1
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Spencer NJ, Brookes SJH, Wattchow DA. In Memoriam: Marcello Costa (1940-2024) - a pioneer of the enteric nervous system. J Physiol 2024. [PMID: 39190319 DOI: 10.1113/jp287066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- N J Spencer
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - S J H Brookes
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Elfers K, Sehnert AS, Wagner A, Zwirner U, Linge H, Kulik U, Poehnert D, Winny M, Gundert B, Aselmann H, Mazzuoli-Weber G. Functional and Structural Investigation of Myenteric Neurons in the Human Colon. GASTRO HEP ADVANCES 2024; 4:100537. [PMID: 39790245 PMCID: PMC11714724 DOI: 10.1016/j.gastha.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 01/12/2025]
Abstract
Background and Aims The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients. Methods Activity from myenteric neurons in wholemount preparations of different sampling sites of fresh, human colonic tissue was recorded using neuroimaging with the voltage sensitive dye 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine. Neuronal responses were analyzed following stimulation with nicotine and serotonin (5-HT) for differences based on the donor's age, the disorder indicative for surgery and the colonic region. Immunohistochemistry was performed to calculate the total neuronal numbers. Results Stimulation with nicotine and 5-HT elicited reproducible action potential discharge in a proportion of human myenteric neurons. The responses to 5-HT were significantly greater in tissues from older patients and from those with inflammatory disorders, while neuronal activity to nicotinergic stimulation was comparable in all patients. Neuronal numbers declined with rising patient's age and was highest in the sigmoid colon. Conclusion Neuroimaging with 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine was successfully adapted to record reproducible responses from human colonic myenteric neurons upon pharmacological stimulation. Evidence exists for an impact of age and inflammation on the serotonergic neuronal signaling and for differences in neuronal numbers in the distinct colonic regions as well as a neuronal decrease with age.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Sophia Sehnert
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alexander Wagner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Zwirner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Helena Linge
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Poehnert
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Markus Winny
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Benjamin Gundert
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Heiko Aselmann
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
4
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Ardasheva R, Popov V, Yotov V, Prissadova N, Pencheva M, Slavova I, Turiyski V, Krastev A. Accelerated Electron Ionization-Induced Changes in the Myenteric Plexus of the Rat Stomach. Int J Mol Sci 2024; 25:6807. [PMID: 38928511 PMCID: PMC11203758 DOI: 10.3390/ijms25126807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 μs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.
Collapse
Affiliation(s)
- Raina Ardasheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Veselin Popov
- Section of Radiotherapy and Nuclear Medicine, Department of Clinical Oncology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Viktor Yotov
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Natalia Prissadova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Iva Slavova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Athanas Krastev
- Medical College, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
6
|
Waemong A, Sattayachiti S, Cheaha D, Konthapakdee N. Effects of oral administration of ondansetron, a 5-HT 3 receptor antagonist, on anxiety-related behaviors and colonic hypercontractility in repeated stress-induced mice. Auton Neurosci 2024; 253:103178. [PMID: 38642511 DOI: 10.1016/j.autneu.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT3 receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT3 receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress. MATERIALS AND METHODS Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique. RESULTS FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation. CONCLUSIONS Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT3 receptors. Our findings suggest the modulatory roles of 5-HT3 receptors to mediate stress-induced colonic dysfunction.
Collapse
Affiliation(s)
- Affan Waemong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunnuch Sattayachiti
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Dania Cheaha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nipaporn Konthapakdee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
7
|
Humenick A, Johnson M, Chen B, Wee M, Wattchow D, Costa M, Dinning P, Brookes S. Antibody elution with 2-me/SDS solution: Uses for multi-layer immunohistochemical analysis of wholemount preparations of human colonic myenteric plexus. Heliyon 2024; 10:e26522. [PMID: 38434276 PMCID: PMC10904250 DOI: 10.1016/j.heliyon.2024.e26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Indirect immunofluorescence is usually restricted to 3-5 markers per preparation, limiting analysis of coexistence. A solution containing 2-mercaptoethanol and sodium dodecyl sulfate (2-ME/SDS) can elute indirect immunofluorescence labelling (i.e. primary antisera followed by fluorophore-conjugated secondary antisera) and has been used for sequential staining of sections. The aim of this study was to test whether 2-ME/SDS is effective for eluting indirect immunofluorescent staining (with primary antisera visualised by fluorophore-coupled secondary antisera) in wholemount preparations. We also analysed how 2-ME/SDS may work and used this understanding to devise additional uses for immunofluorescence in the nervous system. 2-ME/SDS appears to denature unfixed proteins (including antisera used as reagents) but has much less effect on antigenicity of formaldehyde-fixed epitopes. Moieties linked by strong biotin-streptavidin bonds are highly resistant to elution by 2-ME/SDS. Two primary antisera raised in the same species can be applied without spurious cross-reactivity, if a specific order of labelling is followed. The first primary antiserum is followed by a biotinylated secondary, then a tertiary of fluorophore-conjugated streptavidin. The preparation is then exposed to 2-ME/SDS, which has minimal impact on labelling by the first primary/secondary/tertiary combination. However, when this is followed by a second primary antiserum (raised in the same species), followed by a fluorophore-conjugated secondary antiserum, the intervening 2-ME/SDS exposure prevents cross-reactivity between primary and secondary antisera of the two layers. A third property of 2-ME/SDS is that it reduces lipofuscin autofluorescence, although it also raises background fluorescence and strongly enhances autofluorescence of erythrocytes. In summary, 2-ME/SDS is easy to use, cost-effective and does not require modified primary antisera. It can be used as the basis of a multi-layer immunohistochemistry protocol and allows 2 primary antisera raised in the same species to be used together.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M.E. Johnson
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - B.N. Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M. Wee
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - D.A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - M. Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - P.G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - S.J.H. Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| |
Collapse
|
8
|
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG, Costa M, Spencer NJ, Brookes SJH. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci 2024; 17:1313057. [PMID: 38292899 PMCID: PMC10825022 DOI: 10.3389/fnins.2023.1313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Background and Aims Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam G. Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy James Hibberd
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Herath M, Cho E, Marklund U, Franks AE, Bornstein JC, Hill-Yardin EL. Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice. Biomolecules 2023; 13:1063. [PMID: 37509099 PMCID: PMC10377306 DOI: 10.3390/biom13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joel C Bornstein
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Yew WP, Humenick A, Chen BN, Wattchow DA, Costa M, Dinning PG, Brookes SJH. Electrophysiological and morphological features of myenteric neurons of human colon revealed by intracellular recording and dye fills. Neurogastroenterol Motil 2023; 35:e14538. [PMID: 36740821 DOI: 10.1111/nmo.14538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.
