1
|
Hiyoshi H, English BC, Diaz-Ochoa VE, Wangdi T, Zhang LF, Sakaguchi M, Haneda T, Tsolis RM, Bäumler AJ. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe 2022; 30:163-170.e6. [PMID: 34951948 PMCID: PMC8831471 DOI: 10.1016/j.chom.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Intracellular pathogens commonly reside within macrophages to find shelter from humoral defenses, but host cell death can expose them to the extracellular milieu. We find intracellular pathogens solve this dilemma by using virulence factors to generate a complement-dependent find-me signal that initiates uptake by a new phagocyte through efferocytosis. During macrophage death, Salmonella uses a type III secretion system to perforate the membrane of the pathogen-containing vacuole (PCV), thereby triggering complement deposition on bacteria entrapped in pore-induced intracellular traps (PITs). In turn, complement activation signals neutrophil efferocytosis, a process that shelters intracellular bacteria from the respiratory burst. Similarly, Brucella employs its type IV secretion system to perforate the PCV membrane, which induces complement deposition on bacteria entrapped in PITs. Collectively, this work identifies virulence factor-induced perforation of the PCV as a strategy of intracellular pathogens to generate a find-me signal for efferocytosis.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Tamding Wangdi
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Antibodies and Protection in Systemic Salmonella Infections: Do We Still Have More Questions than Answers? Infect Immun 2020; 88:IAI.00219-20. [PMID: 32601109 DOI: 10.1128/iai.00219-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Salmonella causes grave systemic infections in humans and other animals and provides a paradigm for other diseases in which the bacteria have both intracellular and extracellular lifestyles. New generations of vaccines rely on the essential contribution of the antibody responses for their protection. The quality, antigen specificity, and functions associated with antibody responses to this pathogen have been elusive for a long time. Recent approaches that combine studies in humans and genetically manipulated experimental models and that exploit awareness of the location and within-host life cycle of the pathogen are shedding light on how humoral immunity to Salmonella operates. However, this area of research remains full of controversy and discrepancies. The overall scenario indicates that antibodies are essential for resistance against systemic Salmonella infections and can express the highest protective function when operating in conjunction with cell-mediated immunity. Antigen specificity, isotype profile, Fc-gamma receptor usage, and complement activation are all intertwined factors that still arcanely influence antibody-mediated protection to Salmonella.
Collapse
|
3
|
Thomas JV, Nair DVT, Noll S, Johnson TJ, Cardona C, Johny AK. Effect of Turkey-Derived Beneficial Bacteria Lactobacillus salivarius and Lactobacillus ingluviei on a Multidrug-Resistant Salmonella Heidelberg Strain in Turkey Poults. J Food Prot 2019; 82:435-440. [PMID: 30794457 DOI: 10.4315/0362-028x.jfp-18-286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of turkey-derived beneficial bacteria Lactobacillus ingluviei UMNPBX19 and Lactobacillus salivarius UMNPBX2 on Salmonella Heidelberg (SH) in turkey poults was investigated. Using in vitro studies, we determined each strain's resistance to pH 2.5 and 0.3% bile salts and their β-hemolysis activity. We also tested each strain's adherence to avian epithelial cells and exhibition of antimicrobial activity against major poultry-associated Salmonella. Moreover, using three in vivo experiments, we determined the effect of the strains in combination (LBIS) against SH in turkey poults. The treatment groups were negative control (-SH, -LBIS), SH control (+SH, -LBIS), and LBIS group (+SH, +LBIS). Supplementation of LBIS was done in drinking water throughout the study at a dose of 8 log CFU/gal. On day 7, poults were challenged with a 2011 ground turkey outbreak strain of SH at 5 × 105 CFU/mL, and the surviving pathogens were determined on day 7 postinoculation from the cecum, spleen, and liver. Both Lactobacillus strains exerted resistance to low pH and bile salts ( P < 0.05), showed adhesion to epithelial cells ( P < 0.05), but did not exhibit β-hemolysis. Cell-free culture supernatants of strains showed antimicrobial activity against Salmonella ( P < 0.05). Results from the in vivo studies revealed that LBIS significantly reduced dissemination of SH to the liver and spleen in all experiments, and colonization in the cecum in two of the three experiments (1.9- and 3.9-log CFU/g reductions), compared with the control. The results indicate that turkey-derived L. ingluviei UMNPBX19 and L. salivarius UMNPBX2 have potential beneficial effects against SH in turkeys. However, more studies to this effect are warranted.
Collapse
Affiliation(s)
| | - Divek V T Nair
- 1 Department of Animal Science, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Sally Noll
- 1 Department of Animal Science, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Timothy J Johnson
- 2 Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Carol Cardona
- 2 Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Anup Kollanoor Johny
- 1 Department of Animal Science, University of Minnesota, Saint Paul, Minnesota 55108, USA
| |
Collapse
|
4
|
Rossi O, Dybowski R, Maskell DJ, Grant AJ, Restif O, Mastroeni P. Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. J Antimicrob Chemother 2018; 72:3390-3397. [PMID: 28962012 PMCID: PMC5890750 DOI: 10.1093/jac/dkx294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 01/23/2023] Open
Abstract
Objectives We determined the interactions between efficacy of antibiotic treatment, pathogen growth rates and between-organ spread during systemic Salmonella infections. Methods We infected mice with isogenic molecularly tagged subpopulations of either a fast-growing WT or a slow-growing ΔaroC Salmonella strain. We monitored viable bacterial numbers and fluctuations in the proportions of each bacterial subpopulation in spleen, liver, blood and mesenteric lymph nodes (MLNs) before, during and after the cessation of treatment with ampicillin and ciprofloxacin. Results Both antimicrobials induced a reduction in viable bacterial numbers in the spleen, liver and blood. This reduction was biphasic in infections with fast-growing bacteria, with a rapid initial reduction followed by a phase of lower effect. Conversely, a slow and gradual reduction of the bacterial load was seen in infections with the slow-growing strain, indicating a positive correlation between bacterial net growth rates and the efficacy of ampicillin and ciprofloxacin. The viable numbers of either bacterial strain remained constant in MLNs throughout the treatment with a relapse of the infection with WT bacteria occurring after cessation of the treatment. The frequency of each tagged bacterial subpopulation was similar in the spleen and liver, but different from that of the MLNs before, during and after treatment. Conclusions In Salmonella infections, bacterial growth rates correlate with treatment efficacy. MLNs are a site with a bacterial population structure different to those of the spleen and liver and where the total viable bacterial load remains largely unaffected by antimicrobials, but can resume growth after cessation of treatment.
