1
|
Poltavski DM, Cunha AT, Tan J, Sucov HM, Makita T. Lineage-specific intersection of endothelin and GDNF signaling in enteric nervous system development. eLife 2024; 13:RP96424. [PMID: 39641974 PMCID: PMC11623925 DOI: 10.7554/elife.96424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Two major ligand-receptor signaling axes - endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret - are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates. Both Cre lines result in Hirschsprung disease when combined with conditional Ednrb or conditional Ret alleles. In vitro explant assays and analysis of lineage-labeled mutant embryos show that GDNF but not Edn3 is a migration cue for cells of both lineages. Instead, Edn3-Ednrb function is required in both for GDNF responsiveness albeit in different ways: by expanding the Ret+ population in the Pax2Cre lineage, and by supporting Ret function in Wnt1Cre-derived cells. Our results demonstrate that two distinct lineages of progenitors give rise to the ENS, and that these divergently utilize endothelin signaling to support migration to the hindgut.
Collapse
Affiliation(s)
- Denise M Poltavski
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Alexander T Cunha
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Jaime Tan
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| |
Collapse
|
2
|
Yew WP, Humenick A, Chen BN, Wattchow DA, Costa M, Dinning PG, Brookes SJH. Electrophysiological and morphological features of myenteric neurons of human colon revealed by intracellular recording and dye fills. Neurogastroenterol Motil 2023; 35:e14538. [PMID: 36740821 DOI: 10.1111/nmo.14538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.
Collapse
Affiliation(s)
- Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
3
|
Hamnett R, Dershowitz LB, Sampathkumar V, Wang Z, Gomez-Frittelli J, De Andrade V, Kasthuri N, Druckmann S, Kaltschmidt JA. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr Biol 2022; 32:4483-4492.e5. [PMID: 36070775 PMCID: PMC9613618 DOI: 10.1016/j.cub.2022.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
The organization and cellular composition of tissues are key determinants of their biological function. In the mammalian gastrointestinal (GI) tract, the enteric nervous system (ENS) intercalates between muscular and epithelial layers of the gut wall and can control GI function independent of central nervous system (CNS) input.1 As in the CNS, distinct regions of the GI tract are highly specialized and support diverse functions, yet the regional and spatial organization of the ENS remains poorly characterized.2 Cellular arrangements,3,4 circuit connectivity patterns,5,6 and diverse cell types7-9 are known to underpin ENS functional complexity and GI function, but enteric neurons are most typically described only as a uniform meshwork of interconnected ganglia. Here, we present a bird's eye view of the mouse ENS, describing its previously underappreciated cytoarchitecture and regional variation. We visually and computationally demonstrate that enteric neurons are organized in circumferential neuronal stripes. This organization emerges gradually during the perinatal period, with neuronal stripe formation in the small intestine (SI) preceding that in the colon. The width of neuronal stripes varies throughout the length of the GI tract, and distinct neuronal subtypes differentially populate specific regions of the GI tract, with stark contrasts between SI and colon as well as within subregions of each. This characterization provides a blueprint for future understanding of region-specific GI function and identifying ENS structural correlates of diverse GI disorders.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ziyue Wang
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119:e2123020119. [PMID: 35446689 PMCID: PMC9170151 DOI: 10.1073/pnas.2123020119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Bernard T. Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hongli Lu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hyun Jin Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Seung-Bum Ryoo
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Heung-Up Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710
| | - Qianqian Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| |
Collapse
|
5
|
Morphologies, dimensions and targets of gastric nitric oxide synthase neurons. Cell Tissue Res 2022; 388:19-32. [PMID: 35146560 PMCID: PMC8976817 DOI: 10.1007/s00441-022-03594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
We investigated the distributions and targets of nitrergic neurons in the rat stomach, using neuronal nitric oxide synthase (NOS) immunohistochemistry and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Nitrergic neurons comprised similar proportions of myenteric neurons, about 30%, in all gastric regions. Small numbers of nitrergic neurons occurred in submucosal ganglia. In total, there were ~ 125,000 neuronal nitric oxide synthase (nNOS) neurons in the stomach. The myenteric cell bodies had single axons, type I morphology and a wide range of sizes. Five targets were identified, the longitudinal, circular and oblique layers of the external muscle, the muscularis mucosae and arteries within the gastric wall. The circular and oblique muscle layers had nitrergic fibres throughout their thickness, while the longitudinal muscle was innervated at its inner surface by fibres of the tertiary plexus, a component of the myenteric plexus. There was a very dense innervation of the pyloric sphincter, adjacent to the duodenum. The muscle strands that run between mucosal glands rarely had closely associated nNOS nerve fibres. Both nNOS immunohistochemistry and NADPH histochemistry showed that nitrergic terminals did not provide baskets of terminals around myenteric neurons. Thus, the nitrergic neuron populations in the stomach supply the muscle layers and intramural arteries, but, unlike in the intestine, gastric interneurons do not express nNOS. The large numbers of nNOS neurons and the density of innervation of the circular muscle and pyloric sphincter suggest that there is a finely graded control of motor function in the stomach by the recruitment of different numbers of inhibitory motor neurons.
Collapse
|
6
|
Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca 2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:229-241. [PMID: 36587162 DOI: 10.1007/978-3-031-05843-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa, Iowa City, USA
| |
Collapse
|
7
|
Howard MJ. Refining Enteric Neural Circuitry by Quantitative Morphology and Function in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:213-219. [PMID: 36587160 DOI: 10.1007/978-3-031-05843-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA-Seq, electrophysiology and optogenetics in mouse models are used to assess function, identify disease related genes and model enteric neural circuits. Lacking a comprehensive quantitative description of the murine colonic enteric nervous system (ENS) makes it difficult to most effectively use mouse data to better understand ENS function or for development of therapeutic approaches for human motility disorders. Our goal was to provide a quantitative description of mouse colon to establish the extent to which mouse colon architecture, connectivity and function is a useful surrogate for human and other mammalian ENS. Using GCaMP imaging coupled with pharmacology and quantitative confocal and 3D image reconstruction, we present quantitative and functional data demonstrating that regional structural changes and variable distribution of neurons define neural circuit dynamics and functional connectivity responsible for colonic motor patterns and regional functional differences. Our results advance utility of multispecies and gut region-specific data.
Collapse
Affiliation(s)
- Marthe J Howard
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
8
|
Cairns BR, Jevans B, Chanpong A, Moulding D, McCann CJ. Automated computational analysis reveals structural changes in the enteric nervous system of nNOS deficient mice. Sci Rep 2021; 11:17189. [PMID: 34433854 PMCID: PMC8387485 DOI: 10.1038/s41598-021-96677-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1-/- colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1-/- ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.
