1
|
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG, Costa M, Spencer NJ, Brookes SJH. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci 2024; 17:1313057. [PMID: 38292899 PMCID: PMC10825022 DOI: 10.3389/fnins.2023.1313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Background and Aims Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam G. Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy James Hibberd
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Enteric Control of the Sympathetic Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:89-103. [PMID: 36587149 DOI: 10.1007/978-3-031-05843-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation. The ENS resides within the gut wall and its activities are critical for life; ENS failure to populate the gut in development is lethal without intervention."Viscerofugal neurons" are a distinctive class of enteric neurons, being the only type that escapes the gut wall. They form a unique circuit: their axons project out of the gut wall and activate sympathetic neurons, which then project back to the gut, and inhibit gut movements.For 80 years viscerofugal/sympathetic circuits were thought to have a restricted role, mediating simple sensory-motor reflexes. New data shows viscerofugal and sympathetic neurons behaving unexpectedly, compelling a re-evaluation of these circuits: both viscerofugal and sympathetic neurons transmit higher order, synchronized firing patterns that originate within the ENS. This identifies them as driving long-range motility control between different gut regions.There is need for gut motor control over distances beyond the range of ENS circuits, yet no mechanism has been identified to date. The entero-sympathetic circuits are ideally suited to meet this need. Here we provide an overview of the structure and functions of these peripheral sympathetic circuits, including new data showing the firing patterns generated by enteric networks can transmit through sympathetic neurons.
Collapse
|
3
|
Kaestner CL, Smith EH, Peirce SG, Hoover DB. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J Comp Neurol 2019; 527:2742-2760. [PMID: 31021409 DOI: 10.1002/cne.24705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Celiac ganglia are important sites of signal integration and transduction. Their complex neurochemical anatomy has been studied extensively in guinea pigs but not in mice. The goal of this study was to provide detailed neurochemical characterization of mouse celiac ganglia and noradrenergic nerves in two target tissues, spleen and stomach. A vast majority of mouse celiac neurons express a noradrenergic phenotype, which includes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, and the norepinephrine transporter. Over 80% of these neuron also express neuropeptide Y (NPY), and this coexpression is maintained by dissociated neurons in culture. Likewise, TH and NPY were colocalized in noradrenergic nerves throughout the spleen and in stomach blood vessels. Somatostatin was not detected in principal neurons but did occur in small, TH-negative cells presumed to be interneurons and in a few varicose nerve fibers. Cholinergic nerves provided the most abundant input to the ganglia, and small percentages of these also contained nitric oxide synthase or vasoactive intestinal polypeptide. A low-to-moderate density of nerves also stained separately for the latter markers. Additionally, nerve bundles and varicose nerve fibers containing the sensory neuropeptides, calcitonin gene-related polypeptide, and substance P, occurred at variable density throughout the ganglia. Collectively, these findings demonstrate that principal neurons of mouse celiac ganglia have less neurochemical diversity than reported for guinea pig and other species but receive input from nerves expressing an array of neurochemical markers. This profile suggests celiac neurons integrate input from many sources to influence target tissues by releasing primarily norepinephrine and NPY.
Collapse
Affiliation(s)
- Charlotte L Kaestner
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Elizabeth H Smith
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Stanley G Peirce
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
4
|
Delsouc MB, Della Vedova MC, Ramírez D, Delgado SM, Casais M. The production of nitric oxide in the coeliac ganglion modulates the effect of cholinergic neurotransmission on the rat ovary during the preovulatory period. Nitric Oxide 2018; 75:85-94. [PMID: 29501650 DOI: 10.1016/j.niox.2018.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 01/29/2023]
Abstract
The aim of the present work was to investigate whether the nitric oxide produced by the nitric oxide/nitric oxide synthase (NO/NOS) system present in the coeliac ganglion modulates the effects of cholinergic innervation on oxidative status, steroidogenesis and apoptotic mechanisms that take place in the rat ovary during the first proestrous. An ex vivo Coeliac Ganglion- Superior Ovarian Nerve- Ovary (CG-SON-O) system was used. Cholinergic stimulation of the CG was achieved by 10-6 M Acetylcholine (Ach). Furthermore, 400 μM Aminoguanidine (AG) - an inhibitor of inducible-NOS was added in the CG compartment in absence and presence of Ach. It was found that Ach in the CG compartment promotes apoptosis in ovarian tissue, probably due to the oxidative stress generated. AG in the CG compartment decreases the release of NO and progesterone, and increases the release of estradiol from the ovary. The CG co-treatment with Ach and AG counteracts the effects of the ganglionic cholinergic agonist on ovarian oxidative stress, increases hormone production and decreases Fas mRNA expression. These results suggest that NO is an endogenous modulator of cholinergic neurotransmission in CG, with implication in ovarian steroidogenesis and the apoptotic mechanisms that take place in the ovary during the preovulatory period in rats.
Collapse
Affiliation(s)
- María B Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Della Vedova
- Laboratorio de Medicina Experimental y Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Darío Ramírez
- Laboratorio de Medicina Experimental y Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvia M Delgado
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
5
|
Delsouc MB, Della Vedova MC, Ramírez D, Anzulovich AC, Delgado SM, Casais M. Oxidative stress and altered steroidogenesis in the ovary by cholinergic stimulation of coeliac ganglion in the first proestrous in rats. Implication of nitric oxide. Nitric Oxide 2016; 53:45-53. [PMID: 26778278 DOI: 10.1016/j.niox.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/24/2023]
Abstract
An ex-vivo Coeliac Ganglion-Superior Ovarian Nerve-Ovary (CG-SON-O) system from virgin rats in the first proestrous was used to test whether cholinergic stimulation of CG affects oxidative status and steroidogenesis in the ovary. The CG and the O were placed in separate buffered-compartments, connected by the SON, and the CG was stimulated by acetylcholine (Ach). To test a possible role of nitric oxide (NO) in the ovarian response to cholinergic stimulation of CG, aminoguanidine (AG) - an inhibitor of inducible-NO synthase was added to the O compartment. After 180 min incubation, the oxidative status was assessed in O whereas nitrite and steroidogenesis were assessed at 30, 120 and 180 min. Ach in CG decreased the total antioxidant capacity, but increased NO production and protein carbonization in O. Ach stimulation of CG increased estradiol, but decreased progesterone release in O by reducing the mRNAs related to their synthesis and degradation. The addition of AG to the O compartment caused an opposite effect, which was more pronounced in the presence of Ach in the CG compartment than in its absence. These results show that the stimulation of the extrinsic-cholinergic innervation of the O increases the concentration of NO, causes oxidative stress and modulates steroidogenesis in the first rat proestrous.
Collapse
Affiliation(s)
- María B Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Della Vedova
- Laboratorio de Medicina Experimental y Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Darío Ramírez
- Laboratorio de Medicina Experimental y Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana C Anzulovich
- Laboratorio de Cronobiología (LABCRON), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvia M Delgado
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
6
|
Sienkiewicz W, Chrószcz A, Dudek A, Janeczek M, Kaleczyc J. Caudal mesenteric ganglion in the sheep - macroanatomical and immunohistochemical study. Pol J Vet Sci 2015; 18:379-89. [PMID: 26172189 DOI: 10.1515/pjvs-2015-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The caudal mesenteric ganglion (CaMG) is a prevetrebral ganglion which provides innervation to a number of organs in the abdominal and pelvic cavity. The morphology of CaMG and the chemical coding of neurones in this ganglion have been described in humans and many animal species, but data on this topic in the sheep are entirely lacking. This prompted us to undertake a study to determine the localization and morphology of sheep CaMG as well as immunohistochemical properties of its neurons. The study was carried out on 8 adult sheep, weighing from 40 to 60 kg each. The sheep were deeply anaesthetised and transcardially perfused with 4% paraformaldehyde. CaMG-s were exposed and their location was determined. Macroanatomical observations have revealed that the ovine CaMG is located at the level of last two lumbar (L5 or L6) and the first sacral (S1) vertebrae. The ganglion represents an unpaired structure composed of several, sequentially arranged aggregates of neurons. Immunohistochemical investigations revealed that nearly all (99.5%) the neurons were DβH-IR and were richly supplied by VACHT-IR nerve terminals forming "basket-like" structures around the perikarya. VACHT-IR neurones were not determined. Many neurons (55%) contained immunoreactivity to NPY, some of them (10%) stained for Met-ENK and solitary nerve cells were GAL-positive. CGRP-IR nerve fibres were numerous and a large number of them simultaneously expressed immunoreactivity to SP. Single, weakly stained neurones were SP-IR and only very few nerve cells weakly stained for VIP.
