1
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Nishikawa K, Furube E, Morita S, Horii-Hayashi N, Nishi M, Miyata S. Structural Reconstruction of the Perivascular Space in the Adult Mouse Neurohypophysis During an Osmotic Stimulation. J Neuroendocrinol 2017; 29. [PMID: 28072496 DOI: 10.1111/jne.12456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/19/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022]
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) neuropeptides in the neurohypophysis (NH) control lactation and body fluid homeostasis, respectively. Hypothalamic neurosecretory neurones project their axons from the supraoptic and paraventricular nuclei to the NH to make contact with the vascular surface and release OXT and AVP. The neurohypophysial vascular structure is unique because it has a wide perivascular space between the inner and outer basement membranes. However, the significance of this unique vascular structure remains unclear; therefore, we aimed to determine the functional significance of the perivascular space and its activity-dependent changes during salt loading in adult mice. The results obtained revealed that pericytes were the main resident cells and defined the profile of the perivascular space. Moreover, pericytes sometimes extended their cellular processes or 'perivascular protrusions' into neurohypophysial parenchyma between axonal terminals. The vascular permeability of low-molecular-weight (LMW) molecules was higher at perivascular protrusions than at the smooth vascular surface. Axonal terminals containing OXT and AVP were more likely to localise at perivascular protrusions than at the smooth vascular surface. Chronic salt loading with 2% NaCl significantly induced prominent changes in the shape of pericytes and also increased the number of perivascular protrusions and the surface area of the perivascular space together with elevations in the vascular permeability of LMW molecules. Collectively, these results indicate that the perivascular space of the NH acts as the main diffusion route for OXT and AVP and, in addition, changes in the shape of pericytes and perivascular reconstruction occur in response to an increased demand for neuropeptide release.
Collapse
Affiliation(s)
- K Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - E Furube
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - S Morita
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - N Horii-Hayashi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - M Nishi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
3
|
Barzilay R, Ventorp F, Segal-Gavish H, Aharony I, Bieber A, Dar S, Vescan M, Globus R, Weizman A, Naor D, Lipton J, Janelidze S, Brundin L, Offen D. CD44 Deficiency Is Associated with Increased Susceptibility to Stress-Induced Anxiety-like Behavior in Mice. J Mol Neurosci 2016; 60:548-558. [DOI: 10.1007/s12031-016-0835-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
4
|
Naftolin F, Garcia-Segura LM, Horvath TL, Zsarnovszky A, Demir N, Fadiel A, Leranth C, Vondracek-Klepper S, Lewis C, Chang A, Parducz A. Estrogen-Induced Hypothalamic Synaptic Plasticity and Pituitary Sensitization in the Control of the Estrogen-Induced Gonadotrophin Surge. Reprod Sci 2016; 14:101-16. [PMID: 17636222 DOI: 10.1177/1933719107301059] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates approximately 90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible approximately 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction.
Collapse
Affiliation(s)
- Frederick Naftolin
- Reproductive Neuroscience Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mannari T, Miyata S. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains. J Neuroendocrinol 2014; 26:497-509. [PMID: 24943269 DOI: 10.1111/jne.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/24/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.
Collapse
Affiliation(s)
- T Mannari
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | |
Collapse
|
6
|
Park KS, Shin SW, Choi JW, Um SH. Specific protein markers for stem cell cross-talk with neighboring cells in the environment. Int J Stem Cells 2014; 6:75-86. [PMID: 24386551 DOI: 10.15283/ijsc.2013.6.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/04/2023] Open
Abstract
A stem cell interacts with the neighboring cells in its environment. To maintain a living organism's metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell's functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which stem cells cooperate with their surroundings have been discovered and established. In this article, we review several stem cell markers used to communicate with either cancer or immune cells in the human body.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea
| | - Seung Won Shin
- School of Chemical Engineering and Sungkyunkwan University, Suwon
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea ; Graduate School of Management of Technology, Sogang University, Seoul, Korea
| | - Soong Ho Um
- School of Chemical Engineering and Sungkyunkwan University, Suwon ; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon
| |
Collapse
|
7
|
Structural plasticity of interneurons in the adult brain: role of PSA-NCAM and implications for psychiatric disorders. Neurochem Res 2013; 38:1122-33. [PMID: 23354722 DOI: 10.1007/s11064-013-0977-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/26/2023]
Abstract
Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these structural changes take place has been focused mainly on excitatory neurons, while little attention has been paid to interneurons. The exploration of these plastic phenomena in interneurons is very important, not only for our knowledge of CNS physiology, but also for understanding better the etiology of different psychiatric and neurological disorders in which alterations in the structure and connectivity of inhibitory networks have been described. Here we review recent work on the structural remodeling of interneurons in the adult brain, both in basal conditions and after chronic stress or sensory deprivation. We also describe studies from our laboratory and others on the putative mediators of this interneuronal structural plasticity, focusing on the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule is expressed by some interneurons in the adult CNS and, through its anti-adhesive and insulating properties, may participate in the remodeling of their structure. Finally, we review recent findings on the possible implication of PSA-NCAM on the remodeling of inhibitory neurons in certain psychiatric disorders and their treatments.
Collapse
|
8
|
Conboy L, Bisaz R, Markram K, Sandi C. Role of NCAM in Emotion and Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:271-96. [DOI: 10.1007/978-1-4419-1170-4_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Black MA, Deurveilher S, Seki T, Marsh DR, Rutishauser U, Rafuse VF, Semba K. Role of polysialylated neural cell adhesion molecule in rapid eye movement sleep regulation in rats. Eur J Neurosci 2009; 30:2190-204. [PMID: 20128854 DOI: 10.1111/j.1460-9568.2009.07000.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence suggests that synaptic plasticity occurs during homeostatic processes, including sleep-wakefulness regulation, although the underlying mechanisms are not well understood. Polysialylated neural cell adhesion molecule (PSA NCAM) is a transmembrane protein that has been implicated in various forms of plasticity. To investigate whether PSA NCAM is involved in the neuronal plasticity associated with spontaneous sleep-wakefulness regulation and sleep homeostasis, four studies were conducted using rats. First, we showed that PSA NCAM immunoreactivity is present in close proximity to key neurons in several nuclei of the sleep-wakefulness system, including the tuberomammillary hypothalamic nucleus, dorsal raphe nucleus, and locus coeruleus. Second, using western blot analysis and densitometric image analysis of immunoreactivity, we found that 6 h of sleep deprivation changed neither the levels nor the general location of PSA NCAM in the sleep-wakefulness system. Finally, we injected endoneuraminidase (Endo N) intracerebroventricularly to examine the effects of polysialic acid removal on sleep-wakefulness states and electroencephalogram (EEG) slow waves at both baseline and during recovery from 6 h of sleep deprivation. Endo N-treated rats showed a small but significant decrease in baseline rapid eye movement (REM) sleep selectively in the late light phase, and a facilitated REM sleep rebound after sleep deprivation, as compared with saline-injected controls. Non-REM sleep and wakefulness were unaffected by Endo N. These results suggest that PSA NCAM is not particularly involved in the regulation of wakefulness or non-REM sleep, but plays a role in the diurnal pattern of REM sleep as well as in some aspects of REM sleep homeostasis.