Collapse
Affiliation(s)
- O Rossi
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - R Dybowski
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - D J Maskell
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - A J Grant
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - O Restif
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - P Mastroeni
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| |
Collapse
|
5
|
Mastroeni P, Rossi O. Immunology, epidemiology and mathematical modelling towards a better understanding of invasive non-typhoidal Salmonella disease and rational vaccination approaches. Expert Rev Vaccines 2016; 15:1545-1555. [PMID: 27171941 DOI: 10.1080/14760584.2016.1189330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Invasive non-typhoidal Salmonella (iNTS) infections cause a high burden of lethal sepsis in young children and HIV patients, often associated with malaria, anaemia, malnutrition and sickle-cell disease. Vaccines against iNTS are urgently needed but none are licensed yet. Areas covered: This review illustrates how immunology, epidemiology and within-host pathogen behaviour affect invasive Salmonella infections and highlights how this knowledge can assist the improvement and choice of vaccines. Expert Commentary: Control of iNTS disease requires approaches that reduce transmission and improve diagnosis and treatment. These are often difficult to implement due to the fragile ecology and economies in endemic countries. Vaccines will be key tools in the fight against iNTS disease. To optimise vaccine design, we need to better define protective antigens and mechanisms of resistance to disease in susceptible populations even in those individuals where innate immunity may be impaired by widespread comorbidities.
Collapse
Affiliation(s)
- Pietro Mastroeni
- a Department of Veterinary Medicine , University of Cambridge , Cambridge , United Kingdom
| | - Omar Rossi
- a Department of Veterinary Medicine , University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
6
|
Torraca V, Masud S, Spaink HP, Meijer AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2015; 7:785-97. [PMID: 24973749 PMCID: PMC4073269 DOI: 10.1242/dmm.015594] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Samrah Masud
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Abstract
UNLABELLED Neutrophils engulf and kill bacteria using oxidative and nonoxidative mechanisms. Despite robust antimicrobial activity, neutrophils are impaired in directing Salmonella clearance and harbor viable intracellular bacteria during early stages of infection that can subsequently escape to more-permissive cell types. The mechanisms accounting for this immune impairment are not understood. We report that Salmonella limits exposure to oxidative damage elicited by D-amino acid oxidase (DAO) in neutrophils by expressing an ABC importer specific for D-alanine, a DAO substrate found in peptidoglycan stem peptides. A Salmonella dalS mutant defective for D-alanine import was more susceptible to killing by DAO through exposure to greater oxidative stress during infection. This fitness defect was reversed by selective depletion of neutrophils or by inhibition of DAO in vivo with a small-molecule inhibitor. DalS-mediated subversion of neutrophil DAO is a novel host-pathogen interaction that enhances Salmonella survival during systemic infection. IMPORTANCE Neutrophils engulf Salmonella during early stages of infection, but bacterial killing is incomplete. Very little is known about how Salmonella survives in neutrophils to gain access to other cell types during infection. In this study, we show that D-amino acid oxidase (DAO) in neutrophils consumes D-alanine and that importing this substrate protects Salmonella from oxidative killing by neutrophil DAO. Loss of this importer results in increased bacterial killing in vitro, in neutrophils, and in a mouse model of infection, all phenotypes that are lost upon inhibition of DAO. These findings add mechanistic insight into a novel host-pathogen interaction that has consequences on infection outcome.
Collapse
|
8
|
The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 2014; 8:570-82. [PMID: 25043180 DOI: 10.1016/j.celrep.2014.06.028] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/01/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.
Collapse
|
9
|
Mastroeni P, Grant A. Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect 2013; 15:849-57. [PMID: 24183878 DOI: 10.1016/j.micinf.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Collapse
Affiliation(s)
- Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | |
Collapse
|
10
|
Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 2013; 8:e70753. [PMID: 23950998 PMCID: PMC3741292 DOI: 10.1371/journal.pone.0070753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.
Collapse
Affiliation(s)
- Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ivy Mushamiri
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - George S. Niemann
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Roslyn N. Brown
- Center for Bioproducts and Bioenergy, Washington State University, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
11
|
Ruby T, McLaughlin L, Gopinath S, Monack D. Salmonella's long-term relationship with its host. FEMS Microbiol Rev 2012; 36:600-15. [PMID: 22335190 DOI: 10.1111/j.1574-6976.2012.00332.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 12/23/2022] Open
Abstract
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time and pose significant public-health problems. Multidrug-resistant S. enterica serovar Typhi (S. Typhi) and nontyphoidal Salmonella (NTS) are on the increase and are often associated with HIV infection. Chronically infected hosts are often asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. Salmonella utilizes multiple ways to evade and modulate host innate and adaptive immune responses in order to persist in the presence of a robust immune response. Survival in macrophages and modulation of immune cells migration allow Salmonella to evade various immune responses. The ability of Salmonella to persist depends on a balance between immune responses that lead to the clearance of the pathogen and avoidance of damage to host tissues.
Collapse
Affiliation(s)
- Thomas Ruby
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
12
|
Goh YS, Grant AJ, Restif O, McKinley TJ, Armour KL, Clark MR, Mastroeni P. Human IgG isotypes and activating Fcγ receptors in the interaction of Salmonella enterica serovar Typhimurium with phagocytic cells. Immunology 2011; 133:74-83. [PMID: 21323662 DOI: 10.1111/j.1365-2567.2011.03411.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several classes and multiple subclasses of immunoglobulins are produced towards protein and polysaccharide antigens in response to Salmonella infection and play a key role in protection against systemic disease. The targeting of Salmonella to Fc receptors (FcR) on phagocytes is a key step in the antibody-mediated antibacterial functions of host cells. We wished to compare the relative efficiency of different human IgG subclasses, which targeted the Salmonella enterica OmpA surface protein in modulating the interaction of bacteria with human phagocytes. To this end, we developed a novel system by tagging OmpA with a foreign CD52 mimotope (TSSPSAD) and opsonizing the bacteria with a panel of humanized CD52 antibodies that share the same antigen-binding V-region, but have constant regions of different subclasses. Our data revealed that opsonization with all the IgG subclasses increases Salmonella uptake by human phagocytes. IgG3 resulted in the highest level of bacterial uptake and the highest average bacterial load per infected cell, which was closely followed by IgG1, then IgG4 and lastly IgG2. Phagocytosis mediated by IgG1, IgG3 and IgG4 had a higher dependency on FcγRI than FcγRIIA, whereas IgG2-mediated phagocytosis required FcγRIIA more than FcγRI. The results show that IgG binding to OmpA increases the uptake of Salmonella by human phagocytic cells and that the efficiency of this process depends both on the subclass of the IgG and the type of FcR that is available for antibody binding.
Collapse
Affiliation(s)
- Yun S Goh
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2009; 3:625-34. [PMID: 19072180 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol 2008; 6:e74. [PMID: 18399718 PMCID: PMC2288627 DOI: 10.1371/journal.pbio.0060074] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 02/13/2008] [Indexed: 12/16/2022] Open
Abstract
Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS]) in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host–pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host–pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics. Global patterns and mechanistic determinants of bacterial spread in mammalian organisms are difficult to obtain through numerical and topographical mapping of a single bacterial population. Appreciation of the true pathogenetic events during infections needs to be based on the understanding of the fine interactions that control the infection dynamics of individual subpopulations in the same host. We have used molecular techniques to tag individually otherwise identical subpopulations of bacteria. We have used these bacteria, called wild-type isogenic tagged strains (WITS), in simultaneous infections in the same animal to gather insights into the patterns of spread of individual subpopulations of bacteria in the tissues and interactions between bacteria and phagocytes. Combining numerical fluctuation in the WITS populations with mathematical modelling and statistical analysis, we have gathered data on the relative occurrence of bacterial growth and death in different phases of the disease process. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs. The work illustrates the importance of unravelling heterogeneous traits of infections to reconstruct and understand the true nature of the global disease process. Genetically identical bacterial strains reveal the population dynamics and interactions of subpopulations of bacteria with the host's immune system in vivo during infection.