Collapse
|
7
|
Kullmann FA, Wells GI, McKenna D, Thor KB. Excitatory effects of bombesin receptors in urinary tract of normal and diabetic rats in vivo. Life Sci 2014; 100:35-44. [DOI: 10.1016/j.lfs.2014.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/19/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
8
|
Kullmann FA, McKenna D, Wells GI, Thor KB. Functional bombesin receptors in urinary tract of rats and human but not of pigs and mice, an in vitro study. Neuropeptides 2013; 47:305-13. [PMID: 24054546 DOI: 10.1016/j.npep.2013.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
AIMS Bombesin receptors (BB receptors) and/or bombesin related peptides are expressed in the lower urinary tract, though their function and distribution in different species is largely unknown. This study examines whether BB receptor agonists can contract bladder smooth muscle in rats, mice, pigs and humans. METHODS Bladder strips were placed in tissue baths for in vitro contractility. Neuronally evoked contractions were elicited using electric field stimulation (EFS). Effects of the BB receptor agonists, neuromedin B (NMB; BB1 receptor agonist) and gastrin-releasing peptide (GRP; BB2 receptor agonist) on baseline tone and EFS-induced contractions were monitored. RESULTS In rat and human bladder strips, NMB and GRP (10(-11)-10(-6)M) increased EFS-induced contractions in a concentration dependent manner. In these species, NMB and GRP also increased baseline tension. In mouse and pig bladder strips, NMB and GRP (10(-8)-3×10(-6)M) had no effects on either parameter. CONCLUSIONS These data suggest that bombesin receptors BB receptor 1 and/or BB receptor 2 increase bladder contractions in rat and human. The site of action of these receptors may be pre- and/or post-synaptic, increasing release of transmitters or enhancing smooth muscle excitability, respectively. Thus, BB1 receptor and/or BB2 receptor may offer therapeutic targets for voiding dysfunction associated with impaired bladder contractility; however, species differences must be considered when studying these receptors. Part of this work was published in an abstract form at the SFN meeting New Orleans, 2012.
Collapse
|
9
|
Vallcaneras SS, Delgado SM, Motta A, Telleria CM, Rastrilla AM, Casais M. Effect of prolactin acting on the coeliac ganglion via the superior ovarian nerve on ovarian function in the postpartum lactating and non-lactating rat. Gen Comp Endocrinol 2013; 184:1-8. [PMID: 23313075 DOI: 10.1016/j.ygcen.2012.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/22/2012] [Accepted: 12/24/2012] [Indexed: 11/20/2022]
Abstract
Whether prolactin (PRL) has a luteotrophic or luteolytic effect in the rat ovary depends on the nature of the corpora lutea present in the ovaries and the hormonal environment to which they are exposed. The aim was to investigate the effect of PRL acting on the coeliac ganglion (CG) on the function of the corpora lutea on day 4 postpartum under either lactating or non-lactating conditions, using the CG-superior ovarian nerve-ovary system. The ovarian release of progesterone (P), estradiol, PGF2α, and nitrites was assessed in the ovarian compartment at different incubation times. Luteal mRNA expression of 3β-HSD, 20α-HSD, aromatase, PGF2α receptor, iNOS, Bcl-2, Bax, Fas and FasL was analysed in the corpus luteum of pregnancy at the end of the experiments. Comparative analysis of control groups showed that the ovarian release of P, nitrites, and PGF2α, the expression of PGF2α receptor, and the Bcl-2/Bax ratio were lower in non-lactating rats, with increased release of estradiol, and higher expression of aromatase, Fas and FasL, demonstrating the higher luteal functionality in ovaries of lactating animals. PRL added to the CG compartment increased the ovarian release of P, estradiol, nitrites and PGF2α, and decreased the Bcl-2/Bax ratio in non-lactating rats; yet, with the exception of a reduction in the release of nitrites, such parameters were not modified in lactating animals. Together, these data suggest that the CG is able to respond to the effect of PRL and, via a neural pathway, fine-tune the physiology of the ovary under different hormonal conditions.
Collapse
Affiliation(s)
- Sandra S Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | | | | | | | | | | |
Collapse
|
10
|
Sayegh AI. The Role of Bombesin and Bombesin-Related Peptides in the Short-term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:343-70. [DOI: 10.1016/b978-0-12-386933-3.00010-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Abstract
Neurogastroenterology is defined as neurology of the gastrointestinal tract, liver, gallbladder and pancreas and encompasses control of digestion through the enteric nervous system (ENS), the central nervous system (CNS) and integrative centers in sympathetic ganglia. This Review provides a broad overview of the field of neurogastroenterology, with a focus on the roles of the ENS in the control of the musculature of the gastrointestinal tract and transmucosal fluid movement. Digestion is controlled through the integration of multiple signals from the ENS and CNS; neural signals also pass between distinct gut regions to coordinate digestive activity. Moreover, neural and endocrine control of digestion is closely coordinated. Interestingly, the extent to which the ENS or CNS controls digestion differs considerably along the digestive tract. The importance of the ENS is emphasized by the life-threatening effects of certain ENS neuropathies, including Hirschsprung disease and Chagas disease. Other ENS disorders, such as esophageal achalasia and gastroparesis, cause varying degrees of dysfunction. The neurons in enteric reflex pathways use a wide range of chemical messengers that signal through an even wider range of receptors. These receptors provide many actual and potential targets for modifying digestive function.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Bronzi D, Orozco AV, Delgado SM, Casais M, Rastrilla AM, Sosa ZY. Modulation of the noradrenergic activity index by neural stimulus, and its participation in ovarian androstenedione release during the luteal phase. Fertil Steril 2011; 95:1211-6. [DOI: 10.1016/j.fertnstert.2010.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/21/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
13
|
Brown DR, Miller RJ. Neurohormonal Control of Fluid and Electrolyte Transport in Intestinal Mucosa. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Costa M, Furness JB. Structure and Neurochemical Organization of the Enteric Nervous System. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Vallcaneras SS, Casais M, Delgado SM, Filippa V, Mohamed F, Sosa Z, Rastrilla AM. Androgen receptors in coeliac ganglion in late pregnant rat. Steroids 2009; 74:526-34. [PMID: 19428441 DOI: 10.1016/j.steroids.2009.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/23/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
The ovarian function is controlled by endocrine factors and neural influence. In late pregnant rat, androstenedione, from the coeliac ganglion, has a luteotrophic effect in the ex vivo coeliac ganglion-superior ovarian nerve-ovary system. In this work we investigate the presence of androgen receptors in the coeliac ganglion of late pregnant rats by immunohistochemistry. We also explore, from a physiological point of view, the potential participation of these receptors in the androstenedione ganglionic action on progesterone release and metabolism, as well as on nitrites release in the ovary compartment. The coeliac ganglion was isolated after being fixed in situ and immunohistochemistry was performed. In the system, three experimental groups were used with the addition of (a) androstenedione, (b) flutamide, and (c) androstenedione plus flutamide in the ganglion compartment. Progesterone and nitrite concentrations were determined in the ovary compartment at different incubation times. Corpora lutea samples isolated at the end of incubation were used to determine the expressions and activities of the progesterone synthesis (3beta-hydroxysteroid-dehydrogenase, 3beta-HSD) and degradation (20alpha-hydroxysteroid-dehydrogenase, 20alpha-HSD) enzymes. Immunohistochemistry revealed cytoplasmatic androgen receptor immunoreactivity in neural somas in the coeliac ganglion. In the coeliac ganglion-superior ovarian nerve-ovary system, androstenedione addition increased 3beta-HSD and decreased 20alpha-HSD, showed a tendency to decrease 20alpha-HSD expression, and increased nitrites release in relation to control. Androstenedione plus flutamide decreased progesterone and nitrites release in relation to the androstenedione group. This work demonstrates the presence of androgen receptors in neurons of celiac ganglion and provides evidence for the luteotrophic action of androstenedione via a neural pathway that may be mediated by these receptors.
