1
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Transduction of Brain Neurons in Juvenile Chum Salmon ( Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring. Int J Mol Sci 2022; 23:ijms23094947. [PMID: 35563338 PMCID: PMC9101580 DOI: 10.3390/ijms23094947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the postembryonic development of the cerebellum in chum salmon, Oncorhynchus keta, the lateral part of the juvenile cerebellum gives rise to the caudomedial part of the definitive cerebellum, which is consistent with the data reported for zebrafish and mouse cerebellum. Thus, the topographic organization of the cerebellum and its efferents are similar between fish (chum salmon and zebrafish) and mammals, including mice and humans. The distributions of recombinant adeno-associated viral vectors (rAAVs) after an injection of the base vector into the cerebellum have shown highly specific patterns of transgene expression in bipolar neurons in the latero-caudal lobe of the juvenile chum tectum opticum. The distribution of rAAVs in the dorsal thalamus, epithalamus, nucleus rotundus, and pretectal complex indicates the targeted distribution of the transgene via the thalamo-cerebellar projections. The detection of GFP expression in the cells of the epiphysis and posterior tubercle of juvenile chum salmon is associated with the transgene’s distribution and with the cerebrospinal fluid flow, the brain ventricles and its outer surface. The direct delivery of the rAAV into the central nervous system by intracerebroventricular administration allows it to spread widely in the brain. Thus, the presence of special projection areas in the juvenile chum salmon cerebellum, as well as outside it, and the identification of the transgene’s expression in them confirm the potential ability of rAAVs to distribute in both intracerebellar and afferent and efferent extracerebellar projections of the cerebellum.
Collapse
|
3
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
DeMarco E, Xu N, Baier H, Robles E. Neuron types in the zebrafish optic tectum labeled by an id2b transgene. J Comp Neurol 2019; 528:1173-1188. [PMID: 31725916 DOI: 10.1002/cne.24815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023]
Abstract
The larval zebrafish optic tectum has emerged as a prominent model for understanding how neural circuits control visually guided behaviors. Further advances in this area will require tools to monitor and manipulate tectal neurons with cell type specificity. Here, we characterize the morphology and neurotransmitter phenotype of tectal neurons labeled by an id2b:gal4 transgene. Whole-brain imaging of stable transgenic id2b:gal4 larvae revealed labeling in a subset of neurons in optic tectum, cerebellum, and hindbrain. Genetic mosaic labeling of single neurons within the id2b:gal4 expression pattern enabled us to characterize three tectal neuron types with distinct morphologies and connectivities. The first is a neuron type previously identified in the optic tectum of other teleost fish: the tectal pyramidal neuron (PyrN). PyrNs are local interneurons that form two stratified dendritic arbors and one stratified axonal arbor in the tectal neuropil. The second tectal neuron type labeled by the id2b:gal4 transgene is a projection neuron that forms a stratified dendritic arbor in the tectal neuropil and an axon that exits tectum to form a topographic projection to torus longitudinalis (TL). A third neuron type labeled is a projection neuron with a nonstratified dendritic arbor and a descending axonal projection to tegmentum. These findings establish the id2b:gal4 transgenic as a useful tool for future studies aimed at elucidating the functional role of tectum, TL, and tegmentum in visually guided behaviors.
Collapse
Affiliation(s)
- Elisabeth DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Nina Xu
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Herwig Baier
- Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Henriques PM, Rahman N, Jackson SE, Bianco IH. Nucleus Isthmi Is Required to Sustain Target Pursuit during Visually Guided Prey-Catching. Curr Biol 2019; 29:1771-1786.e5. [PMID: 31104935 PMCID: PMC6557330 DOI: 10.1016/j.cub.2019.04.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Animals must frequently perform a sequence of behaviors to achieve a specific goal. However, the neural mechanisms that promote the continuation and completion of such action sequences are not well understood. Here, we characterize the anatomy, physiology, and function of the nucleus isthmi (NI), a cholinergic nucleus thought to modulate tectal-dependent, goal-directed behaviors. We find that the larval zebrafish NI establishes reciprocal connectivity with the optic tectum and identify two distinct types of isthmic projection neuron that either connect ipsilaterally to retinorecipient laminae of the tectum and pretectum or bilaterally to both tectal hemispheres. Laser ablation of NI caused highly specific deficits in tectally mediated loom-avoidance and prey-catching behavior. In the context of hunting, NI ablation did not affect prey detection or hunting initiation but resulted in larvae failing to sustain prey-tracking sequences and aborting their hunting routines. Moreover, calcium imaging revealed elevated neural activity in NI following onset of hunting behavior. We propose a model in which NI provides state-dependent feedback facilitation to the optic tectum and pretectum to potentiate neural activity and increase the probability of consecutive prey-tracking maneuvers during hunting sequences. Nucleus isthmi contains two types of neuron with distinct (pre)-tectal connectivity Neural activity in nucleus isthmi is recruited at onset of hunting behavior Nucleus isthmi is required for maintenance, but not initiation, of hunting routines
Collapse
Affiliation(s)
- Pedro M Henriques
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Niloy Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Samuel E Jackson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Goddard CA, Sridharan D, Huguenard JR, Knudsen EI. Gamma oscillations are generated locally in an attention-related midbrain network. Neuron 2012; 73:567-80. [PMID: 22325207 DOI: 10.1016/j.neuron.2011.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Gamma-band (25-140 Hz) oscillations are a hallmark of sensory processing in the forebrain. The optic tectum (OT), a midbrain structure implicated in sensorimotor processing and attention, also exhibits gamma oscillations. However, the origin and mechanisms of these oscillations remain unknown. We discovered that in acute slices of the avian OT, persistent (>100 ms) epochs of large amplitude gamma oscillations can be evoked that closely resemble those recorded in vivo. We found that cholinergic, glutamatergic, and GABAergic mechanisms differentially regulate the structure of the oscillations at various timescales. These persistent oscillations originate in the multisensory layers of the OT and are broadcast to visual layers via the cholinergic nucleus Ipc, providing a potential mechanism for enhancing the processing of visual information within the OT. The finding that the midbrain contains an intrinsic gamma-generating circuit suggests that the OT could use its own oscillatory code to route signals to forebrain networks.