Collapse
|
15
|
Geddes K, Cruz F, Heffron F. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog 2008; 3:e196. [PMID: 18159943 PMCID: PMC2151088 DOI: 10.1371/journal.ppat.0030196] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/06/2007] [Indexed: 11/25/2022] Open
Abstract
The type III secretion systems (TTSS) encoded in Salmonella pathogenicity island-1 and -2 (SPI-1 and -2) are virulence factors required for specific phases of Salmonella infection in animal hosts. However, the host cell types targeted by the TTSS have not been determined. To investigate this, we have constructed translational fusions between the ß-lactamase reporter and a broad array of TTSS effectors secreted via SPI-1, SPI-2, or both. Secretion of the fusion protein to a host cell was determined by cleavage of a specific fluorescent substrate. In cultured cells, secretion of all six effectors could be observed. However, two to four days following i.p. infection of mice, only effectors secreted by SPI-2 were detected in spleen cells. The cells targeted were identified via staining with nine different cell surface markers followed by FACS analysis as well as by conventional cytological methods. The targeted cells include B and T lymphocytes, neutrophils, monocytes, and dendritic cells, but not mature macrophages. To further investigate replication in these various cell types, Salmonella derivatives were constructed that express a red fluorescent protein. Bacteria could be seen in each of the cell types above; however, most viable bacteria were present in neutrophils. We find that Salmonella is capable of targeting most phagocytic and non-phagocytic cells in the spleen but has a surprisingly high preference for neutrophils. These findings suggest that Salmonella specifically target splenic neutrophils presumably to attenuate their microbicidal functions, thereby promoting intracellular survival and replication in the mouse. Bacteria of the Salmonella genus are important human pathogens and a leading cause of food-borne illness. Salmonella species' ability to cause disease relies on the activities of two sophisticated molecular syringes that allow the bacteria to pump proteins into cells that they infect. The activities of these syringes have been studied extensively in cells grown under laboratory conditions and shown to be essential for the infectious process in animal models. However, the specific cells within infected organs that are targeted by these syringes have not been identified. In this work we describe the specific spleen cells targeted by Salmonella in the mouse. We find that Salmonella is capable of targeting most cell types using their molecular syringes. Quite surprisingly, we find that Salmonella mostly targets neutrophils, a cell type not thought to be associated with live Salmonella in host tissues. These findings challenge our current views of Salmonella infection and may lead to new insight for treating the disease.
Collapse
Affiliation(s)
- Kaoru Geddes
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | | | | |
Collapse
|
16
|
Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: apoptosis as infection-promoting factor. Immunobiology 2008; 213:183-91. [PMID: 18406366 DOI: 10.1016/j.imbio.2007.11.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/19/2007] [Accepted: 11/21/2007] [Indexed: 11/29/2022]
Abstract
Polymorphonuclear neutrophil granulocytes (PMN) are primary antimicrobial effector cells of the innate immune system and serve to destroy invading pathogens. Although most ingested microorganisms are killed readily inside PMN, several obligate or facultative intracellular pathogens survive even in this hostile environment. Extension of the life span of neutrophils is a general escape mechanism of pathogens residing in PMN. However, after 2-4 days, even infected neutrophils become apoptotic and are phagocytosed by macrophages. Since microbes entering macrophages via the uptake of infected apoptotic PMN may survive and multiply in macrophages, apoptotic neutrophils can serve as "Trojan horses" for certain pathogens. Interfering with activating signaling pathways appears to be another potent mechanism by which intracellular microorganisms suppress cellular activation in neutrophils. In addition to provide a short overview of the topic, the present review aims to summarize our own findings regarding the interaction between human neutrophils and intracellular pathogens as well as regarding the disease promoting role of apoptotic cells after infection with Leishmania major.
Collapse
Affiliation(s)
- Tamás Laskay
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | |
Collapse
|
17
|
Handley SA, Miller VL. General and specific host responses to bacterial infection in Peyer's patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol 2007; 64:94-110. [PMID: 17376075 DOI: 10.1111/j.1365-2958.2007.05635.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) and Yersinia enterocolitica are enteric pathogens capable of colonizing and inducing inflammatory responses in Peyer's patches (PPs) and mesenteric lymph nodes (MLNs). Although the tissue colonization pattern is similar between these two pathogens, their pathogenic lifestyles are quite different. For example, while S. typhimurium is primarily an intracellular pathogen, Y. enterocolitica survives primarily extracellularly. We determined and compared the transcriptional changes occurring in response to S. typhimurium and Y. enterocolitica colonization of PP using Affymetrix GeneChip technology. Both pathogens elicited a general inflammatory response indicated by the upregulation of cytokines and chemokines. However, specific differences were also observed, most notably in the transcriptional regulation of gamma interferon (IFN-gamma) and IFN-gamma-regulated genes in response to S. typhimurium but not Y. enterocolitica. Of particular note, a group of genes encoding matrix metalloproteinases (MMPs) had increased transcript numbers in the PPs following infection with both pathogens. The experiments described here compare oral S. typhimurium or Y. enterocolitica infection in stromelysin-1 (MMP-3)-deficient mice (mmp-3(-/-)) with mice possessing functional MMP-3 (mmp-3(+/+)). There was little difference in the survival of MMP-3-deficient mice infected with Y. enterocolitica when compared with littermate controls. Surprisingly though, mmp-3(-/-) mice were markedly more resistant to S. typhimurium infection than the control mice. S. typhimurium was able to colonize mmp-3(-/-) mice, albeit in a delayed fashion, to equivalent levels as mmp-3(+/+) mice. Nevertheless, significantly lower levels of inflammatory cytokines were detected in tissues and serum in the mmp-3(-/-) mice in comparison with mmp-3(+/+) mice. We hypothesize that MMP-3 is involved in initiating an early and lethal cytokine response to S. typhimurium colonization.
Collapse
Affiliation(s)
- Scott A Handley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
18
|
Abstract
Salmonella enterica serovar Typhi causes typhoid fever, a serious life-threatening systemic infection. In mice, a similar disease is caused by Salmonella enterica serovar Typhimurium. During typhoid fever, soon after attachment to the mucosal surface of the gut, bacteria come into contact with the dendritic cells (DCs). The ability to sample antigens, process and present them to naïve and mature T cells, in the context of major histocompatibility complex molecules, makes DCs indispensable for mounting a specific and efficient immune response to invading pathogens. These bacteria, however, have evolved a number of mechanisms to interfere with or subvert DC functions. This review aims to describe how Salmonella clashes with dendritic cells at different stages of infection as well as the war strategies of these two opposing sides.
