1
|
Klein SD, Collins PF, Lozano-Wun V, Grund P, Luciana M. Frontostriatal Networks Undergo Functional Specialization During Adolescence that Follows a Ventral-Dorsal Gradient: Developmental Trajectories and Longitudinal Associations. J Neurosci 2025; 45:e1233232025. [PMID: 40064508 PMCID: PMC11984081 DOI: 10.1523/jneurosci.1233-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 04/12/2025] Open
Abstract
Seminal studies in animal neuroscience demonstrate that frontostriatal circuits exhibit a ventral-dorsal functional gradient to integrate neural functions related to reward processing and cognitive control. Prominent neurodevelopmental models posit that heightened reward-seeking and risk-taking during adolescence result from maturational imbalances between frontostriatal neural systems underlying reward processing and cognitive control. The present study investigated whether the development of ventral (VS) and dorsal (DS) striatal resting-state connectivity (rsFC) networks along this proposed functional gradient relates to putative imbalances between reward and executive systems posited by a dual neural systems theory of adolescent development. 163 participants aged 11-25 years (54% female, 90% white) underwent resting scans at baseline and biennially thereafter, yielding 339 scans across four assessment waves. We observed developmental increases in VS rsFC with brain areas implicated in reward processing (e.g., subgenual cingulate gyrus and medial orbitofrontal cortex) and concurrent decreases with areas implicated in executive function (e.g., ventrolateral and dorsolateral prefrontal cortices). DS rsFC exhibited the opposite pattern. More rapid developmental increases in VS rsFC with reward areas were associated with developmental improvements in reward-based decision making, whereas increases in DS rsFC with executive function areas were associated with improved executive function, though each network exhibited some crossover in function. Collectively, these findings suggest that typical adolescent neurodevelopment is characterized by a divergence in ventral and dorsal frontostriatal connectivity that may relate to developmental improvements in affective decision-making and executive function.Significance Statement Anatomical studies in nonhuman primates demonstrate that frontostriatal circuits are essential for integration of neural functions underlying reward processing and cognition, with human neuroimaging studies linking alterations in these circuits to psychopathology. The present study characterized the developmental trajectories of frontostriatal resting state networks from childhood to young adulthood. We demonstrate that ventral and dorsal aspects of the striatum exhibit distinct age-related changes that predicted developmental improvements in reward-related decision making and executive function. These results highlight that adolescence is characterized by distinct changes in frontostriatal networks that may relate to normative increases in risk-taking. Atypical developmental trajectories of frontostriatal networks may contribute to adolescent-onset psychopathology.
Collapse
Affiliation(s)
- Samuel D Klein
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Paul F Collins
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Vanessa Lozano-Wun
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Peter Grund
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Monica Luciana
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
- Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN, USA
| |
Collapse
|
2
|
Kostović I, Džaja D, Raguž M, Kopić J, Blažević A, Krsnik Ž. Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum. Cereb Cortex 2022; 33:434-457. [PMID: 35244150 DOI: 10.1093/cercor/bhac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient "AChE-clumping," disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial "mature" pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Džaja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Raguž
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Neurosurgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andrea Blažević
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Seraphin SB, Sanchez MM, Whitten PL, Winslow JT. The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta). Horm Behav 2022; 137:105078. [PMID: 34823146 PMCID: PMC11302405 DOI: 10.1016/j.yhbeh.2021.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) is a critical neuromodulator of behavior. With propensities for addiction, hyper-activity, cognitive impairment, aggression, and social subordinance, monkeys enduring early maternal deprivation evoke human disorders involving dopaminergic dysfunction. To examine whether DA system alterations shape the behavioral correlates of adverse rearing, male monkeys (Macaca mulatta) were either mother-reared (MR: N = 6), or separated from their mothers at birth and nursery-reared (NR: N = 6). Behavior was assessed during 20-minute observations of subjects interacting with same- or differently-reared peers. Cerebrospinal fluid (CSF) biogenic amines, and serum testosterone (T), cortisol (CORT), and prolactin (PRL) were collected before and after pharmacologic challenge with saline or the DA receptor-2 (DRD2) antagonist Raclopride (RAC). Neuropeptide correlations observed in MR were non-existent in NR monkeys. Compared to MR, NR showed reduced DA tone; higher basal serum T; and lower CSF serotonin (5-HT). RAC increased PRL, T and CORT, but the magnitude of responses varied as a function of rearing. Levels of PRL significantly increased following RAC in MR, but not NR. Elevations in T following RAC were only significant among MR. Contrastingly, the net change (RAC CORT - saline CORT) in CORT was greater in NR than MR. Finally, observations conducted during the juvenile phase in a novel play-arena revealed more aggressive, self-injurious, and repetitive behaviors, which negatively correlated with indexes of dopaminergic tone in NR monkeys. In conclusion, early maternal deprivation alters brain DA systems, and thus may be associated with characteristic cognitive, social, and addiction outcomes.
Collapse
Affiliation(s)
- Sally B Seraphin
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States.
| | - Mar M Sanchez
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322-1003, United States
| | - Patricia L Whitten
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States
| | - James T Winslow
- NIMH IRP Neurobiology Primate Core, NIHAC Bldg. 110, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892-0001, United States
| |
Collapse
|
4
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. Eur J Histochem 2021; 65. [PMID: 34643358 PMCID: PMC8524362 DOI: 10.4081/ejh.2021.3284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The striatum represents the major hub of the basal ganglia, receiving projections from the entire cerebral cortex and it is assumed to play a key role in a wide array of complex behavioral tasks. Despite being extensively investigated during the last decades, the topographical organization of the striatum is not well understood yet. Ongoing efforts in neuroscience are focused on analyzing striatal anatomy at different spatial scales, to understand how structure relates to function and how derangements of this organization are involved in various neuropsychiatric diseases. While being subdivided at the macroscale level into dorsal and ventral divisions, at a mesoscale level the striatum represents an anatomical continuum sharing the same cellular makeup. At the same time, it is now increasingly ascertained that different striatal compartments show subtle histochemical differences, and their neurons exhibit peculiar patterns of gene expression, supporting functional diversity across the whole basal ganglia circuitry. Such diversity is further supported by afferent connections which are heterogenous both anatomically, as they originate from distributed cortical areas and subcortical structures, and biochemically, as they involve a variety of neurotransmitters. Specifically, the cortico-striatal projection system is topographically organized delineating a functional organization which is maintained throughout the basal ganglia, subserving motor, cognitive and affective behavioral functions. While such functional heterogeneity has been firstly conceptualized as a tripartite organization, with sharply defined limbic, associative and sensorimotor territories within the striatum, it has been proposed that such territories are more likely to fade into one another, delineating a gradient-like organization along medio-lateral and ventro-dorsal axes. However, the molecular and cellular underpinnings of such organization are less understood, and their relations to behavior remains an open question, especially in humans. In this review we aimed at summarizing the available knowledge on striatal organization, especially focusing on how it links structure to function and its alterations in neuropsychiatric diseases. We examined studies conducted on different species, covering a wide array of different methodologies: from tract-tracing and immunohistochemistry to neuroimaging and transcriptomic experiments, aimed at bridging the gap between macroscopic and molecular levels.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno.
