1
|
Prins TJ, Myers ZA, Saldate JJ, Hoffman LF. Calbindin expression in adult vestibular epithelia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:623-637. [PMID: 32350587 DOI: 10.1007/s00359-020-01418-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
The mammalian vestibular epithelia exhibit a remarkably stereotyped organization featuring cellular characteristics under planar cell polarity (PCP) control. PCP mechanisms are responsible for the organization of hair cell morphologic polarization vectors, and are thought to be responsible for the postsynaptic expression of the calcium-binding protein calretinin that defines the utricular striola and cristae central zone. However, recent analyses revealed that subtle differences in the topographic expression of oncomodulin, another calcium-binding protein, reflects heterogeneous factors driving the subtle variations in expression. Calbindin represents a third calcium-binding protein that has been previously described to be expressed in both hair cells and afferent calyces in proximity to the utricular striola and crista central zone. The objective of the present investigation was to determine calbindin's topographic pattern of expression to further elucidate the extent to which PCP mechanisms might exert control over the organization of vestibular neuroepithelia. The findings revealed that calbindin exhibited an expression pattern strikingly similar to oncomodulin. However, within calyces of the central zone calbindin was colocalized with calretinin. These results indicate that organizational features of vestibular epithelia are governed by a suite of factors that include PCP mechanisms as well others yet to be defined.
Collapse
Affiliation(s)
- Terry J Prins
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA.,Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Zachary A Myers
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Johnny J Saldate
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Larry F Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA. .,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
3
|
Lin J, Zhang X, Wu F, Lin W. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle. Front Cell Neurosci 2015; 9:113. [PMID: 25883551 PMCID: PMC4381628 DOI: 10.3389/fncel.2015.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.
Collapse
Affiliation(s)
- Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Xiaodong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Fengfang Wu
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Weinian Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| |
Collapse
|
4
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
5
|
Karita, Kazunori Nishizaki, Shigeno K. Calbindin and Calmodulin Localization in the Developing Vestibular Organ of the Musk Shrew ( Suncus murinus ). Acta Otolaryngol 2009. [DOI: 10.1080/00016489950181873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW. Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 2009; 10:191-203. [PMID: 19241104 DOI: 10.1007/s10162-009-0158-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022] Open
Abstract
The hair cells of the larval zebrafish lateral line provide a useful preparation in which to study hair cell death and to screen for genes and small molecules that modulate hair cell toxicity. We recently reported preliminary results from screening a small-molecule library for compounds that inhibit aminoglycoside-induced hair cell death. To potentially reduce the time required for development of drugs and drug combinations that can be clinically useful, we screened a library of 1,040 FDA-approved drugs and bioactive compounds (NINDS Custom Collection II). Seven compounds that protect against neomycin-induced hair cell death were identified. Four of the seven drugs inhibited aminoglycoside uptake, based on Texas-Red-conjugated gentamicin uptake. The activities of two of the remaining three drugs were evaluated using an in vitro adult mouse utricle preparation. One drug, 9-amino-1,2,3,4-tetrahydroacridine (tacrine) demonstrated conserved protective effects in the mouse utricle. These results demonstrate that the zebrafish lateral line can be used to screen successfully for drugs within a library of FDA-approved drugs and bioactives that inhibit hair cell death in the mammalian inner ear and identify tacrine as a promising protective drug for future studies.
Collapse
Affiliation(s)
- Henry C Ou
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Avallone B, Fascio U, Balsamo G, Marmo F. Gentamicin ototoxicity in the saccule of the lizard Podarcis Sicula induces hair cell recovery and regeneration. Hear Res 2008; 235:15-22. [DOI: 10.1016/j.heares.2007.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/06/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
|
8
|
Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2007; 9:65-89. [PMID: 18157569 DOI: 10.1007/s10162-007-0106-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/25/2007] [Indexed: 12/20/2022] Open
Abstract
Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, Box 357923, Seattle, WA 98195-7923, USA.
| | | | | | | | | |
Collapse
|
9
|
Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 2007; 7:798-807. [PMID: 17604700 PMCID: PMC2043117 DOI: 10.1016/j.modgep.2007.05.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/03/2007] [Accepted: 05/21/2007] [Indexed: 12/12/2022]
Abstract
A cascade of transcription factors is believed to regulate the coordinate differentiation of primordial inner ear cells into the subtypes of hair cells and supporting cells. While candidate genes involved in this process have been identified, the temporal and spatial patterns of expression of many of these have not been carefully described during the extended period of inner ear development and functional maturation. We systematically examined the expression of two such transcription factors, LHX3 and SOX2, from the time of hair cell terminal mitoses into adulthood. We show that LHX3 is expressed specifically in auditory and vestibular hair cells soon after terminal mitoses and persists into the adult in vestibular hair cells. While SOX2 expression is widespread in the inner ear sensory epithelia prior to hair cell differentiation, it has a unique pattern of expression in the mature auditory and vestibular organs.
Collapse
Affiliation(s)
- Clifford R Hume
- Department of Otolaryngology - Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, VMBHRC, CHDD, CD176, Box 357923, 1959 NE Pacific, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
10
|
Cunningham LL, Brandon CS. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol 2006; 7:299-307. [PMID: 16794914 PMCID: PMC2504613 DOI: 10.1007/s10162-006-0043-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/11/2006] [Indexed: 12/19/2022] Open
Abstract
Human hearing and balance impairments are often attributable to the death of sensory hair cells in the inner ear. These cells are hypersensitive to death induced by noise exposure, aging, and some therapeutic drugs. Two major classes of ototoxic drugs are the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to these drugs leads to hair cell death that is mediated by the activation of specific apoptotic proteins, including caspases. The induction of heat shock proteins (HSPs) in response to cellular stress is a ubiquitous and highly conserved response that can significantly inhibit apoptosis in some systems by inhibiting apoptotic proteins. Induction of HSPs occurs in hair cells in response to a variety of stimuli. Given that HSPs can directly inhibit apoptosis, we hypothesized that heat shock may inhibit apoptosis in hair cells exposed to ototoxic drugs. To test this hypothesis, we developed a method for inducing HSP expression in the adult mouse utricle in vitro. In vitro heat shock reliably produces a robust up-regulation of HSP-70 mRNA and protein, as well as more modest up-regulation of HSP-90 and HSP-27. The heat shock does not result in death of hair cells. Heat shock has a significant protective effect against both aminoglycoside- and cisplatin-induced hair cell death in the utricle preparation in vitro. These data indicate that heat shock can inhibit ototoxic drug-induced hair cell death, and that the utricle preparation can be used to examine the molecular mechanism(s) underlying this protective effect.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Box 250908, Charleston, SC 29425, USA.