Collapse
Affiliation(s)
- C Alex Goddard
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Spatial attention enables the brain to analyse and evaluate information selectively from a specific location in space, a capacity essential for any animal to behave adaptively in a complex world. We usually think of spatial attention as being controlled by a frontoparietal network in the forebrain. However, emerging evidence shows that a midbrain network also plays a critical role in controlling spatial attention. Moreover, the highly differentiated, retinotopic organization of the midbrain network, especially in birds, makes it amenable to detailed analysis with modern techniques that can elucidate circuit, cellular and synaptic mechanisms of attention. The following review discusses the role of the midbrain network in controlling attention, the neural circuits that support this role and current knowledge about the computations performed by these circuits.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, 299 Campus Dr., Stanford University School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
8
|
Marín G, Salas C, Sentis E, Rojas X, Letelier JC, Mpodozis J. A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. J Neurosci 2007; 27:8112-21. [PMID: 17652602 PMCID: PMC6672716 DOI: 10.1523/jneurosci.1420-07.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe the operation of a midbrain neural circuit in pigeons that may participate in selecting and attending to one visual stimulus from the myriad displayed in their visual environment. This mechanism is based on a topographically organized cholinergic signal reentering the optic tectum (TeO). We have shown previously that, whenever a visual stimulus activates neurons in a given tectal location, this location receives a strong bursting feedback from cholinergic neurons of the nucleus isthmi pars parvocellularis (Ipc), situated underneath the tectum. Here we show that, if a second visual stimulus is presented, even far from the first, the feedback signal to the first tectal location is diminished or suppressed, and feedback to the second tectal location is initiated. We found that this long-range suppressive interaction is mostly mediated by the nucleus isthmi pars magnocellularis, which sends a wide-field GABAergic projection to Ipc and TeO. In addition, two sets of findings indicate that the feedback from the Ipc modulates the ascending output from the TeO. First, visually evoked extracellular responses recorded in the dorsal anterior subdivision of the thalamic nucleus rotundus (RtDa), receiving the ascending tectal output, are closely synchronized to this feedback signal. Second, local inactivation of the Ipc prevents visual responses in RtDa to visual targets moving in the corresponding region of visual space. These results suggest that the ascending transmission of visual activity through the tectofugal pathway is gated by this cholinergic re-entrant signal, whose location within the tectal visual map is dynamically defined by competitive interactions.
Collapse
Affiliation(s)
- Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
9
|
Yan X, Zhao B, Butt CM, Debski EA. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Eur J Neurosci 2006; 24:3026-42. [PMID: 17156364 DOI: 10.1111/j.1460-9568.2006.05204.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The precise mapping of one surface onto another is fundamental to visual system organization and depends upon adequate stimulation of postsynaptic targets to stabilize correctly placed synapses. As exogenous nicotine alters neuronal activity, we investigated whether it would affect the visual map created by retinal ganglion cell terminals in the frog optic tectum. Chronic exposure of the tectum to nicotine decreased the retinal area from which cells project to a given tectal site. This map refinement was also produced by exposure to either the alpha-bungarotoxin sensitive nicotinic receptor agonist, anatoxin-a or the alpha-bungarotoxin-insensitive nicotinic receptor agonist epiboxidine. Immunocytochemical studies using mAb306 and mAb22 demonstrated that alpha-bungarotoxin-sensitive and -insensitive nicotinic receptors, respectively, occupied different tectal sites. Choline acetyltransferase immunoreactivity overlapped with mAb306, but not mAb22, staining. The developing optic tectum was more sensitive to nicotine than the adult tectum and nicotine induced both map refinements and map disruptions in a concentration-dependent manner. Blockade of the N-methyl-D-aspartate (NMDA) receptor with D(-)-2-amino-5-phosphonopentanoic acid (D-APV) prevented nicotine from refining the map in the adult tectum. Exposure to the use-dependent NMDA antagonist MK801 alone had no effect on retinotectal topography but in combination with either NMDA or nicotine it disrupted the map. Exposure to NMDA alone produced refinement. We conclude that the map refinement induced by chronic nicotine treatment has as its basis an increase in the level of NMDA receptor activity. The data are consistent with a model whereby map topography can be bidirectionally affected by either increasing or decreasing NMDA receptor activity.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
10
|
Gruberg E, Dudkin E, Wang Y, Marín G, Salas C, Sentis E, Letelier J, Mpodozis J, Malpeli J, Cui H, Ma R, Northmore D, Udin S. Influencing and interpreting visual input: the role of a visual feedback system. J Neurosci 2006; 26:10368-71. [PMID: 17035519 PMCID: PMC6674696 DOI: 10.1523/jneurosci.3288-06.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Edward Gruberg