Collapse
Affiliation(s)
- Marta Biedzka-Sarek
- Department of Bacteriology and Immunology, Haartman Institute, 00014 University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
19
|
Abstract
Salmonella serotypes are able to actively cross the intestinal epithelium, mainly but not exclusively through M cells in the follicle-associated epithelium of Peyer's patches. Once reaching the basal side of the epithelium, Salmonella serotypes are internalized by macrophages, dendritic cells, and neutrophils but are not found in fibroblasts or other mesenchymal cells. The outcome of the interaction between Salmonella serotypes and dendritic cells or neutrophils is detrimental to the pathogen. In some host species Salmonella serotypes find a safe haven from humoral defenses and neutrophils within macrophages, and replication within this niche appears to be a prerequisite for the development of a systemic infection. In other host species, macrophages can control bacterial growth and the infection remains localized to the intestine and mesenteric lymph nodes. This review summarizes our knowledge on the cellular tropism of Salmonella serotypes and the bacterial and host factors relevant for these interactions.
Collapse
Affiliation(s)
- Renato L Santos
- Department Clínica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
20
|
van der Sar AM, Musters RJP, van Eeden FJM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 2003; 5:601-11. [PMID: 12925130 DOI: 10.1046/j.1462-5822.2003.00303.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial virulence is best studied in animal models. However, the lack of possibilities for real time analysis and the need for laborious and invasive sample analysis limit the use of experimental animals. In the present study 28 h-old zebrafish embryos were infected with DsRed-labelled cells of Salmonella typhimurium. Using multidimensional digital imaging microscopy we were able to determine the exact location and fate of these bacterial pathogens in a living vertebrate host during three days. A low dose of wild-type S. typhimurium resulted in a lethal infection with bacteria residing and multiplying both in macrophage-like cells and at the epithelium of blood vessels. Lipopolysaccharide (LPS) mutants of S. typhimurium, known to be attenuated in the murine model, proved to be non-pathogenic in the zebrafish embryos and were partially lysed in the bloodstream or degraded in macrophage-like cells. However, injection of LPS mutants in the yolk of the embryo resulted in uncontrolled bacterial proliferation. Heat-killed, wild-type bacteria were completely lysed extracellularly within minutes after injection, which shows that the blood of these zebrafish embryos does already contain lytic activity. In conclusion, the zebrafish embryo model allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host.
Collapse
Affiliation(s)
- Astrid M van der Sar
- Department of Medical Microbiology, Vrije Universiteit Medical Centre, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol 2003; 11:210-4. [PMID: 12781523 DOI: 10.1016/s0966-842x(03)00075-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polymorphonuclear neutrophil granulocytes (PMNs) possess numerous effector mechanisms to kill ingested pathogens as the first line of defence. However, several microorganisms evade intracellular killing in neutrophils, survive and retain infectivity. There is increasing evidence that several pathogens even multiply within neutrophils. Taking Leishmania major as a prototypic intracellular pathogen, we suggest an evasion strategy that includes the manipulation of PMNs in such a way that the pathogens are able to use the granulocytes as host cells. The ability to survive and maintain infectivity in PMNs subsequently enables these organisms to establish productive infection. These organisms can use granulocytes as Trojan horses before they enter their definitive host cells, the macrophages.
Collapse
Affiliation(s)
- Tamás Laskay
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | |
Collapse
|
22
|
Monack DM, Navarre WW, Falkow S. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 2001; 3:1201-12. [PMID: 11755408 DOI: 10.1016/s1286-4579(01)01480-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salmonella typhimurium invades host macrophages and can induce either an almost immediate cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death depends on the Salmonella pathogenicity island SPI1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Caspase-1-dependent cell death leads to the activation of the potent pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 to produce bioactive cytokines. Animal studies indicate that the activation of these cytokines is necessary for efficient colonization of the mouse gastrointestinal tract. Salmonella that reside in the phagocytic vacuole do not cause this early cell death and can trigger a macrophage death at a much later time point. This late-phase cell death is dependent on SPI2-encoded genes and ompR.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
23
|
Cano DA, Martínez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J, García-Del Portillo F. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 2001; 69:6463-74. [PMID: 11553591 PMCID: PMC98782 DOI: 10.1128/iai.69.10.6463-6474.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium proliferates within cultured epithelial and macrophage cells. Intracellular bacterial proliferation is, however, restricted within normal fibroblast cells. To characterize this phenomenon in detail, we investigated the possibility that the pathogen itself might contribute to attenuating the intracellular growth rate. S. enterica serovar Typhimurium mutants were selected in normal rat kidney fibroblasts displaying an increased intracellular proliferation rate. These mutants harbored loss-of-function mutations in the virulence-related regulatory genes phoQ, rpoS, slyA, and spvR. Lack of a functional PhoP-PhoQ system caused the most dramatic change in the intracellular growth rate. phoP- and phoQ-null mutants exhibited an intracellular growth rate 20- to 30-fold higher than that of the wild-type strain. This result showed that the PhoP-PhoQ system exerts a master regulatory function for preventing bacterial overgrowth within fibroblasts. In addition, an overgrowing clone was isolated harboring a mutation in a previously unknown serovar Typhimurium open reading frame, named igaA for intracellular growth attenuator. Mutations in other serovar Typhimurium virulence genes, such as ompR, dam, crp, cya, mviA, spiR (ssrA), spiA, and rpoE, did not result in pathogen intracellular overgrowth. Nonetheless, lack of either SpiA or the alternate sigma factor RpoE led to a substantial decrease in intracellular bacterial viability. These results prove for the first time that specific serovar Typhimurium virulence regulators are involved in a response designed to attenuate the intracellular growth rate within a nonphagocytic host cell. This growth-attenuating response is accompanied by functions that ensure the viability of intracellular bacteria.
Collapse
Affiliation(s)
- D A Cano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Salcedo SP, Noursadeghi M, Cohen J, Holden DW. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 2001; 3:587-97. [PMID: 11553011 DOI: 10.1046/j.1462-5822.2001.00137.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We used flow cytometry and confocal immunofluorescence microscopy to study the localization of Salmonella typhimurium in spleens of infected mice. Animals were inoculated intragastrically or intraperitoneally with S. typhimurium strains, constitutively expressing green fluorescent protein. Independently of the route of inoculation, most bacteria were found in intracellular locations 3 days after inoculation. Using a panel of antibodies that bound to cells of different lineages, including mononuclear phagocyte subsets, we have shown that the vast majority of S. typhimurium bacteria reside within macrophages. Bacteria were located in red pulp and marginal zone macrophages, but very few were found in the marginal metallophilic macrophage population. We have demonstrated that the Salmonella SPI-2 type III secretion system is required for replication within splenic macrophages, and that sifA(-) mutant bacteria are found within the cytosol of these cells. These results confirm that SifA and SPI-2 are involved in maintenance of the vacuolar membrane and intracellular replication in vivo.