Collapse
Affiliation(s)
- Michelle A Black
- Department of Anatomy & Neurobiology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Maćkowiak M, Grzegorzewska M, Budziszewska B, Chocyk A, Hess G, Wędzony K. Cocaine decreases the expression of PSA-NCAM protein and attenuates long-term potentiation via glucocorticoid receptors in the rat dentate gyrus. Eur J Neurosci 2008; 27:2928-37. [DOI: 10.1111/j.1460-9568.2008.06255.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Maćkowiak M, Chocyk A, Markowicz-Kula K, Wędzony K. Acute activation of CB1 cannabinoid receptors transiently decreases PSA-NCAM expression in the dentate gyrus of the rat hippocampus. Brain Res 2007; 1148:43-52. [DOI: 10.1016/j.brainres.2007.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/02/2007] [Accepted: 02/08/2007] [Indexed: 12/13/2022]
|
12
|
Varea E, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ, Nácher J. Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 2007; 32:803-12. [PMID: 16900104 DOI: 10.1038/sj.npp.1301183] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely expressed in the adult mPFC. As the expression of PSA-NCAM is increased by serotonin in other cerebral regions, antidepressants acting on serotonin reuptake may influence PSA-NCAM expression and thus counteract the effects of depression by modulating neuronal structural plasticity. Using immunohistochemistry, we have studied the relationship between serotoninergic fibers and PSA-NCAM expressing neurons in the adult rat mPFC and the expression of serotonin receptors in these cells. The effects of fluoxetine treatment for 14 days on mPFC PSA-NCAM expression have also been analyzed. Although serotoninergic fibers usually do not contact PSA-NCAM immunoreactive neurons, most of these cells express 5-HT3 receptors. In general, chronic fluoxetine treatment induces significant increases in the number of PSA-NCAM immunoreactive neurons and in neuropil immunostaining and coadministration of the 5-HT3 antagonist ondansetron blocks the effects of fluoxetine on PSA-NCAM expression. These results indicate that fluoxetine, acting through 5-HT3 receptors, can modulate PSA-NCAM expression in the mPFC. This modulation may mediate the structural plasticity of this cortical region and opens new perspectives on the study of the molecular bases of depression.
Collapse
Affiliation(s)
- Emilio Varea
- Cell Biology Department, Neurobiology Unit, Program in Basic and Applied Neurosciences, Universitat de València, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Varea E, Castillo-Gómez E, Gómez-Climent MA, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nàcher J. PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat 2007; 33:202-9. [PMID: 17467233 DOI: 10.1016/j.jchemneu.2007.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/05/2007] [Accepted: 03/20/2007] [Indexed: 12/22/2022]
Abstract
The prefrontal cortex (PFC) of adult rodents is capable of undergoing neuronal remodeling and neuroimaging studies in humans have revealed that the structure of this region also appears affected in different psychiatric disorders. However, the cellular mechanisms underlying this plasticity are still unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM participates in neurite outgrowth and synaptogenesis and changes in its expression occur parallel to neuronal remodeling in certain regions of the adult brain. PSA-NCAM is expressed in the hippocampus and temporal cortex of adult humans, but it has not been studied in the PFC. Employing immunohistochemistry on sections from the rostromedial superior frontal gyrus we have found that PSA-NCAM is expressed in the human PFC neuropil following a laminated pattern and in a subpopulation of mature neurons, which lack doublecortin expression. Most of these cells have been identified as interneurons expressing calbindin. The expression of PSA-NCAM in the human PFC is similar to that of rodents. Since this molecule has been linked to the neuronal remodeling found in experimental models of depression, it may also participate in the structural plasticity described in the PFC of depressed patients.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, Troadec JD. Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol 2007; 501:353-68. [PMID: 17245710 DOI: 10.1002/cne.21259] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.
Collapse
Affiliation(s)
- Emilie Pecchi
- Laboratoire de Physiologie Neurovégétative, UMR 6153 CNRS-1147 INRA, Faculté de Saint Jérôme, Université Paul Cézanne Aix-Marseille III, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006; 80:129-64. [PMID: 17029752 DOI: 10.1016/j.pneurobio.2006.08.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/04/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N acetylneuraminic acid whose major carrier in vertebrates is the neural cell adhesion molecule (NCAM). PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. PSA on NCAM is developmentally regulated thus playing a prominent role in different forms of neural plasticity spanning from embryonic to adult nervous system, including axonal growth, outgrowth and fasciculation, cell migration, synaptic plasticity, activity-induced plasticity, neuronal-glial plasticity, embryonic and adult neurogenesis. The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases. Particular attention is focused on postnatal/adult neurogenesis, an issue which has been deeply investigated in the last decade as an example of persisting structural plasticity with potential implications for brain repair strategies. Adult neurogenic sites, although harbouring all subsequent steps of cell differentiation, from stem cell division to cell replacement, do not faithfully recapitulate development. After birth, they undergo morphological and molecular modifications allowing structural plasticity to adapt to the non-permissive environment of the mature nervous tissue, that are paralled by changes in the expression of PSA-NCAM. The use of PSA-NCAM as a marker for exploring differences in structural plasticity and neurogenesis among mammalian species is also discussed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| |
Collapse
|
16
|
Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R, Del Grande P, Ciaroni S. alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus: the possible role of PKCdelta. ACTA ACUST UNITED AC 2006; 66:793-810. [PMID: 16673395 DOI: 10.1002/neu.20255] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.