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Luksch H, Brecha NC, Karten HJ. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 2006; 494:7-35. [PMID: 16304683 DOI: 10.1002/cne.20821] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cholinergic division of the avian nucleus isthmi, the homolog of the mammalian nucleus parabigeminalis, is composed of the pars parvocellularis (Ipc) and pars semilunaris (SLu). Ipc and SLu were studied with in vivo and in vitro tracing and intracellular filling methods. 1) Both nuclei have reciprocal homotopic connections with the ipsilateral optic tectum. The SLu connection is more diffuse than that of Ipc. 2) Tectal inputs to Ipc and SLu are Brn3a-immunoreactive neurons in the inner sublayer of layer 10. Tectal neurons projecting on Ipc possess "shepherd's crook" axons and radial dendritic fields in layers 2-13. 3) Neurons in the mid-portion of Ipc possess a columnar spiny dendritic field. SLu neurons have a large, nonoriented spiny dendritic field. 4) Ipc terminals form a cylindrical brush-like arborization (35-50 microm wide) in layers 2-10, with extremely dense boutons in layers 3-6, and a diffuse arborization in layers 11-13. SLu neurons terminate in a wider column (120-180 microm wide) lacking the dust-like boutonal features of Ipc and extend in layers 4c-13 with dense arborizations in layers 4c, 6, and 9-13. 5) Ipc and SLu contain specialized fast potassium ion channels. We propose that dense arborizations of Ipc axons may be directed to the distal dendritic bottlebrushes of motion detecting tectal ganglion cells (TGCs). They may provide synchronous activation of a group of adjacent bottlebrushes of different TGCs of the same type via their intralaminar processes, and cross channel activation of different types of TGCs within the same column of visual space.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, 92093-0608, USA
| | | | | | | |
Collapse
|
12
|
Clemente D, Arenzana FJ, Sánchez-González R, Porteros A, Aijón J, Arévalo R. Comparative analysis of the distribution of choline acetyltransferase in the central nervous system of cyprinids. Brain Res Bull 2005; 66:546-9. [PMID: 16144647 DOI: 10.1016/j.brainresbull.2005.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/20/2022]
Abstract
The general organization of the cholinergic system in the central nervous system is similar among vertebrates, though fish show higher variability. Thus, in zebrafish, cholinergic cells are absent from the habenula and the rhombencephalic reticular formation, where such neurons are present in most vertebrate species analyzed. In this work, we compared the distribution of choline acetyltransferase in the central nervous system of both zebrafish and tench, in order to investigate whether these divergences in the distribution of cholinergic cells in zebrafish are species-specific, or a feature shared by members of the cyprinid family. Our data show that these two cyprinid possess in common some peculiarities in their cholinergic system that are not present in the rest of fish analyzed (e.g. absence of cholinergic cells in the habenula and their presence in the descendent octaval nucleus). Nonetheless, some cholinergic cells were observed in the dorsal thalamus and rhombencephalic reticular nuclei of the tench, which were absent in the same regions in zebrafish. The comparative analysis suggests a divergent evolution of the cholinergic system among close-related cyprinid species.
Collapse
Affiliation(s)
- Diego Clemente
- Dpto. de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Facultad de Medicina, Campus Miguel de Unamuno, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 2004; 474:75-107. [PMID: 15156580 DOI: 10.1002/cne.20111] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the zebrafish has been extensively used for studying the development of the central nervous system (CNS). However, the zebrafish CNS has been poorly analyzed in the adult. The cholinergic/cholinoceptive system of the zebrafish CNS was analyzed by using choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry in the brain, retina, and spinal cord. AChE labeling was more abundant and more widely distributed than ChAT immunoreactivity. In the telencephalon, ChAT-immunoreactive (ChAT-ir) cells were absent, whereas AChE-positive neurons were observed in both the olfactory bulb and the telencephalic hemispheres. The diencephalon was the region with the lowest density of AChE-positive cells, mainly located in the pretectum, whereas ChAT-ir cells were exclusively located in the preoptic region. ChAT-ir cells were restricted to the periventricular stratum of the optic tectum, but AChE-positive neurons were observed throughout the whole extension of the lamination except in the marginal stratum. Although ChAT immunoreactivity was restricted to the rostral tegmental, oculomotor, and trochlear nuclei within the mesencephalic tegmentum, a widespread distribution of AChE reactivity was observed in this region. The isthmic region showed abundant AChE-positive and ChAT-ir cells in the isthmic, secondary gustatory and superior reticular nucleus and in the nucleus lateralis valvulae. ChAT immunoreactivity was absent in the cerebellum, although AChE staining was observed in Purkinje and granule cells. The medulla oblongata showed a widespread distribution of AChE-positive cells in all main subdivisions, including the octavolateral area, reticular formation, and motor nuclei of the cranial nerves. ChAT-ir elements in this area were restricted to the descending octaval nucleus, the octaval efferent nucleus and the motor nuclei of the cranial nerves. Additionally, spinal cord motoneurons appeared positive to both markers. Substantial differences in the ChAT and AChE distribution between zebrafish and other fish species were observed, which could be important because zebrafish is widely used as a genetic or developmental animal model.
Collapse
Affiliation(s)
- Diego Clemente
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Dudkin EA, Gruberg ER. Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens. Brain Res 2003; 969:44-52. [PMID: 12676363 DOI: 10.1016/s0006-8993(03)02274-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We examined the role of nucleus isthmi in enhancing intracellular calcium concentrations in retinotectal fibers in the frog optic tectum in vitro. The intracellular calcium levels were measured using the fluorescent calcium-sensitive dye, Calcium Green-1 3000 mw dextran conjugate (CG-1), which was injected into one optic nerve. Electrical stimulation of the labeled optic nerve alone increased tectal CG-1 fluorescence whereas electrical stimulation of nucleus isthmi alone had no effect on CG-1 fluorescence. Electrical stimulation of the nucleus isthmi ipsilateral to the labeled tectum, followed by electrical stimulation to the optic nerve can enhance calcium uptake more than a double pulse stimulation of the optic nerve alone. Maximum enhancement of the calcium signal by nucleus isthmi occurs when optic nerve stimulation follows the ipsilateral nucleus isthmi stimulation by 10 ms. These results suggest that nucleus isthmi input can facilitate retinotectal neurotransmission, and the mechanism could be used to allow the frog to attend to a single prey stimulus in an environment of several prey stimuli.
