1
|
Rodrigues B, Ventura E, Moreira P, Resende R, Bicker J, Santos AE, Pereira CF, Cruz MT, Robalo MP, Silva A, Silva S. New low-dose curcumin derivative with therapeutic potential in Alzheimer's disease: Results from an in vitro and in vivo study in mice. Neurobiol Aging 2025; 147:105-123. [PMID: 39733760 DOI: 10.1016/j.neurobiolaging.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Curcumin has been proposed as a potential treatment for Alzheimer's disease (AD) due to its ability to inhibit amyloid-β (Aβ) peptide aggregates and to destabilise pre-formed ones. Derivative 27 was synthesized to improve low-dose efficacy in the context of AD. Its anti-inflammatory, antioxidant and anti-amyloidogenic activities were evaluated in chemico, in vitro using AD and neuroinflammation cell models, and in vivo using the double-transgenic APP/PS1 mice. In vitro, this curcumin derivative significantly reduced nitric oxide (NO) production and levels of pro-inflammatory proteins, inducible NO synthase, pro-interleukin-1β (Pro-IL-1β) and cyclooxygenase-2. Furthermore, Derivative 27 activated nuclear factor erythroid 2-related factor 2 transcription factor (Nrf2) and significantly increased Nrf2 and heme-oxygenase-1 protein levels in the nucleus and in the cytoplasm, respectively. In one-year-old APP/PS1 mice, orally administered-Derivative 27 (50 mg/Kg/day) for 28 days improved spatial short-term memory and significantly decreased hippocampal Pro-IL-1β and amyloid precursor protein levels, as well as Aβ levels in the hippocampus and plasma. This study supports developing new chemical approaches to alter curcumin molecule, enabling lower doses, while increasing the effectiveness in AD treatment.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal.
| | - Eduarda Ventura
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal
| | - Patrícia Moreira
- Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal; CIBIT/ICNAS, Coimbra Institute for Biomedical Imaging and Translation Research, University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Maria Paula Robalo
- CQE, Institute of Molecular Sciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal; Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Ana Silva
- Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective mitophagy in a murine model of Barth syndrome. Sci Rep 2024; 14:13655. [PMID: 38871974 DOI: 10.1038/s41598-024-64368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.
Collapse
Affiliation(s)
- Silvia Russo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) , National Research Council (CNR), Bari, Italy
| | - Roberta Rossi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
3
|
Song J, Lee J, Lee H, Jeong HS, Lee J, Kim Y. Protective Effects of Cereal Grain Extracts on Alcohol-Induced Hepatocyte Damage. Prev Nutr Food Sci 2024; 29:40-46. [PMID: 38576882 PMCID: PMC10987386 DOI: 10.3746/pnf.2024.29.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
This study investigated the protective effects of cereal grains on alcohol-induced hepatocyte damage. Cereal grains were extracted with methanol, and their radical scavenging properties and total phenolic contents were examined. Black rice extract exhibited the highest total polyphenol content and radical scavenging capacity. Treatment with sorghum extract increased the viability of cells exposed to alcohol by up to 81.6%. All cereal grain extracts decreased reactive oxygen species and malondialdehyde production and glutathione depletion in HepG2 cells exposed to ethanol. In particular, black rice and sorghum extracts exhibited greater antioxidant effects than other cereal grains. Treatment with black rice extract increased the levels of alanine aminotransferase and aspartate aminotransferase of alcohol-exposed cells to control levels. Overall, black rice extract showed a greater protective effect compared with other cereal grains against alcohol exposure in HepG2 cells and could improve alcohol-induced liver problems.
Collapse
Affiliation(s)
- Jinhee Song
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Jaemin Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
4
|
Weng ZK, Lin TH, Chang KH, Chiu YJ, Lin CH, Tseng PH, Sun YC, Lin W, Lee-Chen GJ, Chen CM. Using ΔK280 Tau RD Folding Reporter Cells to Screen TRKB Agonists as Alzheimer's Disease Treatment Strategy. Biomolecules 2023; 13:biom13020219. [PMID: 36830589 PMCID: PMC9953660 DOI: 10.3390/biom13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.
Collapse
Affiliation(s)
- Zheng-Kui Weng
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Pei-Hsuan Tseng
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
- Correspondence: (G.-J.L.-C.); (C.-M.C.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Correspondence: (G.-J.L.-C.); (C.-M.C.)
| |
Collapse
|
5
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
6
|
Clabough E, Ingersoll J, Reekes T, Gleichsner A, Ryan A. Acute Ethanol Exposure during Synaptogenesis Rapidly Alters Medium Spiny Neuron Morphology and Synaptic Protein Expression in the Dorsal Striatum. Int J Mol Sci 2021; 23:290. [PMID: 35008713 PMCID: PMC8745582 DOI: 10.3390/ijms23010290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.