Collapse
Affiliation(s)
- Paola Ferri
- Institute of Morphological Sciences, University of Urbino Carlo Bo, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Maćkowiak M, Markowicz-Kula K, Fijał K, Wedzony K. Acute and repeated administration of cocaine differentially regulates expression of PSA-NCAM-positive neurons in the rat hippocampus. Brain Res 2005; 1055:149-55. [PMID: 16081054 DOI: 10.1016/j.brainres.2005.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/03/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Recent data indicating that addictive substances are able to alter brain plasticity and its morphology inclined us to determine whether acute and chronic cocaine administration could modify the expression of a polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) in the dentate gyrus of the rat hippocampus. Alterations in the PSA-NCAM expression are known to effect a variety of neuroanatomical rearrangements in the brain structure. Cocaine was administered acutely (15 mg/kg, i.p.) or repeatedly (15 mg/kg, i.p. once a day for five consecutive days). The number of PSA-NCAM immunopositive cells was determined at six time points after cocaine treatment: 6 h and 1, 2, 4, 6, and 10 days (both in acute and repeated treatment). It was found that a single injection of cocaine induced a time-dependent decrease in the number of PSA-NCAM cells in the dentate gyrus. The decrease was observed on day 1 after cocaine treatment and lasted for at least 6 days. In contrast, an increase in the number of PSA-NCAM-positive cells in the dentate gyrus was observed 2 and 4 days after the last dose of repeated cocaine. It is concluded that cocaine can evoke long-lasting changes in the PSA-NCAM protein expression in the dentate gyrus and that the direction of cocaine-induced PSA-NCAM changes depends on the regimen of cocaine administration. It is postulated that cocaine may have impact on hippocampal plasticity and subsequent processes that are controlled by plastic changes in the hippocampal structure.
Collapse
Affiliation(s)
- Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, 12 Smetna Street, Poland
| | | | | | | |
Collapse
|
18
|
Varea E, Nácher J, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ. PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 2005; 136:435-43. [PMID: 16216431 DOI: 10.1016/j.neuroscience.2005.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/25/2005] [Accepted: 08/01/2005] [Indexed: 12/21/2022]
Abstract
The rat medial prefrontal cortex, an area considered homologous to the human prefrontal cortex, is a region in which neuronal structural plasticity has been described during adulthood. Some plastic processes such as neurite outgrowth and synaptogenesis are known to be regulated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). Since PSA-NCAM is present in regions of the adult CNS which are undergoing structural remodeling, such as the hypothalamus or the hippocampus, we have analyzed the expression of this molecule in the medial prefrontal cortex of adult rats using immunohistochemistry. PSA-NCAM immunoreactivity was found both in cell bodies and in the neuropil of the three divisions of the medial prefrontal cortex. All cell somata expressing PSA-NCAM corresponded to neurons and 5' bromodeoxyuridine labeling after long survival times demonstrated that these neurons were not recently generated. Many of these PSA-NCAM immunoreactive neurons in the medial prefrontal cortex could be classified as interneurons on the basis of their morphology and glutamate decarboxylase, isoform 67 expression. Some of the PSA-NCAM immunoreactive neurons also expressed somatostatin, neuropeptide Y and calbindin-D28K. By contrast, pyramidal neurons in this cortical region did not appear to express PSA-NCAM. However, some of these principal neurons appeared surrounded by PSA-NCAM immunoreactive puncta. Some of these puncta co-expressed synaptophysin, suggesting the presence of synapses. Since the etiology of some psychiatric disorders has been related to alterations in medial prefrontal cortex structural plasticity, the study of PSA-NCAM expression in this region may open a new approach to the pathophysiology of these mental disorders.
Collapse
Affiliation(s)
- E Varea
- Neurobiology, Cell Biology Department, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Theodosis DT, Piet R, Poulain DA, Oliet SHR. Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochem Int 2004; 45:491-501. [PMID: 15186915 DOI: 10.1016/j.neuint.2003.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The adult hypothalamo-neurohypophysial system (HNS) undergoes activity-dependent morphological plasticity which modifies astrocytic coverage of its oxytocinergic neurons and their synaptic inputs. Thus, during physiological conditions that enhance central and peripheral release of oxytocin (OT), adjacent somata and dendrites of OT neurons become extensively juxtaposed, without intervening astrocytic processes and receive an increased number of synapses. The morphological changes occur within a few hours and are reversible with termination of stimulation. The reduced astrocytic coverage has direct functional consequences since it modifies extracellular ionic homeostasis, synaptic transmission, and the size and geometry of the extracellular space. It also contributes indirectly to neuronal function by permitting formation of synapses on neuronal surfaces freed of astrocytic processes. Overall, such remodeling is expected to potentiate activated neuronal firing, especially in clusters of tightly packed neurons, an anatomical arrangement characterizing OT neurons. This plasticity connotes dynamic cell interactions that must bring into play cell surface and extracellular matrix adhesive proteins like those intervening in developing neuronal systems undergoing neuronal-glial and synaptogenic transformations. It is worth noting, therefore, that adult HNS neurons and glia continue to express such molecules, including polysialic acid (PSA)-enriched neural cell adhesion molecule (PSA-NCAM) and the glycoprotein, tenascin-C. PSA is a large, complex sugar on the extracellular domain of NCAM considered a negative regulator of adhesion; it occurs in large amounts on the surfaces of HNS neurons and astrocytes. Tenascin-C, on the other hand, possesses adhesive and repulsive properties; it is secreted by HNS astrocytes and occurs in extracellular spaces and on cell surfaces after interaction with appropriate ligands. These molecules have been considered permissive factors for morphological plasticity. However, because of their localization and inherent properties, they may also serve to modulate the extracellular environment and in consequence, synaptic and volume transmission in a system in which the extracellular compartment is constantly being modified.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- INSERM U378 Neurobiologie Morphofonctionelle, Univeristé Victor Segalen, 1 Rue Camille Saint-Saëns, F33077 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
20
|
Abstract
During the female reproductive cycle, hypothalamic oxytocin (OT) neurons undergo sharp changes in excitability. In lactating mammals, bursts of electrical activity of OT neurons result in the release of large amounts of OT in the bloodstream, which causes milk ejection. One hypothesis is that OT neurons regulate their own firing activity and that of nearby OT neurons by somatodendritic release of OT. In this study, we show that OT neuron activity strongly reduces inhibitory synaptic transmission to these neurons. This effect is blocked by antagonists of both adenosine and OT receptors and is mimicked by OT application. Inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation by tetanus toxin completely blocked the stimulation-induced reduction in inhibitory input, as did the calcium chelator BAPTA. During lactation, the readily releasable pool of secretory vesicles in OT cell bodies was doubled, and calcium currents were upregulated. This resulted in an increased inhibition of GABAergic synaptic transmission by somatodendritic release during lactation compared with the adult virgin stage. These results demonstrate that somatodendritic release is augmented during lactation, which is a novel form of plasticity to change the strength of synaptic transmission.