Collapse
Affiliation(s)
- Elizabeth A Dudkin
- Division of Science, Commonwealth College, Pennsylvania State University, 25 Yearsley Mill Road, Media, PA 19063, USA.
| | | |
Collapse
|
15
|
Yu CJ, Butt CM, Debski EA. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum. Eur J Neurosci 2003; 17:1253-65. [PMID: 12670313 PMCID: PMC2267905 DOI: 10.1046/j.1460-9568.2003.02557.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both alpha-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of alpha-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either alpha-bungarotoxin insensitive, alpha-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while alpha-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | |
Collapse
|
16
|
Wang SR. The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:13-25. [PMID: 12505645 DOI: 10.1016/s0165-0173(02)00217-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleus isthmi in the dorsolateral tegmentum had been one of the most obscure structures in the nonmammalian midbrain for eight decades. Recent studies have shown that this nucleus and its mammalian homologue, the parabigeminal nucleus, are all visual centers, which receive information from the ipsilateral tectum and project back either ipsilaterally or bilaterally depending on species, but not an auditory center as suggested before. On the other hand, the isthmotectal pathways exert dual, both excitatory and inhibitory, actions on tectal cells in amphibians and reptiles. In birds, the magnocellular and parvocellular subdivisions of this nucleus produce excitatory and inhibitory effects on tectal cells, respectively. The excitatory pathway is mediated by glutamatergic synapses with AMPA and NMDA receptors and/or cholinergic synapses with muscarinic receptors, whereas the inhibitory pathway is mediated by GABAergic synapses via GABA(A) receptors. Further studies have shown that the magnocellular and parvocellular subdivisions can differentially modulate the excitatory and inhibitory regions of the receptive field of tectal neurons, respectively. Both the positive and the negative feedback pathways may work together in a winner-take-all manner, so that the animal could attend to only one of several competing visual targets simultaneously present in the visual field. Some behavioral tests seem to be consistent with this hypothesis. The present review indicates that the tecto-isthmic system in birds is an excellent model for further studying tectal modulation and possibly winner-take-all mechanisms.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
17
|
Yu CJ, Debski EA. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens. Neuroscience 2003; 118:135-44. [PMID: 12676145 PMCID: PMC2265077 DOI: 10.1016/s0306-4522(02)00768-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.
Collapse
Affiliation(s)
| | - E. A. Debski
- Corresponding author: Tel: +1-859-323-9537; fax: +1-859-257-1717. E-mail address: (E. A. Debski)
| |
Collapse
|
18
|
Abstract
It is now 15 years since the discovery that N-methyl-d-aspartate receptor activity is required to maintain the refined topographic organization of retinotectal projections. Recent studies have identified additional components of the signaling pathways required for activity-dependent map formation and maintenance. Nitric oxide and brain-derived neurotrophic factor, candidate retrograde messengers, and serotonin and acetylcholine, modulators of neuronal excitability, all affect mapping. These studies indicate that the mapping process intersects with other processes fundamental to visual system development and function, such as process outgrowth, synaptic turnover and neuromodulation.
Collapse
Affiliation(s)
- Elizabeth A Debski
- Department of Biological Sciences, University of Kentucky, 101 Morgan Biological Science Building, Lexington, Kentucky 40506, USA
| | | |
Collapse
|
19
|
Abstract
Stratum griseum superficiale (SGS) of the superior colliculus receives a dense cholinergic input from the parabigeminal nucleus. In this study, we examined in vitro the modulatory influence of acetylcholine (ACh) on the responses of SGS neurons that project to the visual thalamus in the rat. We used whole-cell patch-clamp recording to measure the responses of these projection neurons to electrical stimulation of their afferents in the stratum opticum (SO) before and during local pressure injections of ACh. These colliculothalamic projection neurons (CTNs) were identified during the in vitro experiments by prelabeling them from the thalamus with the retrograde axonal tracer wheat germ agglutinin-apo-HRP-gold. In a group of cells that included the prelabeled neurons, EPSCs evoked by SO stimulation were significantly reduced by the application of ACh, whereas IPSC amplitudes were significantly enhanced. Similar effects were observed when the nicotinic ACh receptor agonist lobeline was used. Application of the selective GABA(B) receptor antagonist 3-[[(3,4-dichlorophenyl)-methyl]amino]propyl](diethoxymethyl)phosphinic acid blocked ACh-induced reduction in the evoked response. In contrast, the ACh-induced reduction was insensitive to application of the GABA(A) receptor antagonist bicuculline. The ACh-induced reduction was also diminished by bath application of muscimol at the low concentrations that selectively activate GABA(C) receptors. Because GABA(C) receptors may be specifically expressed by GABAergic SGS interneurons (Schmidt et al., 2001), our results support the hypothesis that ACh reduces CTN activity by nicotinic receptor-mediated excitation of local GABAergic interneurons. These interneurons in turn use GABA(B) receptors to inhibit the CTNs.