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| |
Collapse
|
5
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Lee JK, Liu D, Jiang D, Kulikowicz E, Tekes A, Liu P, Qin Q, Koehler RC, Aggarwal M, Zhang J, Martin LJ. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J Comp Neurol 2021; 529:2750-2770. [PMID: 33543493 DOI: 10.1002/cne.25121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The specific cytopathology that causes abnormal fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) after neonatal hypoxia-ischemia (HI) is not completely understood. The panoply of cell types in the brain might contribute differentially to changes in DTI metrics. Because glia are the predominant cell type in brain, we hypothesized that changes in FA and MD would signify perturbations in glial microstructure. Using a 3-Tesla clinical scanner, we conducted in vivo DTI MRI in nine neonatal piglets at 20-96 h after excitotoxic brain injury from striatal quinolinic acid injection or global HI. FA and MD from putamen, caudate, and internal capsule in toto were correlated with astrocyte swelling, neuronal excitotoxicity, and white matter injury. Low FA correlated with more swollen astrocytes immunophenotyped by aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and glutamate transporter-1 (GLT-1). Low FA was also related to the loss of neurons with perineuronal GLT-1+ astrocyte decorations, large myelin swellings, lower myelin density, and oligodendrocyte cell death identified by 2',3'-cyclic nucleotide 3'-phosphodiesterase, bridging integrator-1, and nuclear morphology. MD correlated with degenerating oligodendrocytes and depletion of normal GFAP+ astrocytes but not with astrocyte or myelin swelling. We conclude that FA is associated with cytotoxic edema in astrocytes and oligodendrocyte processes as well as myelin injury at the cellular level. MD can detect glial cell death and loss, but it may not discern subtle pathology in swollen astrocytes, oligodendrocytes, or myelin. This study provides a cytopathologic basis for interpreting DTI in the neonatal brain after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manisha Aggarwal
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University, New York, New York, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Morigaki R, Lee JH, Yoshida T, Wüthrich C, Hu D, Crittenden JR, Friedman A, Kubota Y, Graybiel AM. Spatiotemporal Up-Regulation of Mu Opioid Receptor 1 in Striatum of Mouse Model of Huntington's Disease Differentially Affecting Caudal and Striosomal Regions. Front Neuroanat 2020; 14:608060. [PMID: 33362481 PMCID: PMC7758501 DOI: 10.3389/fnana.2020.608060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
The striatum of humans and other mammals is divided into macroscopic compartments made up of a labyrinthine striosome compartment embedded in a much larger surrounding matrix compartment. Anatomical and snRNA-Seq studies of the Huntington’s disease (HD) postmortem striatum suggest a preferential decline of some striosomal markers, and mRNAs studies of HD model mice concur. Here, by immunohistochemical methods, we examined the distribution of the canonical striosomal marker, mu-opioid receptor 1 (MOR1), in the striatum of the Q175 knock-in mouse model of HD in a postnatal time series extending from 3 to 19 months. We demonstrate that, contrary to the loss of many markers for striosomes, there is a pronounced up-regulation of MOR1 in these Q175 knock-in mice. We show that in heterozygous Q175 knock-in model mice [~192 cytosine-adenine-guanine (CAG) repeats], this MOR1 up-regulation progressed with advancing age and disease progression, and was particularly remarkable at caudal levels of the striatum. Given the known importance of MOR1 in basal ganglia signaling, our findings, though in mice, should offer clues to the pathogenesis of psychiatric features, especially depression, reinforcement sensitivity, and involuntary movements in HD.
Collapse
Affiliation(s)
- Ryoma Morigaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan.,Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jannifer H Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Tomoko Yoshida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christian Wüthrich
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dan Hu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander Friedman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yasuo Kubota
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Miyamoto Y, Fukuda T. Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 2015; 94:37-49. [PMID: 25722090 DOI: 10.1016/j.neures.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The entopeduncular nucleus (EPN) is one of the major output nuclei of the basal ganglia in rodents. Previous studies have divided it into rostral and caudal halves, with the former containing somatostatin (SOM)-immunoreactive neurons and the latter dominated by parvalbumin (PV)-containing neurons, respectively. However, it is unclear whether this simple rostrocaudal segmentation is appropriate, and the possibility of the existence of other neuronal populations remains to be investigated. In this study the cytoarchitecture of the mouse EPN was analyzed immunohistochemically. Substance P (SP)-immunoreactivity determined the extent of the EPN, which was 800 μm-long along the rostrocaudal axis. PV-positive neurons were concentrated in the caudal two-thirds of this range. PV-negative neurons were abundant in the rostral half but were further located caudally around the PV neuron-rich core. PV(+)/SOM(-) and PV(-)/SOM(+) neurons constituted 28.6% and 45.7% of EPN neurons, respectively, whereas the remaining population (25.7%) exhibited neither immunoreactivity. Eleven percent of EPN neurons lacked immunoreactivity for glutamic acid decarboxylase, indicating their non-GABAergic nature. Three-dimensional reconstruction revealed that PV-rich/SP-poor core was surrounded by PV-poor/SP-rich shell region. Therefore, presumptive thalamus-targeting PV neurons are outnumbered by other populations, and the regional heterogeneity shown here might be related to functionally distinct pathways through the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
9
|
Martin LJ, Cork LC. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development. Front Cell Neurosci 2014; 8:294. [PMID: 25294985 PMCID: PMC4170103 DOI: 10.3389/fncel.2014.00294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/02/2014] [Indexed: 11/13/2022] Open
Abstract
We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm(3) during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but was densely populated with LENK-immunoreactive neurons. The nucleus accumbens part of the ventral striatum also showed prominent differences in SP, LENK, and CAL immunoreactivities in shell and core territories. During 12 months of postnatal maturation salient changes occurred in neurotransmitter marker localization: TH-positive afferents densely innervated the matrix to exceed levels of immunoreactivity in the striosomes; SP immunoreactivity levels increased in the matrix; and LENK-immunoreactivity levels decreased in the matrix and increased in the striosomes. At 12 months of age, striatal chemoarchitecture was similar qualitatively to adult patterns, but quantitatively different in LENK and SP in caudate, putamen, and nucleus accumbens. This study shows for the first time that the rhesus monkey striatum requires more than 12 months after birth to develop an adult-like pattern of chemical neuroanatomy and that principal neurons within striosomes and matrix have different developmental programs for neuropeptide expression. We conclude that postnatal maturation of the striatal mosaic in primates is not static but, rather, is a protracted and dynamic process that requires many synchronous and compartment-selective changes in afferent innervation and in the expression of genes that regulate neuronal phenotypes.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Pathobiology Graduate Program, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Linda C Cork
- Department of Comparative Medicine, Stanford University School of Medicine Palo Alto, CA, USA
| |
Collapse
|
10
|
Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Behav Brain Res 2013; 256:56-63. [PMID: 23916743 DOI: 10.1016/j.bbr.2013.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.
Collapse
|
11
|
Tajima K, Fukuda T. Region-specific diversity of striosomes in the mouse striatum revealed by the differential immunoreactivities for mu-opioid receptor, substance P, and enkephalin. Neuroscience 2013; 241:215-28. [DOI: 10.1016/j.neuroscience.2013.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
|
12
|
McCollum LA, Roche JK, Roberts RC. Immunohistochemical localization of enkephalin in the human striatum: a postmortem ultrastructural study. Synapse 2011; 66:204-19. [PMID: 22034050 DOI: 10.1002/syn.21502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/07/2011] [Indexed: 02/02/2023]
Abstract
Within the basal ganglia, the functionally defined region referred to as the striatum contains a subset of GABAergic medium spiny neurons expressing the neuropeptide enkephalin. Although the major features of ultrastructural enkephalin localization in striatum have been characterized among various species, its ultrastructural organization has never been studied in the human brain. Human striatal tissue was obtained from the Maryland and Alabama Brain Collections from eight normal controls. The brains were received and fixed within 8 h of death allowing for excellent preservation suitable for electron microscopy. Tissue from the dorsal striatum was processed for enkephalin immunoreactivity and prepared for electron microscopy. General morphology of the dorsal striatum was consistent with light microscopy in human. The majority of neurons labeled with enkephalin was medium-sized and had a large nonindented nucleus with a moderate amount of cytoplasm, characteristic of medium spiny neurons. Of the spines receiving synapses in dorsal striatum, 39% were labeled for enkephalin and were of varied morphologies. Small percentages (2%) of synapses were formed by labeled axon terminals. Most (82%) labeled terminals formed symmetric synapses. Enkephalin-labeled terminals showed no preference toward spines or dendrites for postsynaptic targets, whereas in rat and monkey, the vast majority of synapses in the neuropil are formed with dendritic shafts. Thus, there is an increase in the prevalence of axospinous synapses formed by enkephalin-labeled axon terminals in human compared with other species. Quantitative differences in synaptic features were also seen between the caudate nucleus and the putamen in the human tissue.
Collapse
Affiliation(s)
- Lesley A McCollum
- Department of Neuroscience, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
13
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
14
|
The nigrostriatal pathway: axonal collateralization and compartmental specificity. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010. [PMID: 20411767 DOI: 10.1007/978-3-211-92660-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.
