exhibited gliosis-like morphology and loss of Pax2 reactivity. A small population of Pax2(+)/GFAP(-) cells was detected in both young adult and aged retinas. The reduction in the availability of astrocytes in aged retinas and other aging-related changes reported here may have a significant impact on the ability of astrocytes to maintain homeostasis and support neuronal function in old age.
Collapse
Affiliation(s)
- Hussein Mansour
- School of Medical Sciences (Anatomy and Histology) and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Age-Related Changes in Neurons and S100-, GFAP-Immunoreactive Cells in the Motor Cortex of Cats. Zool Res 2008. [DOI: 10.3724/sp.j.1141.2008.00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Saura J. Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 2007; 4:26. [PMID: 17937799 PMCID: PMC2140055 DOI: 10.1186/1742-2094-4-26] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/15/2007] [Indexed: 01/25/2023] Open
Abstract
Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS) induces nitric oxide (NO) production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.
Collapse
Affiliation(s)
- Josep Saura
- Department of Cerebral Ischaemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, 08036-Barcelona, Spain.
| |
Collapse
|
17
|
Phinney AL, Andringa G, Bol JGJM, Wolters EC, van Muiswinkel FL, van Dam AMW, Drukarch B. Enhanced sensitivity of dopaminergic neurons to rotenone-induced toxicity with aging. Parkinsonism Relat Disord 2006; 12:228-38. [PMID: 16488175 DOI: 10.1016/j.parkreldis.2005.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/14/2005] [Indexed: 12/21/2022]
Abstract
Rotenone has been reported to induce various degrees of Parkinsonism in rats. We tested whether advancing age alters the sensitivity of dopaminergic neurons to rotenone. A low, systemic dose of rotenone had no effect on young rats, but led to a 20-30% reduction of tyrosine hydroxylase-positive neurons in the substantia nigra of older rats. The effect was specific to nigral dopaminergic neurons and may be associated with the increase of glial cell activation in older rats. These data suggest that age enhances the sensitivity of dopaminergic neurons to rotenone and should be considered when assessing models of Parkinson's disease.
Collapse
Affiliation(s)
- Amie L Phinney
- Department of Medical Pharmacology, Institute for Clinical and Experimental Neurosciences, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Wu Z, Zhang J, Nakanishi H. Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 2005; 167:90-8. [PMID: 16095726 DOI: 10.1016/j.jneuroim.2005.06.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 06/20/2005] [Indexed: 11/29/2022]
Abstract
The leptomeninges covering the surface of the brain parenchyma play the physical role at the cerebrospinal fluid-blood barrier. We report here that leptomeningeal cells may transduce peripheral proinflammatory signals to the central anti-inflammatory response through the activation of glial cells in the brain parenchyma. After adjuvant injection, both microglia and astrocytes in the cerebral cortex localized in the proximity of the leptomeninges were activated. The protein levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) in the cortical extracts were significantly increased at different time after adjuvant injection. The TNF-alpha immunoreactivity was most prominent in the leptomeninges covering astrocytes. On the other hand, the IL-10 immunoreactivity was observed in both activated microglia and astrocytes localized along the leptomeninges. Cultured leptomeningeal cells covering the cerebral cortex released TNF-alpha which was significantly increased by lipopolysaccharide (LPS). Upon stimulation with LPS, cultured leptomeningeal cells also secreted interleukin-1beta and interleukin-6 with differential time-courses. When primary cultured rat astrocytes and microglia were treated with the conditioned medium of LPS-activated cultured leptomeningeal cells, the immunoreactivity of IL-10 was markedly increased. These observations strongly suggest that leptomeningeal cells release pro-inflammatory cytokines to activate both microglia and astrocytes during systemic inflammation. The activated astrocytes and microglia may in turn regulate anti-inflammatory response in the brain by providing IL-10.
Collapse
Affiliation(s)
- Zhou Wu
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
19
|
Mrak RE, Griffin WST. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005; 26:349-54. [PMID: 15639313 DOI: 10.1016/j.neurobiolaging.2004.05.010] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
A glia-mediated, inflammatory immune response is an important component of the neuropathophysiology of Alzheimer's disease, of the midlife neurodegeneration of Down's syndrome, and of other age-related neurodegenerative conditions. All of these conditions are associated with early and often dramatic activation of, and cytokine overexpression in, microglia and astrocytes, sometimes decades before pathological changes consistent with a diagnosis of Alzheimer's disease are apparent, as in patients with Down's syndrome or head injury. Brains of normal elderly individuals also often show Alzheimer-type neuropathological changes, although to a lesser degree than those seen in Alzheimer's disease itself. These normal age-related glial changes, likely a response to the normal wear and tear of the aging process, raise the threshold of glial activation and thus may explain the fact that even genetically determined Alzheimer's disease, resulting from genetic mutations such as those in beta-amyloid precursor protein and presenilins or from genetic duplication such as of chromosome 21, only shows the full manifestation of the disease decades after birth. In the more common sporadic form of Alzheimer's disease, age-related increases in glial activation and expression of cytokines may act in synergy with other genetic and acquired environmental risks to culminate in the development of disease.