Collapse
|
20
|
Butt CM, Pauly JR, Wilkins LH, Dwoskin LP, Debski EA. Pharmacology, distribution and development of muscarinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. Neuroscience 2001; 104:161-79. [PMID: 11311540 PMCID: PMC2266691 DOI: 10.1016/s0306-4522(01)00048-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visually evoked behaviors mediated by the frog optic tectum require cholinergic activity, but the receptor subtypes through which acetylcholine acts are not yet identified. Using quantitative autoradiography and scintillation spectrometry, we examined the binding of [3H]pirenzepine and [3H]AF-DX 384 in the laminated optic tectum of the frog. In mammalian systems, these substances bind excitatory (m1 and m3 subtypes) and inhibitory (m2 and m4 subtypes) muscarinic acetylcholine receptors, respectively. Pharmacological analyses, including the use of specific muscarinic toxins, confirmed the subtype selectivity of the radioligands in the frog brain. Binding sites for [3H]pirenzepine were distinct from those for [3H]AF-DX 384. In the adult tectum, [3H]pirenzepine demonstrated specific binding in tectal layers 5-9. [3H]Pirenzepine binding was also present in tadpoles as young as stage V, but all sampled stages of tadpole tectum had significantly less binding when compared to adults. Lesioning of the optic nerve had no effect on [3H]pirenzepine binding. Specific [3H]AF-DX 384 binding was found in all layers of the adult tectum. All sampled tadpole stages exhibited binding sites for [3H]AF-DX 384, but the densities of these sites were also significantly higher in adults than they were in developing stages. Short-term lesions of the optic nerve reduced [3H]AF-DX 384 binding in all tectal layers of the deafferented lobe when compared to the afferented one. Long-term lesions decreased [3H]AF-DX 384 sites in both lobes.These results indicate that multiple muscarinic acetylcholine receptor binding sites reside in the frog optic tectum at all stages of development, and their pharmacology resembles that of mammalian m1/m3, m2 and m4 subtypes. Our data indicate that few, if any, of these receptors are likely to be located on retinal ganglion cell terminals. Furthermore, the expression of inhibitory muscarinic subtypes seems to be regulated by different mechanisms than that for excitatory subtypes.
Collapse
Affiliation(s)
- C. M. Butt
- School of Biological Sciences, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
| | - J. R. Pauly
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - L. H. Wilkins
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - L. P. Dwoskin
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - E. A. Debski
- School of Biological Sciences, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
- Corresponding author. Tel.: +1-859-323-9537; fax: +1-859-257-1717. E-mail address: (E. A. Debski)
| |
Collapse
|
21
|
Pérez SE, Yáñez J, Marín O, Anadón R, González A, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J Comp Neurol 2000; 428:450-74. [PMID: 11074445 DOI: 10.1002/1096-9861(20001218)428:3<450::aid-cne5>3.0.co;2-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The distribution of cholinergic neurons and fibers was studied in the brain and rostral spinal cord of the brown trout and rainbow trout by using an antiserum against the enzyme choline acetyltransferase (ChAT). Cholinergic neurons were observed in the ventral telencephalon, preoptic region, habenula, thalamus, hypothalamus, magnocellular superficial pretectal nucleus, optic tectum, isthmus, cranial nerve motor nuclei, and spinal cord. In addition, new cholinergic groups were detected in the vascular organ of the lamina terminalis, the parvocellular and magnocellular parts of the preoptic nucleus, the anterior tuberal nucleus, and a mesencephalic tegmental nucleus. The presence of ChAT in the magnocellular neurosecretory system of trout suggests that acetylcholine is involved in control of hormone release by neurosecretory terminals. In order to characterize the several cholinergic nuclei observed in the isthmus of trout, their projections were studied by application of 1,1;-dioctadecyl-3,3,3;, 3;-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as previously described in other teleost groups. In addition, other isthmic cholinergic nuclei of trout may be homologs of the mesopontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been preserved during evolution, together with characteristics exclusive to the group.
Collapse
Affiliation(s)
- S E Pérez
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Butt CM, Pauly JR, Debski EA. Distribution and development of nicotinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. J Comp Neurol 2000; 423:603-18. [PMID: 10880991 PMCID: PMC2265082 DOI: 10.1002/1096-9861(20000807)423:4<603::aid-cne6>3.0.co;2-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetylcholine allows the elicitation of visually evoked behaviors mediated by the frog optic tectum, but the mechanisms behind its effects are unknown. Although nicotinic acetylcholine receptors (nAChRs) exist in the tectum, their subtype has not been assessed. By using quantitative autoradiography, we examined the binding of [(3)H]cytisine and [(125)I]alpha-bungarotoxin in the laminated tectum. In mammalian systems, these radioligands bind with high affinity to alpha4 nAChR subunits and alpha7 nAChR subunits, respectively. [(3)H]Cytisine demonstrated high specific binding in adult frogs in retinorecipient layer 9, intermediate densities in layer 8, and low binding in layers 1-7 of the tectum. [(3)H]Cytisine binding was significantly higher in the tecta of adults than in those of tadpoles. Lesioning the optic nerve for 6 weeks decreased [(3)H]cytisine binding in layers 8/9 by 70+/-1%, whereas 6-month lesions decreased binding by 76+/-3%. Specific binding of [(125)I]alpha-bungarotoxin in adults was present only at intermediate levels in tectal layers 8 and 9, and undetectable in the deeper tectal layers. However, the nucleus isthmi, a midbrain structure reciprocally connected to the tectum, exhibited high levels of binding. There were no significant differences in tectal [(125)I]alpha-bungarotoxin binding between tadpoles and adults. Six-week lesions of the optic nerve decreased tectal [(125)I]alpha-bungarotoxin binding by 33+/-10%, but 6-month lesions had no effect. The pharmacokinetic characteristics of [(3)H]cytisine and [(125)I]alpha-bungarotoxin binding in the frog brain were similar to those demonstrated in several mammalian species. These results indicate that [(3)H]cytisine and [(125)I]alpha-bungarotoxin identify distinct nAChR subtypes in the tectum that likely contain non-alpha7 and alpha7 subunits, respectively. The majority of non-alpha7 receptors are likely associated with retinal ganglion cell terminals, whereas alpha7-containing receptors appear to have a different localization.