Collapse
Affiliation(s)
- Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
12
|
Ma J, Mistareehi A, Madas J, Kwiat AM, Bendowski K, Nguyen D, Chen J, Li DP, Furness JB, Powley TL, Cheng Z(J. Topographical organization and morphology of substance P (SP)-immunoreactive axons in the whole stomach of mice. J Comp Neurol 2023; 531:188-216. [PMID: 36385363 PMCID: PMC10499116 DOI: 10.1002/cne.25386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Nociceptive afferents innervate the stomach and send signals centrally to the brain and locally to stomach tissues. Nociceptive afferents can be detected with a variety of different markers. In particular, substance P (SP) is a neuropeptide and is one of the most commonly used markers for nociceptive nerves in the somatic and visceral organs. However, the topographical distribution and morphological structure of SP-immunoreactive (SP-IR) axons and terminals in the whole stomach have not yet been fully determined. In this study, we labeled SP-IR axons and terminals in flat mounts of the ventral and dorsal halves of the stomach of mice. Flat-mount stomachs, including the longitudinal and circular muscular layers and the myenteric ganglionic plexus, were processed with SP primary antibody followed by fluorescent secondary antibody and then scanned using confocal microscopy. We found that (1) SP-IR axons and terminals formed an extensive network of fibers in the muscular layers and within the ganglia of the myenteric plexus of the whole stomach. (2) Many axons that ran in parallel with the long axes of the longitudinal and circular muscles were also immunoreactive for the vesicular acetylcholine transporter (VAChT). (3) SP-IR axons formed very dense terminal varicosities encircling individual neurons in the myenteric plexus; many of these were VAChT immunoreactive. (4) The regional density of SP-IR axons and terminals in the muscle and myenteric plexus varied in the following order from high to low: antrum-pylorus, corpus, fundus, and cardia. (5) In only the longitudinal and circular muscles, the regional density of SP-IR axon innervation from high to low were: antrum-pylorus, corpus, cardia, and fundus. (6) The innervation patterns of SP-IR axons and terminals in the ventral and dorsal stomach were comparable. Collectively, our data provide for the first time a map of the distribution and morphology of SP-IR axons and terminals in the whole stomach with single-cell/axon/synapse resolution. This work will establish an anatomical foundation for functional mapping of the SP-IR axon innervation of the stomach and its pathological remodeling in gastrointestinal diseases.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri
| | - John B Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47906
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
13
|
Hibberd TJ, Yew WP, Dodds KN, Xie Z, Travis L, Brookes SJ, Costa M, Hu H, Spencer NJ. Quantification of CGRP-immunoreactive myenteric neurons in mouse colon. J Comp Neurol 2022; 530:3209-3225. [PMID: 36043843 DOI: 10.1002/cne.25403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 μm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Hibberd TJ, Costa M, Smolilo DJ, Keightley LJ, Brookes SJ, Dinning PG, Spencer NJ. Mechanisms underlying initiation of propulsion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2022; 323:G71-G87. [PMID: 35502864 DOI: 10.1152/ajpgi.00055.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colonic motor complexes (CMCs) are a major neurogenic activity in guineapig distal colon. The identity of the enteric neurons that initiate this activity is not established. Specialized intrinsic primary afferent neurons (IPANs) are a major candidate. We aimed to test this hypothesis. To do this, segments of guineapig distal colon were suspended vertically in heated organ baths and propulsive forces acting on a pellet inside the lumen were recorded by isometric force transducer while pharmacological agents were applied to affect IPAN function. In the absence of drugs, CMCs acted periodically on the pellet, generating peak propulsive forces of 12.7 ± 5 g at 0.56 ± 0.22 cpm, lasting 49 ± 17 s (215 preparations; n = 60). Most but not all CMCs were abolished by nicotinic receptor blockade to inhibit fast excitatory synaptic transmission (50/62 preparations; n = 25). Remarkably, CMCs inhibited by hexamethonium were restored by a pharmacological strategy that aimed to enhance IPAN excitability. Thus, CMCs were restored by increased smooth muscle tension (using BAY K8644, bethanechol or carbachol) and by IPAN excitation using phorbol dibutyrate; NK3 receptor agonist, senktide; and partially by αCGRP. The IPAN inhibitor, 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DCEBIO), decreased CMC frequency. CGRP, but not NK3-receptor antagonists, decreased CMC frequency in naive preparations. Finally, CMCs were blocked by tetrodotoxin, and this was not reversed by any drugs listed above. These results support a major role for IPANs that does not require fast synaptic transmission, in the periodic initiation of neurogenic propulsive contractions. Endogenous CGRP plays a role in determining CMC frequency, whereas further unidentified signaling pathways may determine their amplitude and duration.NEW & NOTEWORTHY The colonic motor complex (CMC) initiates propulsion in guinea pig colon. Here, CMCs evoked by an intraluminal pellet were restored during nicotinic receptor blockade by pharmacological agents that directly or indirectly enhance intrinsic primary afferent neuron (IPAN) excitability. IPANs are the only enteric neuron in colon that contain CGRP. Blocking CGRP receptors decreased CMC frequency, implicating their role in CMC initiation. The results support a role for IPANs in the initiation of CMCs.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David J Smolilo
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren J Keightley
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Martin AM, Jones LA, Wei L, Spencer NJ, Sanders KM, Ro S, Keating DJ. Distinguishing the contributions of neuronal and mucosal serotonin in the regulation of colonic motility. Neurogastroenterol Motil 2022; 34:e14361. [PMID: 35313053 DOI: 10.1111/nmo.14361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Specialized enterochromaffin (EC) cells within the mucosal lining of the gut synthesize and secrete almost all serotonin (5-hydroxytryptamine, 5-HT) in the body. Significantly lower amounts of 5-HT are made by other peripheral tissues and serotonergic neurons within the enteric nervous system (ENS). EC cells are in close proximity to 5-HT receptors in the ENS, and the role of 5-HT as a modulator of gut motility, particularly colonic motor complexes, has been well defined. However, the relative contribution of neuronal 5-HT to this process under resting and stimulus-evoked conditions is unclear. METHODS In this study, we combined the use of the selective serotonin transporter (SERT) inhibitor, fluoxetine, with two models of mucosal 5-HT depletion-surgical removal of the mucosa and our Tph1Cre/ERT2 ; Rosa26DTA mouse line-to determine the relative contribution of neuronal and mucosal 5-HT to resting and distension-evoked colonic motility. KEY RESULTS Fluoxetine significantly reduced the frequency of colonic migrating complexes (CMCs) in flat-sheet preparations with the mucosa present and in intact control Tph1-DTA colons in which EC cells were present. No such effect was observed in mucosa-free preparations or in intact Tph1-DTA preparations lacking EC cell 5-HT. CONCLUSIONS AND INFERENCES We demonstrate that mucosal 5-HT release plays an important role in distension-evoked colonic motility, and that SERT inhibition no longer alters gut motility when EC cells are absent, thus demonstrating that ENS 5-HT does not play a role in regulating gut motility.