Collapse
Affiliation(s)
- Ben R Cairns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Atchariya Chanpong
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Dale Moulding
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK.
| |
Collapse
|
9
|
The role of enteric inhibitory neurons in intestinal motility. Auton Neurosci 2021; 235:102854. [PMID: 34329834 DOI: 10.1016/j.autneu.2021.102854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
The enteric nervous system controls much of the mixing and propulsion of nutrients along the digestive tract. Enteric neural circuits involve intrinsic sensory neurons, interneurons and motor neurons. While the role of the excitatory motor neurons is well established, the role of the enteric inhibitory motor neurons (IMNs) is less clear. The discovery of inhibitory transmission in the intestine in the 1960's in the laboratory of Geoff Burnstock triggered the search for the unknown neurotransmitter. It has since emerged that most neurons including the IMNs contain and may utilise more than one transmitter substances; for IMNs these include ATP, the neuropeptide VIP/PACAP and nitric oxide. This review distinguishes the enteric neural pathways underlying the 'standing reflexes' from the pathways operating physiologically during propulsive and non-propulsive movements. Morphological evidence in small laboratory animals indicates that the IMNs are located in the myenteric plexus and project aborally to the circular muscle, where they act by relaxing the muscle. There is ongoing 'tonic' activity of these IMNs to keep the intestinal muscle relaxed. Accommodatory responses to content further activate enteric pathways that involve the IMNs as the final neural element. IMNs are activated by mechanical and chemical stimulation induced by luminal contents, which activate intrinsic sensory enteric neurons and the polarised interneuronal ascending excitatory and descending inhibitory reflex pathways. The latter relaxes the muscle ahead of the advancing bolus, thus facilitating propulsion.
Collapse
|
10
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
11
|
Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin ( Tursiops truncatus) Intestine. Animals (Basel) 2021; 11:ani11041057. [PMID: 33918065 PMCID: PMC8069003 DOI: 10.3390/ani11041057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The gastrointestinal tract of the bottlenose dolphin (Tursiops truncatus) differs structurally and functionally from that of terrestrial mammals. In particular, the intestine does not show any macroscopic subdivision and lacks a caecum. In addition, the histological aspect of the intestine is relatively constant, without marked differences between the anterior and posterior parts. Although the intestine of these cetaceans presents differences in comparison with terrestrial mammals, little information is currently available on their enteric nervous system. The aim of the present study was to investigate the morphological and quantitative aspects of neurons immunoreactive (IR) for the neuronal nitric oxide synthase (nNOS) and Substance P (SP) in the intestine of bottlenose dolphins (Tursiops truncatus). In these dolphin specimens, a smaller number of nNOS-IR neurons in the submucosal plexus and a larger number of SP-IR neurons in the myenteric plexus were observed compared to other mammals. Interestingly, no co-localization between nNOS- and SP-IR neurons was detected in either of the plexuses, suggesting the existence of two completely distinct functional classes of neurons in the intestine of the bottlenose dolphin. Abstract Compared with other mammals, the digestive system of cetaceans presents some remarkable anatomical and physiological differences. However, the neurochemical features of the enteric nervous system (ENS) in these animals have only been described in part. The present study gives a description of the nitrergic and selected peptidergic systems in the myenteric plexus (MP) and submucosal plexus (SMP) of the intestine of the bottlenose dolphin (Tursiops truncatus). The distribution and morphology of neurons immunoreactive (IR) for the neuronal nitric oxide synthase (nNOS) and Substance P (SP) were immunohistochemically studied in formalin-fixed specimens from the healthy intestine of three animals, and the data were compared with those described in the literature on other mammals (human and non-human). In bottlenose dolphins, the percentages of nitrergic neurons (expressed as median and interquartile range—IQR) were 28% (IQR = 19–29) in the MP and 1% (IQR = 0–2) in the SMP, while the percentages of SP-IR neurons were 31% (IQR = 22–37) in the MP and 41% (IQR = 24–63) in the SMP. Although morphological features of nNOS- and SP-IR neurons were similar to those reported in other mammals, we found some noticeable differences in the percentages of enteric neurons. In fact, we detected a lower proportion of nNOS-IR neurons in the SMP and a higher proportion of SP-IR neurons in the MP compared to other mammals. To the best of the authors’ knowledge, this study represents the first description and quantification of nNOS-IR neurons and the first quantification of SP-IR neurons in the intestine of a cetacean species. As nNOS and SP are important mediators of intestinal functions and the nitrergic population is an important target for many neuroenteropathies, data obtained from a healthy intestine provide a necessary basis to further investigate and understand possible functional differences and motor intestinal dysfunctions/alterations in these special mammals.
Collapse
|
12
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Fleming MA, Ehsan L, Moore SR, Levin DE. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol Res Pract 2020; 2020:8024171. [PMID: 32963521 PMCID: PMC7495222 DOI: 10.1155/2020/8024171] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is innervated by the enteric nervous system (ENS), an extensive neuronal network that traverses along its walls. Due to local reflex circuits, the ENS is capable of functioning with and without input from the central nervous system. The functions of the ENS range from the propulsion of food to nutrient handling, blood flow regulation, and immunological defense. Records of it first being studied emerged in the early 19th century when the submucosal and myenteric plexuses were discovered. This was followed by extensive research and further delineation of its development, anatomy, and function during the next two centuries. The morbidity and mortality associated with the underdevelopment, infection, or inflammation of the ENS highlight its importance and the need for us to completely understand its normal function. This review will provide a general overview of the ENS to date and connect specific GI diseases including short bowel syndrome with neuronal pathophysiology and current therapies. Exciting opportunities in which the ENS could be used as a therapeutic target for common GI diseases will also be highlighted, as the further unlocking of such mechanisms could open the door to more therapy-related advances and ultimately change our treatment approach.
Collapse
Affiliation(s)
- Mark A. Fleming
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lubaina Ehsan
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Sean R. Moore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel E. Levin
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
15
|
Smolilo DJ, Hibberd TJ, Costa M, Wattchow DA, De Fontgalland D, Spencer NJ. Intrinsic sensory neurons provide direct input to motor neurons and interneurons in mouse distal colon via varicose baskets. J Comp Neurol 2020; 528:2033-2043. [PMID: 32003462 DOI: 10.1002/cne.24872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
Abstract
Connections from intrinsic primary afferent neurons (IPANs), to ascending motor and interneurons have been described in guinea pig colon. These mono- and polysynaptic circuits may underlie polarized motor reflexes evoked by local gut stimulation. There is a need to translate findings in guinea pig to mouse, a species increasingly used in enteric neuroscience. Here, mouse distal colon was immunolabeled for CGRP, a marker of putative IPANs. This revealed a combination of large, intensely immunofluorescent axons in myenteric plexus and circular muscle, and thinner varicose axons with less immunofluorescence. The latter formed dense, basket-like varicosity clusters (CGRP+ baskets) that enveloped myenteric nerve cell bodies. Immunolabeling after 4-5 days in organ culture caused loss of large CGRP+ axons, but not varicose CGRP+ fibers and CGRP+ baskets. Baskets were characterized further by triple labeling with CGRP, nitric oxide synthase (NOS) and calretinin (CALR) antibodies. Approximately half (48%) of nerve cell bodies inside CGRP+ baskets lacked both NOS and CALR, while two overlapping populations containing NOS and/or CALR comprised the remainder. Quantitative analysis revealed CGRP+ varicosities were most abundant in baskets, followed by CALR+ varicosities, with a high degree of colocalization between the two markers. Few NOS+ varicosities occurred in baskets. Significantly higher proportions of CALR+ and CGRP+ varicosities colocalized in baskets than in circular muscle. In conclusion, CGRP+ baskets in mouse colon are formed by intrinsic enteric neurons with a neurochemical profile consistent with IPANs and have direct connections to both excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- David J Smolilo