Collapse
|
15
|
Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 2010; 35:27-47. [PMID: 19675534 PMCID: PMC2879005 DOI: 10.1038/npp.2009.93] [Citation(s) in RCA: 742] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/16/2009] [Accepted: 07/01/2009] [Indexed: 12/23/2022]
Abstract
Many of the brain's reward systems converge on the nucleus accumbens, a region richly innervated by excitatory, inhibitory, and modulatory afferents representing the circuitry necessary for selecting adaptive motivated behaviors. The ventral subiculum of the hippocampus provides contextual and spatial information, the basolateral amygdala conveys affective influence, and the prefrontal cortex provides an integrative impact on goal-directed behavior. The balance of these afferents is under the modulatory influence of dopamine neurons in the ventral tegmental area. This midbrain region receives its own complex mix of excitatory and inhibitory inputs, some of which have only recently been identified. Such afferent regulation positions the dopamine system to bias goal-directed behavior based on internal drives and environmental contingencies. Conditions that result in reward promote phasic dopamine release, which serves to maintain ongoing behavior by selectively potentiating ventral subicular drive to the accumbens. Behaviors that fail to produce an expected reward decrease dopamine transmission, which favors prefrontal cortical-driven switching to new behavioral strategies. As such, the limbic reward system is designed to optimize action plans for maximizing reward outcomes. This system can be commandeered by drugs of abuse or psychiatric disorders, resulting in inappropriate behaviors that sustain failed reward strategies. A fuller appreciation of the circuitry interconnecting the nucleus accumbens and ventral tegmental area should serve to advance discovery of new treatment options for these conditions.
Collapse
Affiliation(s)
- Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Hanlon CA, Wesley MJ, Porrino LJ. Loss of functional specificity in the dorsal striatum of chronic cocaine users. Drug Alcohol Depend 2009; 102:88-94. [PMID: 19264428 PMCID: PMC3124239 DOI: 10.1016/j.drugalcdep.2009.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although research into the effects of cocaine has focused on the ventral striatum, recent reports have identified a significant role for the dorsal striatum. Given the importance of the dorsal striatum in motor control, the purpose of the present study was to investigate potential sensorimotor deficits among cocaine users and the functional basis of these deficits within the striatum. METHODS Functional magnetic resonance imaging data were collected from 14 right-handed, non-treatment seeking chronic cocaine users and 14 age and gender matched controls during performance of two finger-sequencing paradigms that differentially activate the caudate (internally-guided) and the putamen (externally-guided) interleaved with blocks of rest. The total percent signal change in the dorsal striatum and the contribution of the left and right caudate and putamen were calculated and compared across groups and tasks. RESULTS Significant deficits in sensorimotor control were observed in cocaine users for both motor tasks, with the most severe impairments present during internally-guided movements. Cocaine users lacked the typical functional segregation observed in the dorsal striatum of the control subjects. The total percent signal change in the dorsal striatum was not significantly different between the groups, but cocaine users activated significantly less contralateral caudate and putamen for internally-guided versus externally-guided movements, respectively. CONCLUSION These data provide clear evidence that chronic cocaine users have significant motor performance deficits that are accompanied by disrupted processing within the dorsal striatum. These data suggest the effects of cocaine extend beyond the confines of the motivational domains of the ventral striatum.
Collapse
Affiliation(s)
- Colleen A. Hanlon
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 (U.S.A.)
| | - Michael J. Wesley
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 (U.S.A.)
| | - Linda J. Porrino
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 (U.S.A.),Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC 27157 (U.S.A.)
| |
Collapse
|
17
|
Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T. Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 2009; 28:2053-64. [PMID: 19046386 DOI: 10.1111/j.1460-9568.2008.06502.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whether or not the striosome compartment of the neostriatum contained preproenkephalin (PPE)-expressing neurons remained unresolved. To address this question by developing a sensitive detection method, we generated transgenic mice expressing enhanced green fluorescent protein (GFP) under the specific transcriptional control of the PPE gene. Eight transgenic lines were established, and three of them showed GFP expression which was distributed in agreement with the reported localization of PPE mRNA in the central nervous system. Furthermore, in the matrix compartment of the neostriatum of the three lines, intense GFP immunoreactivity was densely distributed in the neuronal cell bodies and neuropil, and matrix neurons displayed > 94% co-localization for GFP and PPE immunoreactivities. In sharp contrast, GFP immunoreactivity was very weak in the striosome compartment, which was characterized by intense immunoreactivity for mu-opioid receptors (MOR). Although neostriatal neurons were divided into GFP-immunopositive and -negative groups in both the striosome and matrix compartments, GFP immunoreactivity of cell bodies was much weaker (~1/5) in GFP-positive striosomal neurons than in GFP-positive matrix neurons. A similar reciprocal organization of PPE and MOR expression was also suggested in the ventral striatum, because GFP immunoreactivity was weaker in intensely MOR-immunopositive regions than in the surrounding MOR-negative regions. As PPE-derived peptides are endogenous ligands for MOR in the neostriatum and few axon collaterals of matrix neurons enter the striosome compartment, the present results raised the question of the target of those peptides produced abundantly by matrix neurons.
Collapse
Affiliation(s)
- Yoshinori Koshimizu
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Künzle H. The striatum in the hedgehog tenrec: histochemical organization and cortical afferents. Brain Res 2005; 1034:90-113. [PMID: 15713262 DOI: 10.1016/j.brainres.2004.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 11/28/2022]
Abstract
In order to get insight into the striopallidal organization in mammals with little differentiated brain the striatum of the lesser hedgehog tenrec (Afrotheria) was characterized histochemically and analysed with regard to its cortical afferents using axonal tracer substances. The majority of neocortical cells projecting to the striatum were found bilaterally in the layers 2 and 3 of the frontal hemisphere; caudalwards the relative number of cells increased somewhat in the upper layer 5. There was a topographical organization as far as the allocortical projections appeared confined to the ventral striatum, and the efferents from hippocampal, posterior paleocortical, somatosensory and audiovisual areas were distributed in largely different striatal territories. Projections from the anterior frontal cortex, on the other hand, terminated extensively upon the caudate-putamen and also involved the nucleus accumbens and the olfactory tubercle. In the latter region the molecular layer was especially involved. The entorhinal cortex also projected heavily to the olfactory tubercle but unlike other species it scarcely involved the nucleus accumbens. The cortical fibers were distributed in a relatively homogenous fashion within their striatal territory and there was little evidence for patches of high density terminations. Islands of low density labeling, however, were noted occasionally in the caudate-putamen. These islands were partly similar in size as the patches of neuropil staining obtained with anti-calretinin and anti-substance P. There were also hints for the presence of a shell-like region in the nucleus accumbens stained with anti-dopamine transporter and NADPh-diaphorase. The classical striosome-matrix markers such as calbindin, acetylcholinesterase and enkephalin, however, failed to reveal any compartmental organization.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
19
|
Abstract
The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal cortex that mediate these behaviors, are reflected in the organization, physiology, and connections between areas of frontal cortex and in their projections through basal ganglia circuits. This comprises a series of parallel pathways. However, this model does not address how information flows between circuits thereby developing new learned behaviors (or actions) from a combination of inputs from emotional, cognitive, and motor cortical areas. Recent anatomical evidence from primates demonstrates that the neuro-networks within basal ganglia pathways are in a position to move information across functional circuits. Two networks are: the striato-nigral-striatal network and the thalamo-cortical-thalamic network. Within each of these sets of connected structures, there are both reciprocal connections linking up regions associated with similar functions and non-reciprocal connections linking up regions that are associated with different cortical basal ganglia circuits. Each component of information (from limbic to motor outcome) sends both feedback connection, and also a feedforward connection, allowing the transfer of information. Information is channeled from limbic, to cognitive, to motor circuits. Action decision-making processes are thus influenced by motivation and cognitive inputs, allowing the animal to respond appropriate to environmental cues.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
20
|
Abstract
In cynomolgus monkeys, the typical neuroleptic haloperidol induced strong expression of the immediate early gene product Fos in both the nucleus accumbens shell and the dorsal striatum. In the caudate nucleus, haloperidol induced staining was more marked in the striosomes than the matrix. The atypical neuroleptic clozapine also induced Fos expression in the nucleus accumbens, but, in contrast to haloperidol, had only a small effect in the dorsal striatum. Additionally, clozapine was more potent than haloperidol at inducing Fos-like immunoreactivity in the islands of Calleja. These results are similar to those typically obtained in rodents, and suggest that the basic mechanisms underlying the regional specificity of the effects of atypical neuroleptics are likely be conserved between these two mammalian orders.