Collapse
Affiliation(s)
- Sandra Silvina Vallcaneras
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Casais M, Delgado SM, Sosa Z, Telleria CM, Rastrilla AM. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries. Reprod Biol Endocrinol 2006; 4:66. [PMID: 17184551 PMCID: PMC1769501 DOI: 10.1186/1477-7827-4-66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 12/21/2006] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1) the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2) the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3) the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. METHODS The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1) noradrenaline in the ganglion compartment; 2) LH in the ovarian compartment; and 3) noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline) was also measured in the ovarian compartment by HPLC. RESULTS The most relevant result concerning the action of noradrenaline in the celiac ganglion was found on day 21 of pregnancy resulting in the inhibition of androstenedione release from the ovarian compartment. In addition on day 15 of pregnancy, LH placed in the ovarian compartment led to an inhibition of the release of androstenedione, and this inhibitory effect was further reinforced by the joint action of noradrenaline in the celiac ganglion and LH in the ovary. The levels of catecholamines in the ovarian compartment showed differences among the experiments; of significance, the joint treatment of noradrenaline in the celiac ganglion and LH in the ovary resulted in a remarkable increase in the ovarian levels of noradrenaline and adrenaline when compared to the effect achieved by either one of the compounds added alone. CONCLUSION Our results demonstrate that the noradrenergic stimulation of the celiac ganglion reinforces the LH-induced inhibition of androstenedione production by the ovary of late pregnant rats, and that this effect is associated with marked changes in the release of catecholamines in the ovary.
Collapse
Affiliation(s)
- Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. San Luis 5700, Argentina
| | - Silvia M Delgado
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. San Luis 5700, Argentina
| | - Zulema Sosa
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. San Luis 5700, Argentina
| | - Carlos M Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Ana M Rastrilla
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. San Luis 5700, Argentina
| |
Collapse
|
17
|
Gibbins IL, Teo EH, Jobling P, Morris JL. Synaptic density, convergence, and dendritic complexity of prevertebral sympathetic neurons. J Comp Neurol 2003; 455:285-98. [PMID: 12483682 DOI: 10.1002/cne.10404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prevertebral sympathetic ganglia contain a unique population of final motor neurons receiving convergent synaptic inputs not only from spinal preganglionic neurons, but also from peripheral intestinofugal neurons projecting from the gut. We used quantitative confocal and ultrastructural immunohistochemistry to determine how this increased synaptic convergence is accommodated by sympathetic final motor neurons in the celiac ganglion of guinea pigs. Terminals of intestinofugal neurons were identified by their immunoreactivity to vasoactive intestinal peptide. Stereologic analyses were based on transects and point counts at confocal and ultrastructural levels. The relative amount of dendritic neuropil in the medial regions of the ganglion was approximately 2.5 times greater than in the lateral regions of the ganglion, consistent with the 2 to 3 times difference in average dendritic field size of neurons in these regions. The total numbers of boutons and synaptic profiles showed significant positive correlations with the relative amount of neuropil in a region. However, the overall density of synaptic boutons was twice as high in the medial region of the ganglion compared with the lateral regions. Because the relative density of preganglionic synapses was similar in each region, this difference was due to the selective projection of intestinofugal inputs to neurons in the medial celiac ganglion, where they provided 45% of synaptic contacts. These results show that, compared with vasoconstrictor neurons, sympathetic neurons regulating gastrointestinal activity support a higher number of convergent inputs in two ways: in addition to having larger dendritic fields, they also have a twofold higher density of synapses.
Collapse
Affiliation(s)
- Ian L Gibbins
- Department of Anatomy & Histology, and Centre for Neuroscience, Flinders Medical Research Institute, Flinders University, Adelaide, SA, 5001, Australia.
| | | | | | | |
Collapse
|
18
|
Abstract
This review attempts to give a comprehensive overview of ovarian innervation, considering the whole nervous system and its different levels that may modify the ovarian function. The connection between the ovary and the central nervous system through the autonomic pathways, including the peripheral ganglia, is highlighted. The evidence obtained over the last years highlights the role of the superior ovarian nerve (SON) in the ovarian phenomena. Besides, the effect on the ovary of conventional neurotransmitters and others such as indolamines and peptides, which have been found in this organ, are discussed. Various reproductive diseases have been studied almost exclusively from the endocrine point of view. It is evident that a better knowledge about the role of the neural factors involved in the ovarian physiology may facilitate the understanding of some of these. A review of the concepts and an update of some experimental designs is made that permits clarifying several aspects of the relationship between the neural system and the ovary. At present, there is no doubt that the innervation of the ovary is involved in several physiological aspects of this gland function. However, the relationship of some levels of the nervous system and the ovary offer a wide avenue for future research.
Collapse
Affiliation(s)
- Luis I Aguado
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Facultad de Química y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina 5700.
| |
Collapse
|
19
|
Jobling P, Messenger JP, Gibbins IL. Differential Expression of Functionally Identified and Immunohistochemically Identified NK1 Receptors on Sympathetic Neurons. J Neurophysiol 2001; 85:1888-98. [PMID: 11353005 DOI: 10.1152/jn.2001.85.5.1888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used multiple-labeling immunohistochemistry, intracellular dye-filling, and intracellular microelectrode recordings to characterize the distribution of tachykinin receptors and substance P boutons on subpopulations of neurons within the guinea pig celiac ganglion. Superfusion of substance P (SP, 1 μM for 1 min) depolarized 42% of tonic neurons and inhibited afterhyperpolarizations in 66% of long afterhyperpolarizing (LAH) neurons without significant desensitization. Twenty-one percent of tonic neurons and 24% of LAH neurons responded to the NK3 agonist senktide but did not respond to SP, indicating SP did not activate NK3 receptors at this concentration. All effects of SP were abolished by the selective NK1 receptor antagonist, SR140333, but not by the selective NK3 receptor antagonist, SR142801, suggesting that exogenous SP activated a receptor with NK1 pharmacology. No dye-filled LAH neuron and only 50% of tonic neurons responding to SP expressed NK1 receptor immunoreactivity (NK1-IR). All neurons responding to SP had SP immunoreactive fibers within one cell diameter, indicating good spatial matching between SP release sites and target neurons. These results indicate that SP may act via a receptor with NK1-like pharmacology that has a C terminus not recognized by antibodies to the intracellular domain of the conventional NK1 receptor. Inward currents evoked by SP acting on this NK1-like receptor or senktide acting through NK3 receptors had identical current-voltage relationships. In LAH neurons, both agonists suppressed I sAHP without reducing I AHP. Responses evoked by SP and senktide were resistant to PKC inhibitors, suggesting that the transduction mechanisms for the NK1-like receptor and the NK3 receptor may be similar.
Collapse
Affiliation(s)
- P Jobling
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
20
|
Gibbins IL, Morris JL. Pathway specific expression of neuropeptides and autonomic control of the vasculature. REGULATORY PEPTIDES 2000; 93:93-107. [PMID: 11033057 DOI: 10.1016/s0167-0115(00)00181-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this article, we review the immunohistochemical evidence for the pathway-specific expression of co-existing neuropeptides in autonomic vasomotor neurons, and examine the functional significance of these expression patterns for the autonomic regulation of the vasculature. Most final motor neurons in autonomic vasomotor pathways contain neuropeptides in addition to non-peptide co-transmitters such as catecholamines, acetylcholine and nitric oxide. Neuropeptides also occur in preganglionic vasomotor neurons. The precise combinations of neuropeptides expressed by neurons in vasomotor pathways vary with species, vascular bed, and the level within the vascular bed. This applies to both vasoconstrictor and vasodilator pathways. There is a similar degree of variation in the expression of neuropeptide receptors in the vasculature. Consequently, the contributions of different peptides to autonomic vasomotor control are closely matched to the functional requirements of specific vascular beds. This arrangement allows for a high degree of precision in vascular control in normal conditions and has the potential for considerable plasticity under pathophysiological conditions.
Collapse
Affiliation(s)
- I L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, School of Medicine, Flinders University, GPO Box 2100, S.A. 5001, Adelaide, Australia.
| | | |
Collapse
|
21
|
|
22
|
Browning K, Cunningham S, Duncan L, Timmermans JP, Lees G. Regional differences in the sympathetic innervation of the Guinea pig large intestine by neuropeptide Y- and tyrosine hydroxylase-immunoreactive nerves of divergent extrinsic origin. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990809)410:4<515::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Immediate-early gene expression in the inferior mesenteric ganglion and colonic myenteric plexus of the guinea pig. J Neurosci 1999. [PMID: 10087087 DOI: 10.1523/jneurosci.19-07-02755.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of neurons in the inferior mesenteric ganglion (IMG) was assessed using c-fos, JunB, and c-Jun expression in the guinea pig IMG and colonic myenteric plexus during mechanosensory stimulation and acute colitis in normal and capsaicin-treated animals. Intracolonic saline or 2% acetic acid was administered, and mechanosensory stimulation was performed by passage of a small (0.5 cm) balloon either 4 or 24 hr later. Lower doses of capsaicin or vehicle were used to activate primary afferent fibers during balloon passage. c-Jun did not respond to any of the stimuli in the study. c-fos and JunB were absent from the IMG and myenteric plexus of untreated and saline-treated animals. Acetic acid induced acute colitis by 4 hr, which persisted for 24 hr, but c-fos was found only in enteric glia in the myenteric plexus and was absent from the IMG. Balloon passage induced c-fos and JunB in only a small subset of IMG neurons and no myenteric neurons. However, balloon passage induced c-fos and JunB in IMG neurons (notably those containing somatostatin) and the myenteric plexus of acetic acid-treated animals. After capsaicin treatment, c-fos and JunB induction by balloon passage was inhibited in the IMG, but there was enhanced c-fos expression in the myenteric plexus. c-fos and JunB induction by balloon stimulation was also mimicked by acute activation of capsaicin-sensitive nerves. These data suggest that colitis enhances reflex activity of the IMG by a mechanism that involves activation of both primary afferent fibers and the myenteric plexus.