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - David A Wattchow
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Dayan De Fontgalland
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
16
|
Smolilo DJ, Costa M, Hibberd TJ, Brookes SJH, Wattchow DA, Spencer NJ. Distribution, projections, and association with calbindin baskets of motor neurons, interneurons, and sensory neurons in guinea-pig distal colon. J Comp Neurol 2019; 527:1140-1158. [PMID: 30520048 DOI: 10.1002/cne.24594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 11/07/2022]
Abstract
Normal gut function relies on the activity of the enteric nervous system (ENS) found within the wall of the gastrointestinal tract. The structural and functional organization of the ENS has been extensively studied in the guinea pig small intestine, but less is known about colonic circuitry. Given that there are significant differences between these regions in function, observed motor patterns and pathology, it would be valuable to have a better understanding of the colonic ENS. Furthermore, disorders of colonic motor function, such as irritable bowel syndrome, are much more common. We have recently reported specialized basket-like structures, immunoreactive for calbindin, that likely underlie synaptic inputs to specific types of calretinin-immunoreactive neurons in the guinea-pig colon. Based on detailed immunohistochemical analysis, we postulated the recipient neurons may be excitatory motor neurons and ascending interneurons. In the present study, we combined retrograde tracing and immunohistochemistry to examine the projections of circular muscle motor neurons, myenteric interneurons, and putative sensory neurons. We focused on neurons with immunoreactivity for calbindin, calretinin and nitric oxide synthase and their relationship with calbindin baskets. Retrograde tracing using indocarbocyanine dye (DiI) revealed that many of the nerve cell bodies surrounded by calbindin baskets belong to motor neurons and ascending interneurons. Unique functional classes of myenteric neurons were identified based on morphology, neuronal markers and polarity of projection. We provide evidence for three groups of ascending motor neurons based on immunoreactivity and association with calbindin baskets, a finding that may have significant functional implications.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - S J H Brookes
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - N J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| |
Collapse
|
17
|
Hu H, Ding Y, Mu W, Li Y, Wang Y, Jiang W, Fu Y, Tou J, Chen W. DRG-Derived Neural Progenitors Differentiate into Functional Enteric Neurons Following Transplantation in the Postnatal Colon. Cell Transplant 2018; 28:157-169. [PMID: 30442032 PMCID: PMC6362519 DOI: 10.1177/0963689718811061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell therapy has great promise for treating gastrointestinal motility disorders caused by intestinal nervous system (ENS) diseases. However, appropriate sources, other than enteric neural stem cells and human embryonic stem cells, are seldom reported. Here, we show that neural progenitors derived from the dorsal root ganglion (DRG) of EGFP mice survived, differentiated into enteric neurons and glia cells, migrated widely from the site of injection, and established neuron-muscle connections following transplantation into the distal colon of postnatal mice. The exogenous EGFP+ neurons were physiologically functional as shown by the activity of calcium imaging. This study shows that that other tissues besides the postnatal bowel harbor neural crest stem cells or neural progenitors that have the potential to differentiate into functional enteric neurons in vivo and can potentially be used for intestinal nerve regeneration. These DRG-derived neural progenitor cells may be a choice for cell therapy of ENS disease as an allograft. The new knowledge provided by our study is important for the development of neural crest stem cell and cell therapy for the treatment of intestinal neuropathy.
Collapse
Affiliation(s)
- Hui Hu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yuanyuan Ding
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Wenbo Mu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Ying Li
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yanpeng Wang
- 3 Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Weifang Jiang
- 4 Department of Neonatal Surgery, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Yong Fu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,5 Otolaryngological Department, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Jinfa Tou
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,4 Department of Neonatal Surgery, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Wei Chen
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China.,6 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, School of Medicine, Zhejiang University, China
| |
Collapse
|
18
|
Cobine CA, McKechnie M, Brookfield RJ, Hannigan KI, Keef KD. Comparison of inhibitory neuromuscular transmission in the Cynomolgus monkey IAS and rectum: special emphasis on differences in purinergic transmission. J Physiol 2018; 596:5319-5341. [PMID: 30198065 DOI: 10.1113/jp275437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS Inhibitory neuromuscular transmission (NMT) was compared in the internal anal sphincter (IAS) and rectum of the Cynomolgus monkey, an animal with high gene sequence identity to humans. Nitrergic NMT was present in both muscles while purinergic NMT was limited to the rectum and VIPergic NMT to the IAS. The profile for monkey IAS more closely resembles humans than rodents. In both muscles, SK3 channels were localized to PDGFRα+ cells that were closely associated with nNOS+ /VIP+ nerves. Gene expression levels of P2RY subtypes were the same in IAS and rectum while KCNN expression levels were very similar. SK3 channel activation and inhibition caused faster/greater changes in contractile activity in rectum than IAS. P2Y1 receptor activation inhibited contraction in rectum while increasing contraction in IAS. The absence of purinergic NMT in the IAS may be due to poor coupling between P2Y1 receptors and SK3 channels on PDGFRα+ cells. ABSTRACT Inhibitory neuromuscular transmission (NMT) was compared in the internal anal sphincter (IAS) and rectum of the Cynomolgus monkey, an animal with a high gene sequence identity to humans. Electrical field stimulation produced nitric oxide synthase (NOS)-dependent contractile inhibition in both muscles whereas P2Y1-dependent purinergic NMT was restricted to rectum. An additional NOS-independent, α-chymotrypsin-sensitive component was identified in the IAS consistent with vasoactive intestinal peptide-ergic (VIPergic) NMT. Microelectrode recordings revealed slow NOS-dependent inhibitory junction potentials (IJPs) in both muscles and fast P2Y1-dependent IJPs in rectum. The basis for the difference in purinergic NMT was investigated. PDGFRα+ /SK3+ cells were closely aligned with nNOS+ /VIP+ neurons in both muscles. Gene expression of P2RY was the same in IAS and rectum (P2RY1>>P2RY2-14) while KCNN3 expression was 32% greater in rectum. The SK channel inhibitor apamin doubled contractile activity in rectum while having minimal effect in the IAS. Contractile inhibition elicited with the SK channel agonist CyPPA was five times faster in rectum than in the IAS. The P2Y1 receptor agonist MRS2365 inhibited contraction in rectum but increased contraction in the IAS. In conclusion, both the IAS and the rectum have nitrergic NMT whereas purinergic NMT is limited to rectum and VIPergic NMT to the IAS. The profile in monkey IAS more closely resembles that of humans than rodents. The lack of purinergic NMT in the IAS cannot be attributed to the absence of PDGFRα+ cells, P2Y1 receptors or SK3 channels. Rather, it appears to be due to poor coupling between P2Y1 receptors and SK3 channels on PDGFRα+ cells.
Collapse
Affiliation(s)
- C A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - M McKechnie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - R J Brookfield
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - K I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - K D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
19
|
Bódi N, Szalai Z, Chandrakumar L, Bagyánszki M. Region-dependent effects of diabetes and insulin-replacement on neuronal nitric oxide synthase- and heme oxygenase-immunoreactive submucous neurons. World J Gastroenterol 2017; 23:7359-7368. [PMID: 29151690 PMCID: PMC5685842 DOI: 10.3748/wjg.v23.i41.7359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons.
METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex- and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase (nNOS) and HuC/D, heme oxygenase (HO) 1 and peripherin, as well as HO2 and peripherin. The density of nNOS-, HO1- and HO2-immunoreactive (IR) neurons was determined as a percentage of the total number of submucous neurons.
RESULTS The total number of submucous neurons and the proportion of nNOS-, HO1- and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2- and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1- and HO2-IR submucous neurons was robust in the colon of controls (38.4%-50.8%), whereas it was significantly lower in the small intestinal segments (0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals.
CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of nNOS-, HO1- and HO2-IR submucous neuronal density in the distal parts of the gut.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Lalitha Chandrakumar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
20
|
Sharrad DF, Chen BN, Gai WP, Vaikath N, El-Agnaf OM, Brookes SJH. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum. Neurogastroenterol Motil 2017; 29. [PMID: 27997067 DOI: 10.1111/nmo.12985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. METHODS In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K+ ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. KEY RESULTS Rotenone and prolonged raising of [K+ ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. CONCLUSIONS & INFERENCES To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - W P Gai
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - N Vaikath
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - O M El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
21
|
Visualizing the enteric nervous system using genetically engineered double reporter mice: Comparison with immunofluorescence. PLoS One 2017; 12:e0171239. [PMID: 28158225 PMCID: PMC5291392 DOI: 10.1371/journal.pone.0171239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS The enteric nervous system (ENS) plays a crucial role in the control of gastrointestinal motility, secretion and absorption functions. Immunohistochemistry has been widely used to visualize neurons of the ENS for more than two decades. Genetically engineered mice that report specific proteins can also be used to visualize neurons of the ENS. The goal of our study was to develop a mouse that expresses fluorescent neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT), the two proteins expressed in 95% of the ENS neurons. We compared ENS neurons visualized in the reporter mouse with the wild type mouse stained using classical immunostaining techniques. METHODS Mice hemizygous for ChAT-ChR2-YFP BAC transgene with expression of the mhChR2:YFP fusion protein directed by ChAT promoter/enhancer regions on the BAC transgene were purchased commercially. The Cre/LoxP technique of somatic recombination was used to construct mice with nNOS positive neurons. The two mice were crossbred and tissues were harvested and examined using fluorescent microscopy. Immunostaining was performed in the wild type mice, using antibodies to nNOS, ChAT, Hu and PGP 9.5. RESULTS Greater than 95% of the ENS neurons were positive for either nNOS or ChAT or both. The nNOS and ChAT neurons and their processes in the ENS were well visualized in all the regions of the GI tract, i.e., esophagus, small intestine and colon. The number of nNOS and ChAT neurons was approximately same in the reporter mouse and immunostaining method in the wild type mouse. The nNOS fluorescence in the reporter mouse was seen in both cytoplasm as well as nucleus but in the immunostained specimens it was seen only in the cytoplasm. CONCLUSION We propose that the genetically engineered double reporter mouse for ChAT and nNOS proteins is a powerful tool to study of the effects of various diseases on the ENS without the need for immunostaining.
Collapse
|
22
|
Liu Y, Jia L, Chen Y, Wang Z. Postnatal development of NADPH-d neurons in the enteric nervous system of the goat. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2010.e79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zhang Y, Paterson WG. Characterization of the peristaltic reflex in murine distal colon. Can J Physiol Pharmacol 2015; 94:190-198. [PMID: 26524247 DOI: 10.1139/cjpp-2015-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascending and descending neuromuscular reflexes play an important role in gastrointestinal motility. However, the underlying mechanisms in colon are incompletely understood. Nerve stimulation (NS)- and balloon distention (BD)-mediated reflexes in distal colonic circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of mice were investigated using conventional intracellular recordings. In the CSM, NS evoked ascending purinergic inhibitory junction potentials (IJPs), whereas BD induced atropine-sensitive ascending depolarization with superimposed action potentials (APs). The ascending depolarization reached a peak ∼4-7 s after the onset of distention and gradually returned to baseline after termination of the distention. In the LSM, NS produced an ascending biphasic IJP followed by a train of atropine-sensitive APs. Both stimuli produced similar descending IJPs in CSM and LSM, which were blocked by MRS-2500 and MRS-2179, putative purinergic receptor blockers. These data indicate that in the murine distal colon, descending purinergic inhibition in both CSM and LSM occurs. Ascending responses are more complex, with NS producing both inhibition and excitation to CSM and LSM, and BD evoking only cholinergic excitation.
Collapse
Affiliation(s)
- Yong Zhang
- a Gastrointestinal Diseases Research Unit, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | - William G Paterson
- b Gastrointestinal Diseases Research Unit and the Departments of Biology, Biomedical and Molecular Sciences, and Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
24
|
MacEachern SJ, Patel BA, Keenan CM, Dicay M, Chapman K, McCafferty DM, Savidge TC, Beck PL, MacNaughton WK, Sharkey KA. Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice With Colitis. Gastroenterology 2015; 149:445-55.e3. [PMID: 25865048 PMCID: PMC4516675 DOI: 10.1053/j.gastro.2015.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/06/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. METHODS Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. RESULTS Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. CONCLUSIONS Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation.
Collapse
Affiliation(s)
- Sarah J. MacEachern
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bhavik A. Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, UK
| | - Catherine M. Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Dicay
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Chapman
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donna-Marie McCafferty
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tor C. Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Paul L. Beck
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
26
|
Goetz B, Benhaqi P, Glatzle J, Müller MH, Schmitt SM, Brändli AW, Kreis ME, Kasparek MS. Changes in peptidergic neurotransmission during postoperative ileus in rat circular jejunal muscle. Neurogastroenterol Motil 2014; 26:397-409. [PMID: 24330008 DOI: 10.1111/nmo.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/14/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Our aim was to explore unknown changes in neurotransmission with vasoactive intestinal peptide (VIP) and Substance P (Sub P) during postoperative ileus (POI). METHODS Contractile activity of rat circular jejunal muscle strips was studied in five groups (n = 6/group): Naïve controls, sham controls 12 h and 3 days after laparotomy, and rats 12 h, 3 days after induction of POI. Dose-responses to VIP (10(-10) -10(-7) M), Sub P (3 × 10(-10) -3 × 10(-7) M), and electrical field stimulation (EFS, to study endogenous release of neurotransmitters) were studied with different antagonists. Intestinal transit, inflammatory cells and immunoreactivity for VIP and Sub P were investigated in the bowel wall and cellular Finkel osteo sarcoma expression was determined in vagal afferent and efferent nuclei of the brainstem. KEY RESULTS Postoperative ileus characterized by delayed intestinal transit and intramural inflammation was associated with an increased inhibitory effect of VIP on contractile activity. A biphasic impact was observed for Sub P with a decrease in its excitatory potential on contractility at 12 h, followed by a later increase 3 days postoperatively. Inhibitory response to EFS was increased, whereas the excitatory response decreased in ileus animals. VIP expression was increased in all postoperative animals while only animals 3 days after ileus induction showed increased Sub P expression in the myenteric plexus. These changes were associated with an activation of afferent but not efferent vagal nuclei in the brain stem. CONCLUSIONS & INFERENCES Specific, time-dependent changes in peptidergic neurotransmission with VIP and Sub P occur during POI that are associated with vagal afferent activation, but are independent of the activation of efferent vagal pathways.