Collapse
Affiliation(s)
- S P Salcedo
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College School of Medicine, The Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
25
|
Wain J, Pham VB, Ha V, Nguyen NM, To SD, Walsh AL, Parry CM, Hasserjian RP, HoHo VA, Tran TH, Farrar J, White NJ, Day NP. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J Clin Microbiol 2001; 39:1571-6. [PMID: 11283089 PMCID: PMC87972 DOI: 10.1128/jcm.39.4.1571-1576.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteric fever is the only bacterial infection of humans for which bone marrow examination is routinely recommended. A prospective study of the concentrations of bacteria in the bone marrow and their relationship to clinical features was conducted with 120 Vietnamese patients with suspected enteric fever, of whom 89 had confirmed typhoid fever. Ninety-three percent of the Salmonella enterica serovar Typhi samples isolated were resistant to ampicillin, chloramphenicol, and co-trimoxazole. For 81 patients with uncomplicated typhoid and satisfactory bone marrow aspirates, the number of serovar Typhi CFU in bone marrow aspirates was a median value of 9 (interquartile range [IQR], 1 to 85; range, 0.1 to 1,580) compared to 0.3 (IQR, 0.1 to 10; range, 0.1 to 399) CFU/ml in simultaneously sampled blood. The ratio of individual blood counts to bone marrow counts was 10 (IQR, 2.3 to 97.5). The number of bacteria in blood but not bone marrow was correlated inversely with the duration of preceding fever. Thus, with increasing duration of illness the ratio of bone marrow-to-blood bacterial concentrations increased; the median ratio was 4.8 (IQR, 1 to 27.5) during the first week compared with 158 (IQR, 60 to 397) during the third week. After lysing the host cells, the median ratio of viable bone marrow to blood increased, reflecting the higher concentration of intracellular serovar Typhi in the bone marrow. Effective antibiotic pretreatment had a significantly greater effect in reducing blood counts compared to bone marrow counts (P < 0.001). Thus, bacteria in the bone marrow of typhoid patients are less affected by antibiotic treatment than bacteria in the blood. The numbers of bacteria in bone marrow correlated negatively with the white blood cell (R = -0.3, P = 0.006) and platelet counts (R = -0.32, P = 0.01) and positively with fever clearance time after treatment (R = 0.4, P < 0.001). The bacterial load in bone marrow therefore may reflect the clinical course of the infection, and high levels may suppress neutrophil proliferation.
Collapse
Affiliation(s)
- J Wain
- Wellcome Trust Clinical Research Unit, Centre for Tropical Diseases, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van der Velden AW, Lindgren SW, Worley MJ, Heffron F. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun 2000; 68:5702-9. [PMID: 10992474 PMCID: PMC101526 DOI: 10.1128/iai.68.10.5702-5709.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric pathogen Salmonella enterica serotype Typhimurium induces apoptosis in infected macrophages. This process is rapid, specific, and depends on the type III protein secretion system encoded within Salmonella pathogenicity island 1 (SPI1). Here, we demonstrate that serotype Typhimurium can activate programmed macrophage cell death independently of SPI1. SPI1 independent induction of apoptosis in infected macrophages is observed as early as 12 to 13 h postinfection, even in the absence of intracellular bacterial replication. Delayed activation of programmed macrophage cell death is not observed with serotype Typhimurium strains mutated in ompR or SPI2. Even though SPI2 mutants have a defect in intracellular proliferation, our results indicate that long-term intracellular survival and growth are not required for delayed macrophage killing per se, since Salmonella mutants that are severely defective in intracellular growth still induce delayed apoptosis. Inactivation of genes required for either rapid or delayed induction of apoptosis results in a conditional noncytotoxic phenotype, whereas simultaneous inactivation of genes required for both rapid and delayed induction of apoptosis renders serotype Typhimurium noncytotoxic under all conditions tested. Our hypothesis is that differential activation of programmed macrophage cell death by serotype Typhimurium occurs under discrete physiological conditions at distinct locations within an infected host.
Collapse
Affiliation(s)
- A W van der Velden
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
27
|
Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med 2000; 192:249-58. [PMID: 10899911 PMCID: PMC2193260 DOI: 10.1084/jem.192.2.249] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 05/17/2000] [Indexed: 12/20/2022] Open
Abstract
Salmonella typhimurium invades host macrophages and induces apoptosis and the release of mature proinflammatory cytokines. SipB, a protein translocated by Salmonella into the cytoplasm of macrophages, is required for activation of Caspase-1 (Casp-1, an interleukin [IL]-1beta-converting enzyme), which is a member of a family of cysteine proteases that induce apoptosis in mammalian cells. Casp-1 is unique among caspases because it also directly cleaves the proinflammatory cytokines IL-1beta and IL-18 to produce bioactive cytokines. We show here that mice lacking Casp-1 (casp-1(-/)- mice) had an oral S. typhimurium 50% lethal dose (LD(50)) that was 1,000-fold higher than that of wild-type mice. Salmonella breached the M cell barrier of casp-1(-/)- mice efficiently; however, there was a decrease in the number of apoptotic cells, intracellular bacteria, and the recruitment of polymorphonuclear lymphocytes in the Peyer's patches (PP) as compared with wild-type mice. Furthermore, Salmonella did not disseminate systemically in the majority of casp-1(-/)- mice, as demonstrated by significantly less colonization in the PP, mesenteric lymph nodes, and spleens of casp-1(-/)- mice after an oral dose of S. typhimurium that was 100-fold higher than the LD(50). The increased resistance in casp-1(-/)- animals appears specific for Salmonella infection since these mice were susceptible to colonization by another enteric pathogen, Yersinia pseudotuberculosis, which normally invades the PP. These results show that Casp-1, which is both proapoptotic and proinflammatory, is essential for S. typhimurium to efficiently colonize the cecum and PP and subsequently cause systemic typhoid-like disease in mice.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- R A Kingsley
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University, College Station 77843-1114, USA
| | | |
Collapse
|
29
|
Chiu CH, Ou JT. Intracellular Salmonella typhimurium induce lysis of human polymorphonuclear leukocytes which is not associated with the Salmonella virulence plasmid. Microbiol Immunol 1999; 43:9-14. [PMID: 10100741 DOI: 10.1111/j.1348-0421.1999.tb02366.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between Salmonella typhimurium and human polymorphonuclear leukocytes (PMNs) was analyzed in vitro. Three S. typhimurium strains, the wild-type strain OU5043, its isogenic virulence plasmid-cured strain OU5048, and LT2, which represented the types that exhibited three mouse virulence levels, respectively, were used in this study. There was no correlation between the recovery of intracellular S. typhimurium from PMNs and the presence or absence of the virulence plasmid, or the strains' mouse virulence level. When the oxygen-dependent response of PMNs upon phagocytosis of S. typhimurium was examined by checking the intracellular reduction of nitroblue tetrazolium (NBT), the fraction of PMNs that reduced NBT on phagocytosis of the three strains was around 80%, whereas it was 58% with Escherichia coli, 95% with phorbol 12-myristate 13-acetate and 15% with a negative control. Thus there were no significant differences among the three Salmonella strains in terms of their ability to induce the oxidative response in PMNs. Microscopic analysis of Salmonella-infected PMNs indicated that the intracellular Salmonella induced lysis of PMNs. Both OU5043 and OU5048 exhibited a significant intracellular cytotoxic effect on PMNs after 24 hr of infection and this effect was not associated with the presence or absence of the virulence plasmid. On the other hand, lysis of PMNs was related to the intracellular survival of Salmnonella, as ofloxacin, an antibiotic, appeared to be able to protect human PMNs from Salmonella-induced cytotoxicity when this agent was added into the medium to inactivate the intracellular organism. The ability to induce lysis of PMNs by either wild-type or plasmid-cured strains of S. typhimurium may play a crucial role in the pathogenesis of non-typhoid Salmonella. The contribution of pSTV to human salmonellosis is likely to be limited. Furthermore, early institution of antibiotics with a high intracellular activity against Salmonella, such as fluoroquinolones, may be useful to prevent the dissemination of Salmonella infection.