Collapse
Affiliation(s)
- Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Muchhala KH, Koseli E, Gade AR, Woods K, Minai S, Kang M, McQuiston AR, Dewey WL, Akbarali HI. Chronic Morphine Induces IL-18 in Ileum Myenteric Plexus Neurons Through Mu-opioid Receptor Activation in Cholinergic and VIPergic Neurons. J Neuroimmune Pharmacol 2022; 17:111-130. [PMID: 35106734 PMCID: PMC9343479 DOI: 10.1007/s11481-021-10050-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
The gastrointestinal epithelium is critical for maintaining a symbiotic relationship with commensal microbiota. Chronic morphine exposure can compromise the gut epithelial barrier in mice and lead to dysbiosis. Recently, studies have implicated morphine-induced dysbiosis in the mechanism of antinociceptive tolerance and reward, suggesting the presence of a gut-brain axis in the pharmacological effects of morphine. However, the mechanism(s) underlying morphine-induced changes in the gut microbiome remains unclear. The pro-inflammatory cytokine, Interleukin-18 (IL-18), released by enteric neurons can modulate gut barrier function. Therefore, in the present study we investigated the effect of morphine on IL-18 expression in the mouse ileum. We observed that chronic morphine exposure in vivo induces IL-18 expression in the ileum myenteric plexus that is attenuated by naloxone. Given that mu-opioid receptors (MORs) are mainly expressed in enteric neurons, we also characterized morphine effects on the excitability of cholinergic (excitatory) and vasoactive intestinal peptide (VIP)-expressing (inhibitory) myenteric neurons. We found fundamental differences in the electrical properties of cholinergic and VIP neurons such that VIP neurons are more excitable than cholinergic neurons. Furthermore, MORs were primarily expressed in cholinergic neurons, although a subset of VIP neurons also expressed MORs and responded to morphine in electrophysiology experiments. In conclusion, these data show that morphine increases IL-18 in ileum myenteric plexus neurons via activation of MORs in a subset of cholinergic and VIP neurons. Thus, understanding the neurochemistry and electrophysiology of MOR-expressing enteric neurons can help to delineate mechanisms by which morphine perturbs the gut barrier.
Collapse
Affiliation(s)
- Karan H Muchhala
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Eda Koseli
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Aravind R Gade
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Kareem Woods
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Suha Minai
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Minho Kang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298, USA
| | - William L Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA, 23298, USA.
| |
Collapse
|
17
|
Wattchow DA, Smolilo D, Hibberd T, Spencer NJ, Brookes SJ, De Giorgio R, Heitmann PT, Costa M, Dinning PG. The human enteric nervous system. Historical and modern advances. Collaboration between science and surgery. ANZ J Surg 2022; 92:1365-1370. [PMID: 35403788 DOI: 10.1111/ans.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND There are considerable advantages and opportunities for surgeons and trainee surgeons in conducting a period of research allied with basic scientists. Such clinicians are well placed to define relevant clinical questions, provide human material (tissue, biopsy and blood) and translate the techniques derived in experimental animals to human subjects. METHODS This small review explores research conducted on the nervous system of the intestines, with an emphasis on the translation of findings from animal to human. RESULTS This work shows that new techniques of immunohistochemistry and retrograde tracing, developed in animal tissue, have greatly expanded our knowledge of the structure of the human enteric nervous system. CONCLUSIONS Such findings have sparked therapeutic trials for the treatment of gastrointestinal disorders in patients.
Collapse
Affiliation(s)
- David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David Smolilo
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Tim Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Jh Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paul T Heitmann
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
19
|
Morphologies, dimensions and targets of gastric nitric oxide synthase neurons. Cell Tissue Res 2022; 388:19-32. [PMID: 35146560 PMCID: PMC8976817 DOI: 10.1007/s00441-022-03594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
We investigated the distributions and targets of nitrergic neurons in the rat stomach, using neuronal nitric oxide synthase (NOS) immunohistochemistry and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Nitrergic neurons comprised similar proportions of myenteric neurons, about 30%, in all gastric regions. Small numbers of nitrergic neurons occurred in submucosal ganglia. In total, there were ~ 125,000 neuronal nitric oxide synthase (nNOS) neurons in the stomach. The myenteric cell bodies had single axons, type I morphology and a wide range of sizes. Five targets were identified, the longitudinal, circular and oblique layers of the external muscle, the muscularis mucosae and arteries within the gastric wall. The circular and oblique muscle layers had nitrergic fibres throughout their thickness, while the longitudinal muscle was innervated at its inner surface by fibres of the tertiary plexus, a component of the myenteric plexus. There was a very dense innervation of the pyloric sphincter, adjacent to the duodenum. The muscle strands that run between mucosal glands rarely had closely associated nNOS nerve fibres. Both nNOS immunohistochemistry and NADPH histochemistry showed that nitrergic terminals did not provide baskets of terminals around myenteric neurons. Thus, the nitrergic neuron populations in the stomach supply the muscle layers and intramural arteries, but, unlike in the intestine, gastric interneurons do not express nNOS. The large numbers of nNOS neurons and the density of innervation of the circular muscle and pyloric sphincter suggest that there is a finely graded control of motor function in the stomach by the recruitment of different numbers of inhibitory motor neurons.