Collapse
Affiliation(s)
- B Goetz
- Walter-Brendel-Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hotta R, Stamp LA, Foong JPP, McConnell SN, Bergner AJ, Anderson RB, Enomoto H, Newgreen DF, Obermayr F, Furness JB, Young HM. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 2013; 123:1182-91. [PMID: 23454768 DOI: 10.1172/jci65963] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/11/2012] [Indexed: 01/11/2023] Open
Abstract
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pimenova EA, Varaksin AA. Localization of NADPH-diaphorase and neuronal NO-synthase in the digestive tract of the Masu salmon, Oncorhynchus masou (Osteichthyes: Salmonidae). NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Noorian AR, Taylor GM, Annerino DM, Greene JG. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol 2012; 519:3387-401. [PMID: 21618236 DOI: 10.1002/cne.22679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the neurochemical composition of the enteric nervous system (ENS) is critical for elucidating neurological function in the gastrointestinal (GI) tract in health and disease. Despite their status as the closest models of human neurological systems, relatively little is known about enteric neurochemistry in nonhuman primates. We describe neurochemical coding of the enteric nervous system, specifically the myenteric plexus, of the rhesus monkey (Macaca mulatta) by immunohistochemistry and directly compare it to human tissues. There are considerable differences in the myenteric plexus along different segments of the monkey GI tract. While acetylcholine neurons make up the majority of myenteric neurons in the stomach (70%), they are a minority in the rectum (47%). Conversely, only 22% of gastric myenteric neurons express nitric oxide synthase (NOS) compared to 52% in the rectum. Vasoactive intestinal peptide (VIP) is more prominent in the stomach (37%) versus the rest of the GI tract (≈10%), and catecholamine neurons are rare (≈1%). There is significant coexpression of NOS and VIP in myenteric neurons that is more prominent in the proximal GI tract. Taken as a whole, these data provide insight into the neurochemical anatomy underlying GI motility. While overall similarity to other mammalian species is clear, there are some notable differences between the ENS of rhesus monkeys, humans, and other species that will be important to take into account when evaluating models of human diseases in animals.
Collapse
Affiliation(s)
- Ali Reza Noorian
- Department of Neurology and the Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Neurogastroenterology is defined as neurology of the gastrointestinal tract, liver, gallbladder and pancreas and encompasses control of digestion through the enteric nervous system (ENS), the central nervous system (CNS) and integrative centers in sympathetic ganglia. This Review provides a broad overview of the field of neurogastroenterology, with a focus on the roles of the ENS in the control of the musculature of the gastrointestinal tract and transmucosal fluid movement. Digestion is controlled through the integration of multiple signals from the ENS and CNS; neural signals also pass between distinct gut regions to coordinate digestive activity. Moreover, neural and endocrine control of digestion is closely coordinated. Interestingly, the extent to which the ENS or CNS controls digestion differs considerably along the digestive tract. The importance of the ENS is emphasized by the life-threatening effects of certain ENS neuropathies, including Hirschsprung disease and Chagas disease. Other ENS disorders, such as esophageal achalasia and gastroparesis, cause varying degrees of dysfunction. The neurons in enteric reflex pathways use a wide range of chemical messengers that signal through an even wider range of receptors. These receptors provide many actual and potential targets for modifying digestive function.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia.
| |
Collapse
|
31
|
Llewellyn-Smith IJ, Gnanamanickam GJE. Immunoperoxidase detection of neuronal antigens in full-thickness whole mount preparations of hollow organs and thick sections of central nervous tissue. J Neurosci Methods 2010; 196:1-11. [PMID: 21167203 DOI: 10.1016/j.jneumeth.2010.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Immunofluorescently stained whole mounts have proved useful for defining the innervation of the gut and large blood vessels. Nerves supplying other hollow organs are usually studied in sections, which provide much less information. Aiming to describe the entire innervation of rat uterus, we developed a method for immunoperoxidase staining of full-thickness whole mounts that allowed us to visualize all immunoreactive axons. Uterine horns were dissected out, slit open, stretched, pinned flat and fixed. Entire horns were treated with methanol/peroxide, buffered Triton X-100 and normal serum and then incubated in primary antibodies, biotinylated secondary antibodies and avidin-horseradish peroxidase (HRP), each for at least 3 days. Peroxidase reactions revealed immunoreactivity. Immunostained horns were dehydrated, infiltrated with epoxy resin, mounted on slides under Aclar coverslips and polymerized. We treated bladders, gut, major pelvic ganglia and thick sections of perfused medulla oblongata similarly to assess the applicability of the method. Using this method, we could map the entire uterine innervation provided by axons immunoreactive for a variety of antigens. We could also assess the entire tyrosine hydroxylase-immunoreactive innervation in all layers of bladder, gut and ganglia whole mounts and throughout 300 μm sections of medulla. These observations show that this method for immunoperoxidase staining reliably reveals the complete innervation of full-thickness whole mounts of hollow organs and thick sections of central nervous tissue. The method has several advantages. The resin-embedded tissue does not degrade; the immunostaining is non-fading and permanent and neurochemically defined features can be mapped at large scale without confocal microscopy.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|
32
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
33
|
Laranjeira C, Pachnis V. Enteric nervous system development: Recent progress and future challenges. Auton Neurosci 2009; 151:61-9. [PMID: 19783483 DOI: 10.1016/j.autneu.2009.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enteric nervous system is the largest subdivision of the peripheral nervous system that plays a critical role in digestive functions. Despite considerable progress over the last 15 years in understanding the molecular and cellular mechanisms that control the development of the enteric nervous system, several questions remain unanswered. The present review will focus on recent progress on understanding the development of the mammalian enteric nervous system and highlight interesting directions of future research.
Collapse
Affiliation(s)
- Cátia Laranjeira
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
34
|
Lu Y, Owyang C. Secretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways. Neurogastroenterol Motil 2009; 21:754-e47. [PMID: 19239625 PMCID: PMC2743409 DOI: 10.1111/j.1365-2982.2009.01271.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Secretin has been shown to delay gastric emptying and inhibit gastric motility. We have demonstrated that secretin acts on the afferent vagal pathway to induce gastric relaxation in the rat. However, the efferent pathway that mediates the action of secretin on gastric motility remains unknown. We recorded the response of intragastric pressure to graded doses of secretin administered intravenously to anaesthetized rats using a balloon attached to a catheter and placed in the body of the stomach. Secretin evoked a dose-dependent decrease in intragastric pressure. The threshold dose of secretin was 1.4 pmol kg(-1) h(-1) and the effective dose, 50% was 5.6 pmol kg(-1) h(-1). Pretreatment with hexamethonium markedly reduced gastric relaxation induced by secretin (5.6 pmol kg(-1) h(-1)). Bilateral vagotomy also significantly reduced gastric motor responses to secretin. Administration of N(G)-nitro-L-arginine methyl ester (10 mg kg(-1)) did not affect gastric relaxation induced by secretin. In contrast, intravenous administration of a vasoactive intestinal polypeptide (VIP) antagonist (30 nmol kg(-1)) reduced the gastric relaxation response to secretin (5.6 pmol kg(-1) h(-1)) by 89 +/- 5%. Indomethacin (2 mg kg(-1)) reduced gastric relaxation induced by secretin (5.6 pmol kg(-1) h(-1)) by 87 +/- 5%. Administration of prostaglandin (48 mg kg(-1) h(-1)) prevented this inhibitory effect. Indomethacin also reduced gastric relaxation induced by VIP (300 pmol kg(-1)) by 90 +/- 7%. These observations indicate that secretin acts through stimulation of presynaptic cholinergic neurons in a vagally mediated pathway. Through nicotinic synapses, secretin stimulates VIP release from postganglionic neurons in the gastric myenteric plexus, which in turn induces gastric relaxation through a prostaglandin-dependent pathway.