Collapse
Affiliation(s)
- Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, 629 South Elm Street, Room 3103, Little Rock, AR 72205, USA
| | | |
Collapse
|
20
|
Tomassoni D, Avola R, Di Tullio MA, Sabbatini M, Vitaioli L, Amenta F. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats. Clin Exp Hypertens 2004; 26:335-50. [PMID: 15195688 DOI: 10.1081/ceh-120034138] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.
Collapse
Affiliation(s)
- Daniele Tomassoni
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Tomassoni D, Bellagamba G, Postacchini D, Venarucci D, Amenta F. Cerebrovascular and brain microanatomy in spontaneously hypertensive rats with streptozotocin-induced diabetes. Clin Exp Hypertens 2004; 26:305-21. [PMID: 15195686 DOI: 10.1081/ceh-120034136] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The influence of hypertension associated with diabetes on cerebrovascular and frontal cortex or hippocampus microanatomy was investigated in 20-week-old spontaneously hypertensive rats (SHR) in which diabetes was induced by treatment with streptozotocin (STZ) and in control or STZ-diabetic age-matched normotensive Wistar Kyoto (WKY) rats. At the beginning of experiment, systolic pressure values were similar in WKY rats either control, or exposed to STZ and remarkably higher in control or STZ-treated SHR. Systolic pressure values increased in the different animal groups examined along the course of experiment. Blood glucose levels were increased in either STZ-WKY rats or -SHR compared to WKY rats and SHR respectively. The main changes occurring in pial and intracerebral arteries of SHR and STZ-SHR were thickening of the arterial wall accompanied by luminal narrowing. In medium sized pial arteries of STZ-WKY rats luminal narrowing and a decreased thickness of arterial wall were noticeable. Intracerebral arteries of STZ-WKY diabetic rats showed a not homogeneous sensitivity of different sized branches. The volume of zones III and IV of frontal cortex was decreased in SHR and STZ-SHR compared to control WKY rats. The number of nerve cells in these cerebrocortical layers was decreased to a similar extent in SHR. STZ-WKY rats or STZ-SHR compared to control WKY rats. In dentate gyrus, followed by the CA1 subfield of hippocampus, decreased volume and number of neurons were found in SHR and STZ-SHR compared to control WKY rats. The occurrence of astrogliosis was observed in hypertensive, diabetic or hypertensive plus diabetic rats. The above findings indicate the occurrence of cerebrovascular and brain microanatomical changes in SHR and to a lesser extent in STZ-diabetic rats compared to control normotensive and normoglicemic WKY rats. Association of hypertension and diabetes caused more pronounced changes than in the single disease models. These results support the view that hypertension and diabetes affect the structure of cerebrovascular tree and of brain and that association of the two diseases results in an increased risk of target-organ damage, involving brain.
Collapse
Affiliation(s)
- Daniele Tomassoni
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Camerino, Italy
| | | | | | | | | |
Collapse
|
22
|
Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P. Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 2004; 11:253-60. [PMID: 15169854 PMCID: PMC419727 DOI: 10.1101/lm.68204] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze. By using Affymetrix GeneChip microarrays, we found a distinct pattern of age-related change, consisting mostly of gene overexpression in the middle-aged mice, suggesting that the induction of negative regulators in the middle-aged hippocampus could be involved in impairment of learning. Interestingly, we report changes in transcript levels for genes that could affect synaptic plasticity. Those changes could be involved in the memory deficits we observed in the 15-month-old mice. In agreement with previous reports, we also found altered expression in genes related to inflammation, protein processing, and oxidative stress.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
23
|
Röhl C, Held-Feindt J, Sievers J. Developmental changes of parameters for astrogliosis during cultivation of purified cerebral astrocytes from newborn rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 144:191-9. [PMID: 12935916 DOI: 10.1016/s0165-3806(03)00171-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Astrogliosis is a common phenomenon seen in most neuropathological changes of the central nervous system. Several in vitro models have been used to study the mechanisms and conditions for the induction of astrogliosis, however many do not take into account that the metabolic and structural characteristics of astrocytes change with time in culture. Thus, it appears difficult to attribute changes of, e.g., GFAP to the normal change in vitro as opposed to additional changes due to an astrogliotic reaction. The present study was therefore undertaken to characterize these developmental changes in purified astroglial secondary cultures during cultivation to provide a basis for further investigations of astrogliosis in vitro. During 6 weeks of cultivation (3-43 days) GFAP (ELISA) increased much more (22-fold) than the cell number (2.5-fold) and the total protein (3.5-fold). The GFAP/protein ratio increased during the first 4 weeks of cultivation and reached a plateau thereafter, which was accompanied by a significant increase of GFAP mRNA (Northern blot). At the ultrastructural level (transmission electron microscopy) gliofilaments in the perinuclear region as well as in the cell processes of 4-day-old astrocytes showed a dispersed pattern, whereas an accumulation of gliofilaments was found in 39-day-old cells, which formed large aggregated bundles localized mostly in the cell processes. Our results show that in vitro astrocytes undergo developmental changes in their accumulation of GFAP and intermediate filaments which reach a stable steady state after 4 weeks in culture. These 'normal' developmental changes will have to be taken into account, when experiments with variations of the level of GFAP are performed. Stable culture conditions for experimentation appear to be present after 4 weeks in culture.