| | | |
Collapse
|
11
|
Baizer JS, Baker JF. Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 2005; 172:103-13. [PMID: 16369782 DOI: 10.1007/s00221-005-0318-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Immunoreactivity to calcium-binding proteins has been a useful extension to cytoarchitectonics in defining the organization of many central nervous system regions. Previously we found subdivisions of the cat medial vestibular nucleus (MVe) defined by immunoreactivity to the calcium-binding proteins, calretinin and calbindin. Here we report similar subdivisions in both the squirrel and the macaque monkey. Calretinin immunoreactivity reveals a small area of cells and processes located dorsally in the MVe. In the anterior-posterior direction these cells extend over less than half of the nucleus. This area is not distinct in Nissl-stained sections. Elsewhere in the vestibular nuclear complex (VNC) and in the nucleus prepositus hypoglossi (PrH) there are scattered labeled cells. Immunoreactivity for calbindin shows a small patch of dense fiber label at the border of MVe and PrH, and a patchy distribution in the rest of the VNC that changes at different anterior-posterior levels. There are also calbindin-labeled cells in the underlying reticular formation over a very restricted anterior-posterior extent in both squirrel and macaque monkey. The dendrites of some of these cells can be followed into PrH, and data from other studies suggests that they may contribute to vestibular-oculomotor function. Scattered cells in the VNC are densely outlined by calbindin-labeled terminals, suggesting a major drive from the calbindin-labeled fiber input. These findings, along with observations from rodents and cats, suggest that there are subdivisions of the MVe defined by calcium-binding proteins that are homologous across rodents, cats, and New World and Old World monkeys.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, Buffalo, NY 14214-3078, USA.
| | | |
Collapse
|
12
|
Piscopo M, Avallone B, D'Angelo L, Fascio U, Balsamo G, Marmo F. Localization of calbindin D-28K in the otoconia of lizard Podarcis sicula. Hear Res 2004; 189:76-82. [PMID: 14987754 DOI: 10.1016/s0378-5955(03)00366-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 10/28/2003] [Accepted: 10/28/2003] [Indexed: 11/29/2022]
Abstract
The membranous labyrinth of lizard Podarcis sicula contains calcite and aragonite crystals. Saccule, utricle and lagena contain calcite crystals while aragonite crystals are present only in the saccule where they are very abundant. We have recently demonstrated the presence of calbindin D-28K in the organic matrix of lizard P. sicula otoconia. In order to define its localization, since calbindin modulates cellular Ca2+ level, otoconia from utricle and lagena were collected separately from those from saccule and then otoconial proteins were extracted. Immunoblot assay on proteins extracted from the otoconia and confocal laser scanning microscope analyses of otoconia using monoclonal anti-calbindin D-28K antibodies indicated that calbindin D-28K is a protein typical of aragonite crystals.
Collapse
Affiliation(s)
- Marina Piscopo
- Department of Genetics, General and Molecular Biology, University of Naples 'Federico II', Naples, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Cunningham LL, Matsui JI, Warchol ME, Rubel EW. Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. ACTA ACUST UNITED AC 2004; 60:89-100. [PMID: 15188275 DOI: 10.1002/neu.20006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside-induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside-induced hair cell death can be prevented by broad-spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside-induced hair cell death requires activation of caspase-9. Caspase-9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside-induced hair cell death is mediated by the mitochondrial (or "intrinsic") cell death pathway. The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl-2 is an anti-apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl-2 to examine the role of Bcl-2 in neomycin-induced hair cell death. Overexpression of Bcl-2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl-2 overexpression prevented neomycin-induced activation of caspase-9 in hair cells. These results suggest that the expression level of Bcl-2 has important effects on the pathway(s) important for the regulation of aminoglycoside-induced hair cell death.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, 98195-7293, USA
| | | | | | | |
Collapse
|
14
|
Piscopo M, Balsamo G, Mutone R, Avallone B, Marmo F. Calbindin D28K is a component of the organic matrix of lizard Podarcis sicula otoconia. Hear Res 2003; 178:89-94. [PMID: 12684181 DOI: 10.1016/s0378-5955(03)00053-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The factors controlling otoconia growth are not well known but it seems that the type of proteins contained in the otoconia regulates the initiation and/or the subsequent rates of crystal growth determining the morphology and the size of the final crystal. In order to clarify the mechanism of otoconia formation and their turnover, major proteins contained in the otoconia from the maculae of the saccule, utricle and lagena of inner ear of lizard Podarcis sicula were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Coomassie staining of SDS-PAGE resulted in a major broad band of 15 kDa and four other bands of 21, 28, 45 and 97 kDa. The proteins of 15, 21, 28 and 45 kDa were separated by high-pressure liquid chromatography on a C-4-reverse-phase column and the incubation of blots with monoclonal anti-Calbindin D28K antibodies indicated that the band of 28 kDa was Calbindin D28K, a calcium-binding protein.
Collapse
Affiliation(s)
- Marina Piscopo
- Department of Genetics, General and Molecular Biology, University of Naples 'Federico II', via Mezzocannone 8, 80134, Naples, Italy
| | | | | | | | | |
Collapse
|
15
|
Shaia WT, Shapiro SM, Heller AJ, Galiani DL, Sismanis A, Spencer RF. Immunohistochemical localization of calcium-binding proteins in the brainstem vestibular nuclei of the jaundiced Gunn rat. Hear Res 2002; 173:82-90. [PMID: 12372637 DOI: 10.1016/s0378-5955(02)00631-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.
Collapse
Affiliation(s)
- Wayne T Shaia
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University Health System, Richmond 23298-0599, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abbate F, Catania S, Germanà A, González T, Diaz-Esnal B, Germanà G, Vega JA. S-100 protein is a selective marker for sensory hair cells of the lateral line system in teleosts. Neurosci Lett 2002; 329:133-6. [PMID: 12165395 DOI: 10.1016/s0304-3940(02)00597-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The distribution of S100 protein in the neuromast of the lateral line system (LLS) was investigated immunohistochemically in alevins of three species of teleosts (Salmo trutta, Salmo salar and Dicentrarchus labrax), using a polyclonal antibody. In both the neuromasts of the canals, as well as in the pit organs, the hair cells, regarded as the specific sensory cells, displayed cytoplasmic immunoreactivity for S100 protein. Conversely, the supporting cells, mantle cells and basal cells were devoid of immunoreaction. These results demonstrate for the first time the occurrence of S100 in the LLS of teleosts. Due to the cell specific localization, this protein might serve as a marker for sensory hair cells in neuromasts.