Collapse
|
20
|
Identifying Types of Neurons in the Human Colonic Enteric Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:243-249. [PMID: 36587163 DOI: 10.1007/978-3-031-05843-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically. However, studies of human enteric nervous system are less advanced despite the potential availability of tissue from elective surgery (with appropriate ethics permits). Recent studies using single cell sequencing have confirmed and extended the classification of enteric neurons in mice and human, but it is not clear whether an encompassing classification has been achieved. We present preliminary data on a means to distinguish classes of myenteric neurons in specimens of human colon combining immunohistochemical, morphological, projection and size data on single cells. A method to apply multiple layers of antisera to specimens was developed, allowing up to 12 markers to be characterised in individual neurons. Applied to multi-axonal Dogiel type II neurons, this approach demonstrated that they constitute fewer than 5% of myenteric neurons, are nearly all immunoreactive for choline acetyltransferase and tachykinins. Many express the calcium-binding proteins calbindin and calretinin and they are larger than average myenteric cells. This methodology provides a complementary approach to single-cell mRNA profiling to provide a comprehensive account of the types of myenteric neurons in the human colon.
Collapse
|
21
|
Perez-Medina A, Galligan JJ. Nitrergic and Purinergic Nerves in the Small Intestinal Myenteric Plexus and Circular Muscle of Mice and Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:33-43. [PMID: 36587144 DOI: 10.1007/978-3-031-05843-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ATP is an excitatory and inhibitory neurotransmitter, while nitric oxide (NO) is an inhibitory neurotransmitter in the enteric nervous system (ENS). We used a vesicular nucleotide transporter (SLC17A9, VNUT) antibody and a nitric oxide synthase (NOS) antibody to identify purinergic and nitrergic nerves in mouse and guinea ileum. Mouse: VNUT-immunoreactivity (ir) was detected in nerve fibers in myenteric ganglia and circular muscle. VNUT-ir fibers surrounded choline acetyltransferase (ChAT), nitric oxide synthase (nNOS), and calretinin-ir neurons. VNUT-ir nerve cell bodies were not detected. Tyrosine hydroxylase (TH)-ir nerves were detected in myenteric ganglia and the tertiary plexus. Guinea pig: VNUT-ir was detected in neurons and nerves fibers and did not overlap with NOS-ir nerve fibers. VNUT-ir was detected in nerve fibers in ganglia but not nerve cell bodies. VNUT-ir nerve fibers surrounded NOS-ir and NOS- neurons. NOS-ir and VNUT-ir nerve fibers did not overlap in myenteric ganglia or circular muscle. VNUT-ir nerves surrounded some ChAT-ir neurons. VNUT-ir and ChAT-ir were detected in separate nerves in the CM. VNUT-ir nerve fibers surrounded calretinin-ir neurons.Conclusions: VNUT-ir neurons likely mediate purinergic signaling in small intestinal myenteric ganglia and circular muscle. ATP and NO are likely released from different inhibitory motorneurons. VNUT-ir and ChAT-ir interneurons mediate cholinergic and purinergic synaptic transmission in the myenteric plexus.
Collapse
Affiliation(s)
- Alberto Perez-Medina
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA. .,The Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Howard MJ. Refining Enteric Neural Circuitry by Quantitative Morphology and Function in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:213-219. [PMID: 36587160 DOI: 10.1007/978-3-031-05843-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA-Seq, electrophysiology and optogenetics in mouse models are used to assess function, identify disease related genes and model enteric neural circuits. Lacking a comprehensive quantitative description of the murine colonic enteric nervous system (ENS) makes it difficult to most effectively use mouse data to better understand ENS function or for development of therapeutic approaches for human motility disorders. Our goal was to provide a quantitative description of mouse colon to establish the extent to which mouse colon architecture, connectivity and function is a useful surrogate for human and other mammalian ENS. Using GCaMP imaging coupled with pharmacology and quantitative confocal and 3D image reconstruction, we present quantitative and functional data demonstrating that regional structural changes and variable distribution of neurons define neural circuit dynamics and functional connectivity responsible for colonic motor patterns and regional functional differences. Our results advance utility of multispecies and gut region-specific data.
Collapse
Affiliation(s)
- Marthe J Howard
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
24
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
25
|
Spencer NJ, Travis L, Wiklendt L, Costa M, Hibberd TJ, Brookes SJ, Dinning P, Hu H, Wattchow DA, Sorensen J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun Biol 2021; 4:955. [PMID: 34376798 PMCID: PMC8355373 DOI: 10.1038/s42003-021-02485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Simon J Brookes
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Phil Dinning
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University, St Louis, MO, USA
| | - David A Wattchow
- Discipline of Surgery, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Julian Sorensen
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
26
|
Li ZS, Hung LY, Margolis KG, Ambron RT, Sung YJ, Gershon MD. The α isoform of cGMP-dependent protein kinase 1 (PKG1α) is expressed and functionally important in intrinsic primary afferent neurons of the guinea pig enteric nervous system. Neurogastroenterol Motil 2021; 33:e14100. [PMID: 33655600 PMCID: PMC8681866 DOI: 10.1111/nmo.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1β, immunoreactivity, was coincident with that of neuronal markers (HuC/D; β3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50 = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.
Collapse
Affiliation(s)
- Zhi S. Li
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Richard T. Ambron
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Ying J. Sung
- Departments of Basic Science, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael D. Gershon
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Abstract
Major advances in our understanding of the functional heterogeneity of enteric neurons are driven by the application of newly developed, innovative methods. In contrast to this progress, both animal and human enteric neurons are usually divided into only two morphological subpopulations, “Dogiel type II” neurons (with several long processes) and “Dogiel type I” neurons (with several short processes). This implies no more than the distinction of intrinsic primary afferent from all other enteric neurons. The well-known chemical and functional diversity of enteric neurons is not reflected by this restrictive dichotomy of morphological data. Recent structural investigations of human enteric neurons were performed by different groups which mainly used two methodical approaches, namely detecting the architecture of their processes and target-specific tracing of their axonal courses. Both methods were combined with multiple immunohistochemistry in order to decipher neurochemical codes. This review integrates these morphological and immunohistological data and presents a classification of human enteric neurons which we believe is not yet complete but provides an essential foundation for the further development of human gastrointestinal neuropathology.