Collapse
Affiliation(s)
- Christopher M. Butt
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506-0225
| | - James R. Pauly
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506-0082
| | - Elizabeth A. Debski
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506-0225
- Correspondence to: Dr. Elizabeth A. Debski, School of Biological Sciences, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225. E-mail:
| |
Collapse
|
23
|
Abstract
The targeting of isthmotectal axons in the Xenopus binocular pathway is guided by both activity-dependent cues and activity-independent cues. Abnormal visual activity induced by unilateral eye rotation overrides activity-independent cues and causes isthmotectal axons to arborize at new locations during a critical period of development that ends approximately 3 months postmetamorphosis (PM). Horseradish peroxidase staining of isthmotectal axons reveals that they normally run rostrocaudally in the tectum; in contrast, those axons in animals with early eye rotation have circuitous trajectories. In this paper, by studying the trajectories and branching patterns of isthmotectal axons at different times after eye rotation, we aimed to investigate when and how activity cues determine the projection pattern of isthmotectal axons. As suggested by electrophysiological recording, isthmotectal axons initially grow normally and make arbors according to activity-independent cues despite the presence of abnormal visual input. Our findings demonstrate that the development of abnormal trajectories starts by 2 weeks PM in response to eye rotation and is a protracted process. It begins in the tectal regions in which the initial connections of isthmotectal axons are first formed according to activity-independent cues. At transitional stages (5 and 10 weeks), axons with arbors at two different locations are observed, with locations corresponding to the old and new termination sites, respectively. Later, at 10 weeks of age, the fainter horseradish peroxidase staining in arbors at old termination sites suggests that the older arbors are undergoing withdrawal.
Collapse
|
24
|
Kahl H, Wiggers W. Influence of muscarinic ligands on the amplitudes of the evoked surface potential's late components in the optic tectum of the urodele Plethodon jordani. Neurosci Lett 2000; 285:17-20. [PMID: 10788697 DOI: 10.1016/s0304-3940(00)01007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recordings of field potentials from the tectal surface of an urodele amphibian were obtained in an in vitro preparation under influence of various muscarinic drugs. Bath applied acetylcholine (ACh) led to no change in the amplitudes or the shape of the evoked potentials. If the ACh-esterase blocker (-)-physostigmine was applied synchronously, the late components of the surface potential increased in amplitude. The non-selective cholinergic agonist carbachol showed a similar effect which was partially diminished by the nicotinic antagonist d-tubocurarine chloride (d-TC) and the muscarinic antagonist atropine sulfate. The application of the non-selective muscarinic agonist (+)-pilocarpine hydrochloride led to an increase of the late oligo- and polysynaptic events. This effect was reduced by the M(1)-antagonist pirenzepine dihydrochloride. The presented findings suggest that muscarinic receptors play a more important role in tectal processing than assumed in previous studies which emphasized the role of nicotinic receptors.
Collapse
Affiliation(s)
- H Kahl
- Brain Research Institute, University of Bremen, Germany.
| | | |
Collapse
|
25
|
Abstract
Xenopus frogs exhibit dramatic changes in the binocular projections to the tectum during a critical period of development. Their eyes change position in the head, moving from lateral to dorsal and creating an increasing region of binocular overlap. There is a corresponding shift of binocular projections to the tectum that keeps the two eyes' maps in register with each other throughout this period. The ipsilateral input is relayed via the nucleus isthmi. Two factors bring the ipsilateral projection into register with the contralateral projection. First, chemoaffinity cues establish a crude topographic map beginning when the shift of eye position begins. Approximately 1 month later, visual cues bring the ipsilateral map into register with the contralateral map. The role of visual input is demonstrated by the ability of the axons that bring the ipsilateral eye's map to the tectum to reorganize in response to a surgical rotation of one eye and to come into register with the contralateral eye's map. This plasticity can be blocked by NMDA receptor antagonists during the critical period. In normal adults, reorganization is minimal. Eye rotation fails to induce reorganization of the ipsilateral map. However, plasticity persists indefinitely in animals that are reared in the dark, and plasticity can be restored in normally-reared animals by treatment with NMDA. The working model to explain this plasticity posits that correlated input from the two eyes triggers opening of NMDA receptor channels and initiates events that stabilize appropriately-located isthmotectal connections. Specific tests of this model are discussed.
Collapse
Affiliation(s)
- S B Udin
- Department of Physiology and Biophysics, State University of New York, Buffalo 14214, USA.