Collapse
Affiliation(s)
- F Abbate
- Dipartimento di Morfologia, Biochimica, Fisiologia en Produzione Animale, Università di Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Kondo K, Sagara H, Hirosawa K, Kaga K, Matsushima S, Mabuchi K, Uchimura H, Watanabe T. Hair cell development in vivo and in vitro: analysis by using a monoclonal antibody specific to hair cells in the chick inner ear. J Comp Neurol 2002; 445:176-98. [PMID: 11891661 DOI: 10.1002/cne.10159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to establish a hair cell-specific marker and a convenient explant culture system for developing chick otocysts to facilitate in vivo and in vitro studies focusing on hair cell genesis in the inner ear. To achieve this, a hair cell-specific monoclonal antibody, 2A7, was generated by immunizing chick inner ear tissues to a mouse. Through the use of immunofluorescence and immunoelectron microscopy, it was shown that 2A7 immunoreactivity (2A7-IR) was primarily restricted to the apical region of inner ear hair cells, including stereocilia, kinocilia, apical membrane amongst the extending cilia, and superficial layer of the cuticular plate. Although the 2A7 antibody immunolabeled basically all of the hair cells in the posthatch chick inner ear, two different patterns of 2A7-IR were observed; hair cells located in the striolar region of the utricular macula, which consist of two distinct cell types identifiable on the basis of the type of nerve ending, Type I and II hair cells, showed labeling restricted to the basal end of the hair bundles. On the other hand, hair cells in the extrastriolar region, which are exclusively of Type II, showed labeling extending over virtually the entire length of the bundles. These findings raised the possibility that chick vestibular Type II hair cells, characterized by their bouton-type afferent nerve endings, can be divided into two subpopulations. Analysis of developing inner ear by using the 2A7 antibody revealed that this antibody also recognizes newly differentiated immature hair cells. Thus, the 2A7 antibody is able to recognize both immature and mature hair cells in vivo. The developmental potential of embryonic otocysts in vitro was then assessed by using explant cultures as a model. In this study, conventional otocyst explant cultures were modified by placing the tissues on floating polycarbonate filters on culture media, thereby allowing the easy manipulation of explants. In these cultures, 2A7-positive hair cells were differentiated from dividing precursor cells in vitro on the same schedule as in vivo. Furthermore, it was found that hair cells with both types of 2A7-IR were generated in culture as in vivo, indicating that a maturational process of hair cells also occurred. All these results as presented here suggest that the 2A7 monoclonal antibody as a hair cell-specific marker together with the culture system could be a potential tool in analysis of mechanisms underlying hair cell development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Antibody Specificity
- Cell Division
- Cells, Cultured
- Chick Embryo/chemistry
- Chick Embryo/embryology
- Chick Embryo/growth & development
- Chick Embryo/ultrastructure
- Chickens
- Culture Techniques
- Epitopes/immunology
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/ultrastructure
- Mice
- Mice, Inbred BALB C
- Staining and Labeling
- Stem Cells/chemistry
- Stem Cells/cytology
- Stem Cells/ultrastructure
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Clinical Pathology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leonard RB, Kevetter GA. Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 2002; 928:8-17. [PMID: 11844467 DOI: 10.1016/s0006-8993(01)03268-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestibular afferents have different physiological properties that can be at least partially correlated with the morphology that the peripheral ending makes with type I and type II hair cells. If the location of the ending in the sensory epithelium is included, the correlations are further improved. It is also known that vestibular afferents can be immunohistochemically stained for a variety of different substances. We have concentrated on three of these markers, calretinin, calbindin and peripherin, because the sources of afferents to the vestibular nuclear complex that contain these substances are restricted, in two cases to the primary afferents. We demonstrate that calretinin is found only in the calyx-only afferents that are located at the apex of the cristae ampullaris and along the striola of the maculae. The area containing stained calyces is equal to or slightly smaller than the central zone of the cristae as defined by the Goldberg group [J. Neurophysiol. 60 (1988) 167]. Calbindin is also found in calyces at the apex of the cristae and along the striola of the otoliths. Examination of adjacent sections of all endorgans indicates that calbindin staining overlaps with calretinin, but is always several hair cells wider on each side. Peripherin also stains fibers in the neuroepithelium. The greatest density of staining is in the peripheral zone of the cristae, i.e. at the base and toward the planum semilunatum. We suggest that these substances are useful markers for specific sets of vestibular afferents.
Collapse
Affiliation(s)
- Robert B Leonard
- Department of Anatomy and Neurosciences, Marine Biological Institute, University of Texas Medical Branch, 301 University Dr., Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
19
|
Kevetter GA, Leonard RB. Molecular probes of the vestibular nerve. II. Characterization of neurons in Scarpa's ganglion to determine separate populations within the nerve. Brain Res 2002; 928:18-29. [PMID: 11844468 DOI: 10.1016/s0006-8993(01)03264-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An unambiguous delineation of the exact numbers and/or proportions of calyx-only, dimorph, and bouton-only vestibular afferents is needed to continue studies concerning vestibular integration in the nervous system. Here, we take advantage of immunocytochemical properties of three groups of vestibular afferents. We utilize calretinin to delineate the calyx-only population, and peripherin to stain the bouton-only afferents. An additional subgroup of afferents that stain with calbindin, but not calretinin is also introduced. The size of the cells that stain with these markers was determined. Cells that are calbindin-positive overlap the sizes of Nissl-stained somata. Cells that stain with peripherin or calretinin are non-overlapping with calretinin cells being the largest and peripherin-positive cells the smallest. Twenty percent of the ganglion cells were peripherin positive, another 20% stained with calretinin antibodies, 30% stained with calbindin, and all cells in Scarpa's ganglion stained with parvalbumin. Most of the calretinin-positive cells also stained with calbindin. One-third of the calbindin-positive population stained only with calbindin. These studies indicate that the calyx- and bouton-only populations of vestibular afferents in gerbil comprise at least 40% of the nerve. In addition, at least 10% of the nerve also stains with calbindin and neither calretinin nor peripherin. Based on indirect evidence, we hypothesize that these are a subpopulation of dimorph afferents. This study has provided an anatomical instrument (in addition to intracellular physiological methods) to study separate populations of vestibular afferents.