Collapse
|
24
|
Specific targeting of ganglion cell sprouts provides an additional mechanism for restoring peripheral motor circuits in pelvic ganglia after spinal nerve damage. J Neurosci 1998. [PMID: 9742165 DOI: 10.1523/jneurosci.18-19-07987.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pelvic ganglia contain both sympathetic and parasympathetic neurons and provide an interesting model in which to study the effects of a distributed spinal nerve lesion. Previous animal studies have suggested that after either lumbar or sacral nerve injury, some functional connections are restored between preganglionic and postganglionic neurons. It has been proposed that this is because of intact preganglionic axons sprouting collaterals to supply denervated ganglion cells. However, this has never been demonstrated, and our study has investigated whether the ganglion cells themselves contribute to axogenesis and restoration of peripheral circuitry. We have monitored the growth of axons from pelvic ganglion cells after lumbar or sacral nerve injury (partial decentralization), or a combination of the two (total decentralization). These new processes were distinguished from intact preganglionic terminals by their immunoreactivity for substances present only in pelvic ganglion neurons (vasoactive intestinal peptide, neuropeptide Y, and tyrosine hydroxylase). The proportion of pelvic neurons surrounded by these immunostained fibers was then assessed. Complete removal of preganglionic terminals provides the biggest stimulus for growth of new axon processes (sprouts), which grow profusely within just a few days. These arise from each of the main chemical classes of pelvic neurons but grow at different rates and have different distributions. Importantly, some chemical classes of sprouts preferentially supply neurons of dissimilar histochemistry, suggesting the presence of very specific targeting mechanisms rather than random growth. These sprouts are transient, however, those formed after partial decentralization appear to be maintained. Moreover, after lesion of either lumbar or sacral spinal nerves, many sprouts arise from neurons with intact spinal connections and innervate neurons that have lost their preganglionic inputs. This provides a very different alternative mechanism to reestablish communication between preganglionic and postganglionic neurons. In conclusion, we have demonstrated a rapid and selective axogenesis within the pelvic ganglion after spinal nerve injury. This may allow the development of novel strategies by which autonomic nerve pathways can be experimentally manipulated, to facilitate more rapid return of appropriate peripheral reflex control.
Collapse
|
25
|
Elfvin LG, Holmberg K, Emson P, Schemann M, Hökfelt T. Nitric oxide synthase, choline acetyltransferase, catecholamine enzymes and neuropeptides and their colocalization in the anterior pelvic ganglion, the inferior mesenteric ganglion and the hypogastric nerve of the male guinea pig. J Chem Neuroanat 1997; 14:33-49. [PMID: 9498165 DOI: 10.1016/s0891-0618(97)10010-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By the indirect immunofluorescence method, the distribution of nitric oxide synthase (NOS)-like immunoreactivity (LI) and its possible colocalization with neuropeptide immunoreactivities, with two enzymes for the catecholamine synthesis pathway, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), as well as the enzyme for the acetylcholine synthesis pathway, choline acetyltransferase (ChAT) were studied in the anterior pelvic ganglion (APG), the inferior mesenteric ganglion (IMG) and the hypogastric nerve in the male guinea pig. The analyses were performed on tissues from intact animals, as well as after compression/ligation or cut of the hypogastric nerve. In some cases the colonic nerves were also cut. Analysis of the APG showed two main neuronal cell populations, one group containing NOS localized in the caudal part of the APG and one TH-positive group lacking NOS in its cranial part. The majority of the NOS-positive neurons contained ChAT-LI. Some NOS-positive cells did not contain detectable ChAT, but all ChAT-positive cells contained NOS. NOS neurons often contained peptides, including vasoactive intestinal peptide (VIP), neuropeptide tyrosine (NPY), somatostatin (SOM) and/or calcitonin gene-related peptide (CGRP). Some NOS cells expressed DBH, but never TH. The second cell group, characterized by absence of NOS, contained TH, mostly DBH and NPY and occasionally SOM and CGRP. Some TH-positive neurons lacked DBH. In the IMG, the NOS-LI was principally in nerve fibers, which were of two types, one consisting of strongly immunoreactive, coarse, varicose fibers with a patchy distribution, the other one forming fine, varicose, weakly immunoreactive fibers with a more general distribution. In the coarse networks, NOS-LI coexisted with VIP- and DYN-LI and the fibers surrounded mainly the SOM-containing noradrenergic principal ganglion cells. A network of ChAT-positive, often NOS-containing nerve fibers, surrounded the principal neurons. Occasional neuronal cell bodies in the IMG contained both NOS- and ChAT-LI. Accumulation of NOS was observed, both caudal and cranial, to a crush of the hypogastric nerve. VIP accumulated mainly on the caudal side and often coexisted with NOS. NPY accumulated on both sides of the crush, but mainly on the cranial side, and ENK was exclusively on the cranial side. Neither peptide coexisted with NOS. Both substance P (SP) and CGRP showed the strongest accumulation on the cranial side, possibly partly colocalized with NOS. It is concluded that the APG in the male guinea-pig consists of two major complementary neuron populations, the cholinergic neurons always containing NOS and the noradrenergic neurons containing TH and DBH. Some NOS neurons lacked ChAT and could represent truly non-adrenergic, non-cholinergic neurons. In addition, there may be a small dopaminergic neuron population, that is containing TH but lacking DBH. The cholinergic NOS neurons contain varying combinations of peptides. The noradrenergic population often contained NPY and occasionally SOM and CGRP. It is suggested that NO may interact with a number of other messenger molecules to play a role both within the APG and IMG and also in the projection areas of the APG.
Collapse
Affiliation(s)
- L G Elfvin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Stoyanova I, Chouchkov C, Scheuermann DW. Immunocytochemical localization of the neurons in the superior mesenteric ganglion innervating the small intestine of the cat. Ann Anat 1997; 179:517-23. [PMID: 9442259 DOI: 10.1016/s0940-9602(97)80008-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retrograde tracing was used to determine the localization of neuronal perikarya and fibres in the feline superior mesenteric ganglion (SMG), projecting to the small intestine. In the distal part of the ileum, a retrograde neuronal tracer Fast Blue (FB) was injected and after approximately thirty five to forty days the animals were killed by perfusion. The SMG were removed and the neuropeptide contents of the neurons, projecting to the distal ileum, were determined by means of immunofluorescence with antisera to neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP). Neurons innervating the small intestine were located in the upper part of the SMG and all of them were NPY-immunopositive. The group of CGRP-immunoreactive (IR) cells was less numerous (73.33%). Probably the FB-labeled fibres, containing the same neuropeptides, arise from these perikarya. SP- or VIP-immunopositive neuronal processes were found to surround immunonegative ganglionic cells but their origin is not in the ganglion. Only single FB-marked cells were VIP-immunopositive. SP- and SOM-immunoreactive amounted respectively to 2.28% and 3.01% of all the neuronal population, but only a few of these cells were FB-labelled.