Collapse
Affiliation(s)
- C H Chiu
- Department of Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | | |
Collapse
|
30
|
Phalipon A, Sansonetti PJ. Microbial-host interactions at mucosal sites. Host response to pathogenic bacteria at mucosal sites. Curr Top Microbiol Immunol 1999; 236:163-89. [PMID: 9893360 DOI: 10.1007/978-3-642-59951-4_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A Phalipon
- Unite de Pathogenie Microbienne Moleculaire, U389, Institut Pasteur, Paris, France
| | | |
Collapse
|
31
|
Nishikawa S, Hirasue M, Miura T, Yamada K, Sasaki S, Nakane A. Systemic dissemination by intrarectal infection with Listeria monocytogenes in mice. Microbiol Immunol 1998; 42:325-7. [PMID: 9623921 DOI: 10.1111/j.1348-0421.1998.tb02290.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orally ingested Listeria monocytogenes is known to penetrate into Peyer's patches (PP) and translocate to the spleen and liver. Herein, extraintestinal dissemination of the bacterium independent of PP was investigated. Dissemination of Listeriae to the spleen and liver was observed in intrarectally infected mice as well as in intragastrically infected animals in spite that no Listeriae were detected in the small intestines of mice infected intrarectally. Decreased numbers of intestinal intraepithelial lymphocytes (iIEL) and increased numbers of lymphocytes in the contents of the small and large intestines were observed after intragastric infection and in the large intestine after intrarectal infection, giving the assumption that the leakage of iIEL caused by injury of epithelial layers in intestines might occur during infection. These results suggest that L. monocytogenes might be able to disseminate through small and large intestines in part by a PP-independent mechanism.
Collapse
Affiliation(s)
- S Nishikawa
- Department of Bacteriology, Hirosaki University School of Medicine, Aomori, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Gulig PA, Doyle TJ, Hughes JA, Matsui H. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun 1998; 66:2471-85. [PMID: 9596705 PMCID: PMC108227 DOI: 10.1128/iai.66.6.2471-2485.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1997] [Accepted: 03/07/1998] [Indexed: 02/07/2023] Open
Abstract
The 90-kb virulence plasmid of Salmonella typhimurium encodes five spv genes which increase the growth rate of the bacteria within host cells within the first week of systemic infection of mice (P. A. Gulig and T. J. Doyle, Infect. Immun. 61:504-511, 1993). The presently described study was aimed at identifying the host cells associated with Spv-mediated virulence by manipulating the mouse host and the salmonellae. To test the effects of T cells and B cells on the Spv phenotype, salmonellae were orally inoculated into nude and SCID BALB/c mice. Relative to normal BALB/c mice, nude and SCID BALB/c mice were unaffected for splenic infection with either the Spv+ or Spv- S. typhimurium strains at 5 days postinoculation. When mice were pretreated with cyclophosphamide to induce granulocytopenia, there was a variable increase in total salmonella infection, but the relative splenic CFU of Spv+ versus Spv- S. typhimurium was not changed after oral inoculation. In contrast, depletion of macrophages from mice by treatment with cyclophosphamide plus liposomes containing dichloromethylene diphosphate resulted in equivalent virulence of Spv+ and Spv- salmonellae. To examine if the spv genes affected the growth of salmonellae in nonphagocytic cells, an invA::aphT mutation was transduced into Spv+ and Spv- S. typhimurium strains. InvA- Spv+ salmonellae were not significantly affected for splenic infection after subcutaneous inoculation compared with the wild-type strain, and InvA- Spv- salmonellae were only slightly attenuated relative to InvA+ Spv- salmonellae. Invasion-defective salmonellae still exhibited the Spv phenotype. Therefore, infection of nonphagocytes is not involved with the Spv virulence function. Taken together, these data demonstrate that macrophages are essential for suppressing the infection by Spv- S. typhimurium, by serving as the primary host cell for Spv-mediated intracellular replication and possibly by inhibiting the replication of salmonellae within other macrophages.
Collapse
Affiliation(s)
- P A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA.
| | | | | | | |
Collapse
|
33
|
Burns-Keliher L, Nickerson CA, Morrow BJ, Curtiss R. Cell-specific proteins synthesized by Salmonella typhimurium. Infect Immun 1998; 66:856-61. [PMID: 9453656 PMCID: PMC107984 DOI: 10.1128/iai.66.2.856-861.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the proteins synthesized by Salmonella typhimurium during growth within tissue culture cells have previously focused on a single cell type. In the present study we examine the different protein patterns exhibited by S. typhimurium during growth within three different cell types relevant to those it would encounter throughout the course of a natural infection, including intestinal epithelial cells (Intestine-407), macrophages (J774.A, rat bone marrow-derived macrophages, and mouse bone marrow-derived macrophages), and liver cells (NMuLi). Side-by-side comparisons reveal that S. typhimurium responds to these different cellular environments with specific patterns of protein synthesis unique to each cell type. The numbers of proteins detected in each cell line are as follows: 142 proteins in Intestine-407, of which 58 appear to be unique to growth within this cell line; 413 proteins in J774.A, of which 157 appear to be unique; 260 proteins in rat bone marrow-derived macrophages, of which 40 appear to be unique; 336 proteins in mouse bone marrow-derived macrophages, of which 113 appear to be unique; and 183 proteins in NMuLi, of which 91 appear to be unique.
Collapse
Affiliation(s)
- L Burns-Keliher
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | | | |
Collapse
|
34
|
Richter-Dahlfors A, Buchan AM, Finlay BB. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 1997; 186:569-80. [PMID: 9254655 PMCID: PMC2199036 DOI: 10.1084/jem.186.4.569] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Salmonella typhimurium is considered a facultative intracellular pathogen, but its intracellular location in vivo has not been demonstrated conclusively. Here we describe the development of a new method to study the course of the histopathological processes associated with murine salmonellosis using confocal laser scanning microscopy of immunostained sections of mouse liver. Confocal microscopy of 30-micron-thick sections was used to detect bacteria after injection of approximately 100 CFU of S. typhimurium SL1344 intravenously into BALB/c mice, allowing salmonellosis to be studied in the murine model using more realistic small infectious doses. The appearance of bacteria in the mouse liver coincided in time and location with the infiltration of neutrophils in inflammatory foci. At later stages of disease the bacteria colocalized with macrophages and resided intracellularly inside these macrophages. Bacteria were cytotoxic for phagocytic cells, and apoptotic nuclei were detected immunofluorescently, whether phagocytes harbored intracellular bacteria or not. These data argue that Salmonella resides intracellularly inside macrophages in the liver and triggers cell death of phagocytes, processes which are involved in disease. This method is also applicable to other virulence models to examine infections at a cellular and subcellular level in vivo.