Collapse
Affiliation(s)
- Claudia Röhl
- Department of Anatomy, University of Kiel, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
24
|
Pizarro JM, Haro LS, Barea-Rodriguez EJ. Learning associated increase in heat shock cognate 70 mRNA and protein expression. Neurobiol Learn Mem 2003; 79:142-51. [PMID: 12591223 DOI: 10.1016/s1074-7427(02)00008-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Morris water maze is a task widely used to investigate cellular and molecular changes associated with spatial learning and memory. This task has both spatial and aversive (swimming related stress) components. It is possible that stress may influence cellular modifications observed after learning the Morris water maze spatial task. Heat shock proteins, also known as stress proteins, are up-regulated in response to thermal stress, trauma, or environmental insults. In the rat hippocampus, psychophysiological stress increases the levels of heat shock protein 70 (HSC70). In this study, we investigated whether the expression of the hsc70 gene is modulated in the hippocampus during learning of the Morris water maze task. Five groups of rats were trained in the Morris water maze task for varying amounts of time (either 1, 2, 3, 4, or 5 days). Training consisted of 10 trials/day in which the animals were given 60s to find a submerged platform. Rats were sacrificed 24h after their last training trial. Results showed a significant increase in hsc70 mRNA and protein levels in the hippocampal formation after two and three days of training, respectively. The increase in mRNA and protein was associated with learning but not stress because the increase was not observed in the yoked control animals. These findings suggest that cellular and molecular changes can occur independent of stress. Moreover, the results are the first to implicate hsc70 expression in spatial learning.
Collapse
Affiliation(s)
- José M Pizarro
- Cajal Neuroscience Research Center, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
25
|
Gottfried C, Tramontina F, Gonçalves D, Gonçalves CA, Moriguchi E, Dias RD, Wofchuk ST, Souza DO. Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 2002; 123:1333-40. [PMID: 12297336 DOI: 10.1016/s0047-6374(02)00069-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Relatively few studies have been conducted to investigate the relationship between glutamate and development and/or aging. Rat cortical astrocyte cultures were used as a model to investigate glutamate uptake during development. The immunocontent of the markers glial fibrillary acidic protein (GFAP) and S100B increased, while basal secretion of S100B decreased, in astrocytes from 10 to 40 days in vitro (DIV). Basal glutamate uptake increased with age. Exposure to hydrogen peroxide decreased glutamate uptake more potently at 40 than 10 DIV. Moreover, 40 DIV astrocytes showed earlier loss of integrity (at 6 h) than 10 DIV astrocytes (at 24 h) after H(2)O(2) exposure. Addition of guanosine stimulated glutamate uptake only in 10 DIV astrocytes. The present work shows that mature astrocytes in culture present some neurochemical alterations also observed in astrocytes of aged animals. These results can contribute to the understanding of some consequences of the excitotoxicity and oxidative stress during brain aging.
Collapse
Affiliation(s)
- Carmem Gottfried
- Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifi;cia Universidade Católica do Rio Grande do Sul, PUCRS, RS, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Casolini P, Catalani A, Zuena AR, Angelucci L. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 2002; 68:337-43. [PMID: 12111864 DOI: 10.1002/jnr.10192] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain aging as well as brain degenerative processes with accompanying cognitive impairments are generally associated with hyperactivity of the hypothalamus-pituitary-adrenal axis, the end product of which, the glucocorticoid hormone, has been warranted the role of cell damage primum movens ("cascade hypothesis"). However, chronic inflammatory activity occurs in the hippocampus of aged rats as well as in the brain of Alzheimer's disease patients. The concomitant increase in the secretion of the glucocorticoid hormone, the endogenous anti-inflammatory and pro-inflammatory markers, has prompted us to investigate the two phenomena in the aging rat, and to work out its meaning. This study shows that: (I) interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and prostaglandin E(2) (PGE(2)) increase with age in the rats hippocampus, and (II) chronic oral treatment with celecoxib, a selective cycloxygenase-2 (COX-2) inhibitor, is able to contrast the age-dependent increase in hippocampal levels of pro-inflammatory markers and circulating anti-inflammatory corticosterone, provided that it is started at an early stage of aging. Under these conditions, age-related impairments in cognitive ability may be ameliorated. Taken together, these results indicate that there is a natural tendency to offset the age-dependent increase in brain inflammatory processes via the homeostatic increase of the circulating glucocorticoid hormone.
Collapse
Affiliation(s)
- Paola Casolini
- Department of Human Physiology and Pharmacology, Faculty of Medicine, University of Rome La Sapienza, Italy
| | | | | | | |
Collapse
|
27
|
Abstract
The optic nerve is a circumscribed white matter tract consisting of myelinated nerve fibers and neuroglial cells. Previous work has shown that during normal aging in the rhesus monkey, many optic nerves lose some of their nerve fibers, and in all old optic nerves there are both myelin abnormalities and degenerating nerve fibers. The present study assesses how the neuroglial cell population of the optic nerve is affected by age. To address this question, optic nerves from young (4-10 years) and old (27-33 years) rhesus monkeys were examined by using both light and electron microscopy. It was found that with age the astrocytes, oligodendrocytes, and microglia all develop characteristic cytoplasmic inclusions. The astrocytes hypertrophy and fill space vacated by degenerated nerve fibers, and they often develop abundant glial filaments in their processes. Oligodendrocytes and microglial cells both become more numerous with age, and microglial cells often become engorged with phagocytosed debris. Some of the debris can be recognized as degenerating myelin, and in general, the greater the loss of nerve fibers, the more active the microglial cells become.