Collapse
Affiliation(s)
- I Stoyanova
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Thracian University, Stara Zagora Bulgaria
| | | | | |
Collapse
|
27
|
Simmons MA, Brodbeck RM, Karpitskiy VV, Schneider CR, Neff DP, Krause JE. Molecular characterization and functional expression of a substance P receptor from the sympathetic ganglion of Rana catesbeiana. Neuroscience 1997; 79:1219-29. [PMID: 9219980 DOI: 10.1016/s0306-4522(97)00027-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Substance P is an important neuropeptide neurotransmitter in the central, autonomic and enteric nervous systems. In sympathetic ganglia, substance P is thought to play a role in modulating synaptic transmission. Release of substance P by neuronal stimulation or direct application of substance P to ganglionic neurons increases neuronal excitability. An amphibian substance P receptor complementary DNA has been cloned and characterized from bullfrog, Rana catesbeiana, sympathetic ganglion complementary DNA libraries. The deduced primary structure contains features indicative of a seven transmembrane domain G-protein-coupled receptor. The deduced protein sequence shows 69% identity to previously cloned mammalian substance P receptors. In situ hybridization analysis performed on bullfrog sympathetic ganglia using digoxigenin-labelled complementary RNA probe demonstrated that approximately 75% of the principal neurons displayed reaction product above background levels. Radioligand binding studies were performed on stably transfected cells with [(125)I]Tyr-1-substance P as the ligand. Substance P had an IC50 of 16 nM and the agonist potency profile was substance P>neurokinin A >> neurokinin B. The order of potency for three tachykinins to increase intracellular calcium when applied to a stably transfected clonal cell line was substance P>neurokinin A >> neurokinin B. This order of agonist potency also held for inhibition of the M-type potassium current in intact bullfrog sympathetic neurons. The non-peptide substance P antagonists CP-96345 and RP-67580 at concentrations that block mammalian substance P receptors had little or no effect on the responses to substance P at the bullfrog receptor. Overall, these results demonstrate that the cloned sequence has the features consistent with and characteristic of a substance P receptor. The results are discussed with reference to the established pharmacology of the bullfrog substance P receptor and known structure activity relationships of mammalian tachykinin receptors.
Collapse
Affiliation(s)
- M A Simmons
- Department of Pharmacology, Marshall University School of Medicine, Huntington, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sann H, Hammer K, Hildesheim IF, Pierau FK. Neurons in the chicken ureter are innervated by substance P- and calcitonin gene-related peptide-containing nerve fibres: immunohistochemical and electrophysiological evidence. J Comp Neurol 1997; 380:105-18. [PMID: 9073086 DOI: 10.1002/(sici)1096-9861(19970331)380:1<105::aid-cne8>3.0.co;2-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Numerous ganglia or single neurones immunoreactive to protein gene-product 9.5 (PGP) were demonstrated in the chicken ureter. Ganglia were observed in the main nerve trunks accompanying the ureter (400-2,000 cells), in the adventitia (1-45 cells; density; 79 +/- 12 ganglia/cm2; mean +/- S.E.M.), in the circular muscle (1-9 cells; 76 +/- 10 ganglia/cm2) and in the longitudinal muscle (1-8 cells; 232 +/- 41 ganglia/cm2). Most of the PGP-positive neurones in the nerve trunk ganglia (approximately 66%) and in the smooth muscle layers (85%) were encircled by a dense plexus of varicose nerve fibres containing both substance P (SP) and calcitonin gene-related peptide (CGRP). SP-positive somata were rarely observed. Immunogold electron microscopy revealed that SP- and CGRP-immunoreactivity were colocalised in the same dense core vesicles. A strong reduction of SP-positive nerve fibres was observed in organ cultures of the ureter, indicating their extrinsic origin. The fibres might originate from the dorsal root ganglia, where SP and CGRP were colocalised in 20-30% of the neurones. The sensitivity of ureteric neurones to SP and CGRP was investigated in recordings obtained from mechanosensitive nerve fibres with cell bodies located in or adjacent to the ureter (U-G units). The majority (71%) of the U-G units was excited by local application of SP in a dose-dependent manner. The SP-sensitive U-G neurones had higher mechanical thresholds (29 +/- 5 mmHg) as opposed to the SP-insensitive ones (10 +/- 3 mmHg). Repeated applications of high doses of SP to the U-G units resulted in desensitisation and reduced the response to mechanical stimuli. None of the U-G units responded to local application of CGRP, but all U-G units were excited by acetylcholine. The data support the hypothesis that SP-containing primary afferents are involved in the modulation of the activity of ureteric neurons in the chicken.
Collapse
Affiliation(s)
- H Sann
- Max-Planck-Institut für Physiologische und Klinische Forschung, W.G. Kerckhoff-Institut, Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
29
|
Polignano FM, Caradonna P, Maiorano E, Ferrarese S. Recurrence of acute colonic pseudo-obstruction in selective adrenergic dysautonomia associated with infectious toxoplasmosis. Scand J Gastroenterol 1997; 32:89-94. [PMID: 9018773 DOI: 10.3109/00365529709025069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Acute colonic pseudo-obstruction is a life-threatening condition associated with several pathologic conditions, whose pathophysiology is still uncertain. CASE Autonomic function in a young patient operated on for acute colonic pseudo-obstruction was carefully evaluated; none of the common clinical conditions described in the literature was found to have caused the syndrome. Selective adrenergic failure was suggested by the presence of severe orthostatic hypotension, low basal plasma catecholamine level, and absence of the expected increase on standing and by the findings of provocation tests, cardiovascular tests, and acetylcholine sweat spot test. Biopsy specimens from the colon and small-bowel wall did not show any morphologic or immunohistochemical alteration either in muscle layers or in the autonomic plexus, testifying to the possible occurrence of extrinsic denervation in the presence of an intact plexus. Infectious toxoplasmosis was proved through indirect and direct hemagglutination assays, enzyme-linked immunosorbent assay IgG, IgM, and IgA, immunosorbent agglutination IgM assay, and the protozoa were demonstrated in a biopsy specimen from the rectus abdominis muscle. CONCLUSIONS Selective adrenergic denervation of the gut resulted in recurrent episodes of colonic pseudo-obstruction, probably by direct toxicity or a cross-reaction between the immune process and a toxoplasmic antigen, stressing the importance of sympathetic inhibitory modulation on colon motor activity.
Collapse
|
30
|
Parr EJ, Sharkey KA. Immunohistochemically-defined subtypes of neurons in the inferior mesenteric ganglion of the guinea-pig. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 59:140-50. [PMID: 8832520 DOI: 10.1016/0165-1838(96)00017-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution of somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), substance P (SP), tyrosine hydroxylase (a marker of noradrenergic neurons, NA) and nitric oxide synthase-immunoreactivity (NOS-IR) was examined in the inferior mesenteric ganglion of guinea pigs with double- and triple-labelling immunohistochemistry. About 75% of neurons identified were NA/SOM, almost 20% were NA/NPY and the remainder consisted of small groups of NA/- (1-5%), NA/NPY/SOM (2-5%) and VIP (1-2%) neurons. VIP neurons contained NPY-IR, usually contained SOM-IR and were surrounded by dense pericellular baskets of SP fibres. NOS-IR was found in a small proportion of neurons colocalized with VIP but both NOS- and VIP-IR were also found alone in some neurons. Some NOS reactive varicose fibres throughout the ganglia also contained VIP-IR but much of the NOS- and VIP-IR appeared to be localized in discrete varicosities. SOM-IR was also detectable in TH fibres within myenteric ganglia of the distal colon. We conclude that the subtypes of neurons in the inferior mesenteric ganglion share some properties with other sympathetic and abdominal ganglia but they exist in distinct proportions and may make dissimilar projections along the length of the gut.
Collapse
Affiliation(s)
- E J Parr
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
31
|
Papka RE, Thompson BD, Schmidt HH. Identification of uterine-related sympathetic neurons in the rat inferior mesenteric ganglion: neurotransmitter content and afferent input. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 59:51-9. [PMID: 8816365 DOI: 10.1016/0165-1838(96)00003-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rat uterus is innervated by sensory and autonomic nerves. Sensory and sympathetic fibers travel in the hypogastric nerves and are associated with the thoracolumbar spinal cord levels T13-L3. The inferior mesenteric ganglion (IMG) contains the somata of sympathetic postganglionic neurons and some of these may project axons to the uterus. Sensory and parasympathetic fibers travel in the pelvic nerve and are associated with the lumbosacral cord levels L6-S1 and pelvic ganglion (PG). We previously reported data concerning the neurochemical anatomy of the PG with regard to the uterine innervation; the present study was undertaken to characterize the neurochemical anatomy of the IMG with regard to it involvement in uterine innervation. A retrograde axonal tracer was used to verify projections of axons of IMG neurons to the uterus. Immunostaining of cryostat sections of the IMG revealed neurons immunoreactive for neuropeptide Y (NPY) and for tyrosine hydroxylase (TH). Immunostaining for the synaptic terminal protein synapsin I (SYN) revealed numerous fine terminals immediately surrounding the principal neurons and in the interneuronal spaces. Varicosities immunoreactive for calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), enkephalin (ENK), substance P (SP) and galanin (GAL) appear to be associated with principal neurons. Additional varicosities stained for nicotinamide adenine dinucleotide phosphate (reduced)-diaphorase (NADPH-d) and nitric oxide synthase (NOS), thus indicating sites of neuronal nitric oxide synthesis. This study revealed that the IMG contains uterine-related neurons and that some of the retrogradely labeled uterine-related neurons contain NPY, TH or both NPY/TH. In addition, uterine-related neurons received abundant afferent inputs indicated by SYN-immunoreactive (-ir) terminals and some of these varicosities labeled for GAL, CGRP, VIP, ENK, or NADPH-d/NOS.