| | | |
Collapse
|
26
|
Titmus MJ, Tsai HJ, Lima R, Udin SB. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. Neuroscience 1999; 91:753-69. [PMID: 10366031 DOI: 10.1016/s0306-4522(98)00625-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have used anatomical methods and whole-cell patch-clamp recording to assess the distribution of nicotinic receptors in the tectum of Xenopus frogs and to measure effects of nicotinic ligands (carbachol, cytisine and nicotine) on glutamatergic spontaneous miniature excitatory postsynaptic currents. Our results confirm that retinotectal axons account for the majority of nicotinic receptors in the tectum and that nicotinic agonists exert presynaptic effects that increase the rate of transmitter release on to tectal cells. The nicotinic blockers mecamylamine and methyllycaconitine reduced responses to carbachol and cytisine. A small percentage of cells also showed postsynaptic responses. We have assessed whether there are developmental changes in the frequency of occurrence of spontaneous miniature excitatory postsynaptic currents. The first three months post-metamorphosis fall within the critical period for the dramatic plasticity displayed by binocular inputs during development in Xenopus. During this period, visual activity governs the formation of orderly maps relayed from the ipsilateral eye via the cholinergic projection from the nucleus isthmi to the tectum. In this study, we have found that critical-period tecta (two to 12 weeks postmetamorphosis) tend to have higher spontaneous activity than do older tecta (two to 69 weeks postmetamorphosis), and that nicotinic agonists increase that activity in both groups, with the result that the peak rates in response to nicotinic agonists are higher during the critical period than later. We also investigated the possible role of choline as an agonist of nicotinic receptors in the tectum. We have found that choline, as well as carbachol and cytisine, can cause a reversible increase in the rate of miniature excitatory postsynaptic currents. This result may help to explain how the isthmotectal projection, which accounts for the overwhelming majority of cholinergic input to the tectum, can exert effects on retinotectal terminals even though there are no morphologically identifiable synapses between the two populations. We have examined the morphology of cells filled with biocytin during the patch-clamp experiments, and we find that cells with dendrites in the stratum zonale, a layer with particularly dense input from the contralateral nucleus isthmi, have higher spontaneous activity than cells with dendrites that do not extend into that layer. Nicotinic agonists increased the activity recorded in both classes of cells. In addition, four pretectal cells were identified. Nicotinic agonists increased the rate of spontaneous activity recorded in that population. The results indicate that retinotectal transmission in the superior colliculus can be increased presynaptically by activity of the cholinergic projections of the nucleus isthmi. This modulation may be the basis for observations that blocking of cholinergic input disrupts the formation of topographic retinotectal projections. Moreover, the ability of choline to activate these receptors suggests that this metabolite of acetylcholine may permit paracrine activation of presynaptic receptors even though the tectum contains high acetylcholinesterase activity.
Collapse
Affiliation(s)
- M J Titmus
- Department of Physiology and Biophysics, State University of New York, Buffalo 14214, USA
| | | | | | | |
Collapse
|
27
|
Zhang C, Schmidt JT. Adenosine A1 receptors mediate retinotectal presynaptic inhibition: uncoupling by C-kinase and role in LTP during regeneration. J Neurophysiol 1998; 79:501-10. [PMID: 9463417 DOI: 10.1152/jn.1998.79.2.501] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presynaptic adenosine receptors inhibit transmitter release at many synapses and are known to exist on retinotectal terminals. In this paper we show that adenosine decreases retinotectal field potentials by approximately 30% and investigate the mechanism. First, as judged by the effects of specific calcium channel blockers, retinotectal transmission was mediated almost exclusively by N-type calcium channels, which are known to be modulated by adenosine A1 receptors. Transmission was completely blocked by either omega-Conotoxin GVIA (-100%, N-type blocker) or omega-Conotoxin MVIIC (-99%, N-, P- and Q-type blocker) and was not significantly affected by omega-Agatoxin IVA [+1.7 +/- 9. 3% (SE), P-,Q-type blocker], but was augmented slightly by nifedipine(+9.3 +/- 2.1%, L-type blocker). Second, the adenosine inhibition was presynaptic, as indicated by a 43% increase in paired-pulse facilitation. Third, the selective A1 agonist cyclohexyl adenosine (CHA) at 50 nM caused a 21% decrease in amplitude and the selective A2 agonist N6-[2-(3, 5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) at 100 nM caused a 24% increase. Fourth, the selective A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) alone produced an increase in the field potential, suggesting a tonic inhibition mediated by endogenous adenosine. Fifth, pertussis toxin eliminated adenosine inhibition implicating Gi or Go protein coupling. Sixth, C-kinase activation eliminated the A1-mediated inhibition. In regenerating projections, adenosine also caused a decrease in transmission (-30 +/- 12%), but after induction of long-term potentiation (LTP) via trains of stimuli or via treatment with the phosphatase inhibitor okadaic acid, the adenosine response was converted to an augmentation. Because LTP is associated with C-kinase activation, this is consistent with C-kinase uncoupling the A1 receptor from inhibiting N-type Ca2+ channels. This uncovers the A2-mediated augmentation as demonstrated in normals with DPMA. Such an effect could account in part for the LTP of immature synapses and the change from rapidly fatiguing to robust synaptic transmission.