Collapse
Affiliation(s)
- Golda Anne Kevetter
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Dr., Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
20
|
Hiel H, Navaratnam DS, Oberholtzer JC, Fuchs PA. Topological and developmental gradients of calbindin expression in the chick's inner ear. J Assoc Res Otolaryngol 2002; 3:1-15. [PMID: 12083720 PMCID: PMC3202366 DOI: 10.1007/s101620010071] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mobile intracellular calcium buffers play an important role in regulating calcium flux into mechanosensory hair cells and calbindin D-28k is expressed at high levels in the chick's basilar papilla. We have used RT-PCR, in situ hybridization, and immunohistology to demonstrate that calbindin expression varies systematically according to hair cell position and developmental age. RT-PCR using microdissected quarters of the posthatch basilar papilla showed that mRNA levels were lowest in the (low frequency) apex and higher in basal quadrants. In situ hybridization revealed calbindin mRNA in posthatch hair cells and supporting cells, with more intense labeling of hair cells from basal (high frequency) positions. A similar topology was obtained with calbindin antibodies. Neither calbindin riboprobe nor calbindin antibody labeled cochlear neurons. In contrast, a subset of large vestibular neurons and their calyciform endings onto Type I vestibu lar hair cells were strongly labeled by the calbindin antibody, while vestibular hair cells were negative for calbindin immunoreactivity. Likewise, calbindin in situ hybridization was negative for vestibular hair cells but positive in a subset of larger vestibular neurons. Calbindin mRNA was detected in hair cells of the basal half of the papilla at embryonic day 10 (E10) and calbindin immunoreactivity was detected at E12. Hair cells in the apical half of the papilla had equivalent calbindin expression two days later. Immunoreactivity appeared in abneural supporting cells days later than in hair cells, and not until E20 in neurally located supporting cells. These results demonstrate that calbindin message and protein levels are greater in high-frequency hair cells. This "tonotopic" gradient may result from the stabilization of a basal-to-apical developmental gradient and could be related at least in part to calcium channel expression along this axis.
Collapse
Affiliation(s)
- Hakim Hiel
- Center for Hearing and Balance, Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
21
|
Balsamo G, Avallone B, Del Genio F, Trapani S, Marmo F. Calcification processes in the chick otoconia and calcium binding proteins: patterns of tetracycline incorporation and calbindin-D28K distribution. Hear Res 2000; 148:1-8. [PMID: 10978820 DOI: 10.1016/s0378-5955(00)00094-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to clarify the otoconia formation and turnover, tetracycline, an antibiotic that precipitates at calcifying fronts and serves as a fluorescent marker, was injected into eggs at different stages of chick embryonic development, as well as into postnatal chicken and into adult animals. The changes in the intensity, location patterns and time course of fluorescent labelling in each examined stage in the otolithic organs was studied. The presence and distribution of calbindin (CB)-D28K, one of the calcium-binding proteins constantly found in the mammalian and chicken cochlea and also in otolithic membrane of some adult mammals, was studied. Results in embryonal stages, postnatal and adult animals allow us to postulate that otoliths are mainly produced during the embryonal phase, but they may also be produced throughout the whole life span. Results also indicate that otoconia are dynamic structures which undergo turnover. The correspondence between the patterns of CB-D28K immunoreactivity and tetracycline fluorescence may indicate that CB-D28K participates in the formation of otoconia.
Collapse
Affiliation(s)
- G Balsamo
- Department of Genetics, General and Molecular Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | | | |
Collapse
|
22
|
Ogata Y, Slepecky NB, Takahashi M. Study of the gerbil utricular macula following treatment with gentamicin, by use of bromodeoxyuridine and calmodulin immunohistochemical labelling. Hear Res 1999; 133:53-60. [PMID: 10416864 DOI: 10.1016/s0378-5955(99)00057-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effects of ototoxic drugs on the gerbil vestibular sensory epithelium were probed by use of immunocytochemical labelling with antibodies to both a mitogenic marker (bromodeoxyuridine) and a hair cell specific protein (calmodulin). Nine animals had gentamicin administered once daily for 5 days, as a transtympanic injection into the right middle ear. They additionally were given a daily intraperitoneal injection of bromodeoxyuridine, starting on the same day as the gentamicin injection and continuing until the day of sacrifice. Nine other animals, serving as controls for bromodeoxyuridine incorporation, received only the intraperitoneal injections of bromodeoxyuridine. The inner ears from three gerbils were obtained at 1, 2 or 4 weeks following the last gentamicin injection and utricles from the injected ears were processed for immunohistochemical analysis. In specimens where gentamicin was administered, we found evidence of bromodeoxyuridine incorporation in 17 cells (10 single cells and 7 pairs of cells) in a total of 216 sections taken from the central regions of the 9 utricles. However, in control specimens, no bromodeoxyuridine labelling was found in any cells of the 216 sections examined. Of 10 single cells labelled with bromodeoxyuridine, two cells in the hair cell layer were labelled with antibodies against calmodulin. One had a faint labelling in the nucleus and the other in the stereocilia, but not in the cell bodies. Of 7 pairs of cells, two pairs with nuclei localized in the hair cell layer had faint labelling for calmodulin in the nuclei, but no labelling in any other part of the cell. The other 13 cells labelled with antibodies to bromodeoxyuridine were not labelled with antibodies to calmodulin. Our results suggest that the bromodeoxyuridine-labelled cells could not be positively identified as hair cells based on immunohistochemical labelling for calmodulin.
Collapse
Affiliation(s)
- Y Ogata
- Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | |
Collapse
|
23
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3%3c377::aid-cne6%3e3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
24
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998; 390:377-91. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3<377::aid-cne6>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
25
|
Steyger PS, Burton M, Hawkins JR, Schuff NR, Baird RA. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. Int J Dev Neurosci 1997; 15:417-32. [PMID: 9263023 DOI: 10.1016/s0736-5748(96)00101-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.