Collapse
Affiliation(s)
- R E Papka
- Department of Anatomical Sciences, University of Oklahoma, Health Sciences Center, Oklahoma City 73190, USA.
| | | | | |
Collapse
|
32
|
Ma RC, Szurszewski JH. Modulation by opioid peptides of mechanosensory pathways supplying the guinea-pig inferior mesenteric ganglion. J Physiol 1996; 491 ( Pt 2):435-45. [PMID: 8866866 PMCID: PMC1158737 DOI: 10.1113/jphysiol.1996.sp021227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Radioimmunological techniques were used in isolated guinea-pig inferior mesenteric ganglion (IMG)-colon preparations to determine whether opioid peptides and neurotensin8-13 (NT8-13), the C-terminal region of NT1-13 recognized by neurotensin receptors, modulate distension-induced release of substance P (SP)- and vasoactive intestinal polypeptide (VIP)-like immunoreactive (LI) material. 2. Colonic distension significantly increased the amount of SP- and VIP-LI material released in the ganglionic superfusate. A low-Ca2+ (0.1 mM), high-Mg2+ (15 mM) solution blocked their release. 3. In vivo capsaicin pretreatment abolished release of SP-LI material during colonic distension but had no significant effect on distension-induced release of VIP-LI material. 4. The addition of [Leu5]enkephalin, [Met5]enkephalin, PL017 (a mu-receptor agonist) and DPDPE (a delta-receptor agonist) to the ganglion side of a two-compartment chamber blocked distension-induced release of SP-LI material. The addition of naloxone and ICI-174,864 (a delta-receptor antagonist) to the ganglion compartment reversed the inhibitory effect of the mu- and delta-receptor agonists. 5. Addition of [Leu5]enkephalin and [Met5]enkephalin to the ganglion compartment had no significant effect on release of VIP-LI material during colonic distension. 6. Addition of NT8-13 to the ganglion compartment significantly increased in the amount of SP-LI material released during colonic distension but had no affect on distension-induced release of VIP-LI material. 7. The results suggest the hypothesis that under in vivo conditions, enkephalinergic nerves decrease and neurotensinergic nerves increase the release of SP from peripheral branches of primary afferent sensory nerves.
Collapse
Affiliation(s)
- R C Ma
- Department of Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
33
|
Abstract
The effect of cholecystokinin octapeptide (CCK-8) on membrane potential and conductance of cat pancreatic ganglion neurons was studied in vitro by means of intracellular microelectrode recording methods. Microejection of S-CCK-8 and NS-CCK-8 evoked, by direct action, a slow, reversible membrane depolarization. The majority of neurons tested were more sensitive to S-CCK-8. The depolarizing response to S-CCK-8 and NS-CCK-8 was accompanied in different neurons by a variable change in membrane permeability to Na+ and/or K+. The effects of S-CCK-8 and NS-CCK-8 were mediated by the CCKB receptor. The results suggest that S-CCK-8 and NS-CCK-8 increase the excitability of pancreatic ganglion neurons by acting on postsynaptic CCKB receptors.
Collapse
Affiliation(s)
- R C Ma
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Sann H, McCarthy PW, Schemann M, Jurzak M, Poethke R, Pierau FK. Choline acetyltransferase-immunoreactive neurones in a prevertebral sympathetic ganglion, the inferior mesenteric ganglion. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 54:195-205. [PMID: 7490421 DOI: 10.1016/0165-1838(95)00019-t] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using immunohistochemical techniques a small population of choline acetyltransferase (ChAT) immunoreactive (IR) neurones has been identified in the inferior mesenteric ganglion (IMG) of guinea pig (4.6% of all neurones), ferret (6.4%) and rat (0.4%). A detailed study in the guinea-pig IMG revealed that the vast majority of cholinergic neurones did not express tyrosine hydroxylase (TH)-IR, indicating that they were non-catecholaminergic. The cholinergic neurones were significantly larger than the TH-positive neurones. The majority of the ChAT-IR cells (64%) was observed in small clusters which were consistently located in the caudal lobe of the IMG close to the entry of the hypogastric nerves. 83% of the ChAT-IR cells also contained neuropeptide Y (NPY). Since the vast majority of TH-negative cells were ChAT-positive (94%), the TH negativity was taken as an indirect indication for ChAT-IR. NPY-IR, somatostatin (SOM)-IR and vasoactive intestinal peptide (VIP)-IR were found in both the TH-IR cells (22, 84 and 1%, respectively) and the putative cholinergic population (95, 84 and 70, respectively). Thus the majority of cholinergic neurones in the IMG were likely to contain NPY, SOM and VIP. TH-IR cells exhibited an extensive innervation of fibers immunoreactive for ChAT, VIP, ENK and NOS. In contrast, only a sparse plexus of ChAT-, ENK-, NOS-, NPY- and SOM-positive fibres was found around the TH-negative cells. VIP-IR fibres did not appear to innervate ChAT neurones.
Collapse
Affiliation(s)
- H Sann
- Max Planck Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Herbrecht F, Bagnol D, Cucumel K, Jule Y, Cupo A. Distribution of enkephalin immunoreactivity in sympathetic prevertebral ganglia and digestive tract of guinea-pigs and rats. REGULATORY PEPTIDES 1995; 57:85-95. [PMID: 7644705 DOI: 10.1016/0167-0115(95)00022-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to determine the distribution of methionine-enkephalin (ME) and leucine-enkephalin (LE) immunoreactivity in the sympathetic prevertebral ganglia (coeliac plexus and inferior mesenteric ganglion) and in the myenteric plexus-muscular layer complex of the digestive tract in guinea-pigs and rats. This study was performed using the same immunological approaches including radioimmunoassays and HPLC characterization as those used previously on cats in order to be able to make inter-region and inter-species comparisons. In rat and guinea-pig prevertebral ganglia, the distributions of the enkephalin immunoreactivities were comparable and were characterized by a low ME/LE concentration ratio, of less than 1. In the digestive tract of rats, the enkephalin immunoreactivities were homogeneously distributed, whereas in guinea-pigs, they were found to be very low in the lower oesophageal sphincter and high in the duodenum. In both species, the ME/LE concentration ratio was around 2. The ME/LE concentration ratio determined in the present study in peripheral nervous structures was much lower than that determined previously in the rat brain. Radioimmunoassay and biochemical data might indicate that different mechanisms are responsible for the processing and/or degradation of enkephalins in the central and peripheral nervous systems. The present study provides further evidences that there are tissue- and species-dependent differences in the distribution of enkephalin immunoreactivities. These differences should be taken into consideration when dealing with the effects and the role of enkephalins in the nervous control of intestinal motility in mammals.
Collapse
Affiliation(s)
- F Herbrecht
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Valbonne, France
| | | | | | | | | |
Collapse
|
36
|
Anderson CR, Furness JB, Woodman HL, Edwards SL, Crack PJ, Smith AI. Characterisation of neurons with nitric oxide synthase immunoreactivity that project to prevertebral ganglia. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 52:107-16. [PMID: 7542292 DOI: 10.1016/0165-1838(94)00150-i] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retrograde dye tracing was combined with immunohistochemistry to determine the distributions of nitric oxide synthase (NOS) immunoreactive nerve cells that project to prevertebral ganglia from the gastrointestinal tract and spinal cord of the guinea pig. An antiserum was raised against the neuronal form of NOS by selecting an amino-acid sequence specific to this form as immunogen. The antiserum recognised a single band at 150 kDa on Western blots of rat brain extract. Enteric nerve cells that were labelled by Fast Blue injected into the coeliac ganglion were not NOS immunoreactive in the small intestine, whereas 40-70% were reactive in the large intestine. Retrograde dye injected into the inferior mesenteric ganglion labels cells in the colon and rectum; 60-70% were immunoreactive for NOS. The NOS-immunoreactive nerve fibres arising in the intestine appear to end selectively around somatostatin-immunoreactive nerve cells in the coeliac and inferior mesenteric ganglia. Preganglionic nerve cell bodies in the intermediolateral column and dorsal commissural nucleus from T12 to L2 were labelled from the inferior mesenteric ganglion. Nearly 70% of neurons at each level were NOS immunoreactive. Thus, two sources of NOS terminals in prevertebral ganglia have been identified, intestinofugal neurons of the large, but not the small intestine, and sympathetic preganglionic neurons.