Collapse
Affiliation(s)
- A Richter-Dahlfors
- Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | |
Collapse
|
35
|
Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P. The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele. Infect Immun 1996; 64:2923-9. [PMID: 8757814 PMCID: PMC174168 DOI: 10.1128/iai.64.8.2923-2929.1996] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The murine Bcg/Ity/Lsh locus determines the susceptibilities of inbred strains to infection with unrelated intracellular parasites, such as Mycobacterium bovis, Salmonella typhimurium, and Leishmania donovani. A candidate for Bcg/Ity/Lsh, designated Nramp1, has been recently identified and shown to encode a novel integral membrane protein that is expressed exclusively in professional phagocytes but whose function remains unknown. In inbred strains, the susceptibility to infection is associated with a single glycine-to-aspartic acid substitution at position 169 (G169D) in the predicted TM4 of the protein. To confirm the candidacy of Nramp1 as Bcg/Ity/Lsh and to determine the importance of the G169D mutation on Nramp1 function, we constructed transgenic mice in which the G169 allele of Nramp1 was transferred onto the background of a homozygous D169 allele. These transgenic mice were analyzed for their sensitivity to infections under the control of Bcg/Ity/Lsh. The transgene constructed for these studies contained the entire Nramp1G169 gene together with approximately 5 kb of sequences upstream of the transcription initiation site of this gene. We observed that these sequences were sufficient to direct Nramp1G169 expression in transgenic macrophages, resulting in the appearance of a mature protein of 90 to 100 kDa over a background of Nramp1G169 characterized by the complete absence of the mature Nramp1 polypeptide. The appearance of the Nramp1G169-encoded protein in transgenic macrophages was concomitant with the emergence of resistance to infection by M. bovis BCG, as measured by the extent of bacteria] replication in the spleen, and by S. typhimurium, as measured by survival after an intravenous challenge. The gain of function detected in transgenic Nramp1G169 animals establishes unambiguously that Nramp1 and Bcg/Ity/Lsh are allelic.
Collapse
Affiliation(s)
- G Govoni
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Rüssmann H, Ruckdeschel K, Heesemann J. Translocation of Yersinia enterocolitica through an endothelial monolayer by polymorphonuclear leukocytes. Infect Immun 1996; 64:1016-9. [PMID: 8641751 PMCID: PMC173872 DOI: 10.1128/iai.64.3.1016-1019.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An endothelial cell monolayer grown on a microporous membrane coated with basement membrane protein matrix was used to study translocation of yersinia-infected human polymorphonuclear leukocytes (PMNs). PMNs infected with one to eight bacteria were able to translocate living yersiniae from the upper chamber to the chemoattractant-containing lower chamber. This process may contribute to extravasation and dissemination of yersiniae in the infected host.
Collapse
Affiliation(s)
- H Rüssmann
- Institute for Hygiene and Microbiology, University of Würzburg, Germany
| | | | | |
Collapse
|
37
|
Affiliation(s)
- J E Galán
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-5222, USA
| |
Collapse
|
38
|
Umezawa K, Ohnishi N, Tanaka K, Kamiya S, Koga Y, Nakazawa H, Ozawa A. Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes. Infect Immun 1995; 63:4402-4408. [PMID: 7591077 PMCID: PMC173626 DOI: 10.1128/iai.63.11.4402-4408.1995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The pathophysiological roles of superoxide (O2.-) at the site of infection of facultative intracellular bacteria were examined in this study. To evaluate the actual in vivo generation of the superoxide, an ex vivo chemiluminescence assay was newly developed. When ICR mice were infected with a sublethal dose (8 x 10(4) CFU) of Salmonella typhimurium, the number of bacteria in the liver reached its peak at 5 days after infection (10(5.05) CFU/g of liver) and decreased thereafter. At 21 days after infection, the bacteria became undetectable. On the other hand, phorbol myristate 13-acetate-stimulated O2.- generation reached a maximum at 7 days after infection (mean photon count, 1,249 cps versus 28.8 cps before infection; n = 4) and decreased thereafter to a level similar to that before infection at 21 days after infection (28.8 cps). Histological examinations revealed that the total area of the lesions reached a peak at 7 days after infection (7.2 x 10(4) microns 2/10 visual fields). In the early phase, a microabscess with infiltration of polymorphonuclear cells was noted, and then, in the late stage, the lesion was replaced by granulation with mononuclear cell infiltration. When microscopic lesions were measured histologically, a significant correlation between the area of the lesions and phorbol myristate 13-acetate-stimulated O2.- generation was observed, which suggested that superoxide was responsible for the generation of the lesions. Modified superoxide dismutase, i.e., alpha-4-([6-(N-maleimido)hexanoyloxymethyl] cumyl)half-butyl-esterified poly(stylrene-co-malelic acid)-conjugated superoxide dismutase (SM-SOD), was then applied. When SM-SOD was administered to suppress the O2.- generation in vivo, the number of bacteria increased (10(6.1) CFU). However, the lesion formation was inhibited (total lesion area, 0.3 x 10(4) microns 2). These results suggest that the establishment of the microabscess and granuloma formation after S. typhimurium infection is not due to the bacteria per se but rather to the O2.- from the host's phagocytes. Two aspects of the O2.-, i.e., the bactericidal role and the tissue-injurious effect, were clearly demonstrated in this study. Therefore, the information obtained from these results is useful in designing treatment strategy for similar kinds of infection.
Collapse
Affiliation(s)
- K Umezawa
- Department of Infectious Diseases, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Mastroeni P, Skepper JN, Hormaeche CE. Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections. Infect Immun 1995; 63:3674-82. [PMID: 7642306 PMCID: PMC173509 DOI: 10.1128/iai.63.9.3674-3682.1995] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We reported that administration of anti-tumor necrosis factor alpha (anti-TNF-alpha) antibodies exacerbates the course of a Salmonella infection in both susceptible and resistant mice by preventing the suppression of bacterial growth in the reticuloendothelial system. In the present study, we evaluated the effect of in vivo neutralization of TNF-alpha on the histopathology of primary Salmonella infections. We show that in primary infections, the suppression of bacterial growth in the reticuloendothelial system coincides with granuloma formation in the spleen and liver. Administration of anti-TNF-alpha globulins on day -1 of salmonellosis affected neither the histological picture nor the course of the infection in the early stages of the disease (days 1 to 3), with splenic and hepatic lesions consisting mainly of polymorphonuclear leukocytes (PMNs); conversely, later in infection (days 3 to 7), the treatment inhibited the formation of granulomas. When the anti-TNF-alpha treatment was started well after the suppression of bacterial growth in the reticuloendothelial system and the formation of granulomatous lesions in the spleen and liver, a prompt relapse of the infection and regression of already established granulomas were seen. In anti-TNF-alpha-treated mice, salmonellae were found inside macrophages and PMNs and extracellularly in the necrotic tissue of the spleen, while in the liver the organisms were seen mainly in inflammatory mononuclear cells, resident Kupffer cells, and hepatocytes and occasionally in the extracellular compartment within necrotic lesions. The bacteria appeared most often in clusters, being morphologically intact when in the extracellular space or within hepatocytes, while undergoing various degrees of degeneration when inside phagocytes. The results suggest that TNF-alpha is required for granuloma formation in salmonellosis and that its neutralization does not completely abrogate the bactericidal activity of macrophages and PMNs. Salmonellae were observed to grow within both hepatocytes and phagocytes but were killed only in the latter.