Collapse
Affiliation(s)
- Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
28
|
Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S. Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology 2021; 160:2451-2466.e19. [PMID: 33662386 PMCID: PMC8532026 DOI: 10.1053/j.gastro.2021.02.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Byungchang Jin
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Brian G Jorgensen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Hannah Zogg
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Tyler Chervo
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Andres Gottfried-Blackmore
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada.
| |
Collapse
|
29
|
Spencer NJ, Costa M. The extraordinary partnership of Geoff Burnstock and Mollie Holman. Auton Neurosci 2021; 234:102831. [PMID: 34091324 DOI: 10.1016/j.autneu.2021.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Here, we recognise some of the extraordinary accomplishments of the partnership between Geoff Burnstock and Mollie Holman, and the everlasting impact they both made in autonomic neuroscience in Australia. Much of strength today in autonomic neuroscience can be traced back to a time when Geoff and Mollie commenced their seminal studies on autonomic neuroscience, initially at Oxford, then at The University of Melbourne in the mid 1960's. Mollie and Geoff published their first paper together, at Oxford, with their then mentor, and doyenne of smooth muscle, Professor Edith Bülbring. They did not always agree on the interpretation of their own scientific findings. Geoff was convinced early on that Adenosine triphosphate (ATP), or a related purine, was an excitatory neurotransmitter at peripheral sympathetic neuroeffector junctions. Mollie was reticent for decades. However, she began to take the notion seriously that ATP maybe a neurotransmitter, when receptors for purines were identified in the 1990's. What the partnership between Mollie and Geoff taught us in Australia was to not fear respectful criticism, but rather to be receptive to and embrace objective, collegial and constructive scientific peer-review. One of the many great legacies of Geoff and Mollie was the large number of researchers, who were fortunate disciples of their supervision, and who have now themselves gone on to make significant discoveries in autonomic and visceral neuroscience. This review summarizes some of their major legacies and represents a very personal historical perspective of the two authors, pupils respectively of Mollie and Geoff.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Marcello Costa
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
30
|
Dalziel JE, Spencer NJ, Young W. Microbial signalling in colonic motility. Int J Biochem Cell Biol 2021; 134:105963. [PMID: 33636395 DOI: 10.1016/j.biocel.2021.105963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Sensory nerve endings within the wall of the gastrointestinal (GI) tract may respond to bacterial signalling, providing the basis for key biological processes that underlie intestinal motility and microbial homeostasis. Enteric neurons and smooth muscle cells are well known to express an array of receptors, including G-protein coupled receptors and ligand-gated ion channels, that can sense chemical ligands and other bacterially-derived substances. These include short chain fatty acids, secondary bile acids and lipopolysaccharide. For neural detection of microbial activators to occur, luminal substances must first interact with enterocytes for direct signalling or cross paracellularly. Recent studies indicate that bacterial-derived microvesicles can cross the gut epithelial barrier and affect motility. This suggests a possible intercellular communication pathway between the GI tract and the ENS. We explore the idea that bacterial microvesicles can behave as a delivery package for communication between microbe and host.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.
| | - Nick J Spencer
- Discipline of Physiology, College of Medicine and Public Health, Flinders University, School of Medicine, Adelaide, SA, Australia
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
31
|
Humenick A, Chen BN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 2021; 33:e13964. [PMID: 32839997 PMCID: PMC7772282 DOI: 10.1111/nmo.13964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The enteric nervous system contains multiple classes of neurons, distinguishable by morphology, immunohistochemical markers, and projections; however, specific combinations differ between species. Here, types of enteric neurons in human colon were characterized immunohistochemically, using retrograde tracing combined with multiple labeling immunohistochemistry, focussing on non-motor neurons. METHODS The fluorescent carbocyanine tracer, DiI, was applied to the myenteric plexus in ex vivo preparations, filling neurons projecting within the plexus. Limits of projection lengths of motor neurons were established, allowing them to be excluded from the analysis. Long ascending and descending interneurons were then distinguished by labeling for discriminating immunohistochemical markers: calbindin, calretinin, enkephalin, 5-hydroxytryptamine, nitric oxide synthase, and substance P. These results were combined with a previous published study in which nitric oxide synthase and choline acetyltransferase immunoreactivities were established. KEY RESULTS Long ascending neurons (with projections longer than 8 mm, which excludes more than 95% motor neurons) formed four types, in descending order of abundance, defined by immunoreactivity for: (a) ChAT+/ENK+, (b) ChAT+/ENK+/SP+, (c) ChAT+/Calb+, and (d) ChAT+/ENK+/Calb+. Long descending neurons, up to 70 mm long also formed at least four types, distinguished by immunoreactivity for (a) NOS + cells (without ChAT), (b) ChAT+/NOS+, (c) ChAT+/Calret+, and (d) ChAT+/5HT + cells (with or without NOS). CONCLUSIONS AND INFERENCES Long interneurons, which do not innervate muscularis externa, are likely to coordinate neural activity over distances of many centimeters along the colon. Characterizing their neurochemical coding provides a basis for understanding their roles, investigating their connectivity, and building a comprehensive account of human colonic enteric neurons.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | | | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Simon JH Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| |
Collapse
|
32