Collapse
|
21
|
Abstract
Synaptic plasticity in the amygdala appears to be necessary for the generation of emotional memories. However, the molecular bases of this plasticity are not fully understood. Because the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) has been implicated in memory consolidation in the hippocampus and temporal cortex, we have studied in detail the expression of this molecule in the adult rat amygdala with an antibody against PSA-NCAM. Our results demonstrate for the first time the presence of PSA-NCAM in the adult rat amygdala. Immunoreactive somata and processes are abundant in the amygdalo-hippocampal transition area, central nucleus, intra-amygdaloid bed nucleus of the stria terminalis, anterior and posterior cortical nuclei, periamygdaloid cortex and medial nucleus of the amygdala. In addition PSA-NCAM immunoreactive neuronal somata and processes exist in the lateral, basal and accessory basal nuclei, anterior amygdaloid area and amygdalo-striatal area. The presence of this molecule in areas that receive olfactory or vomeronasal input could reflect the intrinsic plasticity of these chemosensory systems. PSA-NCAM expression in the lateral amygdala could indicate its participation in the plastic events that lead to the generation of emotional memories such as those related to fear conditioning.
Collapse
Affiliation(s)
- J Nacher
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
22
|
Ramirez-Castillejo C, Nacher J, Molowny A, Ponsoda X, Lopez-Garcia C. PSA-NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration. J Comp Neurol 2002; 453:145-56. [PMID: 12373780 DOI: 10.1002/cne.10390] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lizard medial cortex, a region homologous to the mammalian dentate gyrus, shows postnatal neurogenesis and the surprising ability to replace its neurons after being lesioned specifically with the neurotoxin 3-acetylpyridine. As the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed during neuronal migration and differentiation, we have studied its distribution in adult lizards and also during the lesion-regeneration process. In the medial cortex of control animals, many labeled fusiform somata, presumably corresponding to migratory neuroblasts, appeared in the inner plexiform layer. There were also scattered immunoreactive granule neurons in the cell layer. Double immunocytochemistry with 5'-bromodeoxyuridine revealed that some of the PSA-NCAM-expressing cells in the inner plexiform and cell layers were generated recently. PSA-NCAM immunoreactivity was also present in the dorsomedial, dorsal, and lateral cortices, as well as in the dorsal ventricular ridge, the nucleus accumbens, and the nucleus sphericus. Twelve hours after the injection of 3-acetylpyridine, some medial cortex granule neurons appeared degenerated, although some of them still expressed PSA-NCAM. One to 2 days after the injection, most granule neurons appeared degenerated and no PSA-NCAM immunoreactivity was detected in the medial cortex cell layer. Four to 7 days after treatment, abundant labeled fusiform cells populated the inner plexiform layer and some immunoreactive somata were seen in the cell layer. Fifteen to 30 days after the neurotoxin injection, the number of PSA-NCAM expressing granule neurons augmented considerably and the level was still above control levels in lizards that survived 42 days. Our results show for the first time the expression of PSA-NCAM in a reptile brain, where it appears to participate in the migration and differentiation of granule neurons during adult neurogenesis and regeneration.
Collapse
Affiliation(s)
- Carmen Ramirez-Castillejo
- Neurobiologia, Biologia Celular, Facultad de Ciencias Biologicas, Universidad de Valencia, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
23
|
Ikegaya Y, Yamada M, Fukuda T, Kuroyanagi H, Shirasawa T, Nishiyama N. Aberrant synaptic transmission in the hippocampal CA3 region and cognitive deterioration in protein-repair enzyme-deficient mice. Hippocampus 2002; 11:287-98. [PMID: 11769310 DOI: 10.1002/hipo.1043] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
L-aspartate is the amino-acid residue most susceptible to spontaneous isomerization. This denaturation causes an alteration in the biological activity of the protein and is regarded as an aging process of the protein. Protein L-isoaspartyl methyltransferase (PIMT) repairs this post-translational modification and thus is implicated in retarding the aging process of proteins. PIMT is highly expressed in the brain, and its deficiency results in progressive epilepsy after 4 weeks of age, with a fatal seizure in mice. Here we report the pathophysiological role of this repair system in the hippocampal slice of PIMT-deficient mice. The hippocampal mossy fiber-CA3 synapses of PIMT-deficient mice showed hyperexcitation that was repressed by a gamma-aminobutyric acid (GABA)A receptor agonist muscimol. In addition, the mossy fiber-CA3 synapses failed to show long-term potentiation or paired-pulse facilitation. No abnormality, however, was observed in Schaffer collateral-CA1 synapses or in perforant path-dentate gyrus synapses. Electron microscopic study revealed aberrant distribution of synaptic vesicles in the mossy fiber terminals and vacuolar degeneration at the axon hillock of dentate granule cells in PIMT-deficient mice. Furthermore, the PIMT-deficient mice showed impaired spatial memory in Morris water maze test and exhibited fewer anxiety-related behaviors in the elevated-plus test. These results suggest that the mossy fiber-CA3 system is vulnerable to aspartate isomerization and that the PIMT-mediated repair system is essential for maintenance of normal functions of the hippocampus.