Collapse
Affiliation(s)
- Erin Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - James Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
| | - Tyler Reekes
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71104, USA
| | - Alyssa Gleichsner
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| | - Amy Ryan
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| |
Collapse
|
7
|
Baban B, Khodadadi H, Salles ÉL, Costigliola V, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Yu JC. Inflammaging and Cannabinoids. Ageing Res Rev 2021; 72:101487. [PMID: 34662745 PMCID: PMC8662707 DOI: 10.1016/j.arr.2021.101487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Aging is a complex phenomenon associated with a wide spectrum of physical and physiological changes affecting every part of all metazoans, if they escape death prior to reaching maturity. Critical to survival, the immune system evolved as the principal component of response to injury and defense against pathogen invasions. Because how significantly immune system affects and is affected by aging, several neologisms now appear to encapsulate these reciprocal relationships, such as Immunosenescence. The central part of Immunosenescence is Inflammaging -a sustained, low-grade, sterile inflammation occurring after reaching reproductive prime. Once initiated, the impact of Inflammaging and its adverse effects determine the direction and magnitudes of further Inflammaging. In this article, we review the nature of this vicious cycle, we will propose that phytocannabinoids as immune regulators may possess the potential as effective adjunctive therapies to slow and, in certain cases, reverse the pathologic senescence to permit a more healthy aging.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | | | - John C Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Wang M, Xu P, Liao L, Gao L, Amakye WK, Zhang Y, Yao M, Ren J. Haematococcus Pluvialis Extends Yeast Lifespan and Improves Slc25a46 Gene Knockout-Associated Mice Phenotypic Defects. Mol Nutr Food Res 2021; 65:e2100086. [PMID: 34672083 DOI: 10.1002/mnfr.202100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/02/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Aging has become one of major concern worldwide. It is therefore of great significance in finding food resources as therapeutic candidates for aging-related functional decline improvement and prevention. This study aimed to define the potency of Haematococcus pluvialis (H. pluvialis) as an anti-aging food resource. METHODS AND RESULTS Yeast is used to explore the anti-aging effects of H. pluvialis. The result showed that H. pluvialis extract could effectively extend yeast chronological lifespan (CLS) by reducing intracellular reactive oxygen species (ROS) levels, promoting mitochondrial membrane potential (MMP) levels and accumulating storage carbohydrate (glycogen). Subsequently, Slc25a46 knockout (Slc25a46-/- ) mice with mitochondrial dysfunction are fed with 100 mg kg-1 H. pluvialis extracts for 10 days. The in vivo data demonstrated that H. pluvialis extract could effectively improve the phenotypic deficits, including underweight, muscle weakness, redox imbalance, and mitochondrial respiratory chain dysfunction, etc., in Slc25a46-/- mice. CONCLUSIONS This work highlights that the mitochondria may be a potential therapeutic target for combating aging, and demonstrated that H. pluvialis, as a dietary supplement, may potentially be an effective preventive substance that may contribute to the promotion of healthy aging.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Piao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Linfeng Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Ying Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
9
|
Wang X, Ji X. Interactions between remote ischemic conditioning and post-stroke sleep regulation. Front Med 2021; 15:867-876. [PMID: 34811643 DOI: 10.1007/s11684-021-0887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022]
Abstract
Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
Collapse
Affiliation(s)
- Xian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100069, China.
| |
Collapse
|
10
|
Shi M, Guo J, Li Z, Sun H, Yang X, Yang D, Zhao H. Network meta-analysis on efficacy and safety of different anti-CGRP monoclonal antibody regimens for prophylaxis and treatment of episodic migraine. Neurol Res 2021; 43:932-949. [PMID: 34281473 DOI: 10.1080/01616412.2021.1940672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Currently, studies have shown that anti-CGRP monoclonal antibodies are effective drugs for the prophylaxis and treatment of episodic migraine. Therefore, for the first time, we classified and concluded 10 treatment regimens according to the different doses, drugs, routes of administration, and courses of treatment, so as to provide a reference for further clinical studies. METHODS We studied relevant randomized controlled trials (RCTs) published before August 2020 on PubMed, Embase, Ovid MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials. RESULTS Eleven RCTs involving 6397 patients were included in our analysis. Network meta-analysis results suggested that in the comparison of the average migraine days per month, Erenumab (140 mg), Galcanezumab (120 mg, 240 mg), Fremanezumab (225 mg, 675 mg) were superior to placebo, Erenumab(7 mg), and the difference was statistically significant; Fremanezumab (225 mg, 675 mg) was superior to Erenumab (21 mg, 70 mg), and the difference was statistically significant; in the comparison of average medication days of acute migraine-specific drug per month, Erenumab (70 mg, 140 mg), Galcanezumab (120 mg, 240 mg), Fremanezumab (225 mg, 675 mg) was superior to placebo, and Erenumab (140 mg) and Galcanezumab (120 mg, 240 mg) were superior to Erenumab (70 mg), and the difference was statistically significant; there was no statistically significant difference in the average migraine days in the last month or in the medication days of acute migraine-specific drug. CONCLUSION Fremanezumab (225 mg) and Galcanezumab (120 mg) may be the best clinical protocol after a comprehensive assessment.