Collapse
Affiliation(s)
- P S Steyger
- R. S. Dow Neurological Sciences Institute, Legacy Good Samaritan Hospital, Portland, OR 97209, USA
| | | | | | | | | |
Collapse
|
26
|
Baird RA, Steyger PS, Schuff NR. Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Hear Res 1997; 103:85-100. [PMID: 9007577 DOI: 10.1016/s0378-5955(96)00167-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hair cells in the bullfrog vestibular otolith organs were immunolabeled by monoclonal and polyclonal antisera against calbindin (CaB), calmodulin (CaM), calretinin (CaR), and parvalbumin (PA). S-100, previously shown to immunolabel striolar hair cells in fish vestibular organs, only weakly immunolabeled hair cells in the bullfrog vestibular otolith organs. Immunolabeling was not detected in supporting cells. With the exception of CaR, myelinated axons and unmyelinated nerve terminals were immunolabeled by all of the above antisera. Immunolabeling was seen in all saccular hair cells, although hair cells at the macular margins were immunolabeled more intensely for CaB, CaM, and PA than more centrally located hair cells. As the macula margins are known to be a growth zone, this labeling pattern suggests that marginal hair cells up-regulate their calcium-binding proteins during hair cell development. In the utriculus, immunolabeling for CaM and PA was generally restricted to striolar hair cells. CaR immunolabeling was restricted to the stereociliary array. Immunolabeling for other calcium-binding proteins was generally seen in both the cell body and hair bundles of hair cells, although this labeling was often localized to the stereociliary array and the apical portion of the cell body. CaM and PA immunolabeling in the stereociliary array in saccular and utricular striolar cells suggests a functional role for these proteins in mechanoelectric transduction and adaptation.
Collapse
Affiliation(s)
- R A Baird
- R.S. Dow Neurological Sciences Institute, Legacy Good Samaritan Hospital, Portland, OR 97209, USA.
| | | | | |
Collapse
|
27
|
Imamura S, Adams JC. Immunolocalization of peptide 19 and other calcium-binding proteins in the guinea pig cochlea. ANATOMY AND EMBRYOLOGY 1996; 194:407-18. [PMID: 8896705 DOI: 10.1007/bf00198543] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calcium ions are known to play critical roles in a variety of cochlear functions. The distributions of a number of calcium binding proteins that regulate calcium ion levels within the cochlea have previously been described. In this report we extend and refine previous reports of the distribution of immunostaining for calmodulin, calbindin, and calretinin and show for the first time the distribution for peptide 19. There were longitudinal and radial gradients of immunostaining for peptide 19 within outer hair cells that appeared to match previously described gradients of efferent innervation of these cells. Gradients of immunostaining for calbindin within outer hair cells were in the opposite directions, which suggests that levels of this protein are correlated with afferent innervation density and perhaps the abundance of subsurface cisternae. No gradients were seen in the distributions of cells stained for calmodulin and calretinin, which included sensory cells and supporting cells respectively. All ganglion cells were stained for calmodulin but the other proteins appeared to be present in limited ganglion cell subpopulations. In addition to staining of sensorineural elements, antisera to all compounds but peptide 19 showed immunostaining of cells within the lateral wall and the spiral limbus. The results suggest that the proteins under study are involved in a wide variety of calcium-regulated functions within the cochlea. Knowledge of the unique distribution of each of the compounds should facilitate further studies of their roles in cochlear function.
Collapse
Affiliation(s)
- S Imamura
- Department of Otolaryngology, Yamanashi Medical University, Japan
| | | |
Collapse
|
28
|
Abstract
Cell types in the inner ear of the fish Astronotus ocellatus were examined for the immunocytochemical reactivity to 31 commercial antibodies. Nine showed positive reactivity: vimentin, S-100, caldesmon, calbindin, MAP-1, MAP-2, parvalbumin, neurofilament, and GAP-43. The cell types examined were: hair cells, support cells, hair cell precursors, eighth nerve neurons, and neuronal precursors. The pattern of reactivities among these cell types lead to the following conclusions. First, hair cells and eighth nerve neurons have a striking immunocytochemical similarity. Second, the precursor cells for hair cells and neurons did not share immunoreactivity with these mature progeny. Third, the only antibody to react with supporting cells also reacted with the proliferating precursors that give rise to new hair cells and supporting cells. Taken with other available data, these finding suggest that in the oscar ear, hair cell precursors and supporting cells are closely related, if not the same cell type.
Collapse
Affiliation(s)
- J C Presson
- Department Zoology, University of Maryland, College Park 20742
| |
Collapse
|
29
|
Dechesne CJ, Rabejac D, Desmadryl G. Development of calretinin immunoreactivity in the mouse inner ear. J Comp Neurol 1994; 346:517-29. [PMID: 7983242 DOI: 10.1002/cne.903460405] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calretinin is a calcium-binding protein of the EF-hand family. It has been previously identified in particular cell types of adult guinea pig, rat, and chinchilla inner ear. Development of calretinin immunoreactivity in the mouse inner ear was investigated from embryonic day 13 (E13) to the adult stage. In the adult mouse vestibule, calretinin immunoreactivity was present in the same structures as described for the rat and guinea pig: the population of afferent fibers forming calyx units and a small number of ganglion neurons. The earliest immunoreactivity was found at E17 in vestibular hair cells (VHCs), then, at E19, in afferent fibers entering the sensory epithelia and in rare ganglion neurons. At postnatal day 4 (P4), a few vestibular nerve fibers and ganglion neurons were reactive. From this stage until P14, immunoreactivity developed in the calyx units and disappeared from VHCs. At P14, immunostaining was adult-like. In the adult mouse cochlea, immunoreactivity was present in the same cell populations as described in the rat: the inner hair cells (IHCs) and most of Corti's ganglion neurons. Calretinin immunoreactivity appeared at E19-P0 in IHCs and ganglion neurons of the basal turn. At P1, outer hair cells (OHCs) of the basal turn were positive. Calretinin immunoreactivity then appeared in IHCs, OHCs, and ganglion neurons of the medial turn, then of the apical turn. At P4, all IHCs and OHCs and most of the ganglion neurons were immunostained. Immunoreactivity gradually disappeared from the OHCs starting at P10 and, at P22, only IHCs and ganglion neurons were positive. The sequences of appearance of calretinin were specific to each cell type of the inner ear and paralleled their respective maturation. Calretinin was transiently expressed in VHCs and OHCs.
Collapse
Affiliation(s)
- C J Dechesne
- Laboratoire de Neurophysiologie Sensorielle, Unité INSERM 254, Montpellier, France
| | | | | |
Collapse
|
30
|
Rabejac D, Raymond J, Dechesne CJ. Characterization of different neuron populations in mouse statoacoustic ganglion cultures. Brain Res 1994; 652:249-56. [PMID: 7953737 DOI: 10.1016/0006-8993(94)90234-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Statoacoustic ganglion (SAG) cells were grown in primary culture and the appearance of different neuronal phenotypes was investigated. Analysis criteria were shape, size and staining for the immunocytochemical markers: neurofilament proteins (NF-200 kDa), neuron-specific enolase (NSE), calretinin, a calcium-binding protein and substance P, a neurotransmitter. Cultures were prepared from dissociated SAG cells of 13 gestation-day-old mouse embryos. Neurons were identified and counted after 7 days in vitro. At this stage, neurons were organized in small clusters forming an extensive network of neurites grown on a layer of fibroblasts and glia. Most neurons identified by NF or NSE immunoreactivity showed a typical adult-like bipolar profile. The diameters of the neurons were between 5.62 and 17.00 microns and displayed a normal distribution (mean: 10.6 microns). Two distinct subpopulations were identified by the expression of calretinin and substance P. Calretinin-immunoreactive neurons were large and very rare and had a mean diameter of 11.3 microns; the distribution of substance P was more extensive than that of calretinin and identified a population of small neurons with a mean diameter of 8.9 microns. The distributions of these two markers in SAG cultures were consistent with in vivo results. In conclusion, dissociated SAG cell cultures appear to be a suitable model for analyzing the development of the immunocytochemical and functional characteristics of the neurons of this inner ear ganglion.