Collapse
Affiliation(s)
- Y Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains. Given this important clinical implication, we were interested in finding whether similar neurons existed in the adult rat hippocampus and to characterize their distribution, morphology and phenotype. PSA-NCAM immunocytochemistry reveals labeled neurons in the subiculum, fimbria, alveus, hilus, and stratum oriens, lucidum and radiatum of CA3 and CA1. They are mainly distributed in the ventral hippocampus, and have polygonal or fusiform somata with multipolar or bipolar morphology. These neurons show long straight dendrites, which reach several strata and even enter the fimbria and the alveus. These dendrites are often varicose, appear devoid of excrescences and apparently do not show spines. Most of these neurons display GABA immunoreactivity and further analysis has shown that a subpopulation expresses calretinin, but not somatostatin, neuropeptide Y, parvalbumin, calbindin or NADPH diaphorase. Our study demonstrates that there is an important subpopulation of PSA-NCAM immunoreactive neurons, many of which can be considered interneurons, outside the rat granule cell layer, probably homologous to those described in the human hippocampus. The presence of the polysialylated form of NCAM in these neurons could indicate that they are undergoing continuous remodeling during adulthood and may have an important role in hippocampal structural plasticity.
Collapse
Affiliation(s)
- Juan Nacher
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, York Avenue 1230, New York, NY 10021, USA.
| | | | | |
Collapse
|
25
|
Theodosis DT. Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 2002; 23:101-35. [PMID: 11906204 DOI: 10.1006/frne.2001.0226] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxytocin-secreting neurons of the hypothalamoneurohypophysial system undergo reversible morphological changes whenever they are strongly stimulated. In the hypothalamus, such structural plasticity is represented by modifications in the size and shape of their somata and dendrites, in the extent to which their surfaces are covered by glia, and in the density of their synapses. In the neurohypophysis, there is a parallel reduction in glial (pituicyte) coverage of their axons together, with retraction of pituicyte processes from the perivascular basal lamina and an increase in the number and size of their terminals. These changes occur rapidly, within a few hours. On the other hand, the system returns to its prestimulated condition on arrest of stimulation at a rate that depends on the length of time it has remained activated. Such neuronal-glial changes have several functional consequences. In the hypothalamic nuclei, reduction in astrocytic coverage of oxytocinergic neurons and their synapses modifies extracellular ionic homeostasis and glutamate clearance and, therefore, their overall excitability. Since it results in extensive dendritic bundling, it may also lead to ephaptic interactions and may facilitate dendritic electrotonic coupling. A most important indirect effect may be to permit synaptic remodeling that occurs concomitantly and that results in significant increases in the number of excitatory and inhibitory synapses driving their activity. In the stimulated neurohypophysis, glial retraction results in increased levels of extracellular K+ which can enhance neurohormone release while an enlarged neurovascular contact zone may facilitate diffusion of neurohormone into the circulation. Ongoing work aims to unravel the cell mechanisms and factors underlying such plasticity and has revealed that neurons and glia of the hypothalamoneurohypophysial system continue to express juvenile molecular features associated with similar neuronglial interactions and synaptic events during development and regeneration. They include strong expression of cell surface adhesion molecules like F3/contactin and polysialylated neural cell adhesion molecule, extracellular matrix glycoproteins like tenascin C, and cytoskeletal proteins like vimentin and microtubule-associated protein 1D. Some of these molecules reach the cell surface constitutively while others follow the activity-dependent regulated pathway. We consider many of these molecular features permissive, allowing oxytocin neurons and their glia to undergo morphological remodeling throughout life, provided the proper stimulus intervenes. In the hypothalamic nuclei, one such stimulus is centrally released oxytocin; in the neurohypophysis, an adrenergic, cAMP-mediated mechanism appears responsible.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- INSERM U378 Neuroendocrinologie Morphofonctionelle, Institut François Magendie, Bordeaux, France.
| |
Collapse
|
26
|
Theodosis DT, Poulain DA. Maternity leads to morphological synaptic plasticity in the oxytocin system. PROGRESS IN BRAIN RESEARCH 2001; 133:49-58. [PMID: 11589144 DOI: 10.1016/s0079-6123(01)33004-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The oxytocinergic system, which plays a major role in the control of different aspects of maternity, undergoes extensive synaptic and neuronal-glial remodelling during parturition and lactation and has thus become a remarkable example of activity-dependent morphological synaptic plasticity in the adult mammalian brain. The use of different comparative ultrastructural analyses on the rat supraoptic and paraventricular nuclei, together with identification of pre- and post-synaptic elements, has allowed us to show that there is a significant increase in the number of GABAergic, glutamatergic and noradrenergic synapses impinging on oxytocin neurons, concomitant with a reduction of glial coverage of the neurons. This synaptic plasticity involves axo-dendritic and axo-somatic contacts originating from terminals making one or several synaptic contacts in one plane of section. While noradrenergic afferents arise from medullary catecholaminergic neurons, our recent in vitro observations indicate that GABAergic and glutamatergic afferents derive, at least partly, from local intrahypothalamic neurons, in close proximity to oxytocin neurons. The cellular mechanisms underlying this morphological synaptic plasticity remain to be determined but it is highly likely that they depend on increased activity in both pre- and post-synaptic elements. Moreover, the oxytocin system continues to express 'embryonic' molecular features that may allow the morphological plasticity to occur. In particular, it expresses high levels of cell surface adhesion molecules currently thought to intervene in synaptic remodelling in the developing and lesioned central nervous system, including the weakly adhesive polysialylated isoform of the Neural Cell Adhesion Molecule, the axonal glycoprotein F3 and its ligand, the extracellular matrix glycoprotein, tenascin-C.