Collapse
Affiliation(s)
- David Wirtshafter
- Department of Psychology, The University of Illinois at Chicago, 60607-7137, USA.
| | | |
Collapse
|
21
|
Heimer L. The legacy of the silver methods and the new anatomy of the basal forebrain: implications for neuropsychiatry and drug abuse. Scand J Psychol 2003; 44:189-201. [PMID: 12914582 DOI: 10.1111/1467-9450.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first part of the paper highlights the remarkable legacy of the silver methods, with special emphasis on the travails and opportunities offered by the various Nauta methods and their modifications. When the tracer methods based on axoplasmic flow were introduced in the early 1970s, they were exploited on a backdrop of a basic anatomical framework, which had already been established through the tracing of the major CNS pathways by the aid of the silver methods, especially the widely used Nauta-Gygax methods and their modifications. Some of the silver methods that were developed in the late 1960s for the staining of degenerating boutons (e.g. the Fink-Heimer method and de Olmos cupric silver method) provided the necessary technical improvements that eventually led to a new and more productive way to look at the basal forebrain functional/anatomical organization; if it was not for the silver methods, we would in all likelihood still be promoting the nebulous notion of the substantia innominata rather than the concepts of the ventral striatopallidal system and the extended amygdala. The discovery and elaboration of these two macroanatomical systems symbolize what might deservedly be called the "new anatomy" of the basal forebrain. Following a review of the critical experiments which led to the development of the new anatomy of the basal forebrain, its topography in the human is reviewed in drawings of an abbreviated series of coronal sections. The discovery of the ventral striatopallidal system and its thalamic projection to the mediodorsal thalamus rather than to the ventral anterior-ventral lateral thalamic complex ushered in the idea of parallel cortico-subcortical reentrant circuits, which to a large extent has replaced the limbic system as a theoretical framework for neuropsychiatric disorders. The extended amygdala, which appears as a large ring formation around the internal capsule, is still controversial in some quarters, although it is slowly but surely making its way into the general neuroscience literature, especially in the field of addictive disorders. The ventral striatopallidal system and the extended amygdala are interwoven in a complex fashion with the basal nucleus of Meynert within the basal forebrain. Together, these three systems represent important output channels for so-called "limbic" forebrain regions, especially orbitomedial prefrontal cortex and medial temporal lobe structures, which are increasingly implicated in major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lennart Heimer
- Departments of Neurosurgery and Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
22
|
Abstract
Afferents from the amygdala help to define the ventral striatum and mediate goal-directed behaviors. In addition to well known inputs to the classic ventral striatum, the amygdala also projects to the caudoventral striatum and amygdalostriatal area. We examined whether the primate caudoventral striatum and amygdalostriatal area can be considered part of the "ventral" striatum based on cellular and histochemical features found in the classic rostral ventral striatum. We used several histochemical stains, including calbindin-D28k, a marker of the shell compartment, acetylcholinesterase, substance P, tyrosine hydroxylase, and Bcl-2, a marker of immature neurons, to examine this question. Our results indicate that the lateral amygdalostriatal area and caudoventral striatum are "striatal like" based on intermediate to high acetylcholinesterase and tyrosine hydroxylase levels. The lateral amygdalostriatal area is chemically similar to the shell, whereas the caudoventral striatum more closely resembles the striatum outside the shell. In contrast, the medial amygdalostriatal area is more related to the central amygdaloid nucleus than to the striatum. Bcl-2 immunoreactivity is associated with granular islands and medium-sized cells in the vicinity of the ventral striatum both rostrally and caudally. Together, the caudal ventral striatum has a histochemical and cellular organization similar to that of the rostral ventral striatum, consistent with their common innervation by the amygdala and other ventral structures. In addition, Bcl-2 is expressed in and near both poles of the ventral striatum, suggesting that these areas maintain a heightened capacity for growth and plasticity compared with other striatal sectors.
Collapse
|
23
|
Friedman DP, Aggleton JP, Saunders RC. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 2002; 450:345-65. [PMID: 12209848 DOI: 10.1002/cne.10336] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A combination of anterograde and retrograde tracing techniques was used to study the projections to the nucleus accumbens from the amygdala, the hippocampal formation (including the entorhinal cortex), and the perirhinal cortex in two species of macaque monkey. To help identify possible subregions within the nucleus accumbens, the distribution of calbindin was examined in two additional monkeys. Although this revealed evidence of "core"- and "shell"-like regions within the accumbens, these different regions could not consistently be related to cytoarchitectonic features. The rostral amygdala sent nearly equivalent projections to both the medial and the lateral portions of nucleus accumbens, whereas projections arising from the middle and caudal amygdala terminated preferentially in the medial division of nucleus accumbens. The basal nucleus was the major source of these amygdala efferents, and there was a crude topography as parts of the basal and accessory basal nuclei terminated in different parts of nucleus accumbens. The subiculum was the major source of hippocampal projections to the nucleus accumbens, but some hippocampal efferents also originated in the parasubiculum, the prosubiculum, the adjacent portion of CA1, and the uncal portion of CA3. These hippocampal projections, which coursed through the fornix, showed a rostrocaudal gradient as more arose in the rostral hippocampus. Hippocampal efferents terminated most densely in the medial and ventral portions of nucleus accumbens, along with light label in the adjacent olfactory tubercle. The entorhinal projections were more evenly distributed between the medial nucleus accumbens and the olfactory tubercle, whereas the perirhinal projections were primarily to the olfactory tubercle. These cortical inputs were less reliant on the fornix. Amygdala and subicular (hippocampal) projections overlapped most completely in the medial division of nucleus accumbens.
Collapse
Affiliation(s)
- David P Friedman
- Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
24
|
Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J. Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 2002; 450:122-34. [PMID: 12124757 DOI: 10.1002/cne.10312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This anatomic study presents an analysis of the distribution of calbindin immunohistochemistry in the human striatopallidal complex. Entire brains were sectioned perpendicularly to the mid-commissural line into 70-microm-thick sections. Every tenth section was immunostained for calbindin. Calbindin labeling exhibited a gradient on the basis of which three different regions were defined: poorly labeled, strongly labeled, and intermediate. Corresponding contours were traced in individual sections and reformatted as three-dimensional structures. The poorly labeled region corresponded to the dorsal part of the striatum and to the central part of the pallidum. The strongly labeled region included the ventral part of the striatum, the subcommissural part of the external pallidum but also the adjacent portion of its suscommissural part, and the anterior pole of the internal pallidum. The intermediate region was located between the poorly and strongly labeled regions. As axonal tracing and immunohistochemical studies in monkeys show a similar pattern, poorly, intermediate, and strongly labeled regions were considered as the sensorimotor, associative, and limbic territories of the human striatopallidal complex, respectively. However, the boundaries between these territories were not sharp but formed gradients of labeling, which suggests overlapping between adjacent territories. Similarly, the ventral boundary of the striatopallidal complex was blurred, suggesting a structural intermingling with the substantia innominata. This three-dimensional partitioning of the human striatopallidal complex could help to define functional targets for high-frequency stimulation with greater accuracy and help to identify new stimulation sites.
Collapse
Affiliation(s)
- Carine Karachi
- INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Arts MPM, Groenewegen HJ. Relationships of the Dendritic Arborizations of Ventral Striatomesencephalic Projection Neurons With Boundaries of Striatal Compartments. An In Vitro Intracellular Labelling Study in the Rat. Eur J Neurosci 2002; 4:574-588. [PMID: 12106343 DOI: 10.1111/j.1460-9568.1992.tb00907.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the relationships of the dendrites of ventral striatomesencephalic projection neurons with the compartmental structure of the ventral striatum, as revealed by enkephalin immunohistochemistry. Lightly fixed slices were employed in which Lucifer yellow was intracellularly injected into neurons that were retrogradely labelled following Fast Blue injections in the ventral tegmental area. Double immunohistochemical staining was carried out using antisera to Lucifer yellow and Leu-enkephalin. Most of the 226 injected cells were located in the core region of the nucleus accumbens. All these neurons were of the small- to medium-sized spiny type. The dendritic arborizations of over 90% of the cells remained within the compartment in which the parent cell bodies resided. The dendrites of most of these neurons abutted the border of the compartment, whereas a smaller number of neurons had dendrites that were distant from any compartmental boundary. The dendrites of fewer than 10% of the neurons crossed the borders of compartments. Only a few cells were injected in the shell region of the nucleus accumbens. None of these neurons extended its dendrites into the core region of the nucleus or into the territory of the clusters of small cells which characterize the shell. The present results demonstrate that the dendrites of the great majority of ventral striatomesencephalic neurons comply with the boundaries of ventral striatal enkephalin compartments. Together with the results of previous studies showing that such compartments are selectively innervated by thalamic and cortical afferents, and have outputs to different areas in the ventral mesencephalon, the present data suggest the existence of discrete channels through the ventral striatum.