Collapse
Affiliation(s)
- Julie H Sandell
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
28
|
Mori N, Mizuno T, Murai K, Nakano I, Yamashita H. Effect of age on the gene expression of neural-restrictive silencing factor NRSF/REST. Neurobiol Aging 2002; 23:255-62. [PMID: 11804711 DOI: 10.1016/s0197-4580(01)00286-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aging affects a wide range of gene expression changes in the nervous system. Such effects could be attributed to random changes in the environment with age around each gene, but also could be caused by selective changes in a limited set of key regulatory transcription factors and/or chromatin remodeling components. To approach the question of whether neural-restrictive silencer factor NRSF, a key determinant of the neuron-specific gene expression, is involved in these changes, we examined the levels of NRSF in the rat brain and dosal root ganglia during aging by semi-quantitative reverse transcriptase-mediated polymerase chain reaction (PCR) (RT-PCR). Complementary expression profiles of transcripts of NRSF and SCG10 in the mature brain were shown by in situ hybridization. Neither the mRNA levels of NRSF nor a splicing variant NRnV were changed, at least in rats up to 26 months old. The gene expression level of SCG10, one of the NRSF targets, was also unaffected by age. The stable expression of SCG10 transcripts in aging was confirmed by in situ hybridization. The NRS-binding ability of NRSF was also unchanged significantly in the nuclear extracts of aged rat brain. These results suggest that the genetic machinery associated with the NRS-NRSF system is well maintained during aging.
Collapse
Affiliation(s)
- Nozomu Mori
- Department of Molecular Genetics, National Institute for Longevity Sciences (NILS), Gengo 36-3, Morioka, 474-8522, Oobu, Aichi, Japan.
| | | | | | | | | |
Collapse
|
29
|
Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 2001; 102:329-39. [PMID: 11166119 DOI: 10.1016/s0306-4522(00)00484-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic stress has been shown to induce time-dependent neurodegeneration in the hippocampus, ranging from a reversible damage to a permanent neuronal loss. This damage has been proposed to impair cognitive function in hippocampus-dependent learning tasks. In this study, we have used a 21-day restraint stress procedure in rats, previously reported to induce reversible atrophy of apical dendrites of CA3 pyramidal cells, to assess whether it may influence subsequent performance in the contextual fear conditioning task under experimental conditions involving high stress levels (1 mA shock intensity as the unconditioned stimulus). In addition, we were interested in the study of the possible cellular and molecular mechanisms involved in the reversible phase of neural damage. Cell adhesion molecules of the immunoglobulin superfamily, such as the neural cell adhesion molecule and L1, are cell-surface macromolecules that, through their recognition and adhesion properties, regulate cell-cell interactions and have been reported to play a key role in cognitive functioning. A second aim of this study was to evaluate whether chronic stress would modulate the expression of the neural cell adhesion molecule, its polysialylation, and L1 in the hippocampus. The results showed that chronic stress facilitated subsequent contextual fear conditioning. They also showed that chronically stressed rats displayed reduced hippocampal neural cell adhesion molecule, but increased polysialylated expression as well as a trend towards exhibiting increased L1 expression. In summary, these results support the view that a 21-day chronic stress regimen predisposes individuals to develop enhanced contextual fear conditioning responses. They also indicate that cell adhesion molecules might play a role in the structural remodelling that occurs in the hippocampus as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- C Sandi
- Department of Psychobiology, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
30
|
Kullberg S, Aldskogius H, Ulfhake B. Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Res 2001; 899:169-86. [PMID: 11311878 DOI: 10.1016/s0006-8993(01)02222-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With advancing age, the incidence of neuronal atrophy and dystrophy increases and, in parallel, behavioural sensorimotor impairment becomes overt. Activated microglia has been implicated in cytotoxic and inflammatory processes in neurodegenerative diseases as well as during aging. Here we have used immunohistochemistry and in situ hybridization to examine the expression of OX42, ED1, ED2, GFAP and clusterin in CNS of young adult and behaviourally tested aged rats (30-month-old), to study the occurrence of activated microglia/ED1 positive macrophages in senescence and to what extent this correlates with astrogliosis and signs of sensorimotor impairment among the individuals. The results show a massive region-specific increase in activated microglia and ED1 expressing cell profiles in aged rats. The infiltration was most prominent in the spinal cord dorsal columns, including their sensory relay nuclei, and the outer portions of the lateral and ventral columns. At such sites the occurrence of macrophages coincided with increased levels of GFAP and positive correlations were evident between the labeling for, on the one hand, OX42 and, on the other, GFAP and ED1. Also, the ventral and dorsal roots were heavily infiltrated by ED1 positive cells. The signs of gliosis were most pronounced among aged rats with advanced sensorimotor impairment. In contrast, the grey matter of aged rats showed very few activated microglia/ED1 labeled cells despite signs of focal astrogliosis. ED2 expression was confined to perivascular cells and leptominges with a similar labeling pattern in young and aged rats. In aged rats increased expression of clusterin was observed in GFAP-immunoreactive profiles of the white matter only. It is suggested that this increase may reflect a response to degenerative/inflammatory processes.