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Aktar R, Parkar N, Stentz R, Baumard L, Parker A, Goldson A, Brion A, Carding S, Blackshaw A, Peiris M. Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function. Gut Microbes 2020; 11:1745-1757. [PMID: 32515657 PMCID: PMC7524364 DOI: 10.1080/19490976.2020.1766936] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIMS As the importance of gut-brain interactions increases, understanding how specific gut microbes interact with the enteric nervous system (ENS), which is the first point of neuronal exposure becomes critical. Our aim was to understand how the dominant human gut bacterium Bacteroides thetaiotaomicron (Bt) regulates anatomical and functional characteristics of the ENS. METHODS Neuronal cell populations, as well as enteroendocrine cells, were assessed in proximal colonic sections using fluorescent immunohistochemistry in specific pathogen-free (SPF), germ-free (GF) and Bt conventionalized-germ-free mice (Bt-CONV). RNA expression of tight junction proteins and toll-like receptors (TLR) were measured using qPCR. Colonic motility was analyzed using in vitro colonic manometry. RESULTS Decreased neuronal and vagal afferent innervation observed in GF mice was normalized by Bt-CONV with increased neuronal staining in mucosa and myenteric plexus. Bt-CONV also restored expression of nitric oxide synthase expressing inhibitory neurons and of choline acetyltransferase and substance P expressing excitatory motor neurons comparable to those of SPF mice. Neurite outgrowth and glial cells were upregulated by Bt-CONV. RNA expression of tight junction protein claudin 3 was downregulated while TLR2 was upregulated by Bt-CONV. The enteroendocrine cell subtypes L-cells and enterochromaffin cells were reduced in GF mice, with Bt-CONV restoring L-cell numbers. Motility as measured by colonic migrating motor complexes (CMMCs) increased in GF and Bt-CONV. CONCLUSION Bt, common gut bacteria, is critical in regulating enteric neuronal and enteroendocrine cell populations, and neurogenic colonic activity. This highlights the potential use of this resident gut bacteria for maintaining healthy gut function.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Nabil Parkar
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Lucas Baumard
- Blizard Institute, Queen Mary University of London, London, UK
| | | | | | | | - Simon Carding
- Quadram Institute Bioscience, Norwich, UK,Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK,CONTACT Madusha Peiris Blizard Institute, Queen Mary University of London,LondonE1 2AT, UK
| |
Collapse
|
34
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Semaniakou A, Brothers S, Gould G, Zahiremani M, Paton J, Chappe F, Li A, Anini Y, Croll RP, Chappe V. Disrupted local innervation results in less VIP expression in CF mice tissues. J Cyst Fibros 2020; 20:154-164. [PMID: 32600901 DOI: 10.1016/j.jcf.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Vasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia. Previous human studies have shown that the rich intrinsic neuronal networks for VIP secretion around exocrine glands could be lost in tissues from patients with cystic fibrosis. Our research has since confirmed, in vitro and in vivo, the need for chronic VIP exposure to maintain functional CFTR chloride channels at the cell surface of airways and intestinal epithelium, as well as normal exocrine tissues morphology [1]. The goal of the present study was to examine changes in VIP in the lung, duodenum and sweat glands of 8- and 17-weeks old F508del/F508del mice and to investigate VIPergic innervation in the small intestine of CF mice, before important signs of the disease development. Our data show that a low amount of VIP is found in CF tissues prior to tissue damage. Moreover, we found a specific reduction in VIPergic and cholinergic innervation of the small intestine. The general innervation of the primary and secondary myenteric plexus was lost in CF tissues, with the presence of enlarged ganglionic cells in the tertiary layer. We propose that low amount of VIP in CF tissues is due to a reduction in VIPergic and cholinergic innervation and represents an early defect that constitutes an aggravating factor for CF disease progression.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah Brothers
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Grayson Gould
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mehrsa Zahiremani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamie Paton
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Audrey Li
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Obstetrics and Gynecology, IWK Health Center, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
36
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
37
|
Gould TW, Swope WA, Heredia DJ, Corrigan RD, Smith TK. Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G210-G221. [PMID: 31268770 PMCID: PMC6734370 DOI: 10.1152/ajpgi.00252.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/31/2023]
Abstract
The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - William A Swope
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| |
Collapse
|
38
|
Anetsberger D, Kürten S, Jabari S, Brehmer A. Morphological and Immunohistochemical Characterization of Human Intrinsic Gastric Neurons. Cells Tissues Organs 2019; 206:183-195. [PMID: 31230045 DOI: 10.1159/000500566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
Our knowledge about human gastric enteric neuron types is even more limited than that of human intestinal types. Here, we immunohistochemically stained wholemounts and sections of gastric specimens obtained from 18 tumor-resected patients. Myenteric wholemounts were labeled for choline acetyl transferase (ChAT), neuronal nitric oxide synthase (NOS), and the human neuronal protein HuC/D (as pan-neuronal marker for quantitative analysis) or alternatively for neurofilament (for morphological evaluation). ChAT-positive neurons outnumbered NOS-positive neurons (56 vs. 27%), and neurons negative for both markers accounted for 17%. Two larger groups of neurons (each between 12 and 14%) costained for ChAT and vasoactive intestinal peptide (VIP) or for NOS and VIP, respectively. Clear morphochemical correlation was found for uniaxonal stubby type I neurons (ChAT+; putative excitatory inter- or motor neurons), for uniaxonal spiny type I neurons (NOS+/VIP+; putative inhibitory motor or interneurons), and for multiaxonal type II neurons (ChAT+; putative afferent neurons; immunostaining of additional wholemounts revealed their coreactivity for somatostatin). Whereas these latter neuron types were already known from the human intestine, the morphology of gastric myenteric neurons coreactive for ChAT and VIP was newly described: they had numerous short, extremely thin dendrites and resembled, together with their cell bodies, a "hairy" head. In our sections, nerve fibers coreactive for ChAT and VIP were commonly found only in the mucosa. We suggest these myenteric ChAT+/VIP+/hairy neurons to be mucosal effector neurons. In contrast to myenteric neurons, the much less common submucosal neurons were not embedded in a continuous plexus and did not display any clear morphochemical phenotypes.