Collapse
Affiliation(s)
- Monique P. M. Arts
- Department of Anatomy and Embryology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Morel A, Loup F, Magnin M, Jeanmonod D. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 2002; 443:86-103. [PMID: 11793349 DOI: 10.1002/cne.10096] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional territories that are of significance for functional imaging studies and target selection in stereotactic neurosurgery.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
27
|
The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 2001. [PMID: 11549735 DOI: 10.1523/jneurosci.21-18-07247.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons from dorsal/ventral tiers of substantia nigra pars compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) were traced after injecting their cell body with biotinylated dextran amine. Fifty-three single axons were reconstructed from serial sagittal sections with a camera lucida, and mu-opiate receptor immunostaining served to differentiate the striosome/matrix striatal compartments. Most dorsal tier SNc axons terminate within the matrix of the dorsal striatum, but their patterns of arborization vary markedly; some axons innervate one specific matriceal area, whereas others arborize in multiple discontinuous loci. Some dorsal tier SNc axons also project to both striosomes and matrix. Other dorsal tier SNc axons, as well as VTA axons, innervate the ventral striatum and send collaterals to striosomes lying ventrally in the dorsal striatum or to the ventral sector of the subcallosal streak (SS). Ventral tier SNc axons arborize principally in striosomes, but some ramify in both compartments or in striosomes and the SS. Ventral tier neurons that form deep clusters in substantia nigra pars reticulata innervate principally the matrix and the SS. The amygdala and ventral pallidum receive secondary collaterals from striatal axons of dorsal/ventral tier neurons or RRF neurons. The subthalamic nucleus receives collaterals from striatal axons of SNc clustered neurons, whereas the globus pallidus gets collaterals from striatal axons of dorsal/ventral tier SNc neurons. These findings reveal that the nigrostriatal pathway is composed of several neuronal subsystems, each endowed with a widely distributed axonal arborization that allows them to exert a multifaceted influence on striatal and/or extrastriatal structures.
Collapse
|
28
|
Abstract
The distributions of tyrosine hydroxylase and calmodulin in adult normal postmortem human brain were analyzed quantitatively. Consecutive coronal sections were obtained from the anterior area of the right hemisphere and were stained immunohistochemically for tyrosine hydroxylase and calmodulin. Stained sections were divided into approximately 3 million microareas at 50 microm intervals, and the immunohistochemical fluorescence intensity in each area was measured by a human brain mapping analyzer, which is a microphotometry system for analysis of the distribution of neurochemicals in a large tissue slice. Immunoreactive staining of tyrosine hydroxylase and calmodulin was observed in almost all brain regions, but its intensity varied. Relatively high levels of calmodulin were observed in brain regions with high levels of tyrosine hydroxylase, though high levels of tyrosine hydroxylase were not always observed in brain regions where high levels of calmodulin were distributed. In particular, high levels of both of tyrosine hydroxylase and calmodulin were distributed in the caudate nucleus and putamen. Previously it was shown that tyrosine hydroxylase was activated and dopamine synthesis was enhanced in the neostriatum region in mice and rats by the intracerebroventricular administration of calcium through a calmodulin-dependent system. The present results combined with these previous findings suggest that the activity of tyrosine hydroxylase in the caudate nucleus and putamen of humans may also be regulated by a calcium/calmodulin-dependent system.
Collapse
Affiliation(s)
- D Sutoo
- Institute of Medical Science, University of Tsukuba, Tsukuba, Japan.
| | | | | |
Collapse
|
29
|
Cicchetti F, Prensa L, Wu Y, Parent A. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:80-101. [PMID: 11086188 DOI: 10.1016/s0165-0173(00)00039-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper reviews the major anatomical and chemical features of the various types of interneurons in the human striatum, as detected by immunostaining procedures applied to postmortem tissue from normal individuals and patients with Huntington's disease (HD). The human striatum harbors a highly pleomorphic population of aspiny interneurons that stain for either a calcium-binding protein (calretinin, parvalbumin or calbindin D-28k), choline acetyltransferase (ChAT) or NADPH-diaphorase, or various combinations thereof. Neurons that express calretinin (CR), including multitudinous medium and a smaller number of large neurons, are by far the most abundant interneurons in the human striatum. The medium CR+ neurons do not colocalize with any of the known chemical markers of striatal neurons, except perhaps GABA, and are selectively spared in HD. Most large CR+ interneurons display ChAT immunoreactivity and also express substance P receptors. The medium and large CR+ neurons are enriched with glutamate receptor subunit GluR2 and GluR4, respectively. This difference in AMPA GluR subunit expression may account for the relative resistance of medium CR+ neurons to glutamate-mediated excitotoxicity that may be involved in HD. The various striatal chemical markers display a highly heterogeneous distribution pattern in human. In addition to the classic striosomes/matrix compartmentalization, the striosomal compartment itself is composed of a core and a peripheral region, each subdivided by distinct subsets of striatal interneurons. A proper knowledge of all these features that appear unique to humans should greatly help our understanding of the organization of the human striatum in both health and disease states.
Collapse
Affiliation(s)
- F Cicchetti
- Centre de Recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardière, Local F-6500, Québec, G1J 2G3, Beauport, Canada
| | | | | | | |
Collapse
|
30
|
Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000; 96:451-74. [PMID: 10717427 DOI: 10.1016/s0306-4522(99)00575-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This Commentary compares the connections of the dopaminergic system with the striatum in rats and primates with respect to two levels of striatal organization: a tripartite functional (motor, associative and limbic) subdivision and a compartmental (patch/striosome-matrix) subdivision. The topography of other basal ganglia projections to the dopaminergic system with respect to their tripartite functional subdivision is also reviewed. This examination indicates that, in rats and primates, the following observations can be made. (1) The limbic striatum reciprocates its dopaminergic input and in addition innervates most of the dopaminergic neurons projecting to the associative and motor striatum, whereas the motor and associative striatum reciprocate only part of their dopaminergic input. Therefore, the connections of the three striatal subregions with the dopaminergic system are asymmetrical, but the direction of asymmetry differs between the limbic versus the motor and associative striatum. (2) The limbic striatum provides the main striatal input to dopamine cell bodies and proximal dendrites, with some contribution from a subset of neurons in the associative and motor striatum (patch neurons in rats; an unspecified group of neurons in primates), while striatal input to the ventrally extending dopamine dendrites arises mainly from a subset of neurons in the associative and motor striatum (matrix neurons in rats; an unspecified group of neurons in primates). (3) Projections from functionally corresponding subdivisions of the striatum, pallidum and subthalamic nucleus to the dopaminergic system overlap, but the specific targets (dopamine cells, dopamine dendrites, GABA cells) of these projections differ. Major differences include the following. (1) In rats, neurons projecting to the motor and associative striatum reside in distinct regions, while in primates they are arranged in interdigitating clusters. (2) In rats, the terminal fields of projections arising from the motor and associative striatum are largely segregated, while in primates they are not. (3) In rats, patch- and matrix-projecting dopamine cells are organized in spatially, morphologically, histochemically and hodologically distinct ventral and dorsal tiers, while in primates there is no (bi)division of the dopaminergic system that results in two areas which have all the characteristics of the two tiers in rats. Based on the anatomical data and known dopamine cell physiology, we forward an hypothesis regarding the influence of the basal ganglia on dopamine cell activity which captures at least part of the complex interplay taking place within the substantia nigra between projections arising from the different basal ganglia nuclei. Finally, we incorporate the striatal connections with the dopaminergic system into an open-interconnected scheme of basal ganglia-thalamocortical circuitry.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel.