Collapse
Affiliation(s)
- Y Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0362, USA
| | | |
Collapse
|
35
|
Yang G, Zhong T, Cheng WY, Ding GS, Ling XQ. The change pattern of SP and NO in the portal vein during the RAIR. Int J Colorectal Dis 2009; 24:427-31. [PMID: 18810466 DOI: 10.1007/s00384-008-0574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2008] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the change pattern of substance P (SP) and nitric oxide (NO) in the portal vein during the recto-anal inhibitory reflex (RAIR), and its physiological significance; the influence of external splanchnic nerve (ESN) of rectum and anus to the RAIR. MATERIALS AND METHODS Seventy-six rats divided into five groups according to the distance of Foley's tube in the rectum and whether or not to cut off ESN supply to the rectum and anal canal, to measure the values of SP and NO in the portal vein during the RAIR. RESULTS The stimulus in rectum can cause change of SP and NO in portal vein. The greatest increase of SP is at the 6-cm group. The 6-cm group with total ESN supply had significant difference compared with the 4-cm group before and after the ESN supply and control group were cut (P<0.01). After cutting-off ESN, the increase of SP in the portal vein reduced significantly when compared with the normal ESN supply at the 6-cm group (P<0.05). The greatest change of NO is at the 4-cm group with total ESN. There were significant differences among the 4- and 6-cm groups and control group. After cutting off ESN, the increase of NO was lower than with the intact ESN. There were still differences between the 4- and 6-cm groups and control group(P<0.05). CONCLUSION The stimulations at different points of the rectum cause different SP and NO change in the portal vein. This may be the explanation why the stimulation on the different points on the rectum induces different change pattern of RAIR from the neurotransmitters point. The ESN supplies of the rectum and anal canal have an influence on the change of SP and NO in the portal vein during RAIR.
Collapse
Affiliation(s)
- Gang Yang
- Department of Gastro-intestinal Surgery, Second Affiliated Hospital of NanChang University, NanChang, JiangXi province, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Rivera LR, Thacker M, Furness JB. High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system. Cell Tissue Res 2008; 335:529-38. [DOI: 10.1007/s00441-008-0732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 10/31/2008] [Indexed: 02/03/2023]
|
37
|
Qu ZD, Thacker M, Castelucci P, Bagyánszki M, Epstein ML, Furness JB. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 2008; 334:147-61. [PMID: 18855018 DOI: 10.1007/s00441-008-0684-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/22/2008] [Indexed: 12/11/2022]
Abstract
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.
Collapse
Affiliation(s)
- Zheng-Dong Qu
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Monro RL, Bornstein JC, Bertrand PP. Synaptic transmission from the submucosal plexus to the myenteric plexus in Guinea-pig ileum. Neurogastroenterol Motil 2008; 20:1165-73. [PMID: 18643893 DOI: 10.1111/j.1365-2982.2008.01157.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimulation of the myenteric plexus results in activation of submucosal neurons and dilation of arterioles, one way that motility and secretion can be coupled together. The present study aimed to examine the converse, whether myenteric neurons receive synaptic input from the submucosal plexus (SMP). Intracellular recordings were made from guinea-pig ileal myenteric neurons while the SMP was electrically stimulated. Of the 29 neurons studied (13 S and 16 AH neurons), stimulation of the SMP evoked a synaptic potential in only seven cells, or 24% of neurons. When the SMP was situated oral to the myenteric plexus, 4 of 13 (31%) myenteric neurons had synaptic input. When it was situated circumferential, 2 of 8 (25%) had input, and when the SMP was situated anal 1 of 8 (13%) had input. Overall, 5 of the 13 (38%) S neurons responded with fast excitatory post-synaptic potentials (EPSPs), one of which also showed a slow EPSP, while 2 of the 16 (13%) AH neurons responded with a slow EPSP. This study indicates that the synaptic input from the SMP to myenteric neurons is relatively sparse. Whether this input is less important than the myenteric to submucosal input or simply represents a more selective form of control is unknown.
Collapse
Affiliation(s)
- R L Monro
- Department of Physiology, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
39
|
Role of nitrergic nerves in the regulation of motility of the omasum and abomasum in healthy sheep (Ovis aries). Vet Res Commun 2008; 33:33-48. [DOI: 10.1007/s11259-008-9069-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
40
|
Abstract
Polarized outputs of myenteric interneurons in guinea-pig small intestine have been well studied. However, the variety of motility patterns exhibited suggests that some interneuron targets remain unknown. We used antisera selected to distinguish interneuron varicosities and known myenteric neuron types to investigate outputs of three interneuron classes in guinea-pig jejunum; two classes of descending interneurons immunoreactive (IR) for somatostatin (SOM) or nitric oxide synthase (NOS)/vasoactive intestinal peptide (VIP), and one class of ascending interneurons [calretinin/enkephalin (ENK)-IR]. Varicosities apposed to immunohistochemically identified cell bodies were quantified by confocal microscopy. Intrinsic sensory neurons (calbindin-IR) were apposed by few varicosities. Cholinergic secretomotor neurons (neuropeptide Y-IR) were apposed by many SOM-IR varicosities. Longitudinal muscle excitatory motor neurons (calretinin-IR) were apposed by some VIP- and ENK-IR varicosities, but few SOM-IR varicosities. Ascending interneurons (calretinin-IR) were apposed by many varicosities of all types. NOS-IR interneurons and inhibitory motor neurons were apposed by numerous VIP-IR and SOM-IR varicosities. NOS-IR short inhibitory motor neurons were apposed by significantly fewer ENK-IR varicosities than other NOS-IR neurons. Based on the specific chemical coding of ascending (ENK) and descending (SOM) interneurons, we conclude that cholinergic secretomotor neurons and short inhibitory neurons are located in descending reflex pathways, while ascending interneurons and NOS-IR descending interneurons are focal points at which ascending and descending pathways converge.
Collapse
Affiliation(s)
- K B Neal
- Department of Physiology, The University of Melbourne, Melbourne, Vic., Australia.
| | | |
Collapse
|
41
|
Kraus T, Neuhuber WL, Raab M. Distribution of vesicular glutamate transporter 1 (VGLUT1) in the mouse esophagus. Cell Tissue Res 2007; 329:205-19. [PMID: 17508221 DOI: 10.1007/s00441-007-0392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/12/2006] [Indexed: 01/22/2023]
Abstract
In rat and mouse esophagus, vesicular glutamate transporter 2 (VGLUT2) has been demonstrated to identify vagal intraganglionic laminar endings (IGLEs); this has recently also been shown for VGLUT1 in rat esophagus. In this study, we have investigated the distribution of VGLUT1 in the mouse esophagus and compared these results with the recently published data from the rat esophagus. Unexpectedly, we have discovered that VGLUT1 mostly fails to identify IGLEs in the mouse esophagus. This is surprising, since the distribution of VGLUT2 shows comparable results in both species. Confocal imaging has revealed substantial colocalization of VGLUT1 immunoreactivity (-ir) with cholinergic and nitrergic/peptidergic markers within the myenteric neuropil and in both cholinergic and nitrergic myenteric neuronal cell bodies. VGLUT1 and cholinergic markers have also been colocalized in fibers of the muscularis mucosae, whereas VGLUT1 and nitrergic markers have never been colocalized in fibers of the muscularis mucosae, although this does occur in fibers of the muscularis running to motor endplates. Thus, VGLUT1 is contained in the nitrergic innervation of mouse esophageal motor endplates, another difference from the rat esophagus. VGLUT1-ir is therefore present in extrinsic and intrinsic innervation of the mouse esophagus, but the significant differences from the rat indicate species variations concerning the distribution of VGLUTs in the peripheral nervous system.