Collapse
Affiliation(s)
- D Rabejac
- INSERM U254, Laboratoire de Neurophysiologie Sensorielle, Université de Montpellier II, France
| | | | | |
Collapse
|
31
|
Chabbert C, Geleoc G, Lehouelleur J, Sans A. Intracellular calcium variations evoked by mechanical stimulation of mammalian isolated vestibular type I hair cells. Pflugers Arch 1994; 427:162-8. [PMID: 8058466 DOI: 10.1007/bf00585956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The variations of intracellular free calcium concentration ([Ca2+]i) were recorded on-line from guinea-pig isolated vestibular sensory cells using a fura-2 fast fluorescent photometry system, during mechanical displacements of the hair bundle. Repetitive displacements of the hair bundle towards the kinocilium (positive stimulation 7 degrees, 300 ms, 2Hz for 10 s), revealed [Ca2+]i variations detectable only in the cuticular plate. [Ca2+]i increased from 105 to 145 nM. Single mechanical displacements of the hair bundle (7 degrees, 200 ms, 0.5 Hz) evoked increases of [Ca2+]i from 50 +/- 23 nM to 139 +/- 79 (n = 12). In the opposite direction, the mechanical stimulations (8 degrees, 400 ms, 0.5 Hz) evoked a decrease of [Ca2+]i from 68 +/- 17 nM to 37 +/- 12 nM (n = 8). The variations of [Ca2+]i detected in the cuticular plate during positive displacements of the hair bundle were reversibly abolished in the presence of 100 microM gentamicin and they could not be evoked in 0.1 mM calcium in the external medium. From these experiments, it has been concluded that the [Ca2+]i variations recorded in the cuticular plate were due to a limited entry of calcium ions through transduction channels localized in the hair bundle. The typical kinetics of variations of [Ca2+]i evoked during positive displacements of the hair bundle should account for the presence of strong calcium regulation systems in the hair bundle and cuticular plate.
Collapse
Affiliation(s)
- C Chabbert
- Laboratoire de Neurophysiologie sensorielle et cellulaire, Université de Montpellier II, U254 INSERM, France
| | | | | | | |
Collapse
|
32
|
Foster JD, Drescher MJ, Hatfield JS, Drescher DG. Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster. Hear Res 1994; 74:67-76. [PMID: 8040100 DOI: 10.1016/0378-5955(94)90176-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution of S-100-like immunoreactivity in mouse and hamster auditory and vestibular end organs was determined by the use of immunohistochemistry. Within the organ of Corti, the cytoplasm of cells of Deiter and Hensen were strongly immunoreactive. Inner hair cells and the peripheral processes and cell bodies of the spiral ganglion were weakly immunoreactive for S-100, whereas the supranuclear regions of outer hair cells and cells underlying the basilar membrane were unstained. Immunoreactivity was observed near the base of outer hair cells. In the lateral wall of the cochlea, cellular components of the spiral ligament and a subpopulation of epithelial cells in the stria vascularis, identified as predominantly basal cells, were immunoreactive. For the saccule, utricle, and semicircular canals, S-100 immunoreactivity was observed in vestibular hair cells, types I and II, and the nerve calyces surrounding type I hair cells as well as in nerve fibers underlying the sensory epithelium. Weak S-100-like immunoreactivity was associated with vestibular nerve fibers and cell bodies in the vestibular ganglion. The localization of S-100-like immunoreactivity to the sensory cells and nerve fibers of the peripheral auditory and vestibular end organs is consistent with a functional role for S-100 proteins at these sites.
Collapse
Affiliation(s)
- J D Foster
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | |
Collapse
|
33
|
Abstract
We have determined the cellular distribution of calbindin D28K mRNAs throughout the mouse brain by in situ hybridization. While these studies identified neuronal populations similar to those previously identified in rat brain by immunohistochemistry, some discrepancies exist. These may derive from species differences or from the immunological cross-reactivity of calbindin D28K antiserum with other proteins. We note an intriguing association between the distribution of neurons containing calbindin D28K mRNA and those reported by others to contain the inositol 1,4,5-triphosphate (InsP3) receptor.
Collapse
Affiliation(s)
- G D Frantz
- Department of Biology, University of California, Los Angeles 90024-1606
| | | |
Collapse
|
34
|
Demêmes D, Eybalin M, Renard N. Cellular distribution of parvalbumin immunoreactivity in the peripheral vestibular system of three rodents. Cell Tissue Res 1993; 274:487-92. [PMID: 8293446 DOI: 10.1007/bf00314545] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cellular distribution of parvalbumin immunoreactivity in the vestibular peripheral system of mouse, rat, and guinea pig was investigated by light and electron microscopy. Parvalbumin was found in all neurons of the vestibular ganglia of these species but in the sensory epithelia immunoreactivity was restricted to type I hair cells localized exclusively in the central areas. The very intense staining pattern was similar in the cristae ampullares and utricles of all three species but a faint immunoreaction was also detectable in sensory cells of peripheral areas of rat cristae. The parvalbumin-immunoreactive type I sensory cells are connected by nerve fibres of the calyx unit type which are known selectively to contain calretinin.