| | | |
Collapse
|
31
|
Brauer K, Häusser M, Härtig W, Arendt T. The core-shell dichotomy of nucleus accumbens in the rhesus monkey as revealed by double-immunofluorescence and morphology of cholinergic interneurons. Brain Res 2000; 858:151-62. [PMID: 10700608 DOI: 10.1016/s0006-8993(00)01938-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Double-immunolabelling experiments for the combinations, calretinin (CR)-calbindin, CR-tyrosine hydroxylase (TH) and calbindin-TH, were performed in rhesus monkeys to compare the chemical organization of the nucleus accumbens (ACC) in primates and rodents. Additionally, the soma sizes and numbers of primary dendrites of cholinergic neurons in the subregions of ACC were compared with those of caudate-putamen. Our findings subserve the shell-core concept also in the primate ACC, as like in the rat, CR immunoreactivity (-ir) due to intense neuropil labelling is very strong in the shell of rhesus monkey, but poor in the core. The staining intensity of this marker decreases in dorsoventral direction. An almost complementary pattern was noted in sections of the monkey ACC immunostained for both calbindin and TH. The cholinergic interneurons of the nucleus caudatus-putamen are clearly distinguished from those of the ACC and insula Calleja magna by their much bigger soma sizes and higher numbers of primary dendrites. Cholinergic neurons of the shell were found to be slightly, but significantly, larger than those of the core that also subserves subdivision of the primate ACC into shell and core. A low proportion of tyrosine-hydroxylase-immunostained cells, already previously described below the rostral ACC, co-expressed CR but not calbindin. A CR-immunoreactive neuronal population, intermingled with these cells, extends as a stripe medially to the ACC along the septal part of corpus callosum into the lateral septal area. The presumed origin of CR-immunoreactive fibres in the shell of ACC is discussed.
Collapse
Affiliation(s)
- K Brauer
- Department of Neuroanatomy, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, Leipzig, Germany
| | | | | | | |
Collapse
|
32
|
Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL. Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study. J Comp Neurol 1999; 415:313-40. [PMID: 10553118 DOI: 10.1002/(sici)1096-9861(19991220)415:3<313::aid-cne2>3.0.co;2-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regional and cellular localisation of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the human basal ganglia using receptor autoradiography and immunohistochemical staining for five GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3), beta(2, 3), and gamma(2)) and other neurochemical markers. The results demonstrated that GABA(A) receptors in the striatum showed considerable subunit heterogeneity in their regional distribution and cellular localisation. High densities of GABA(A) receptors in the striosome compartment contained the alpha(2), alpha(3), beta(2, 3), and gamma(2) subunits, and lower densities of receptors in the matrix compartment contained the alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. Also, six different types of neurons were identified in the striatum on the basis of GABA(A) receptor subunit configuration, cellular and dendritic morphology, and chemical neuroanatomy. Three types of alpha(1) subunit immunoreactive neurons were identified: type 1, the most numerous (60%), were medium-sized aspiny neurons that were immunoreactive for parvalbumin and alpha(1), beta(2,3), and gamma(2) subunits; type 2 (38%) were medium-sized to large aspiny neurons immunoreactive for calretinin and alpha(1), alpha(3), beta(2,3), and gamma(2) subunits; and type 3 (2%) were large sparsely spiny neurons immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits. Type 4 neurons were calbindin-positive and immunoreactive for alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. The remaining neurons were immunoreactive for choline acetyltransferase (ChAT) and alpha(3) subunit (type 5) or were neuropeptide Y-positive with no GABA(A) receptor subunit immunoreactivity (type 6). The globus pallidus contained three types of neurons: types 1 and 2 were large neurons and were immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and for parvalbumin alone (type 1) or for both parvalbumin and calretinin (type 2); type 3 neurons were medium-sized and immunoreactive for calretinin and alpha(1), beta(2, 3), and gamma(2) subunits. These results show that the subunit composition of GABA(A) receptors displays considerable regional and cellular variation in the human striatum but are more homogeneous in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Abstract
The concept of the ventral striatum was first put forth by Heimer and Wilson to describe the extension of basal ganglia elements into the olfactory tubercle. The ventral striatum includes the conventional nucleus accumbens, which has been closely associated with reward and motivation. This paper uses the afferent connections to the ventral striatum to define this region in monkeys. Furthermore the shell and core subterritories are discussed with respect to their histochemistry and specific connections.
Collapse
Affiliation(s)
- S N Haber
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA.
| | | |
Collapse
|
36
|
Smith Y, Kieval J, Couceyro PR, Kuhar MJ. CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with dopaminergic afferents. J Comp Neurol 1999; 407:491-511. [PMID: 10235641 DOI: 10.1002/(sici)1096-9861(19990517)407:4<491::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a novel mRNA whose level of expression was found to be increased in the striatum after acute administration of psychomotor stimulants in rats. To define better the potential role of CART peptides in behavioural and physiologic changes induced by psychomotor stimulants, we analyzed the distribution, ultrastructural features, synaptic connectivity, and transmitter content of CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys. Medium-sized CART peptide-immunoreactive neurones within a rich plexus of labelled varicosities were found mostly in the medial division of the shell of the nucleus accumbens in monkeys. At the electron microscope level, CART peptide immunoreactivity was exclusively associated with neuronal structures that included perikarya, dendrites, spines as well as nerve terminals packed with electron-lucent and dense-core vesicles. Most CART peptide-containing somata displayed the ultrastructural features of striatal output neurones. The majority of labelled terminals formed symmetric axodendritic synapses and displayed gamma-aminobutyric acid (GABA) immunoreactivity. CART peptide-immunoreactive somata were not immunoreactive for parvalbumin and somatostatin, two markers of striatal interneurones, nor for calbindin D-28k, a marker of a subpopulation of projection neurones. In double-immunostained sections, CART peptide-immunoreactive dendrites were found to be contacted by tyrosine hydroxylase-positive terminals which displayed the ultrastructural features of dopamine-containing boutons. These findings strongly suggest that CART peptides may be a cotransmitter with GABA in a subpopulation of projection neurones in the monkey accumbens. Furthermore, the fact that CART peptide-immunoreactive neurones receive direct synaptic inputs from dopaminergic afferents and are particularly abundant in the caudomedial division of the shell of the nucleus accumbens suggest that CART peptides might be involved in neuronal and behavioural changes that underlie addiction to psychomotor stimulants and feeding in primates.
Collapse
Affiliation(s)
- Y Smith
- Yerkes Regional Primate Research Center, Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
37
|
Heimer L, de Olmos J, Alheid G, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer R. The human basal forebrain. Part II. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Graybiel AM, Penney JB. Chemical architecture of the basal ganglia. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0924-8196(99)80025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
39
|
Waldvogel HJ, Fritschy JM, Mohler H, Faull RL. GABA(A) receptors in the primate basal ganglia: an autoradiographic and a light and electron microscopic immunohistochemical study of the alpha1 and beta2,3 subunits in the baboon brain. J Comp Neurol 1998; 397:297-325. [PMID: 9674559 DOI: 10.1002/(sici)1096-9861(19980803)397:3<297::aid-cne1>3.0.co;2-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The distribution of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the basal ganglia in the baboon brain by using receptor autoradiography and the immunohistochemical localisation of the alpha1 and beta2,3 subunits of the GABA(A) receptor by light and electron microscopy. In the caudate-putamen, the alpha1 subunit was distributed in high densities in the matrix compartment, and the beta2,3 subunits were more homogeneously distributed; the globus pallidus showed lower levels of the alpha1 and beta2,3 subunits. Four types of alpha1 subunit immunoreactive neurons were identified in the baboon striatum: the most numerous (75%) were type 1 medium-sized aspiny neurons; type 2 (2%) were large aspiny neurons with an indented nuclear membrane located in the ventral striatum; type 3 neurons were the least numerous (1%) and were comprised of large neurons in the ventromedial regions of the striatum; and type 4 (22%) neurons were medium to large aspiny neurons located in striosomes. At the ultrastructural level, alpha1 and beta2,3 subunit immunoreactivity was localised in the neuropil of the striatum in both symmetrical and asymmetrical synaptic contacts. In the globus pallidus, alpha1 and beta2,3 subunits were localised on large neurons and were found in three types of synaptic terminals: type 1 terminals were small and established symmetrical synapses; type 2 terminals were large; and type 3 terminals formed small synaptic terminals with subjunctional dense bodies. These results show that the subunit composition of GABA(A) receptors varies between the striosome and the matrix compartments in the striatum and that there is receptor subunit homogeneity in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
40
|
Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 1998. [PMID: 9391023 DOI: 10.1523/jneurosci.17-24-09686.1997] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the striatal projections from different cytoarchitectonic regions of the insular cortex using anterograde and retrograde techniques. The shell and medial ventral striatum receive inputs primarily from the agranular and ventral dysgranular insula. The central ventral striatum receives inputs primarily from the dorsal agranular and dysgranular insula. Projections to the central ventral striatum originate from more posterior and dorsal insular regions than projections to the medial ventral striatum. The dorsolateral striatum receives projections primarily from the dorsal dysgranular and granular insula. These results show that cytoarchitectonically less differentiated (agranular) insular regions project to the ventromedial "limbic" part of the ventral striatum, whereas more differentiated (granular) insular regions project to the dorsolateral "sensorimotor" part of the striatum. The finding that the ventral "limbic" striatum receives inputs from less differentiated regions of the insula is consistent with the general principle that less differentiated cortical regions project primarily to the "limbic" striatum. Functionally, the ventral striatum receives insular projections primarily related to integrating feeding behavior with rewards and memory, whereas the dorsolateral striatum receives insular inputs related to the somatosensation. Information regarding food acquisition in the insula may be sent to the intermediate area of the striatum.