Collapse
Affiliation(s)
- C R Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
We localized and characterized the binding of [3H](+/-)-L364,718 in canine small intestine circular muscle. The highest densities of [3H]L364,718 binding were located in the fraction enriched in deep muscular plexus synaptosomal membranes. In this fraction [3H]L364,718 binding was of high density (Bmax 136.78 +/- 53.66 fmol/mg) and high affinity (Kd 1.67 +/- 0.74 nM). Kinetics studies revealed that binding was reversible and yielded a similar Kd value. L364,718, CCK-8-S, and L365,260 fully displaced [3H]L364,718 binding, but ligands at CCKB receptors, gastrin-17, and YM022 did not. Therefore, CCKA receptors in canine intestine circular muscle are located on nerve endings.
Collapse
Affiliation(s)
- Y K Mao
- Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
38
|
Keast JR, Chiam HC. Selective association of nerve fibres immunoreactive for substance P or bombesin with putative cholinergic neurons of the male rat major pelvic ganglion. Cell Tissue Res 1994; 278:589-94. [PMID: 7531621 DOI: 10.1007/bf00331378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The male rat major pelvic ganglion contains both sympathetic and parasympathetic neurons that supply the lower urinary and digestive tracts, and the reproductive organs. The aim of this study was to describe the distribution and identify potential targets of sensory and intestinofugal axons in this ganglion. Two putative markers of these projections were chosen, substance P for primary sensory axons and bombesin for myenteric intestinofugal projections. Varicose substance P-immunoreactive axons were associated only with non-noradrenergic (putative cholinergic) somata, and most commonly with those that contained vasoactive intestinal peptide. Immunoreactivity for substance P was also present in a small group of non-noradrenergic somata, many of which were immunoreactive for enkephalins, neuropeptide Y or vasoactive intestinal peptide. Bombesin immunoreactivity was found only in preterminal and terminal (varicose) axons, the latter of which were exclusively associated with non-noradrenergic somata that contain neuropeptide Y-immunoreactivity. Some varicose axons containing either substance P- or bombesin-immunoreactivity were intermingled with clumps of small, intensely fluorescent cells. These studies indicate that substance P- and bombesin-immunoreactive axons are likely to connect with numerically small, but discrete, populations of pelvic neurons.
Collapse
Affiliation(s)
- J R Keast
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Australia
| | | |
Collapse
|
39
|
Powley TL, Holst MC, Boyd DB, Kelly JB. Three-dimensional reconstructions of autonomic projections to the gastrointestinal tract. Microsc Res Tech 1994; 29:297-309. [PMID: 7531035 DOI: 10.1002/jemt.1070290407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three-dimensional reconstruction protocols in confocal microscopy are typically considered in terms of rendering separate stacks of optical sections. Single stacks, however, include volumes that are often too small to permit descriptions of entire neurons, complete axonal arbors, or complex neural networks. Furthermore, traditional tissue preparation protocols generally yield specimens too limited to permit reconstructions of complex neural systems. For 3-D analyses of extensive networks such as the autonomic nervous system projections within the viscera, it is critical to incorporate appropriate tissue techniques, including suitable tracer protocols, into the reconstruction strategy. This report summarizes complementary technologies, including whole mount procedures, tracer techniques for identifying single fibers in situ, and methods of examining stacks of optical images, which make it practical to describe the complete terminal field of an individual axon in the gastrointestinal tract. Such methods establish that vagal motor axons travel long distances within their target organs, collateralize frequently, and ramify extensively. Vagal afferents have extensive, complex, and, in some cases, polytopic arbors within target tissues.
Collapse
Affiliation(s)
- T L Powley
- Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
40
|
Elfvin LG, Hökfelt T, Bartfai T, Bedecs K. Immunohistochemical demonstration of galanin-, and galanin message-associated peptide-like immunoreactivities in sympathetic ganglia and adrenal gland of the guinea pig. Microsc Res Tech 1994; 29:131-42. [PMID: 7529069 DOI: 10.1002/jemt.1070290210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the indirect immunofluorescence method, the distribution of galanin (GAL)- and galanin message-associated peptide (GMAP)-like immunoreactivities (LI) were studied in sympathetic ganglia and the adrenal gland of the guinea pig. A rather dense network of GAL-immunoreactive nerve fibers was found in the inferior mesenteric ganglion (IMG) and in the superior mesenteric pole of the celiac-superior mesenteric ganglion complex (C-SMG). The celiac pole of the C-SMG, the stellate ganglion, and the superior cervical ganglion contained fewer, mostly scattered fibers. SIF-cells in prevertebral and paravertebral ganglia contained GAL-LI, as did the adrenal medullary cells. The GAL fibers in the IMG surrounded mainly principal ganglion cells containing somatostatin-immunoreactivity (SOM-IR), whereas fewer fibers were seen around neuropeptide Y (NPY) cells and cells in which SOM and NPY coexisted. Application of colchicine or vinblastine onto the IMG did not result in the appearance of GAL-IR in the principal ganglion cells. In denervation experiments it was revealed that most of the GAL fibers reach the IMG via the lumbar splanchnic nerves. GAL-IR appears to be colocalized with substance P (SP) in fibers of the IMG, indicating an origin of the GAL-containing fibers in dorsal root ganglia (DRG). This conclusion was supported by the finding in lumbar DRGs of GAL-positive cell bodies that contained SP. The role of GAL in prevertebral ganglia is unclear. It may be suggested that GAL modulates the slow, long-lasting membrane depolarization of the principal ganglion cells caused by SP in the primary afferents related to the IMG. GMAP-LI was detected in SIF cells and adrenal medullary cells in which GMAP-LI parallels the immunoreactivity of GAL. GMAP-LI was not observed in neuronal cell bodies or nerve fibers of the ganglia.
Collapse
Affiliation(s)
- L G Elfvin
- Department of Anatomy, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Keast JR. Neuropeptide-containing axon terminals in the male rat major pelvic ganglion are primarily of sacral origin. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1994; 47:151-8. [PMID: 8188980 DOI: 10.1016/0165-1838(94)90076-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The major pelvic ganglion of the male rat supplies the lower bowel and urogenital tract and contains both sympathetic and parasympathetic neurons. Many axon terminals in this ganglion contain peptides and the aim of the present study was to determine whether these are of sympathetic (i.e., lumbar) or parasympathetic (i.e., sacral) origin. The distribution of terminals containing various peptides following bilateral lesion of the hypogastric or pelvic nerves was compared with that in control animals. The majority of peptide-containing terminals were associated with non-noradrenergic neurons and were found to arise from the pelvic nerves. These projections were the almost exclusive origin of somatostatin-, cholecystokinin- and enkephalin-immunoreactive terminals, whereas galanin-immunoreactive terminals originate from both the hypogastric and pelvic nerves. Thus neuropeptides are useful markers for many parasympathetic terminals in the male rat major pelvic ganglion but no neuropeptides that are markers for the majority of sympathetic terminals have yet been identified.
Collapse
Affiliation(s)
- J R Keast
- Department of Physiology and Pharmacology, University of Queensland, Australia
| |
Collapse
|
42
|
Abstract
The colon exhibits three types of contractions: individual phasic (short and long duration), organized groups (MMCs and nonmigrating motor complexes), and ultrapropulsive (giant migrating contractions). The individual phasic contractions and the MMCs and nonmigrating motor complexes produce extensive mixing and kneading of fecal material and slow net distal propulsion. The GMCs produce mass movements and expel feces during defecation. All contractions are controlled by myogenic, neural, and chemical mechanisms. The myogenic mechanisms determine the timing and frequency of contractions and the duration and distance of propagation of contractions. The neurochemical mechanisms determine whether the contractions will occur at a given site.