Collapse
Affiliation(s)
- S Kullberg
- Department of Neuroscience, Karolinska Institutet, Doktorsringen 17, S-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Rintala J, Jaatinen P, Kiianmaa K, Riikonen J, Kemppainen O, Sarviharju M, Hervonen A. Dose-dependent decrease in glial fibrillary acidic protein-immunoreactivity in rat cerebellum after lifelong ethanol consumption. Alcohol 2001; 23:1-8. [PMID: 11282445 DOI: 10.1016/s0741-8329(00)00116-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of aging and lifelong ethanol consumption on astrocytic morphology and glial fibrillary acidic protein-immunoreactivity (GFAP-IR) in the cerebellar vermis obtained from ethanol-preferring Alko, Alcohol (AA) rats were analyzed by using computer-assisted image analysis. The ethanol-consuming animals (both male and female) were given ethanol (10%-12%, vol./vol.) as the only available fluid for 21 months (3-24 months), whereas the young (3 months) and the old (24 months) controls received water. In the male rats, but not in the female rats, an age-related decrease in GFAP-IR was found in folia II, VII, and X of the molecular layer, and in turn, an age-related increase was found in folium X of the granular layer, indicating opposite changes in GFAP-IR for male rats due to aging in adjacent brain regions. In the female rats, 21 months of daily average ethanol consumption of 6.6 g/kg resulted in decreased GFAP-IR in folium VII of the molecular layer, and the decrease in cerebellar GFAP-IR correlated with the average daily ethanol intake (r=-.886, P=.019) when folia II, IV, VII, and X were analyzed together. No effect of ethanol on GFAP-IR was detected in the granular layer or in the central white matter of the female rats. There was no change in GFAP-IR in any of the three cerebellar layers of the male rats with average daily ethanol consumption of 3.2 g/kg. These results indicate that the Bergmann glial fibers are the GFAP-expressing structures of the cerebellum most sensitive to moderate-to-heavy chronic ethanol exposure and that this effect is dose dependent.
Collapse
Affiliation(s)
- J Rintala
- The School of Public Health, University of Tampere, FIN-33700, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kharlamov A, Kharlamov E, Armstrong DM. Age-dependent increase in infarct volume following photochemically induced cerebral infarction: putative role of astroglia. J Gerontol A Biol Sci Med Sci 2000; 55:B135-41; discussion B142-3. [PMID: 10795717 DOI: 10.1093/gerona/55.3.b135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study demonstrates that the photochemically induced model of stroke is an extremely viable method of inducing cerebral infarction in old animals. The lesions are reproducible both in terms of location and size and compatible with long-term survival of the animal. With this model we demonstrated, one week following surgery, a significantly larger infarct in rats 20 and 24 months of age compared to 4-month-old rats. The older rats also sustained greater neurologic deficits as assessed on a rotarod task. Older rats also were characterized by a glial response that was far less intense than in young animals. While the precise relationship between glia activation and cerebral damage remains to be determined, it would appear that a better understanding of those factors that contribute to the astrocytic response in the aged rat may be of particular benefit in designing therapeutic strategies aimed at reducing the pathologic consequences of cerebral infarction in elderly humans.
Collapse
Affiliation(s)
- A Kharlamov
- Allegheny University of the Health Sciences, Neurosciences Research Center, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
33
|
|
34
|
Prickaerts J, Fahrig T, Blokland A. Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 1999; 102:73-88. [PMID: 10403017 DOI: 10.1016/s0166-4328(98)00158-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study we evaluated the effects of an intracerebroventricular injection of streptozotocin on cognitive behavior and biochemical markers in the brain of middle-aged Wistar rats. Intracerebroventricular injected streptozotocin has previously been reported to decrease the central metabolism of glucose. We found that streptozotocin-treated rats showed an impaired cognitive performance in the delayed non-matching to position task and the Morris water escape task. Glial fibrillary acidic protein, an indicator of reactive astroglial changes, was measured in three different (soluble, Triton X-100 soluble and crude cytoskeletal) protein fractions and its content in the fractions of the septum, hippocampus and striatum of streptozotocin-treated rats was increased. Furthermore, the glial fibrillary acidic protein response of each protein fraction to streptozotocin treatment appeared to be differently regulated. In streptozotocin-treated rats the choline acetyltransferase activity was decreased in the hippocampus only, which was correlated with the hippocampal glial fibrillary acidic protein contents of all three hippocampal protein fractions, thus suggesting that the cholinergic deficit is a consequence of direct damage to the hippocampus. The cognitive deficits in both tasks were related to the increased glial fibrillary acidic protein contents, especially of the soluble and cytoskeletal fraction, and the decreased choline acetyltransferase activity in the hippocampus. Taken together, these findings indicate that it is important to take into account which protein fraction has been used for measuring the glial fibrillary acidic protein response to a stressor. Furthermore, intracerebroventricular injected streptozotocin may provide a relevant model for studying neurodegenerative changes due to a metabolic insufficiency and testing neuroprotective effects of substances.