Collapse
Affiliation(s)
- Daniel Anetsberger
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kürten
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany,
| |
Collapse
|
39
|
Spencer NJ, Hibberd T, Feng J, Hu H. Optogenetic control of the enteric nervous system and gastrointestinal transit. Expert Rev Gastroenterol Hepatol 2019; 13:281-284. [PMID: 30791770 PMCID: PMC6719318 DOI: 10.1080/17474124.2019.1581061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are limited effective therapies available for improving gastrointestinal (GI) transit in mammals with intractable or chronic constipation. Current therapeutics to improve GI-transit usually require oral ingestion of therapeutic drugs, such as the serotonin receptor agonist prucalopride. However, most receptors are distributed all over the body and unsurprisingly drugs like prucalopride stimulate multiple organs, often leading to unwanted side effects. There is a desperate need in the community to improve GI-transit selectively without effects on other organs. Areas covered: We performed a systematic review of the literature on Pubmed and report significant technical advances in optogenetic control of the GI-tract. We discuss recent demonstrations that optogenetics can be used to potently control the activity of subsets of enteric neurons. Special focus is made of the first recent demonstration that wireless optogenetics can be used to stimulate the colon in conscious, freely-moving, untethered mice causing a significant increase in fecal pellet output. This is a significant technical breakthrough with a major therapeutic potential application to improve GI-transit. Expert opinion: The ability to selectively stimulate the ENS to modulate GI-transit in live mammals using light, avoids the need for oral consumption of any drugs and side effects; by stimulating only the GI-tract.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | - Tim Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 2019; 8:42914. [PMID: 30747710 PMCID: PMC6391068 DOI: 10.7554/elife.42914] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
Collapse
Affiliation(s)
- Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
What is the role of endogenous gut serotonin in the control of gastrointestinal motility? Pharmacol Res 2019; 140:50-55. [DOI: 10.1016/j.phrs.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
42
|
Delvalle NM, Fried DE, Rivera-Lopez G, Gaudette L, Gulbransen BD. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 2018; 315:G473-G483. [PMID: 29927320 PMCID: PMC6230698 DOI: 10.1152/ajpgi.00155.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reflexive activities of the gastrointestinal tract are regulated, in part, by precise interactions between neurons and glia in the enteric nervous system (ENS). Intraganglionic enteric glia are a unique type of peripheral glia that surround enteric neurons and regulate neuronal function, activity, and survival. Enteric glia express numerous neurotransmitter receptors that allow them to sense neuronal activity, but it is not clear if enteric glia monitor acetylcholine (ACh), the primary excitatory neurotransmitter in the ENS. Here, we tested the hypothesis that enteric glia detect ACh and that glial activation by ACh contributes to the physiological regulation of gut functions. Our results show that myenteric enteric glia express both the M3 and M5 subtypes of muscarinic receptors (MRs) and that muscarine drives intracellular calcium (Ca2+) signaling predominantly through M3R activation. To elucidate the functional effects of activation of glial M3Rs, we used GFAP::hM3Dq mice that express a modified human M3R (hM3Dq) exclusively on glial fibrillary acidic protein (GFAP) positive glia to directly activate glial hM3Dqs using clozapine- N-oxide. Using spatiotemporal mapping analysis, we found that the activation of glial hM3Dq receptors enhances motility reflexes ex vivo. Continuous stimulation of hM3Dq receptors in vivo, drove changes in gastrointestinal motility without affecting neuronal survival in the ENS and glial muscarinic receptor activation did not alter neuron survival in vitro. Our results provide the first evidence that GFAP intraganglionic enteric glia express functional muscarinic receptors and suggest that the activation of glial muscarinic receptors contributes to the physiological regulation of functions. NEW & NOTEWORTHY Enteric glia are emerging as novel regulators of enteric reflex circuits, but little is still known regarding the effects of specific transmitter pathways on glia and the resulting consequences on enteric reflexes. Here, we provide the first evidence that enteric glia monitor acetylcholine in the enteric nervous system and that glial activation by acetylcholine is a physiological mechanism that contributes to the functional regulation of intestinal reflexes.
Collapse
Affiliation(s)
| | - David E. Fried
- 2Department of Physiology, Michigan State University, East Lansing, Michigan
| | | | - Luke Gaudette
- 1Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Neuroscience Program, Michigan State University, East Lansing, Michigan,2Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
|
44
|
Opportunities and Challenges for Single-Unit Recordings from Enteric Neurons in Awake Animals. MICROMACHINES 2018; 9:mi9090428. [PMID: 30424361 PMCID: PMC6187697 DOI: 10.3390/mi9090428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.
Collapse
|
45
|
Chen L, Yu B, Luo D, Lin M. Enteric motor dysfunctions in experimental chronic pancreatitis: Alterations of myenteric neurons regulating colonic motility in rats. Neurogastroenterol Motil 2018. [PMID: 29520975 DOI: 10.1111/nmo.13301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanism underlying gastrointestinal (GI) dysmotility associated with chronic pancreatitis (CP) has not been fully elucidated, and enteric nervous system (ENS) has an important regulatory role in gastrointestinal motor function. The aim of this study is to investigate the effect of ENS in the colonic hypomotility induced by trinitrobenzene sulfonic acid (TNBS) infusion which mimics CP. METHODS Male Sprague-Dawley rats were submitted to CP which was induced by pancreatic infusion of 2% TNBS, or sham group with treatment of equal saline. Three weeks after induction of CP, we pathologically examined the inflammation of pancreas and counted the number of withdrawal events stimulated by Von Frey filaments to evaluate hyperalgesia. The gastrointestinal transit rate was measured using Carbon inkl driving test, and the contraction activities of colonic muscle strip were studied in an organ bath system. The expression of choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) in colonic myenteric plexus (MP) of ENS were investigated by Western blotting and double immunofluorescence staining. KEY RESULTS In TNBS-treated group, rats had the signs of chronic pancreatitis 3 weeks after intraductal infusion and had increased sensitivity to mechanical stimulation of the abdomen. For rats with CP, the gastrointestinal transit rate was reduced; in addition, the contractile activities of longitudinal muscle (LM) and circular muscle (CM) strips of distal colon in TNBS group were lower than those in sham group. Immunofluorescence demonstrated that the percentage of ChAT-immunoreactive (IR) neurons in the MP was decreased, but the proportion of NOS-IR neurons in the MP was increased when compared with sham-operated group. Western blotting proved that TNBS infusion down-regulated ChAT but up-regulated NOS expression in the colon MP. CONCLUSIONS & INFERENCES Decreased ChAT-IR neurons and increased NOS-IR in the MP of colon ENS may contribute to the pathogenesis of colonic dysmotility in CP.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - B Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - D Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - M Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| |
Collapse
|
46
|
Spencer NJ, Hibberd TJ, Travis L, Wiklendt L, Costa M, Hu H, Brookes SJ, Wattchow DA, Dinning PG, Keating DJ, Sorensen J. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J Neurosci 2018; 38:5507-5522. [PMID: 29807910 PMCID: PMC8174132 DOI: 10.1523/jneurosci.3489-17.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs.SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI tract [called interstitial cells of Cajal (ICCs)] that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI tract remains unknown. We developed a high-resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI tract.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia,
| | - Timothy J Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lee Travis
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Simon J Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - David A Wattchow
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Phil G Dinning
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Julian Sorensen
- Cyber Sensing and Shaping, Cyber and Electronic Warfare Division, Defence, Science and Technology Group, Edinburgh, South Australia 5111, Australia
| |
Collapse
|
47
|
Smolilo DJ, Costa M, Hibberd TJ, Wattchow DA, Spencer NJ. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J Comp Neurol 2018; 526:1662-1672. [PMID: 29574743 DOI: 10.1002/cne.24436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Ng KS, Montes-Adrian NA, Mahns DA, Gladman MA. Quantification and neurochemical coding of the myenteric plexus in humans: No regional variation between the distal colon and rectum. Neurogastroenterol Motil 2018; 30. [PMID: 28836741 DOI: 10.1111/nmo.13193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND It remains unclear whether regional variation exists in the human enteric nervous system (ENS) ie, whether intrinsic innervation varies along the gut. Recent classification of gastrointestinal neuropathies has highlighted inadequacies in the quantification of the human ENS. This study used paired wholemounts to accurately quantify and neurochemically code the hindgut myenteric plexus, comparing human distal colon and rectum. METHODS Paired human descending colonic/rectal specimens were procured from 15 patients undergoing anterior resection. Wholemounts of myenteric plexi were triple-immunostained with anti-Hu/NOS/ChAT antibodies. Images were acquired by motorized epifluorescence microscopy, allowing assessment of ganglionic density/size, ganglionic area density, and neuronal density. 'Stretch-corrected' values were calculated using stretched/relaxed tissue dimensions. KEY RESULTS Tile-stitching created a collage with average area 99 300 000 μm2 . Stretch-corrected ganglionic densities were similar (colon: median 510 ganglia/100 mm2 [range 386-1170], rectum: 585 [307-923]; P = .99), as were average ganglionic sizes (colon: 57 593 μm2 [40 301-126 579], rectum: 54 901 [38 701-90 211], P = .36). Ganglionic area density (colon: 11.92 mm2 per 100 mm2 [7.53-18.64], rectum: 9.84 [5.80-17.19], P = .10) and stretch-corrected neuronal densities (colon: 189 neurons/mm2 [117-388], rectum: 182 [89-361], P = .31) were also similar, as were the neurochemical profiles of myenteric ganglia, with comparable proportions of NOS+ and ChAT+ neurons (P > .10). CONCLUSIONS AND INFERENCES This study has revealed similar neuronal and ganglionic densities and neurochemical profiles in human distal colon and rectum. Further investigation of other components of the ENS, incorporating additional immunohistochemical markers are required to confirm that there is no regional variation in the human hindgut ENS.