Collapse
Affiliation(s)
- D T Theodosis
- INSERM U378, Institut François Magendie, Université Victor Segalen Bordeaux II, 1 rue Léo Saignat, F33076 Bordeaux, France.
| | | |
Collapse
|
27
|
McCabe JT, Burrell AS. Alterations of AP-1 and CREB protein DNA binding in rat supraoptic and paraventricular nuclei by acute and repeated hyperosmotic stress. Brain Res Bull 2001; 55:347-58. [PMID: 11489342 DOI: 10.1016/s0361-9230(01)00520-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrophoretic mobility shift assays were used to analyze Fos and CREB protein-DNA-interactions in the rat hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. After intraperitoneal administration of normal saline, PVN (but not SON) extracts exhibited a significant 183% increase in binding to the activational protein-1 (AP-1) canonical DNA binding sequence. Hypertonic saline treatment resulted in a approximately 2.5-fold increase in binding by tissue samples from both regions. AP-1 binding by SON extracts after two hypertonic saline injections caused a 307% increase in binding that was significantly greater than binding by PVN extracts (207%). Fos binding was equal in the SON after one and two hypertonic saline injections, but the PVN exhibited less of an increase after two injections. Binding to the canonical cyclic adenosine monophosphate regulatory element (CRE), and phosphorylated CREB (pCREB) supershift binding, indicated pCREB is constitutively expressed. Any experimental treatment (handling and an injection) caused an elevation in binding in the PVN. AP-1 protein complex DNA binding was increased after osmotic stimulation, and SON and PVN exhibit differences in AP-1 DNA binding kinetics, after repeated hypertonic saline stress. Changes in PVN tissue samples were subtle, and may reflect the fact that magnocellular and parvocellular neurons mediate, respectively, fluid homeostasis and stress responses.
Collapse
Affiliation(s)
- J T McCabe
- Department of Anatomy, Physiology and Genetics, F. E. Hébert School of Medicine, The Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
28
|
Miyata S, Funatsu N, Matsunaga W, Kiyohara T, Sokawa Y, Maekawa S. Expression of the IgLON cell adhesion molecules Kilon and OBCAM in hypothalamic magnocellular neurons. J Comp Neurol 2000; 424:74-85. [PMID: 10888740 DOI: 10.1002/1096-9861(20000814)424:1<74::aid-cne6>3.0.co;2-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vasopressin (AVP) and oxytocin (OXT) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) display reversible structural plasticity of neurons and glial cells under different conditions of neuropeptide secretion. In the present study, we investigated the expression of two immunoglobulin superfamily (IgSF) proteins, Kilon and OBCAM, in the magnocellular neurons by using monoclonal antibodies. Anti-Kilon antibody reacted specifically with the bacterially expressed recombinant Kilon but not with the recombinant OBCAM, and similarly anti-OBCAM antibody specifically recognized the recombinant OBCAM. Western blotting analysis revealed the specific expression of Kilon and OBCAM in the SON homogenates. Although Kilon and OBCAM of the SON homogenates were present as the insoluble form, most Kilon was present in the Triton-insoluble fraction, and OBCAM was localized mainly in the Triton-soluble fraction. Immunocytochemistry revealed Kilon and OBCAM immunoreactivity in the magnocellular neurons of the SON and PVN of the rat hypothalamus compared with outside of the SON and PVN in the hypothalamus. The double-labeling study with confocal microscopy further demonstrated that Kilon immunoreactivity was observed mainly in the dendrites of AVP-secreting neurons and also occasionally OXT-secreting neurons. However, OBCAM immunoreactivity was exclusively seen in the dendrites of AVP-secreting magnocellular neurons. Chronic physiological stimulation by 2% NaCl had no effect on the expression levels of either IgLON protein in the SON. Our study thus demonstrated specific expression of Kilon and OBCAM in the hypothalamic magnocellular neurons, particularly in dendrites, suggesting that they confer on magnocellular neurons the ability to rearrange dendritic connectivity.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Theodosis DT, Pierre K, Poulain DA. Differential expression of two adhesion molecules of the immunoglobulin superfamily, F3 and polysialylated NCAM, in hypothalamic magnocellular neurones capable of plasticity. Exp Physiol 2000; 85 Spec No:187S-196S. [PMID: 10795922 DOI: 10.1111/j.1469-445x.2000.tb00023.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adult hypothalamo-neurohypophysial system undergoes activity-dependent, reversible morphological changes which result in reduced astrocytic coverage of its neurones and an increase in their synaptic contacts. Our recent observations show that neurones and glia of the hypothalamo-neurohypophysial system continue to express 'embryonic' molecular features which may underlie their capacity to undergo such plasticity. These include expression of cell surface molecules like the glycosyl phosphatidyl inositol (GPI)-linked glycoprotein F3, which intervenes in axonal outgrowth, and the polysialylated isoform of the neural cell adhesion molecule (PSA-NCAM), which reduces cell adhesion and promotes dynamic cell interactions. F3 is colocalised with vasopressin and oxytocin hormones in neurosecretory granules and follows an activity-dependent, regulated pathway for surface expression on neurohypophysial axons. In contrast, PSA-NCAM appears to follow a constitutive pathway, independent of the activity of the hypothalamo-neurohypophysial system, for expression on axonal and glial surfaces, in the hypothalamic magnocellular nuclei and in the neurohypophysis. The role of F3 remains to be determined but in view of its presumptive functions during development, we propose that it promotes remodelling of neurosecretory terminals. On the other hand, we provide direct evidence that surface expression of PSA on NCAM is essential to morphological plasticity since its specific enzymatic degradation in vivo inhibited the neuronal-glial and synaptic changes normally induced by stimulation of secretion from the hypothalamo-neurohypophysial system.
Collapse
Affiliation(s)
- D T Theodosis
- INSERM U378 Neurobiologie Morphofonctionnelle, Institut François Magendie, Bordeaux, France.
| | | | | |
Collapse
|
30
|
Theodosis DT, Poulain DA. Contribution of astrocytes to activity-dependent structural plasticity in the adult brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:175-82. [PMID: 10635028 DOI: 10.1007/978-1-4615-4685-6_14] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
A striking example of the capacity of adult astrocytes to undergo reversible morphological changes in response to stimuli which enhance neuronal activity is offered by astrocytes of the adult hypothalamo-neurohypophysial system (HNS). The HNS is composed of magnocellular neurons secreting the neurohormones oxytocin and vasopressin from axon terminals in the neurohypophysis. Upon activation of HNS secretion, glial coverage of oxytocin neurons significantly diminishes and their surfaces become extensively juxtaposed. These glial changes are invariably accompanied by structural synaptic remodelling resulting in increased numbers of GABAergic, glutamatergic, and noradrenergic afferents. In the neurohypophysis, they result in an enhanced neurohemal contact area. HNS glia in the adult continue to display "embryonic" features that may allow such activity-dependent structural plasticity. For example, supraoptic astrocytes display a radial glia-like morphology and continue to express vimentin, together with GFAP. All HNS astrocytes secrete extracellular matrix glycoproteins, like tenascin-C; they also express high levels of polysialylated NCAM or PSA-NCAM and the glycoprotein F3, molecules considered essential for neuronal-glial interactions in the developing and lesioned CNS. HNS expression of most of these proteins does not visibly vary under different conditions of neurohormone secretion. We consider them as permissive factors, therefore, allowing HNS cells to undergo remodeling whenever the proper stimuli intervene. In the hypothalamic nuclei, one such stimulus is oxytocin itself which, in synergy with steroids, can induce neuronal-glial remodelling; adrenaline does so in the neurohypophysis.