Collapse
Affiliation(s)
- T Kraus
- Department of Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
42
|
Raab M, Neuhuber WL. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:223-75. [PMID: 17241909 DOI: 10.1016/s0074-7696(07)56007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate has been identified as the main transmitter of primary afferent neurons. This was established based on biochemical, electrophysiological, and immunohistochemical data from studies on glutamatergic receptors and their agonists/antagonists. The availability of specific antibodies directed against glutamate and, more recently, vesicular glutamate transporters corroborated this and led to significant new discoveries. In particular, peripheral endings of various classes of afferents contain vesicular glutamate transporters, suggesting vesicular storage in and exocytotic release of glutamate from peripheral afferent endings. This suggests that autocrine mechanisms regulate sensory transduction processes. However, glutamate release from peripheral sensory terminals could also enable afferent neurons to influence various cells associated with them. This may be particularly relevant for vagal intraganglionic laminar endings, which could represent glutamatergic sensor-effector components of intramural reflex arcs in the gastrointestinal tract. Thus, morphological analysis of the relationships of putative glutamatergic primary afferents with associated tissues may direct forthcoming studies on their functions.
Collapse
Affiliation(s)
- Marion Raab
- Institut für Anatomie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
43
|
Neal KB, Bornstein JC. Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine. Neuroscience 2007; 145:556-67. [PMID: 17261354 DOI: 10.1016/j.neuroscience.2006.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/12/2006] [Accepted: 12/08/2006] [Indexed: 01/26/2023]
Abstract
5-HT released by gastrointestinal mucosa and enteric interneurons has powerful effects on gut behavior. However, the targets of 5-HT-containing neurons within enteric circuits are not well characterized. We used antisera against 5-HT and selected markers of known enteric neuron types to investigate the connections made by 5-HT-containing neurons in the guinea-pig jejunum. Confocal microscopy was used to quantify the number of 5-HT-immunoreactive varicosities apposed to immunohistochemically identified cell bodies. Large numbers of varicosities were identified apposing cholinergic secretomotor neurons, immunoreactive for neuropeptide Y, in both myenteric and submucous plexuses. Subgroups of neurons identified by calretinin (ascending interneurons) and nitric oxide synthase (descending interneurons and inhibitory motor neurons) immunoreactivity were also apposed by many varicosities. Longitudinal muscle motor neurons (calretinin immunoreactive) and AH/Dogiel type II (sensory) neurons (calbindin immunoreactive) were apposed by small numbers of varicosities. Combined retrograde tracing and immunohistochemistry were used to identify excitatory circular muscle motor neurons; these were encircled by 5-HT-immunoreactive varicosities, but the appositions could not be quantified. We suggest that 5-HT-containing interneurons are involved in secretomotor pathways and pathways to subgroups of other interneurons, but not longitudinal muscle motor neurons. There also appear to be connections between 5-HT-containing interneurons and excitatory circular muscle motor neurons. Physiological evidence demonstrates a functional connection between 5-HT-containing interneurons and AH/Dogiel type II neurons, but few 5-HT-immunoreactive varicosities were observed apposing calbindin-immunoreactive cell bodies. Taken together these results suggest that neural 5-HT may have significant roles in excitatory pathways regulating both motility and secretion.
Collapse
Affiliation(s)
- K B Neal
- Department of Physiology, University of Melbourne, Medical Building, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
44
|
Demedts I, Geboes K, Kindt S, Vanden Berghe P, Andrioli A, Janssens J, Tack J. Neural mechanisms of early postinflammatory dysmotility in rat small intestine. Neurogastroenterol Motil 2006; 18:1102-11. [PMID: 17109694 DOI: 10.1111/j.1365-2982.2006.00857.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although human postinflammatory dysmotility is known, so far animal studies have primarily investigated changes during inflammation. Here, we focused on postinflammatory changes in rat jejunal myenteric plexus and jejunal motility. Evolution of ethanol/2,4,6-tri-nitrobenzene sulphonic acid (TNBS)-induced inflammation was assessed histologically and by measuring myeloperoxidase activity (MPO). Electromyography and immunohistochemistry were performed 1 week after ethanol/TNBS and also after N(G)-nitro-L-arginine methyl ester (L-NAME) administration. Ethanol/TNBS induced a transient inflammation, with normalization of MPO and histological signs of an early phase of recovery after 1 week. The number of cholinergic neurones was not altered, but myenteric neuronal nitric oxide synthase (nNOS)-immunoreactivity was significantly lower in the early phase of recovery after TNBS compared with water (1.8 +/- 0.2 vs 3.5 +/- 0.2 neurones ganglion(-1), P < 0.001). Interdigestive motility was disrupted with a loss of phase 1 quiescence, an increase of migrating myoelectric complex cycle length, a higher number of non-propagated activity fronts and a decrease of adequately propagated phase 3 s after TNBS. Administration of L-NAME resulted in a similar disruption of interdigestive motility patterns. In the early phase of recovery after ethanol/TNBS-induced jejunal inflammation, a loss of motor inhibition occurs due to a decrease of myenteric nNOS activity. These observations may provide a model for early postinflammatory dysmotility syndromes.