Collapse
Affiliation(s)
- P Mastroeni
- Department of Microbiology, Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
40
|
Collazo CM, Zierler MK, Galán JE. Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol Microbiol 1995; 15:25-38. [PMID: 7752894 DOI: 10.1111/j.1365-2958.1995.tb02218.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have carried out a functional analysis of invl and invJ, two Salmonella typhimurium genes required for this organism to gain access to cultured mammalian cells. These genes are located immediately down-stream of invC, a previously identified gene also required for bacterial invasion. Non-polar mutations in either of these genes rendered S. typhimurium severely defective for entry into cultured epithelial cells, although these mutations did not affect the ability of these organisms to attach to those cells. Nucleotide sequence analysis revealed that the invl and invJ genes encode proteins with molecular weights of 18,077 and 36,415, respectively. Polypeptides of similar sizes were observed when these genes were expressed in a bacteriophage T7 RNA polymerase-based expression system. Comparison of the predicted sequences of invl and invJ with translated sequences in the existing databases indicated that these proteins are identical to the previously identified S. typhimurium SpaM and SpaN proteins. Further analysis of these sequences revealed regions of homology between Invl and the N-terminus of IpaB of Shigella spp. and between InvJ and EaeB of enteropathogenic Escherichia coli. Localization studies by immunoblot analysis indicated that InvJ is secreted to the culture supernatant, a surprising finding since this protein also lacks a typical signal sequence. Mutations in invG and invC, two members of the Salmonella inv locus, effectively prevented the transport of InvJ to the culture supernatant. Thus, InvJ is the first identified target of the protein secretion apparatus encoded in the inv locus and therefore a candidate to have effector functions related to bacterial entry.
Collapse
Affiliation(s)
- C M Collazo
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222
| | | | | |
Collapse
|
41
|
Kaniga K, Bossio JC, Galán JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol 1994; 13:555-68. [PMID: 7997169 DOI: 10.1111/j.1365-2958.1994.tb00450.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have identified two novel Salmonella typhimurium genes, invF and invG, which are required for the efficient entry of these organisms into cultured epithelial cells. invF and invG are located immediately upstream of invE, a previously identified gene also required for Salmonella entry. Non-polar mutations in these genes rendered S. typhimurium severely deficient for entry into cultured epithelial cells. The nucleotide sequences of invF and invG indicated that these genes encode polypeptides with predicted molecular weights of 24,373 and 62,275, respectively. Proteins of similar sizes were observed when invF and invG were expressed in a bacteriophage T7 RNA polymerase-based expression system. Comparison of the predicted sequence of InvF with translated sequences in the existing databases indicated that this protein is homologous to members of the AraC family of prokaryotic transcription regulators. However, mutations in invF did not significantly affect the expression of other members of the inv locus. InvG was found to be homologous to members of the PulD family of specialized translocases. This homology suggests that InvG may be necessary for the export of invasion-related determinants or involved in the assembly of a supramolecular structure that promotes entry.
Collapse
Affiliation(s)
- K Kaniga
- Department of Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222
| | | | | |
Collapse
|
42
|
Roland KL, Martin LE, Esther CR, Spitznagel JK. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 1993; 175:4154-64. [PMID: 8391535 PMCID: PMC204845 DOI: 10.1128/jb.175.13.4154-4164.1993] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We isolated spontaneous mutations (pmrA) in the smooth strain Salmonella typhimurium LT2 that show increased resistance to the cationic antibacterial proteins of human neutrophils and to the drug polymyxin B. The mutation in one strain, JKS5, maps to 93 min on the S. typhimurium chromosome, near the proP gene and the melAB operon. The mutation, designated pmrA505, confers a 1,000-fold increase in resistance to polymyxin B and a 2- to 4-fold increase in resistance to neutrophil proteins. We cloned both the pmrA505 and pmrA+ alleles and found that the pmrA+ gene is partially dominant over pmrA505. DNA sequence analysis of the pmrA505 clone revealed three open reading frames (ORFs). The deduced amino acid sequences indicated that ORF1 encodes a 548-amino-acid (aa) protein with a putative membrane-spanning domain and no significant homology to any known protein. ORF2 and ORF3, which encode 222- and 356-aa proteins, respectively, show strong homology with the OmpR-EnvZ family of two-component regulatory systems. ORF2 showed homology with a number of response regulators, including OmpR and PhoP, while ORF3 showed homology to histidine kinase-sensor proteins EnvZ and PhoR. Genetic analysis of the cloned genes suggested that ORF2 contained the pmrA505 mutation. Comparison of the pmrA505 and pmrA+ ORF2 DNA sequences revealed a single G-A transition, which would result in a His-to-Arg substitution at position 81 in the ORF2 mutant protein. We therefore designate ORF2 PmrA and ORF3 PmrB. The function of ORF1 is unknown.
Collapse
Affiliation(s)
- K L Roland
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
43
|
Riikonen P, Mäkelä PH, Saarilahti H, Sukupolvi S, Taira S, Rhen M. The virulence plasmid does not contribute to growth of Salmonella in cultured murine macrophages. Microb Pathog 1992; 13:281-91. [PMID: 1298867 DOI: 10.1016/0882-4010(92)90038-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The virulence plasmid, characteristic of many serovars of Salmonella sp., and specifically its spv genes, promote intracellular growth of the bacteria in the liver and spleen and are essential for the virulence of these Salmonella serovars in the mouse. In an attempt to establish an in vitro model for studying its function, we evaluated its effect on the intracellular growth of the bacteria in macrophages in culture. We used a number of different macrophage-like cell lines (J774-A.1, IC-21 and PU5-1.8), as well as peritoneal or splenic macrophages from genetically Salmonella-sensitive (Itys, BALB/c) or resistant (Ityr, C3H/HeN) mice, and at different states of activation, stimulated in vivo or in vitro with lipopolysaccharide and/or recombinant gamma interferon. These were found to differ in their ability to suppress or sustain intracellular growth of several Salmonella serovars, but in all cases the growth was independent of the spv genes.
Collapse
Affiliation(s)
- P Riikonen
- National Public Health Institute, Molecular Biology Program, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|