Collapse
Affiliation(s)
- D Demêmes
- INSERM U 254, Laboratoire de Neurophysiologie Sensorielle, Montpellier, France
| | | | | |
Collapse
|
35
|
Dechesne CJ, Winsky L, Moniot B, Raymond J. Localization of calretinin mRNA in rat and guinea pig inner ear by in situ hybridization using radioactive and non-radioactive probes. Hear Res 1993; 69:91-7. [PMID: 8226353 DOI: 10.1016/0378-5955(93)90096-j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The localization of calretinin mRNA was studied in the rat and guinea pig inner ear by in situ hybridization, and compared to the distribution of the protein previously examined by immunocytochemistry. Radioactive and non-radioactive in situ hybridization (ISH) were performed using oligonucleotide probes labelled with 35S or digoxigenin. Radioactive ISH was more sensitive than non-radioactive ISH. In cochlear and vestibular ganglia, calretinin mRNA was localized in subpopulations of neurons with patterns of distribution similar to those shown by immunocytochemistry. By contrast, the observations in the sensory epithelia differed with the two techniques, ISH revealing less positive structures than immunocytochemistry. Rat inner hair cells and guinea pig inner hair cells, Hensen's cells and Deiters cells, which had been described strongly immunoreactive, appeared positive with radioactive but not with non-radioactive ISH. On the other hand, rat vestibular type II hair cells and guinea pig interdental cells of the spiral limbus which were faintly immunoreactive were not positive with both ISH techniques.
Collapse
Affiliation(s)
- C J Dechesne
- Laboratoire de Neurophysiologie Sensorielle, Unité INSERM 254, Montpellier, France
| | | | | | | |
Collapse
|
36
|
Foster JD, Drescher MJ, Khan KM, Drescher DG. Immunohistochemical localization of S-100 protein in the saccule of the rainbow trout (Salmo gairdnerii R.). Hear Res 1993; 68:180-8. [PMID: 8407604 DOI: 10.1016/0378-5955(93)90122-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of S-100-like immunoreactivity in the trout saccule (a presumed organ of hearing in fish) has been determined by means of immunohistochemistry. Within the sensory epithelium of the saccular macula, hair cells and myelinated saccular nerve fibers were found to be immunoreactive. Hair-cell immunoreactivity was relatively uniform throughout the macula except at the extreme periphery (rostral, caudal, ventral and dorsal), where staining was either decreased or absent. The immunoreactivity associated with myelinated nerve fibers was greatest at the peripheral edges of the nerve processes, a position corresponding to the location of Schwann cells. However, the nerve processes themselves (within and subjacent to the sensory epithelium), as well as cell bodies within the saccular nerve, were also immunoreactive. Thus, the immunoreactivity of the saccular nerve observed above the basal lamina can be attributed to the saccular nerve processes as well as to nerve-associated Schwann cells. Overall, the immunoreactivity displayed by hair cells was less intense than that associated with myelinated saccular nerve, as evidenced by a disappearance of signal in hair cells first, upon serial dilution of antibody. No S-100-like immunoreactivity was observed in supporting cells within the sensory epithelium or in epithelial cells in non-sensory regions. A concentration of S-100-like immunoreactivity in hair cells and saccular nerve is suggestive of the presence of S-100 calcium-binding protein-mediated activities in these cell types.
Collapse
Affiliation(s)
- J D Foster
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | | | |
Collapse
|
37
|
Abstract
Parvalbumin, S-100, calbindin-D28K and calmodulin-immunoreactive sensory hair cells were located in the inner ear of tadpoles and mature frogs of Xenopus laevis (Daudin). The relative number of immunoreactive cells varied in different compartments of the inner ear, depending on the Ca-binding protein studied.
Collapse
Affiliation(s)
- H H Kerschbaum
- University of Salzburg, Department of Physiology, Austria
| | | |
Collapse
|
38
|
Abstract
The potential importance of intracellular calcium-binding proteins in rapid and highly localized Ca2+ signalling is poorly understood. During fast synaptic transmission, which occurs at specialized active zones where Ca2+ diffuses only a few tens of nanometers from channels to neurotransmitter release sites, a cytoplasmic Ca2+ buffer would have to be extremely fast or present in millimolar concentrations to intercept a significant fraction of the calcium ions en route to their targets. Therefore, Ca2+ buffers have been presumed to be unimportant in fast exocytosis and another fast calcium-mediated process, electrical resonance in hair cells. Here I present evidence to the contrary by showing that hair cells in the frog sacculus contain millimolar concentrations of a mobile cytoplasmic calcium buffer that captures Ca2+ within a few microseconds after it enters through presynaptic Ca2+ channels and carries it away from the point of entry. This spatial buffering reduces the presynaptic free Ca2+ by up to 60 per cent and probably restricts the region in which the internal calcium ion concentration exceeds 1 microM to within < 250 nm of each synaptic site. The buffer can thus influence both electrical resonance and synaptic transmission. Calbindin-D28K or a related protein may serve as the mobile calcium buffer, an action similar to its function in transporting Ca2+ across intestinal epithelial cells.
Collapse
Affiliation(s)
- W M Roberts
- Institute of Neuroscience, University of Oregon, Eugene 97403
| |
Collapse
|
39
|
Demêmes D, Raymond J, Atger P, Grill C, Winsky L, Dechesne CJ. Identification of neuron subpopulations in the rat vestibular ganglion by calbindin-D 28K, calretinin and neurofilament proteins immunoreactivity. Brain Res 1992; 582:168-72. [PMID: 1498680 DOI: 10.1016/0006-8993(92)90334-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immunocytochemical and morphometric analyses were combined to demonstrate the presence of neuron subpopulations in the rat vestibular ganglion. Monoclonal antibodies reacting with neurofilament proteins (NF), calbindin-D 28K (CaBP) and calretinin (CaR) were used. Three subpopulations were identified: (1) CaBP- and CaR-positive neurons were the largest neurons (16%) and they were also highly NF-immunoreactive; (2) exclusively NF-positive neurons; (3) unlabelled neurons, representing about two-thirds of the population.
Collapse
Affiliation(s)
- D Demêmes
- INSERM U 254, Laboratoire de Neurophysiologie Sensorielle, USTL, Montpellier, France
| | | | | | | | | | | |
Collapse
|
40
|
Johnson EW, Eller PM, Jafek BW, Norman AW. Calbindin-like immunoreactivity in two peripheral chemosensory tissues of the rat: taste buds and the vomeronasal organ. Brain Res 1992; 572:319-24. [PMID: 1611530 DOI: 10.1016/0006-8993(92)90493-s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the rat, calbindin-like immunoreactivity was observed at both the light and electron microscopic levels within the chemoreceptor neurons of the vomeronasal organ (VNO) and both intragemmal cells and associated nerve fibers of the circumvallate taste buds. All VNO neurons were immunoreactive. Only a subset of intragemmal taste cells was immunoreactive; associated immunoreactive nerve fibers were apposed to both labeled and unlabeled cells but no synaptic contacts were observed.