Collapse
Affiliation(s)
- J Prickaerts
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience EURON, Maastricht University, The Netherlands.
| | | | | |
Collapse
|
35
|
Sandi C, Loscertales M. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 1999; 828:127-34. [PMID: 10320732 DOI: 10.1016/s0006-8993(99)01346-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temporal pattern of exposure to glucocorticoids has been reported to be a critical factor in determining the outcome of glucocorticoid actions at the brain. In this work, the effects of different regimes of subcutaneous corticosterone administration (acute-single injection-vs. chronic-daily injection for 21 days) on the expression of the neural cell adhesion molecule (NCAM) were evaluated in different rat brain regions (CA1-CA4, dentate gyrus, frontal cortex, striatum, and hypothalamus). The treatments were selected according to previous studies in which we showed biphasic effects of corticosterone on memory formation, with acute corticosterone effects being facilitating and chronic effects being deleterious. In addition, the chronic treatment was shown by others to result in structural alterations at the hippocampus. NCAM was evaluated given its cell-cell recognition and adhesion properties, and the involvement on synaptic stabilisation subserving long-term memory formation. The results showed a biphasic modulation of NCAM levels at the frontal cortex, with acute corticosterone resulting in enhanced NCAM levels at 8 h and 24 h posttraining, and the chronic treatment decreasing its expression. None of the other brain areas examined showed significant changes in NCAM expression with corticosterone treatments, except for the hypothalamus that showed reduced NCAM levels after the chronic corticosterone regime. These results support the view that NCAM regulation at the frontal cortex might be a mechanism by which corticosterone treatments influence memory formation. They also highlight the hypothalamus as a brain area particularly sensitive to NCAM regulation by prolonged exposure to elevated glucocorticoids.
Collapse
Affiliation(s)
- C Sandi
- Brain and Behaviour Research Group, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | |
Collapse
|
36
|
Abstract
Pertinent animal models of age-related learning deficiencies are required to elucidate the mechanism of age-related learning deficiencies and to develop novel therapeutic drugs for age-related diseases such as learning defects. Among many strains of accelerated senescence prone, senescence-accelerated mouse (SAM), SAMP8 mice have age-related defects in learning and cognitive abilities. We review recent findings on alterations in SAMP8 brain in neurochemical parameters related to neurotransmission and synaptic plasticity compared to those in SAMR1 brain as the control. In addition, we report the preventive effects of drugs on learning deficiencies in SAMP8 and discuss the usefulness of SAMP8 as an animal model of age-related learning deficiencies.
Collapse
Affiliation(s)
- Y Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
37
|
Abstract
Peripheral nerve axotomy activates microglia and astrocytes within regions of brainstem or spinal cord from which the nerve arises. The present study demonstrates that unilateral sciatic axotomy in rats 2 to 18 months of age results in differing responses with age between these two glial populations. By 4 days postaxotomy, both astrocytes and microglia become activated in 2-month-old rats, whereas only the microglial population shows evidence of activation in rats 8 to 18 months of age.
Collapse
Affiliation(s)
- S A Gilmore
- Department of Anatomy-510, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
38
|
Legrand A, Alonso G. Pregnenolone reverses the age-dependent accumulation of glial fibrillary acidic protein within astrocytes of specific regions of the rat brain. Brain Res 1998; 802:125-33. [PMID: 9748538 DOI: 10.1016/s0006-8993(98)00580-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although aged-related modifications of astrocytes have been frequently described, little is known so far about the signals responsible for these modifications. Since it is well demonstrated that astrocytes are highly responsive to a variety of steroids, we hypothesized that modifications of cerebral astrocytes may result from the age-related decrease of circulating steroids. In the present study, we investigated the effects of the chronic administration of pregnenolone (PREG), the precursor of all steroid hormones, on the age-related extension of astrocytic processes in various brain regions. In adult (2-3 month-old) and aged (22-24 month-old) rats, quantitative image analysis was used to estimate, within each region, the number of astrocyte cell bodies immunostained (IS) for S100, and the surface occupied by astrocytic cell bodies and processes IS for glial fibrillary acidic protein (GFAP). In all regions, the surface occupied by GFAP-IS structures was increased in the aged vs. the adult rats, whereas no significant modifications were observed in the number of S100-IS cell bodies. Chronic administration of PREG to aged rats induced a marked decrease in the surface occupied by GFAP-IS structures in the cortex, amygdala and thalamus, without any significant effect on the number of S100-IS cell bodies present in these regions. By contrast, PREG had no significant effect when administered to adult animals. These data suggest that decreased levels of circulating steroid hormones may be responsible for the age-dependent modifications of the astrocytes present in various brain regions, and that these modifications can be at least partly corrected by the administration of PREG.