Collapse
Affiliation(s)
- D T Theodosis
- Neurobiologie Morphofonctionnelle INSERM U. 378 Institute François Magendie, Bordeaux, France
| | | |
Collapse
|
31
|
Sandi C, Loscertales M. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 1999; 828:127-34. [PMID: 10320732 DOI: 10.1016/s0006-8993(99)01346-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temporal pattern of exposure to glucocorticoids has been reported to be a critical factor in determining the outcome of glucocorticoid actions at the brain. In this work, the effects of different regimes of subcutaneous corticosterone administration (acute-single injection-vs. chronic-daily injection for 21 days) on the expression of the neural cell adhesion molecule (NCAM) were evaluated in different rat brain regions (CA1-CA4, dentate gyrus, frontal cortex, striatum, and hypothalamus). The treatments were selected according to previous studies in which we showed biphasic effects of corticosterone on memory formation, with acute corticosterone effects being facilitating and chronic effects being deleterious. In addition, the chronic treatment was shown by others to result in structural alterations at the hippocampus. NCAM was evaluated given its cell-cell recognition and adhesion properties, and the involvement on synaptic stabilisation subserving long-term memory formation. The results showed a biphasic modulation of NCAM levels at the frontal cortex, with acute corticosterone resulting in enhanced NCAM levels at 8 h and 24 h posttraining, and the chronic treatment decreasing its expression. None of the other brain areas examined showed significant changes in NCAM expression with corticosterone treatments, except for the hypothalamus that showed reduced NCAM levels after the chronic corticosterone regime. These results support the view that NCAM regulation at the frontal cortex might be a mechanism by which corticosterone treatments influence memory formation. They also highlight the hypothalamus as a brain area particularly sensitive to NCAM regulation by prolonged exposure to elevated glucocorticoids.
Collapse
Affiliation(s)
- C Sandi
- Brain and Behaviour Research Group, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | |
Collapse
|
32
|
Abstract
F3, a glycoprotein of the immunoglobulin superfamily implicated in axonal growth, occurs in oxytocin (OT)-secreting and vasopressin (AVP)-secreting neurons of the adult hypothalamo-neurohypophysial system (HNS) whose axons undergo morphological changes in response to stimulation. Immunocytochemistry and immunoblot analysis showed that during basal conditions of HNS secretion, there are higher levels of this glycosylphosphatidyl inositol-anchored protein in the neurohypophysis, where their axons terminate, than in the hypothalamic nuclei containing their somata. Physiological stimulation (lactation, osmotic challenge) reversed this pattern and resulted in upregulation of F3 expression, paralleling that of OT and AVP under these conditions. In situ hybridization revealed that F3 expression in the hypothalamus is restricted to its magnocellular neurons and demonstrated a more than threefold increase in F3 mRNA levels in response to stimulation. Confocal and electron microscopy localized F3 in secretory granules in all neuronal compartments, a localization confirmed by detection of F3 immunoreactivity in granule-enriched fractions obtained by sucrose density gradient fractionation of rat neurohypophyses. F3 was not visible on any cell surface in the magnocellular nuclei. In contrast, in the neurohypophysis, it was present not only in secretory granules but also on the surface of axon terminals and glia and in extracellular spaces. Taken together, our observations reveal that the cell adhesion glycoprotein F3 is colocalized with neurohypophysial peptides in secretory granules. It follows, therefore, the regulated pathway of secretion in HNS neurons to be released by exocytosis at their axon terminals in the neurohypophysis, where it may intervene in activity-dependent structural axonal plasticity.
Collapse
|
33
|
Theodosis DT, Pierre K, Cadoret MA, Allard M, Faissner A, Poulain DA. Expression of high levels of the extracellular matrix glycoprotein, tenascin-C, in the normal adult hypothalamoneurohypophysial system. J Comp Neurol 1997; 379:386-98. [PMID: 9067831 DOI: 10.1002/(sici)1096-9861(19970317)379:3<386::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glia and neurons of the hypothalamoneurohypophysial system (HNS) undergo reversible morphological changes, which are concomitant with the remodelling of afferents onto the neurons, under different conditions of neurohormone secretion. Here, we show that the adult rat HNS contains high levels of tenascin-C (TN-C), which is an extracellular matrix glycoprotein whose expression is usually associated with neuronal-glial interactions in the developing and lesioned central nervous system (CNS). By using light and electron microscopic immunocytochemical procedures, we visualized TN-C immunoreactivity in the hypothalamic supraoptic (SON) and paraventricular nuclei, where somata of the neurons are localized; in the median eminence, where their axons transit; and in the neurohypophysis, where they terminate. Hypothalamic areas adjacent to the magnocellular nuclei were devoid of immunoreactivity. Electron microscopy of the neurohypophysis showed immunolabelling of perivascular spaces, glial (pituicyte) and axonal surfaces, a type of labelling that also characterized the median eminence. In the hypothalamic nuclei, there was labelling of extracellular spaces and astrocytic surfaces. In normal animals, we detected no cytoplasmic reaction in glia somata, neurons, or endothelial cells. However, in animals treated with the intracellular transport blocker colchicine, there was intracytoplasmic labelling of all HNS glial cells, indicating a glial source for TN-C. Immunoblot analysis revealed TN-C isoforms of apparent high molecular weight (225, 240, and 260 kD) in the SON and median eminence, whereas lower MW forms (190/200 kD) predominated in the neurohypophysis. By using immunocytochemistry and immunoblot analysis, we found no visible differences in TN-C expression in relation to age, sex, or differing neurohypophysial secretion, which suggests that the expression of TN-C is a permanent feature of the HNS.