Collapse
Affiliation(s)
- K-S Ng
- Academic Colorectal Unit, Sydney Medical School - Concord, University of Sydney, Concord, New South Wales, Australia
| | - N A Montes-Adrian
- Academic Colorectal Unit, Sydney Medical School - Concord, University of Sydney, Concord, New South Wales, Australia
| | - D A Mahns
- Department of Integrative Physiology, School of Medicine, University of Western Sydney, Campbelltown, New South Wales, Australia
| | - M A Gladman
- Academic Colorectal Unit, Sydney Medical School - Concord, University of Sydney, Concord, New South Wales, Australia
- Enteric Neuroscience and Gastrointestinal Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
49
|
Visceral pain - Novel approaches for optogenetic control of spinal afferents. Brain Res 2018; 1693:159-164. [PMID: 29425907 DOI: 10.1016/j.brainres.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022]
Abstract
Painful stimuli arising within visceral organs are detected by peripheral nerve endings of spinal afferents, whose cell bodies are located in dorsal root ganglia (DRG). Recent technical advances have made it possible to reliably expose and inject single DRG with neuronal tracers or viruses in vivo. This has facilitated, for the first time, unequivocal identification of different types of spinal afferent endings in visceral organs. These technical advances paved the way for a very exciting series of in vivo experiments where individual DRG are injected to facilitate opsin expression (e.g. Archaerhodopsin). Organ-specific expression of opsins in sensory neurons may be achieved by retrograde viral transduction. This means activity of target-specific populations of sensory neurons, within single DRG, can be modulated by optogenetic photo-stimulation. Using this approach we implanted micro light-emitting diodes (micro-LEDs) adjacent to DRG of interest, thereby allowing focal DRG-specific control of visceral and/or somatic afferents in conscious mice. This is vastly different from broad photo-illumination of peripheral nerve endings, which are dispersed over much larger surface areas across an entire visceral organ; and embedded deep within multiple anatomical layers. Focal DRG photo-stimulation also avoids the potential that wide-field illumination of the periphery could inadvertently activate other closely apposed organs, or co-activate different classes of axons in the same organ (e.g. enteric and spinal afferent endings in the gut). It is now possible to selectively control nociceptive and/or non-nociceptive pathways to specific visceral organs in vivo, using wireless optogenetics and micro-LEDs implanted adjacent to DRG, for targeted photo-stimulation.
Collapse
|
50
|
Zetzmann K, Strehl J, Geppert C, Kuerten S, Jabari S, Brehmer A. Calbindin D28k-Immunoreactivity in Human Enteric Neurons. Int J Mol Sci 2018; 19:ijms19010194. [PMID: 29316719 PMCID: PMC5796143 DOI: 10.3390/ijms19010194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Calbindin (CALB) is well established as immunohistochemical marker for intrinsic primary afferent neurons in the guinea pig gut. Its expression by numerous human enteric neurons has been demonstrated but little is known about particular types of neurons immunoreactive for CALB. Here we investigated small and large intestinal wholemount sets of 26 tumor patients in order to evaluate (1) the proportion of CALB+ neurons in the total neuron population, (2) the colocalization of CALB with calretinin (CALR), somatostatin (SOM) and vasoactive intestinal peptide (VIP) and (3) the morphology of CALB+ neurons. CALB+ neurons represented a minority of myenteric neurons (small intestine: 31%; large intestine: 25%) and the majority of submucosal neurons (between 72 and 95%). In the submucosa, most CALB+ neurons co-stained for CALR and VIP (between 69 and 80%) or for SOM (between 20 and 3%). In the myenteric plexus, 85% of CALB+ neurons did not co-stain with the other markers investigated. An unequivocal correlation between CALB reactivity and neuronal morphology was found for myenteric type III neurons in the small intestine: uniaxonal neurons with long, slender and branched dendrites were generally positive for CALB. Since also other neurons displayed occasional CALB reactivity, this protein is not suited as an exclusive marker for type III neurons.
Collapse
Affiliation(s)
- Katharina Zetzmann
- Institute of Anatomy and Cell Biology, University of Erlangen-Nuremberg, Krankenhausstraße 9, D-91054 Erlangen, Germany.
| | - Johanna Strehl
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany.
| | - Carol Geppert
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany.
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, University of Erlangen-Nuremberg, Krankenhausstraße 9, D-91054 Erlangen, Germany.
| | - Samir Jabari
- Institute of Anatomy and Cell Biology, University of Erlangen-Nuremberg, Krankenhausstraße 9, D-91054 Erlangen, Germany.
| | - Axel Brehmer
- Institute of Anatomy and Cell Biology, University of Erlangen-Nuremberg, Krankenhausstraße 9, D-91054 Erlangen, Germany.
| |
Collapse
|