Collapse
Affiliation(s)
- A Legrand
- INSERM U336, University of Montpellier II, France
| | | |
Collapse
|
39
|
Day JR, Frank AT, O'Callaghan JP, DeHart BW. Effects of microgravity and bone morphogenetic protein II on GFAP in rat brain. J Appl Physiol (1985) 1998; 85:716-22. [PMID: 9688751 DOI: 10.1152/jappl.1998.85.2.716] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study evaluated effects of bone morphogenetic protein II (BMP) on glial fibrillary acidic protein (GFAP) in the brain of female Fischer 344 rats during 14 days of spaceflight. GFAP mRNA decreased in vehicle-implanted rats flown on the space shuttle by 53 and 48% in the stratum moleculare and stratum lacunosum moleculare hippocampal subregions, respectively. GFAP mRNA was not significantly affected by BMP implantation during spaceflight. Rats returning from space exhibited a 56% increase in serum corticosterone. BMP treatment did not additively increase corticosterone elevations in microgravity but appeared to increase serum corticosterone and reduce GFAP mRNA in the stratum moleculare in control rats. These data suggest that exposure to microgravity reduces GFAP expression in hippocampal astrocytes.
Collapse
Affiliation(s)
- J R Day
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
40
|
Dugar A, Patanow C, O'Callaghan JP, Lakoski JM. Immunohistochemical localization and quantification of glial fibrillary acidic protein and synaptosomal-associated protein (mol. wt 25000) in the ageing hippocampus following administration of 5,7-dihydroxytryptamine. Neuroscience 1998; 85:123-33. [PMID: 9607708 DOI: 10.1016/s0306-4522(97)00606-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Responses to injury in the ageing hippocampus were assessed utilizing the synaptic markers glial fibrillary acidic protein and synaptosomal-associated protein (mol. wt 25,000) following administration of the neurotoxin, 5,7-dihydroxytryptamine, into the fimbria-fornix and cingulum bundle to denervate serotonergic afferent input to the dorsal hippocampus. Age-dependent alterations in hippocampal immunohistochemical localization of glial fibrillary acidic protein and synaptosomal-associated protein were evaluated in female Fischer 344 rats following serotonergic deafferentation with 5,7-dihydroxytryptamine. Across the lifespan, as indicated by measurements taken at three, 18, 21 and 29 months, marked increases in glial fibrillary acidic protein, but not synaptosomal-associated protein immunoreactivity, occurred throughout the hippocampus at 21 and 29 months compared to three and 18 months. Following three weeks pretreatment with 5,7-dihydroxytryptamine (20 microg total dose) or vehicle (0.1% ascorbic saline; 2 microl total volume) infused in the fimbria-fornix/cingulum bundle, immunohistochemical analysis demonstrated marked increases of glial fibrillary acidic protein, but not synaptosomal-associated protein, in the 18-month 5,7-dihydroxytryptamine group compared to the 18-month vehicle and 3-month 5,7-dihydroxytryptamine groups. Additionally, a significant increase in glial fibrillary acidic protein concentration was found by enzyme-linked immunosorbent assay in the 18-month 5,7-dihydroxytryptamine group compared to the 18-month vehicle and three-month 5,7-dihydroxytryptamine groups. These results demonstrate that selective neurotoxicant damage of the hippocampal serotonergic system differentially alters the expression of glial fibrillary acidic protein. This approach may provide a valuable tool to determine the ability of the hippocampus to respond to age-related neurodegenerative injury.
Collapse
Affiliation(s)
- A Dugar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | | | |
Collapse
|
41
|
Day JR, Frank AT, O'Callaghan JP, Jones BC, Anderson JE. The effect of age and testosterone on the expression of glial fibrillary acidic protein in the rat cerebellum. Exp Neurol 1998; 151:343-6. [PMID: 9628769 DOI: 10.1006/exnr.1998.6801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Testosterone reversed the age-related increase in glial fibrillary acidic protein (GFAP) in the male rat cerebellum, a brain region not generally associated with gonadal steroid hormone sensitivity. This supports the hypothesis that a decrease in circulating testosterone contributes to age-related increase in GFAP. These data also suggest that reductions in circulating gonadal steroids during aging could render the brain more susceptible to neurodegeneration and that hormone replacement therapy might have value in neurodegenerative disease intervention.
Collapse
Affiliation(s)
- J R Day
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | | | | | | | |
Collapse
|
42
|
Cruz-Sánchez FF, Cardozo A, Castejón C, Tolosa E, Rossi ML. Aging and the nigro-striatal pathway. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 51:9-25. [PMID: 9470125 DOI: 10.1007/978-3-7091-6846-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive impairment in motor function. This feature, together with the decline in mental function, could be considered as an aging syndrome which may finally compromise the ability of the elderly to maintain an active, independent life-style. In the present paper a wide variety of morphological aspects, which have been classically related to brain aging and others such as cytoskeletal changes, the role of growth factors and molecular changes, will be reviewed focusing on aging of the nigrostriatal pathway. In addition to sharing features of aging common to other structures, it is likely that the nigrostriatal pathway has specific characteristics derived from its particular molecular characteristics and/or from a selective vulnerability to aging. To gain further insight into the aging syndrome, the acquisition of rigorous criteria for selecting control cases is paramount. The improvement of methods for the preservation of human tissue is also crucial.