Collapse
Affiliation(s)
- D T Theodosis
- INSERM U. 378 Université Victor Segalen-Bordeaux 2, Institut François Magendie, France.
| | | | | | | | | | | |
Collapse
|
34
|
Carter CS, Altemus M. Integrative functions of lactational hormones in social behavior and stress management. Ann N Y Acad Sci 1997; 807:164-74. [PMID: 9071349 DOI: 10.1111/j.1749-6632.1997.tb51918.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For mammalian reproduction to succeed, self-defense and asociality must be subjugated to positive social behaviors, at least during birth, lactation, and sexual behavior. Perhaps the important task of regulating the interaction between social and agonistic behaviors is managed, in part, by interactions between two related neurochemical systems that incorporate oxytocin and vasopressin in their functions. The neuropeptides oxytocin and vasopressin participate in important reproductive functions, such as parturition and lactation, and homeostatic responses, including modulation of the adrenal axis. Recent evidence also implicates these hormones in social aspects of reproductive behaviors. For example, oxytocin is important for a variety of positive social behaviors, including the regulation of maternal-infant interactions. In adult animals, oxytocin may facilitate both social contact and selective social interactions associated with social attachment and pair bonding, and it participates in the regulation of parasympathetic functions. Vasopressin, in contrast, is associated with behaviors that might be broadly classified as "defensive" including enhanced arousal, attention, or vigilance, increased aggressive behavior, and a general increase in sympathetic functions. On the basis of the literature on the functions of these hormones and our own recent findings, we propose that dynamic interactions between oxytocin and vasopressin are components of a larger system which integrates the neuroendocrine and autonomic changes associated with mammalian social behaviors and the concurrent regulation of the stress axis. In addition, studies of lactating females provide a valuable model for understanding the more general neuroendocrinology of the stress axis. Peptide hormones, including oxytocin and vasopressin, do not readily cross the blood-brain barrier and must be administered centrally (i.c.v.) to reach the brain. Nasal sprays have been used to promote milk let down and have been used in some behavioral studies, but the extent to which such compounds reach the brain is not known. Therefore, virtually nothing is known regarding the effects in humans of centrally administered oxytocin. The study of human lactation, in conjunction with animal research, provides an opportunity to begin to develop viable hypotheses regarding the behavioral effects of oxytocin.
Collapse
Affiliation(s)
- C S Carter
- Department of Zoology, University of Maryland College Park 20742, USA
| | | |
Collapse
|
35
|
N-Propionylated group B meningococcal polysaccharide glycoconjugate vaccine against group B meningococcal meningitis. Int J Infect Dis 1997. [DOI: 10.1016/s1201-9712(97)90080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Abstract
Research in the hypothalamus and pituitary has provided compelling evidence that neurone-glia interactions are important in regulating the activity of both neurones and glia. These interactions involve receptor-mediated signalling, intracellular Ca2+ signalling, growth factor-steroid actions and activity-dependent modifications in neurone-glia anatomical relationships. This review focuses on neuroendocrine systems, such as the intermediate lobe of the pituitary and the hypothalamo-neurohypophysial system, which exemplify some of these activities. Although their functional significance has not been fully elucidated, the synaptic responses, release of bioactive factors and changing morphology of certain glia highlight their integral role in hypothalamic function.
Collapse
|
37
|
García-Segura LM, Chowen JA, Párducz A, Naftolin F. Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol 1994; 44:279-307. [PMID: 7886228 DOI: 10.1016/0301-0082(94)90042-6] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is now obvious that the CNS is capable of undergoing a variety of plastic changes at all stages of development. Although the magnitude and distribution of these changes may be more dramatic in the immature animal, the adult brain retains a remarkable capacity for undergoing morphological and functional modifications. Throughout development, as well as in the postpubertal animal, gonadal steroids exert an important influence over the architecture of specific sex steroid-responsive areas, resulting in sexual dimorphisms at both morphological and physiological levels. We are only now beginning to gain insight into the mechanisms involved in gonadal steroid-induced synaptic changes. The number of synaptic inputs to specific neuronal populations is sexually dimorphic and this can be modulated by changes in the sex steroid environment. These modifications can be correlated with other morphological changes, such as glial cell activation, that are occurring simultaneously in the same anatomical area. Indeed, the close physical relationship between glial cells and neuronal synaptic contacts makes them an ideal candidate for participating in this process. Interestingly, not only can the morphology and immunoreactivity of glial cells be modulated by gonadal steroids, but a close negative correlation between the number of synapses and the amount of glial ensheathing of a neuron has been demonstrated, suggesting an active participation of these cells in this process. Glia have sex steroid receptors, are capable of producing and metabolizing steroids, and can produce other neuronal trophic factors in response to sex steroids. Hence, their role in gonadal steroid-induced synaptic plasticity is becoming more apparent. In addition, there is recent evidence that this process may involve certain cell surface molecules, such as the N-CAMs, since a specific isoform of this molecule, previously referred to as the embryonic form, is found in those areas of the brain which maintain the capacity to undergo synaptic remodelling. However, there is much work to be done in order to fully understand this phenomenon and before bringing it into a clinical setting in hopes of treating neurodegenerative diseases or injuries to the nervous system.
Collapse
|
38
|
Garcia-Segura LM, Chowen JA, Dueñas M, Torres-Aleman I, Naftolin F. Gonadal steroids as promoters of neuro-glial plasticity. Psychoneuroendocrinology 1994; 19:445-53. [PMID: 7938345 DOI: 10.1016/0306-4530(94)90031-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Estradiol induces coordinated modifications in the extension of glial and neuronal processes in the arcuate nucleus of the hypothalamus of adult female rats. This hormonal effect results in natural fluctuations in the ensheathing of arcuate neurons by glial processes and these glial changes are linked to a remodelling of inhibitory GABAergic synapses during the estrous cycle. Hormonally induced glial and synaptic changes appear to be dependent on specific recognition or adhesion molecules on the neuronal and/or glial membranes.
Collapse
|