Collapse
|
41
|
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997; 76:957-1006. [PMID: 9027863 DOI: 10.1016/s0306-4522(96)00405-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Comparative neuroanatomical investigations in primates and non-primates have helped disentangle the anatomy of the basal forebrain region known as the substantia innominata. The most striking aspect of this region is its subdivision into two major parts. This reflects the fundamental organizational scheme for this portion of the forebrain. According to this scheme, two major subcortical telencephalic structures, i.e. the striatopallidal complex and extended amygdala, form large diagonally oriented bands. The rostroventral extension of the pallidum accounts for a large part of the rostral subcommissural substantia innominata, while the sublenticular substantia innominata is primarily occupied by elements of the extended amygdala. Also dispersed across this region is the basal nucleus of Meynert, which is part of a more or less continuous collection of cholinergic and non-cholinergic corticopetal and thalamopetal cells, which stretches from the septum diagonal band rostrally to the caudal globus pallidus. The basal nucleus of Meynert is especially prominent in the primate, where it is sometimes inappropriately applied as a synonym for the substantia innominata, thereby tacitly ignoring the remaining components. In most mammals, the extended amygdala presents itself as a ring of neurons encircling the internal capsule and basal ganglia. The extended amygdala may be further subdivided, i.e. into the central extended amygdala (related to the central amygdaloid nucleus) and the medial extended amygdala (related to the medial amygdaloid nucleus), which generally form separate corridors both in the sublenticular region and along the supracapsular course of the stria terminalis. The extended amygdala is directly continuous with the caudomedial shell of the accumbens, and to some extent appears to merge with it. Together the accumbens shell and extended amygdala form an extensive forebrain continuum, which establishes specific neuronal circuits with the medial prefrontal-orbitofrontal cortex and medial temporal lobe. This continuum is particularly characterized by a prominent system of long intrinsic association fibers, and a variety of highly differentiated downstream projections to the hypothalamus and brainstem. The various components of the extended amygdala, together with the shell of the accumbens, are ideally structured to generate endocrine, autonomic and somatomotor aspects of emotional and motivational states. Behavioral observations support this proposition and demonstrate the relevance of these structures to a variety of functions, ranging from the various elements of the reproductive cycle to drug-seeking behavior. The neurochemical and connectional features common to the accumbens shell and the extended amygdala are especially relevant to understanding the etiology and treatment of neuropsychiatric disorders. This is discussed in general terms, and also in specific relation to the neurodevelopmental theory of schizophrenia and to the neurosurgical treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Previous studies have shown that the monkey (Macaca fuscata) caudal nucleus accumbens is neurochemically subdivided into three subdivisions, the medial, dorsolateral, and ventral subdivisions. In this study, dopaminergic innervation of these three subdivisions was studied in detail for the first time by light microscopic immunocytochemistry using a monoclonal antibody against dopamine. The patterns of dopamine fiber distribution were heterogeneous even within each subdivision. The medial subdivision showed extremely dense accumulation of thick dopamine-immunoreactive varicose fibers. Some areas with densely packed cells in Nissl-stained sections corresponded to dopamine-poor areas, while another area with concentrated cells corresponded to a dopamine-rich area. There were also areas with sparse cells that contained a few dopamine-immunoreactive fibers. In the dorsolateral subdivision thick dopamine-immunoreactive varicose fibers were found sparsely among diffuse puncta. The ventral subdivision exhibited similar profiles to those in the dorsolateral one, and there were also many characteristic spiral dopamine-immunoreactive fibers of passage. The present study indicates that the dopaminergic structures of the monkey nucleus accumbens differ according to the subterritories, and are morphologically different from those in the caudate-putamen.
Collapse
Affiliation(s)
- K Ikemoto
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
43
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Ardelt AA, Karpitskiy VV, Krause JE, Roth KA. The neostriatal mosaic: basis for the changing distribution of neurokinin-1 receptor immunoreactivity during development. J Comp Neurol 1996; 376:463-75. [PMID: 8956111 DOI: 10.1002/(sici)1096-9861(19961216)376:3<463::aid-cne8>3.0.co;2-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pattern of neurokinin-1 receptor-like immunoreactivity (NK-1Rir) was mapped in perinatal and adult mouse striatum by using a new polyclonal antiserum. NK-1Rir was detected in the differentiating regions of the ganglionic eminences on embryonic day 12.5 (E12.5). NK-1Rir structures were enriched in the striatal patch compartment between E16.5 and approximately postnatal day 3 (P3); distributed more uniformly, within portions of both the patch and matrix compartments on P7; and enriched in the matrix compartment in the adult. Analysis of the phenotype of NK-1Rir cells on P2, P7, and in the adult suggested that cholinergic cells accounted for the majority of NK-1Rir cells early postnatally, with increasing contributions from somatostatinergic cells later postnatally. In the adult, approximately half of NK-1Rir cells were cholinergic and half were somatostatinergic. The transient enrichment of NK-1R-bearing cells and processes in the patch compartment which contains cells that express substance P (SP), a putative ligand for the NK-1R, may be a consequence of compartment formation or may be functionally important for compartment development.
Collapse
Affiliation(s)
- A A Ardelt
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
45
|
Brown LL, Hand PJ, Divac I. Representation of a single vibrissa in the rat neostriatum: peaks of energy metabolism reveal a distributed functional module. Neuroscience 1996; 75:717-28. [PMID: 8951868 DOI: 10.1016/0306-4522(96)00310-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In unanaesthetized rats, mechanical stimulation of a single vibrissa increased glucose utilization in one cortical column of the somatosensory area and in several spots in the dorsolateral neostriatum, predominantly on the side contralateral to the stimulation. Two or three peaks of glucose utilization unique to the stimulated animals were seen in cross sections throughout a 1.8 mm anteroposterior extent in the dorsolateral striatum. These observations suggest that one cortical column is functionally related to several neostriatal regions. The distributed modularity may be an important characteristic of the basal ganglia system.
Collapse
Affiliation(s)
- L L Brown
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
46
|
Voorn P, Brady LS, Berendse HW, Richfield EK. Densitometrical analysis of opioid receptor ligand binding in the human striatum--I. Distribution of mu opioid receptor defines shell and core of the ventral striatum. Neuroscience 1996; 75:777-92. [PMID: 8951872 DOI: 10.1016/0306-4522(96)00271-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Changes in opioid neurotransmission have been implicated in several basal ganglia-related neurological and psychiatric disorders. To gain a better insight into the opioid receptor distribution in the normal human striatum, we examined in post mortem brain the distribution of the mu opioid receptor using ligand binding of [3H]O-ala2-N-methyl-phe4, gly-ol5-enkephalin. Our results indicate at the regional level the presence of a dorsal-to-ventral high-to-low density gradient in the striatum, with lowest densities in the ventral one-third of the putamen and in the nucleus accumbens. At the subregional level, the nucleus accumbens shows two major types of heterogeneities. First, low vs intermediate binding densities distinguish the core and shell subdivisions, respectively. The low-density core and intermediate-density shell regions extend into the putamen and are therefore characteristic for the entire ventral striatum. The second type of heterogeneity is formed by small areas located along the ventral contours of the nucleus accumbens and putamen that display the highest binding density of the entire striatum. Since these areas can also be recognized in the distribution patterns of other markers and in the cytoarchitecture, they appear to possess a separate identity. To emphasize their special neurochemical characteristics we propose the description "neurochemically unique domains in the accumbens and putamen". The present results, with the difference between core and shell of the ventral striatum as the most prominent outcome, together with the notion that the connectional relationships and neurochemical organization of the striatum are very heterogeneous, suggest a strong regional functional differentiation for mu receptor function in the human striatum.