Collapse
Affiliation(s)
- I Demedts
- Center for Gastroenterological Research, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
45
|
Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2006; 133:76-85. [PMID: 17140858 DOI: 10.1016/j.autneu.2006.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/12/2006] [Accepted: 10/23/2006] [Indexed: 12/11/2022]
Abstract
This paper reviews the cellular localisation, mechanisms of release and intestinal absorptive actions of neuropeptide Y and its related peptides, peptide YY, pancreatic polypeptide and major fragments NPY(3-36) and PYY(3-36). While NPY is commonly found in inhibitory enteric neurons that can be interneurons, motor neurons or secretomotor-nonvasodilator in nature, its analogue, peptide YY in contrast, is located in neuroendocrine L-cells that predominate in the colorectal mucosa. Peptide YY is released from these cells when nutrients arrive in the small or large bowel, exerting paracrine as well as hormonal actions. Pancreatic polypeptide is found in relatively few, scattered intestinal endocrine cells, the majority of this peptide being produced by, and released from pancreatic islet F-cells in response to food intake. An introduction to the current pharmacology of this family of peptides is provided and the different types of neuropeptide Y (termed Y) receptors, their agonist preferences, antagonism, and preferred signalling pathways, are described. Our current understanding of specific Y receptor localisation within the intestine as determined by immunohistochemistry, is presented as a prelude to an assessment of functional studies that have monitored ion transport across isolated mucosal preparations. It is becoming clear that three Y receptor types are significant functionally in human colon, as well as particular rodent models (e.g. mouse) and these, namely the Y(1), Y(2) and Y(4) receptors, are discussed in detail. Their presence within the basolateral aspect of the epithelial layer (Y(1) and Y(4) receptors) or on enteric neurons (Y(1) and Y(2) receptors) and their activation by endogenous neuropeptide Y, peptide YY (Y(1) and Y(2) receptors) or pancreatic polypeptide (which prefers Y(4) receptors) results consistently in antisecretory/absorptive responses. The recent use of novel mouse knockouts has helped establish loss of specific intestinal functions including Y(1) and Y(2) receptor-mediated absorptive tone in colon mucosa. Progress in this field has been rapid recently, aided by the availability of selective antagonists and mutant mice lacking either one (e.g. Y(4)-/-, for which no antagonists exist at present) or more Y receptor types. It is therefore timely to review this work and present a rational basis for developing stable synthetic Y receptor agonists as novel anti-diarrhoeals.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
46
|
De Man JG, De Winter BY, Herman AG, Pelckmans PA. Study on the cyclic GMP-dependency of relaxations to endogenous and exogenous nitric oxide in the mouse gastrointestinal tract. Br J Pharmacol 2006; 150:88-96. [PMID: 17115067 PMCID: PMC2013844 DOI: 10.1038/sj.bjp.0706964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE cGMP mediates nitrergic relaxations of intestinal smooth muscle, but several studies have indicated that cGMP-independent mechanisms may also be involved. We addressed this contention by studying the effect of ODQ and ns2028, specific inhibitors of soluble guanylate cyclase, on nitrergic relaxations of the mouse gut. EXPERIMENTAL APPROACH Mouse gastric fundus and small intestinal muscle preparations were mounted in organ baths to study relaxations to exogenous NO, NO donors and electrical field stimulation (EFS) of enteric nerves. KEY RESULTS In gastric fundus longitudinal muscle strips, ODQ and NS2028 abolished the L-nitroarginine-sensitive relaxations to EFS and the relaxations to NO and NO donors, glyceryl trinitrate (GTN), SIN-1 and sodium nitroprusside (SNP). EFS of intestinal segments and muscle strips showed L-nitroarginine-resistant relaxations, which were abolished by the purinoceptor blocker suramin. In the presence of suramin, ODQ and NS2028 abolished all relaxations to EFS in intestinal segments and strips. ODQ and NS2028 abolished the relaxations to exogenous NO and to the NO donors GTN, SIN-1 and SNP in circular and longitudinal intestinal muscle strips. Intestinal segments showed residual relaxations to NO and GTN. CONCLUSIONS AND IMPLICATIONS Our results indicate that relaxations to endogenous NO in the mouse gastric fundus and small intestine are completely dependent on cGMP. ODQ and NS2028 incompletely blocked nitrergic relaxations to exogenous NO in intact intestinal segments. However, it is unlikely that this is due to the involvement of cGMP-independent pathways because ODQ and NS2028 abolished all relaxations to endogenous and exogenous NO in intestinal muscle strips.
Collapse
Affiliation(s)
- J G De Man
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
47
|
Shotton HR, Adams A, Lincoln J. Effect of aminoguanidine treatment on diabetes-induced changes in the myenteric plexus of rat ileum. Auton Neurosci 2006; 132:16-26. [PMID: 16987713 DOI: 10.1016/j.autneu.2006.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 07/20/2006] [Accepted: 08/14/2006] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the ability of aminoguanidine (AG) to prevent diabetes-induced changes in nitric oxide synthase- (nNOS), vasoactive intestinal polypeptide- (VIP) and noradrenaline- (NA) containing nerves of the rat ileum using immunohistochemical and biochemical techniques. Diabetes was induced in adult male Wistar rats by a single intraperitoneal injection of streptozotocin (65 mg/kg). AG was administered in the drinking water to control (1.8 g/l) and diabetic (0.9 g/l) rats over a period of 8 weeks. Diabetes caused a significant increase in the thickness of nNOS-containing nerve fibres (p<0.001) in the circular muscle, in nNOS activity (p<0.05) and in the size distribution of nNOS-containing myenteric neurons (p<0.001). The thickness of VIP-containing nerve fibres was significantly greater (p<0.01) and there was a significant increase in varicosity size (p<0.01) and proportion of VIP-positive myenteric neurons (p<0.01) in diabetes. NA levels were significantly reduced (p<0.01) and the size of varicosities containing tyrosine hydroxylase (TH) was significantly increased (p<0.001) in diabetes. AG treatment completely or partially prevented the diabetes-induced increase in nNOS activity, in VIP-containing varicosity size, and in fibre width of both VIP- and nNOS-containing fibres in the circular muscle but had no effect on the diabetes-induced increase in nNOS-containing neuronal size or proportion of VIP-containing myenteric neurons. In contrast to VIP, AG treatment had no effect on the increase in TH-containing varicosity size in diabetes and also failed to prevent the decrease in NA levels induced by diabetes. These results indicate that AG treatment for neuropathy is not equally effective for all autonomic nerves supplying the ileum and that diabetes-induced changes in NA-containing nerves are particularly difficult to treat.
Collapse
Affiliation(s)
- Hannah R Shotton
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
48
|
Neuhuber WL, Raab M, Berthoud HR, Wörl J. Innervation of the mammalian esophagus. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2006. [PMID: 16573241 DOI: 10.1007/978-3-540-32948-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Collapse
|
49
|
Ro S, Hwang SJ, Muto M, Jewett WK, Spencer NJ. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. Am J Physiol Gastrointest Liver Physiol 2006; 290:G710-G718. [PMID: 16339294 DOI: 10.1152/ajpgi.00420.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been assumed that in piebald lethal mice that develop megacolon, impaired colonic motor activity is restricted to the aganglionic distal colon. Peristaltic mechanical recordings, immunohistochemistry, and quantitative PCR were used to investigate whether regions of the colon, other than the aganglionic segment, may also show anatomical modifications and dysfunctional colonic motor activity. Contrary to expectations, colonic migrating motor complexes (MMCs) were absent along the whole colon of piebald lethal homozygote mice and severely impaired in heterozygote siblings. Aganglionosis was detected not only in the distal colon of piebald homozygote lethal mice (mean length: 20.4 +/- 2.1 mm) but also surprisingly in their heterozygote siblings (mean length: 12.4 +/- 1.1 mm). Unlike homozygote lethal mice, piebald heterozygotes showed no signs of megacolon. Interestingly, mRNA expression for PGP 9.5 was also dramatically reduced (by 71-99%) throughout the entire small and large bowel in both homozygote lethal and heterozygous littermates (by 67-87%). Histochemical staining confirmed a significant reduction in myenteric ganglia along the whole colon. In summary, the piebald mutation in homozygote lethal and heterozygote siblings is associated with dramatic reductions in myenteric ganglia throughout the entire colon and not limited to the distal colon as originally thought. Functionally, this results in an absence or severe impairment of colonic MMC activity in both piebald homozygote lethal and heterozygote siblings, respectively. The observation that piebald heterozygotes have an aganglionic distal colon (mean length: 12 mm) but live a normal murine life span without megacolon suggests that aganglionosis >12 mm and the complete absence of colonic MMCs may be required before any symptoms of megacolon arise.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, 89557, USA
| | | | | | | | | |
Collapse
|
50
|
Bellini M, Biagi S, Stasi C, Costa F, Mumolo MG, Ricchiuti A, Marchi S. Gastrointestinal manifestations in myotonic muscular dystrophy. World J Gastroenterol 2006; 12:1821-8. [PMID: 16609987 PMCID: PMC4087506 DOI: 10.3748/wjg.v12.i12.1821] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/02/2005] [Accepted: 09/12/2005] [Indexed: 02/06/2023] Open
Abstract
Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness. Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting. A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry, electromyography, functional ultrasonography, scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported. The drugs recommended for treating the gastrointestinal complaints such as prokinetic, anti-dyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders. Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD.
Collapse
Affiliation(s)
- Massimo Bellini
- Gastroenterology Unit, Department of Internal Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|