Collapse
|
43
|
Kane CJ, Sims TJ, Gilmore SA. Astrocytes in the aged rat spinal cord fail to increase GFAP mRNA following sciatic nerve axotomy. Brain Res 1997; 759:163-5. [PMID: 9219877 DOI: 10.1016/s0006-8993(97)00359-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aging in the brain is associated with specific changes in the astrocyte population. The present study establishes that similar changes occur in the aging spinal cord. The levels of glial fibrillary acidic protein (GFAP) mRNA were significantly increased 0.4-fold in aged 8- to 17-month-old rats compared to young 2-month-old rats. The ability of astrocytes in the aging spinal cord to respond to a non-invasive CNS injury was compared to young rats 4 days following sciatic nerve axotomy. The level of GFAP mRNA was significantly increased 0.5-fold in the young rats in response to axotomy. In contrast, the level of GFAP mRNA in aged rats did not increase following injury above that present in non-axotomized rats of the same age.
Collapse
Affiliation(s)
- C J Kane
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205, USA.
| | | | | |
Collapse
|
44
|
Krekoski CA, Parhad IM, Fung TS, Clark AW. Aging is associated with divergent effects on Nf-L and GFAP transcription in rat brain. Neurobiol Aging 1996; 17:833-41. [PMID: 9363793 DOI: 10.1016/s0197-4580(96)00078-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied the effects of advancing age on the expression of several proteins important in the structure and function of the nervous system. Brains of young (3 month), middle-aged (13 month), and old (29 month) male Fischer 344 rats were examined. Run-on transcription and Northern blot hybridizations were used to determine gene-specific transcription rates and mRNA levels, respectively. With advancing age, there was a decrement in the transcription rate and mRNA levels for neurofilament-light subunit (Nf-L), but an increment in the transcription rate and mRNA levels for glial fibrillary acidic protein (GFAP). Proteolipid protein (PLP) mRNA levels were attenuated between 3 and 13 months of age, whereas amyloid precursor protein (APP) mRNA levels were attenuated in the middle-aged but not the old animals. Transcription rates for alpha-actin and fos, and mRNA levels for alpha-actin, were unaffected. These observations indicate divergent transcriptional regulation of several genes, notably Nf-L and GFAP, in the aging mammalian forebrain.
Collapse
Affiliation(s)
- C A Krekoski
- Department of Pathology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
45
|
Sheng JG, Mrak RE, Rovnaghi CR, Kozlowska E, Van Eldik LJ, Griffin WS. Human brain S100 beta and S100 beta mRNA expression increases with age: pathogenic implications for Alzheimer's disease. Neurobiol Aging 1996; 17:359-63. [PMID: 8725896 DOI: 10.1016/0197-4580(96)00037-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
S100 beta is a neurite extension factor that has been implicated in the development of neuritic plaques in Alzheimer's disease. We analyzed the expression of S100 beta and its encoding mRNA, using immunohistochemistry, enzyme-linked immunosorbent assay, and Northern blot analysis, in postmortem brain tissue from 26 neurologically normal patients, aged 1-80 years. Tissue levels of S100 beta and S100 beta mRNA, as well as the number of S100 beta-immunoreactive (S100 beta +) astrocytes, increased with advancing age (r = 0.60, p = 0.008; r = 0.65, p = 0.007: and r = 0.73, p = 0.001, respectively). In patients more than 60 years old, the number of S100 beta + astrocytes and the tissue levels of S100 beta and S100 beta mRNA were significantly higher than those in patients less than 60 years of age (p = 0.001, p = 0.035, and p = 0.047, respectively). All of these values, however, were significantly less than those found in Alzheimer patients (p < 0.05 or better). Our findings, together with the known functions of S100 beta, suggest that age-related increases in S100 beta expression are important in the pathogenesis of Alzheimer's disease and may explain in part the increased incidence of this disease with advancing age.
Collapse
Affiliation(s)
- J G Sheng
- Arkansas Children's Hospital Research Center, Little Rock, USA
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- H M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Abstract
The transition from short- to long-term memory requires lasting modulations of synaptic connectivity. In a variety of species and learning tasks, enhanced synthesis of glycoprotein cell-adhesion molecules (CAMs), such as neural CAM (NCAM) and Ll, 5-8 h post-training is a necessary step in this process. If the training event is weak, this phase of glycoprotein synthesis does not occur and memory is not retained. Antibodies or fragments that bind to the extracellular domains of NCAM or Ll at this time produce amnesia for the task. Centrally administered corticosterone enhances retention of weak learning, and steroid-receptor antagonists are amnestic. The effects of corticosterone are mediated through synthesis of 'second-wave' glycoproteins. As 'nootropic' drugs such as piracetam only enhance long-term retention and are ineffective in adrenalectomized animals, the interaction between glucocorticoids and glycoproteins might provide a site for pharmacological intervention in alleviating the losses of memory that occur in neurodegenerative disorders.
Collapse
Affiliation(s)
- S P Rose
- Brain and Behaviour Research Group, Open University, Milton Keynes, UK
| |
Collapse
|