Collapse
Affiliation(s)
- S K Sarna
- Department of Surgery, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
43
|
Bagnol D, Herbrecht F, Julé Y, Jarry T, Cupo A. Changes in enkephalin immunoreactivity of sympathetic ganglia and digestive tract of the cat after splanchnic nerve ligation. REGULATORY PEPTIDES 1993; 47:259-73. [PMID: 8234910 DOI: 10.1016/0167-0115(93)90393-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to analyze changes in the enkephalin immunoreactivity of sympathetic prevertebral ganglia coeliac plexus and inferior mesenteric ganglion) and intestinal tract (myenteric plexus and external muscle layers) in cats 2 days after left thoracic splanchnic nerve ligation, using radioimmunoassay and immunohistochemical techniques. Specific polyclonal antibodies directed against methionine- and leucine-enkephalin were used. The nerve ligation led to a considerable increase in the enkephalin immunoreactivity in the cranial part of the ligated nerves. This finding confirms the presence, in the cat, of an enkephalin output originating from thoracic spinal structures which are probably enkephalin-containing preganglionic neurons. In prevertebral ganglia the nerve ligation induced a marked decrease in the enkephalin immunoreactivity, which was probably due to the interruption of thoracic enkephalin efferents projecting towards both the coeliac plexus and the inferior mesenteric ganglion. In the digestive tract, the nerve ligation depressed the methionine-enkephalin immunoreactivity only in the gastro-duodenal region, and had no effect on the ileo-colonic region. The results of the present study add to the growing evidence that the sympathetic nervous system is involved in regulating the enteric enkephalinergic innervation, which is probably involved in controlling the intestinal motility.
Collapse
Affiliation(s)
- D Bagnol
- Département de Physiologie et Neurophysiologie, CNRS URA 205. Faculté des Sciences de Saint Jérôme, Marseille, France
| | | | | | | | | |
Collapse
|
44
|
Parr EJ, Davison SN, Davison JS, Sharkey KA. The origin and distribution of neurons with projections passing through the inferior mesenteric ganglion of the guinea-pig. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1993; 44:91-9. [PMID: 7693790 DOI: 10.1016/0165-1838(93)90021-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retrograde tracing with the fluorescent dye, Fast Blue, was used to examine the origin and distribution of neurons whose axons project through the inferior mesenteric ganglion (IMG) of the guinea-pig. These studies were performed by applying the tracer to (a) the rostral cut-end of the hypogastric nerves and (b) the caudal cut-end of the inter-mesenteric nerve (IMN). After application of tracer to the hypogastric nerves retrogradely labelled cell profiles were observed in the IMG and the superior mesenteric ganglion (SMG). The number of labelled cell profiles in the SMG was consistently about 15% of the number in the IMG. In only one of seven animals tested were labelled cells seen in the wall of the colon. Application of tracer to the IMN labelled cells in the IMG and in the wall of the colon. The distribution of the labelled enteric neurons was skewed towards the anal end of the colon. These results confirm that postganglionic sympathetic neurons in the SMG project axons through the guinea-pig IMG and describe the colonic distribution of enteric neurons that project through the IMG and into the IMN.
Collapse
Affiliation(s)
- E J Parr
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
45
|
Barbiers M, Timmermans JP, Adriaensen D, De Groodt-Lasseel MH, Scheuermann DW. Topographical distribution and immunocytochemical features of colonic neurons that project to the cranial mesenteric ganglion in the pig. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1993; 44:119-27. [PMID: 8227951 DOI: 10.1016/0165-1838(93)90024-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using the retrograde neuronal tracers Fast blue and Fluorogold, the topographical distribution and morphological features of porcine colonic neurons projecting to the cranial (superior) mesenteric ganglion have been investigated. Two to four weeks after injection of the tracer into the cranial mesenteric ganglion of immature pigs, labelled neurons were found throughout the colon. In the myenteric and outer submucous plexuses, they were present in ganglia situated to the side of the mesenteric attachment. The highest density of labelled neurons was observed at the end of the ascending colon, which in the pig represents 78-80% of the total colon length. The viscerofugal neurons had a multidendritic appearance and part of them were immunoreactive for calcitonin gene-related peptide or serotonin. This study has revealed similarities but also significant differences in the colono-sympathico-colonic pathways between the pig and small laboratory animals such as the guinea-pig.
Collapse
Affiliation(s)
- M Barbiers
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | | | | | | | | |
Collapse
|
46
|
Del Fiacco M, Floris A, Lai ML, Quartu M. Peptide-immunoreactive neuronal structures in the human celiac/superior mesenteric ganglionic complex (CSM). REGULATORY PEPTIDES 1993; 46:254-6. [PMID: 7692508 DOI: 10.1016/0167-0115(93)90051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Del Fiacco
- Dipartimento di Citomorfologia, University of Cagliari, Italy
| | | | | | | |
Collapse
|
47
|
Quartu M, Polak JM, Del Fiacco M. Neuropeptides in the human celiac/superior mesenteric ganglionic complex: an immunohistochemical study. J Chem Neuroanat 1993; 6:79-99. [PMID: 8476542 DOI: 10.1016/0891-0618(93)90030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The occurrence of vasoactive intestinal polypeptide (VIP), peptide histidine-isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), galanin (GAL) and enkephalins (ENK) is studied in the human celiac/superior mesenteric ganglionic complex of pre- and full-term newborns, and adult subjects by means of immunohistochemistry. The antisera used labelled nerve fibres and terminal-like networks for each examined peptide, as well as VIP- and SOM-positive postganglionic neurons. Differences in the relative amount and density of the structures immunoreactive to the various peptides were observed. Moreover, variations in the amount and type of labelled elements were appreciable for each peptide when specimens from subjects at perinatal and adult ages were compared. Double-labelling immunofluorescence for SP and each other peptide showed that co-localization with SP is very frequent for CGRP, moderate to scarce for GAL and SOM, and rare to absent for PHI, VIP and ENK. VIP-, ENK- and CGRP-immunolabeled perikarya bearing the morphological features of the small intensely fluorescent (SIF) cells occurred in the organ. The presence of a paraganglion in one of the specimens examined allowed the detection of VIP- and ENK-positive cell bodies and VIP-, ENK-, SP- and GAL-like immunoreactive varicose nerve fibres in it. The results obtained provide substantial morphological data in support of the involvement of the examined peptides in the chemical interneuronal signalling in the human celiac/superior mesenteric ganglia.
Collapse
Affiliation(s)
- M Quartu
- Dipartimento di Citomorfologia, University of Cagliari, Italy
| | | | | |
Collapse
|
48
|
Knoper SR, Meehan AG, Purnyn S, Coggan JS, Anthony TL, Kreulen DL. CCKA receptors mediate slow depolarizations in cultured mammalian sympathetic neurons. Eur J Pharmacol 1993; 232:65-9. [PMID: 8458396 DOI: 10.1016/0014-2999(93)90729-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of cholecystokinin octapeptide (CCK-8) was examined in guinea-pig celiac ganglion (CG) neurons in primary culture using standard intracellular recording techniques. Sulfated CCK-8 (CCK-8S; 1 microM) evoked slow depolarizing responses in 94% of CG neurons tested. In contrast, membrane potential was not affected by nonsulfated CCK-8 (CCK-8NS; 1 microM), CCK tetrapeptide (CCK-4; 1 microM), or gastrin (1 microM). The selective CCKA receptor antagonist L 364,718 potently inhibited CCK-8S-induced slow depolarizations (IC50 2.9 pM). In contrast, the selective CCKB receptor antagonist L 365,260 was a weak inhibitor of CCK-8S-induced slow depolarizations (IC50 1.3 microM). The depolarizing responses to CCK-8S were associated with an average increase in cell input resistance of 61%. Single electrode voltage clamp experiments indicated that CCK-8S-induced depolarizations were associated with a slow inward shift in holding current. Thus, the present findings indicate that guinea-pig cultured CG neurons are endowed with excitatory CCKA receptors the activation of which elicits a decrease in membrane conductance, thereby resulting in slow depolarizations.
Collapse
Affiliation(s)
- S R Knoper
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724
| | | | | | | | | | | |
Collapse
|
49
|
Bagnol D, Jule Y, Kirchner G, Cupo A, Roman C. Enkephalin-containing neurons in the inferior mesenteric ganglion projecting to the distal colon of cat: evidence from combined retrograde tracing by fluorescent microspheres and immunohistochemistry. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1993; 42:143-51. [PMID: 8383712 DOI: 10.1016/0165-1838(93)90045-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.
Collapse
Affiliation(s)
- D Bagnol
- Département de Physiologie et Neurophysiologie, CNRS URA 205, Faculté des sciences de Saint Jérôme, Marseille, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
The autonomic nervous system is divided into the sympathetic, parasympathetic and enteric subdivisions. The present review is focussed upon the highly specialized reflex organization and neurochemistry of sympathetic parasympathetic neurons. The currently available informations allow to conclude that autonomic control of each peripheral target tissue is specifically regulated under normal conditions but nevertheless able to respond to altered conditions by changes in neural activity and mediator expression.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|