Collapse
Affiliation(s)
- P Voorn
- Vrije Universiteit Department of Anatomy and Embryology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Ikemoto K, Kitahama K, Maeda T, Satoh K. The distribution of noradrenaline, serotonin and gamma-aminobutyric acid in the monkey nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20:1403-12. [PMID: 9004346 DOI: 10.1016/s0278-5846(96)00135-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The recent histochemical studies have shown that the primate nucleus accumbens (NAC) can be subdivided into at least three subdivisions, the medial, ventral and dorsolateral subdivisions. 2. The medical subdivision possesses dense peptide- and dopamine-immunoreactive (IR) fibers. 3. In order to further investigate the neurochemical characteristics of the primate NAC, the distribution of structures that contain noradrenaline (NA), serotonin (5-HT) and gamma-aminobutyric acid (GABA) were examined in the macaque monkey by using transmitter-immunohistochemical methods. 4. Many NA-IR fibers were observed in the dorsal part of the NAC, corresponding to the medial subdivision. Fine varicose 5-HT-IR fibers were evenly distributed in the NAC. GABA-IR cell bodies and puncta were observed throughout the NAC as well as in the caudate nucleus and putamen. 5. The monkey rostral NAC displays a highly homogeneous distribution of all neuropeptides and neurotransmitters studied so far and we propose that this region be termed the rostral subdivision of the NAC.
Collapse
Affiliation(s)
- K Ikemoto
- Département de Médecine Expérimentale, INSERM U52, CNRS ERS5645, Université Claude, Bernard, Lyon, France
| | | | | | | |
Collapse
|
48
|
Abstract
The mammalian striatum is divided into compartments that are anatomically and neurochemically distinct. The dorsal striatum has been described as containing two compartments, striosomes and matrix, while the ventral striatum is thought to have a more complex, multi-compartmental organization. In this study, we sought to characterize the compartmentalization of the dorsal and ventral portions of the human striatum using choline acetyltransferase as a marker. Image analysis was used to assess relative densities of immunostaining, and three distinct, choline acetyltransferase-immunostained compartments were demonstrated: intensely immunostained, moderately immunostained and weakly immunostained areas. The dorsomedial portion of the striatum was made up of moderately immunostained regions embedded within a densely immunostained background, thus manifesting the characteristic striosome/ matrix organization of the dorsal striatum. However, the ventral and lateral two-thirds of the striatum were made up of a mixture of densely immunostained, moderately immunostained and weakly immunostained areas, with the moderately immunostained region forming the bulk of the background tissue, and smaller, densely immunostained and weakly immunostained regions embedded within it. These compartments were compared to regions defined by distinct levels of acetylcholinesterase immunostaining in adjacent sections; the staining patterns produced by the two cholinergic markers were found to be identical except in some portions of the nucleus accumbens, where acetylcholinesterase immunostaining was found to be more intense than choline acetyltransferase immunostaining. The immunoreactive somata were mapped within sections stained for choline acetyltransferase taken from different rostrocaudal levels of the striatum, and the distributions and densities of immunoreactive somata within these three cholinergic compartments were determined. In general, the densities of cholinergic somata roughly correlated with immunostaining intensity of regions, e.g. the most intensely immunostained compartment also had the highest densities of cholinergic somata. However, in the rostroventral striatum, the densities of cholinergic somata in the weakly immunostained compartment roughly equalled the densities of cholinergic somata in the moderately immunostained compartment, suggesting that local axonal arborizations of cholinergic cells may differ in density or orientation between the two compartments, or, alternatively, that some of the cholinergic cells in the weakly immunostained compartment may project outside of the striatum. The large proportion of striatum displaying ventral striatal characteristics (a complex, multi-compart-mental organization) in humans relative to that observed in other mammals suggests that the role of the ventral striatum may be expanded and more highly differentiated in the human brain.
Collapse
Affiliation(s)
- D J Holt
- University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
49
|
Jakab RL, Hazrati LN, Goldman-Rakic P. Distribution and neurochemical character of substance P receptor (SPR)-immunoreactive striatal neurons of the macaque monkey: accumulation of SP fibers and SPR neurons and dendrites in "striocapsules" encircling striosomes. J Comp Neurol 1996; 369:137-49. [PMID: 8723708 DOI: 10.1002/(sici)1096-9861(19960520)369:1<137::aid-cne10>3.0.co;2-o] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The striatal distribution of the substance P receptor (SPR) protein was examined in relation to its ligand, the neuro-peptide SP, as well as to the neurochemical and compartmental composition of the neostriatum in rhesus monkeys (Macaca mulatta) in immunohistochemical experiments. About 2% of striatal neurons, displaying varicose, virtually spine-free dendrites characteristic of large and medium-sized aspiny interneurons, expressed SPR immunoreactivity. SPR/choline acetyltransferase, SPR/somatostatin, SPR/GABA, SPR/calbindin D28k, and SPR/parvalbumin double immunolabeling experiments demonstrated that SPR-positive cells are either cholinergic or somatostatinergic. Comparison of SP and SPR immunoreactivities in double-labeled and adjacent single-labeled sections revealed compartment-specific match and mismatch between the densities of the peptide and receptor. A matching high density of SP fibers and SPR cells and dendrites was only observed in the rim of the striosome compartments. To our knowledge, this is the first evidence for an anatomical border comprised of dendritic processes that separate striatal compartments. We have termed these zones "striocapsules," because they encircle and encapsulate striosomal cell islands. In the striatal matrix, an abundance of SPR-labeled profiles was complemented with light SP staining. By contrast, in the core of the striosomes, SPR labeling was sparse and SP staining intense. SP-positive axon-like puncta frequently contacted SPR-positive dendrites in all striatal compartments. The SP receptor/ligand match indicates a sharp increase in the efficacy of SP action in the striocapsules, and suggests that the influence of SP might be heightened in this striatal subcompartment.
Collapse
Affiliation(s)
- R L Jakab
- Section of Neurobiology, Yale University, School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
50
|
Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN. Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 1996; 365:628-39. [PMID: 8742307 DOI: 10.1002/(sici)1096-9861(19960219)365:4<628::aid-cne9>3.0.co;2-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The neurochemical division of the rodent nucleus accumbens into shell and core is now a widely accepted concept. However, such divisions in the primate nucleus accumbens have yet to be fully clarified and described. In the present study, the forebrains of three primates--marmoset, rhesus monkey, and human--and a Wistar rat, were immunoreacted with antibodies directed against calbindin-D28k. The patterns of immunoreactivity in the primates' ventral striatum were mapped and compared to that of rat. Calbindin staining was uneven in all species and there was no evidence of a bicompartmental organization, i.e., striosome/patch and matrix, in central parts of the nucleus. Nucleus accumbens in primates, as in rat, could be divided immunohistochemically into a crescent-shaped outer shell--medially, ventrally and laterally--and an inner core. In general, medial parts of the shell stained less intensely for calbindin than did lateral parts. However, interspecific variation in the intensity of the immunoreactive staining and the mediolateral extent of the shell was obvious. The core, which immunostained unevenly, was consistently more intensely immunoreactive than either medial or lateral shell in all species except the marmoset. These results suggest that the neurochemical subdivisions of shell and core established for nucleus accumbens of rodents are also present in primates. However, further work is needed to establish whether these territories are homologous and, if so, the full extent of that homology.
Collapse
Affiliation(s)
- G E Meredith
- Department of Anatomy and Embryology, Vrije Universiteit Faculty of Medicine, Amsterdam, Netherlands.
| | | | | | | |
Collapse
|