Collapse
Affiliation(s)
- E W Johnson
- Department of Otolaryngology, University of Colorado, Denver 80262
| | | | | | | |
Collapse
|
41
|
Abstract
Actin-binding and microtubule-associated proteins regulate microfilament and microtubule number, length, organization and location in cells. In freeze-dried preparations of the guinea pig cochlea, both actin and tubulin are found in the sensory and supporting cells of the organ of Corti. Fodrin (brain spectrin) co-localized with actin in the cuticular plates of both inner and outer hair cells and along the lateral wall of the outer hair cells. Alpha-actinin co-localized with actin in the cuticular plates of the hair cells and in the head and foot plates of the supporting cells. It was also found in the junctional regions between hair cells and supporting cells. Profilin co-localized with actin in the cuticular plates of the sensory hair cells. Myosin was detected only in the cuticular plates of the outer hair cells and in the supporting cells in the region facing endolymph. Gelsolin was found in the region of the nerve fibers. Tubulin is found in microtubules in all cells of the organ of Corti. In supporting cells, microtubules are bundled together with actin microfilaments and tropomyosin, as well as being present as individual microtubules arranged in networks. An intensely stained network of microtubules is found in both outer and inner sensory hair cells. The microtubules in the outer hair cells appear to course throughout the entire length of the cells, and based on their staining with antibodies to the tyrosinated form of tubulin they appear to be more dynamic structures than the microtubules in the supporting cells. The microtubule-associated protein MAP-2 is present only in outer hair cells within the organ of Corti and co-localizes with tubulin in these cells. No other MAPs (1,3,4,5) are present. Tau is found in the nerve fibers below both inner and outer hair cells and in the osseous spiral lamina. It is clear that the actin-binding and microtubule-associated proteins present in the cochlea co-localize with actin and tubulin and that they modulate microfilament and microtubule structure and function in a manner similar to that seen in other cell types. The location of some of these proteins in outer hair cells suggests a role for microfilaments and microtubules in outer hair cell motility.
Collapse
Affiliation(s)
- N B Slepecky
- Institute for Sensory Research, Syracuse University, New York 13244-5290
| | | |
Collapse
|
42
|
Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM. Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res 1991; 560:139-48. [PMID: 1722130 DOI: 10.1016/0006-8993(91)91224-o] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calretinin has been identified as a brain specific calcium-binding protein which appears as a prominent protein in the cochlear nucleus. We identified and localized calretinin in the guinea pig and rat inner ear using polyclonal antibodies. Immunoblot analyses of guinea pig and rat auditory nerve homogenates revealed an immunoreactive band migrating with the same molecular weight as the purified protein, at Mr = 29 k. Immunocytochemistry was carried out at the light and electron microscope levels. In the guinea pig cochlea, inner hair cells, Deiters' cells, Hensen's cells and interdental cells of the spiral limbus were stained. Most of the cochlear ganglion cells were immunostained. In the guinea pig vestibular organs, the staining was exclusively neuronal and localized in large nerve fibers and nerve calices of the apex of the cristae. Only some vestibular ganglion cells were stained. In the rat cochlea, inner hair cells and most of the ganglion neurons were immunoreactive. In the rat vestibule, large nerve fibers and calices were stained as were some type II hairs cells. Only some vestibular ganglion cells were reactive. Electron microscopic observations of immunostained guinea pig cochlea and vestibule showed that the staining was cytosolic. In addition, specific sub-localization was also found in the apical portion of the nerve calices in association with microvesicles. These results describe the discrete localization of calretinin in the cochlea and in the vestibular receptors and suggest a function associated with biochemical regulations at the level of microvesicles in vestibular afferent neurons.
Collapse
Affiliation(s)
- C J Dechesne
- Laboratoire de Neurophysiologie Sensorielle, Unité I.N.S.E.R.M., Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Demêmes D, Moniot B, Lomri N, Thomasset M, Sans A. Detection of calbindin-D 28k mRNA in rat vestibular ganglion neurons by in situ hybridization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 9:153-6. [PMID: 1850071 DOI: 10.1016/0169-328x(91)90141-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cellular distribution of calbindin-D 28k mRNA in the rat vestibular ganglion was examined by in situ hybridization. Using a [35S]cDNA probe a neuronal subpopulation expressing calbindin-D 28k mRNA with a strong intensity has been identified. These findings confirm the presence of a subclass of calbindin-immunoreactive neurons in the rat vestibular ganglion.
Collapse
Affiliation(s)
- D Demêmes
- INSERM U-254, Lab. de Neurophysiologie Sensorielle, USTL, Montpellier, France
| | | | | | | | | |
Collapse
|
44
|
Saidel WM, Presson JC, Chang JS. S-100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish. Hear Res 1990; 47:139-46. [PMID: 2228790 DOI: 10.1016/0378-5955(90)90171-k] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Certain hair cells of fish exhibit strong immunoreactivity to an S-100 antibody. By their spatial locations in the utricle and saccule, these hair cells appear to possess a relatively short kinocilium and a roughly ovoid cell shape. In the utricle, these cells are predominantly located in the striola. In the saccule, these cells are found within the central area of the epithelium. In both of these epithelia the strongly immunoreactive hair cells coincide with the locations of hair cells possessing F1 ciliary bundles.
Collapse
Affiliation(s)
- W M Saidel
- Department of Zoology, University of Maryland, College Park 20742
| | | | | |
Collapse
|
45
|
Demêmes D, Wenthold RJ, Moniot B, Sans A. Glutamate-like immunoreactivity in the peripheral vestibular system of mammals. Hear Res 1990; 46:261-9. [PMID: 1975572 DOI: 10.1016/0378-5955(90)90007-c] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using a specific antibody raised against glutamate (Glu) conjugated to bovine serum albumin with glutaraldehyde, the distribution of Glu-like immunoreactivity was studied by postembedding staining in semithin sections of nonosmicated or osmicated tissue through the vestibular sensory epithelia and ganglia of different mammalian species (mouse, rat and cat). Strong immunoreactive staining was found in all ganglion neurons and their peripheral and central nerve processes as well as in the two types of sensory hair cells whereas, in contrast, supporting cells were devoid of immunoreactivity. Glu-like immunoreactivity found in vestibular fibers and ganglion neurons, is in good agreement with the proposition of glutamate as the neurotransmitter involved in vestibular nerve transmission. In sensory hair cells, glutamate, apart from its metabolic function, may play a role in synaptic transmission between the sensory cells and the vestibular afferent fibers.
Collapse
Affiliation(s)
- D Demêmes
- INSERM U-254, Laboratoire de Neurophysiologie Sensorielle, USTL, Montpellier, France
| | | | | | | |
Collapse
|