Collapse
Affiliation(s)
- C Zhang
- Department of Biological Sciences and Neurobiology Research Center, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
28
|
Luksch H, Roth G. Pretecto-tectal interactions: effects of lesioning and stimulating the pretectum on field potentials in the optic tectum of salamanders in vitro. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)13089-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Schmidt JT. The modulatory cholinergic system in goldfish tectum may be necessary for retinotopic sharpening. Vis Neurosci 1995; 12:1093-1103. [PMID: 8962829 DOI: 10.1017/s095252380000674x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cholinergic circuit within the tectum and the cholinergic input from the nucleus isthmi mediate a presynaptic augmentation of retinotectal transmitter release via nicotinic receptors. In this study, the cholinergic systems were either eliminated using the cholinergic neurotoxin AF64A or blocked using nicotinic antagonists to test for effects on the activity-driven sharpening of the regenerating retinotectal projection. The effectiveness of the AF64A was verified by recording field potentials elicited by optic tract stimulation and by immunohistochemical staining for choline acetyltransferase (ChAT). At 1 week after intracranial (IC) injection of AF64A (12 to 144 nmoles) into the fluid above the tectum, field potentials showed a selective dose-dependent decrement of the cholinergic polysynaptic component with no effect on the amplitude of the glutamatergic monosynaptic component. The decrement was only partially recovered in recordings at 2 and 6 weeks. In normal fish, the ChAT antibody stains a population of periventricular neurons, their apical dendrites, and a dense plexus within the optic terminal lamina that consists of their local axons and fine dendrites and of input fibers from the nucleus isthmi. One week after IC AF64A injection (48-72 nmoles), most immunostaining in superficial tectum was lost but most neuronal somas in the deep tectum could still be seen, and staining in the tegmentum below the tectum was completely intact. At 2 weeks and later, the staining of neuronal somata largely recovered, but staining of the superficial plexus did not. AF64A treatment at 18 days after nerve crush, when regenerating retinal fibers are beginning to form synapses, prevented retinotopic sharpening of the projection. Recordings showed a rough retinotopic map on the tectum but the multiunit receptive fields (MURFs) at each tectal point averaged 34 deg vs. 11 deg in vehicle-injected control regenerates. AF64A treatment before nerve crush also blocked sharpening, ruling out a direct effect on retinal growth cones or retinal fibers, as AF64A rapidly decomposes, whereas its effect on the cholinergic fibers is long-lasting. IC injection or minipump infusion of the nicotine antagonists alpha-bungarotoxin (alpha BTX), neuronal bungarotoxin (nBTX), and pancuronium during regeneration also prevented sharpening (MURFs averaging 29.4 deg, 33.0 deg, and 31.4 deg, respectively). Control Ringer's solution infusions or injections over the same period (19-37 days postcrush) had no effect on regenerated MURF size (11.7 deg). The results show that the cholinergic innervation, which modulates transmitter release, is required for activity-driven retinotopic sharpening, thought to be triggered by NMDA receptor activation.
Collapse
Affiliation(s)
- J T Schmidt
- Department of Biological Science and Neurobiology Research Center, State University of New York at Albany 12222, USA
| |
Collapse
|
30
|
King WM, Schmidt JT. Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections. Vis Neurosci 1993; 10:419-37. [PMID: 8494796 DOI: 10.1017/s095252380000465x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recordings of field potentials in nucleus isthmi (NI) were obtained in an in vitro preparation of goldfish brain using a lateral approach. Horseradish peroxidase (HRP) was injected from recording electrodes to verify recordings within the nucleus and to label axonal pathways and cell bodies. Activity in NI was repetitive and could be elicited by stimulation of the optic nerve, tectum, pretectum, or tectobulbar tract. Spontaneous activity was present in some preparations and consisted of bursts with intervening silent periods. Anatomical and electrophysiological evidence indicated that the primary isthmotectal pathway is composed of fine fibers that exit NI rostrally and pass through pretectum to enter tectum rostrally. An afferent pathway consisting of both fine- and large-diameter fibers entered NI ventromedially; the large diameter axons have been previously reported in percomorph fishes, but were not thought to be present in cyprinids such as goldfish. The large diameter axons arise from labeled cell bodies in the region of the lateral thalamic nucleus. No labeled cell bodies were seen in ipsilateral nucleus pretectalis superficialis, pars magnocellularis, where they are seen in percomorphs. The fine axons, which have not been reported in percomorph fishes, were shown to arise from tectal bipolar (type VI) neurons. As in percomorphs, tectal type XIV neurons were also labeled. This and corroborating recordings from nucleus isthmi constitute the fist demonstration of a tectoisthmic projection in a cyprinid fish.
Collapse
Affiliation(s)
- W M King
- Department of Biological Sciences, State University of New York 12222
| | | |
Collapse
|
31
|
The organization of cholinergic neurons in the mesencephalon of the eel,Anguilla anguilla, as determined by choline acetyltransferase immunohistochemistry and acetylcholinesterase enzyme histochemistry. Cell Tissue Res 1993. [DOI: 10.1007/bf02913740] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Sivilotti L, Nistri A. An intracellular study of the effects of GABA on frog tectal neurones in vitro. Neurosci Lett 1992; 145:28-32. [PMID: 1334242 DOI: 10.1016/0304-3940(92)90195-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of gamma-aminobutyric acid (GABA) on neurones of the amphibian optic tectum were studied with current- and voltage-clamp recording from an isolated preparation of the midbrain of the frog Rana temporaria. Bath-applied GABA (1 mM) enhanced depolarizing synaptic potentials evoked in layer 6 tectal neurones by orthodromic stimulation of the optic tract. GABA also facilitated Na(+)- and Ca(2+)-dependent action potentials elicited by intracellular injection of depolarizing current. These actions of GABA were associated with comparatively small changes in membrane potential and their reversal potential was dependent on the Cl- equilibrium potential. Changes in input resistance observed during application of GABA were small and in part accountable for by the rectifying properties of the cell membrane. Tetrodotoxin (TTX; 1 microM) did not block the action of GABA on these neurones. These results show that externally applied GABA was able to raise directly the intrinsic excitability of frog tectal neurones and to enhance excitatory synaptic transmission elicited by stimulation of optic nerve fibres.
Collapse
Affiliation(s)
- L Sivilotti
- Department of Pharmacology, Queen Mary and Westfield College, University of London, UK
| | | |
Collapse
|
33
|
King WM, Schmidt JT. A cholinergic circuit intrinsic to optic tectum modulates retinotectal transmission via presynaptic nicotinic receptors. Ann N Y Acad Sci 1991; 627:363-7. [PMID: 1652916 DOI: 10.1111/j.1749-6632.1991.tb25940.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- W M King
- Department of Biological Sciences, State University of New York, Albany 12222
| | | |
Collapse
|