Collapse
Affiliation(s)
- Min Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Jun Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Zhaoying Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Honghui Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Xuhong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| | - Huan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, PR China
| |
Collapse
|
11
|
Hai DM, Ren JW, Chi YN, Ye RJ, Liu N, Ma L, Lan XB, Wu J, Yu JQ, Yang JM. Protective Effects of Sesamin on Cytoxan-Induced Spermatogenesis Dysfunction by Regulating RNF8-ubH2A/ubH2B Pathways in Male Mice. Front Pharmacol 2021; 12:708467. [PMID: 34588981 PMCID: PMC8475785 DOI: 10.3389/fphar.2021.708467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Most of the clinically infertile patients show spermatogenesis dysfunction. Cyclophosphamide, as an anticancer drug, can induce spermatogenesis dysfunction. Sesamin is the main bioactive component of natural lignans in sesame. It is abundant in sesame oil and has strong biological activities such as antioxidant, antibacterial, and hypoglycemic properties. By establishing the model of spermatogenic dysfunction induced by cyclophosphamide in male mice and then feeding sesamin (50, 100, and 200 mg/kg) for 2 weeks, we proved that sesamin can improve the reproductive organ damage induced by cyclophosphamide and increase the number and activity of sperms. Sesamin can resist cyclophosphamide-induced sperm nuclear maturity and DNA damage by increasing the expression levels of histones H2A and H2B in the testis. In addition, sesamin can improve the ubiquitination of histones regulated by RNF8 to protect the testis. In conclusion, these results suggest that sesamin can improve spermatogenic dysfunction induced by cyclophosphamide, which may be mediated by ubiquitination of histones.
Collapse
Affiliation(s)
- Dong-Mei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Wei Ren
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yan-Nan Chi
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Rui-Juan Ye
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China.,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
12
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Genetic mapping of renal glutathione suggests a novel regulatory locus on the murine X chromosome and overlap with hepatic glutathione regulation. Free Radic Biol Med 2021; 174:28-39. [PMID: 34324982 PMCID: PMC8597656 DOI: 10.1016/j.freeradbiomed.2021.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Glutathione (GSH) is a critical cellular antioxidant that protects against byproducts of aerobic metabolism and other reactive electrophiles to prevent oxidative stress and cell death. Proper maintenance of its reduced form, GSH, in excess of its oxidized form, GSSG, prevents oxidative stress in the kidney and protects against the development of chronic kidney disease. Evidence has indicated that renal concentrations of GSH and GSSG, as well as their ratio GSH/GSSG, are moderately heritable, and past research has identified polymorphisms and candidate genes associated with these phenotypes in mice. Yet those discoveries were made with in silico mapping methods that are prone to false positives and power limitations, so the true loci and candidate genes that control renal glutathione remain unknown. The present study utilized high-resolution gene mapping with the Diversity Outbred mouse stock to identify causal loci underlying variation in renal GSH levels and redox status. Mapping output identified a suggestive locus associated with renal GSH on murine chromosome X at 51.602 Mbp, and bioinformatic analyses identified apoptosis-inducing factor mitochondria-associated 1 (Aifm1) as the most plausible candidate. Then, mapping outputs were compiled and compared against the genetic architecture of the hepatic GSH system, and we discovered a locus on murine chromosome 14 that overlaps between hepatic GSH concentrations and renal GSH redox potential. Overall, the results support our previously proposed model that the GSH redox system is regulated by both global and tissue-specific loci, vastly improving our understanding of GSH and its regulation and proposing new candidate genes for future mechanistic studies.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Arslan B, Arslan GA, Tuncer A, Karabudak R, Dinçel AS. Evaluation of Thiol Homeostasis in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2021; 12:716195. [PMID: 34526962 PMCID: PMC8435830 DOI: 10.3389/fneur.2021.716195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives: The aim of this pilot study was to evaluate dynamic thiol-disulfide homeostasis as a novel oxidative stress parameter in multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) to better understand the role of thiol homeostasis in neuroimmunological diseases. Methods: A total of 85 participants were included in this study, consisting of 18 healthy controls, 52 patients diagnosed with MS, seven with NMOSD, and eight with MOGAD. We measured total thiol (–SH+-S–S–) and native thiol (–SH) levels in the serum of all the participants, and in a subset of patients (n = 11), these parameters were investigated in paired cerebrospinal fluid (CSF) and serum samples. Dynamic disulfide concentrations were calculated separately. Finally, we determined if there was any relationship between clinical features and dynamic thiol homeostasis. Results: There was a statistically significant difference between serum and CSF levels of biomarkers of thiol homeostasis. Serum total thiol (317.88 ± 66.04) and native thiol (211.61 ± 44.15) levels were significantly lower in relapsed patients compared to those in remission (368.84 ± 150.36 vs. 222.52 ± 70.59, respectively). Conclusions: Oxidative stress plays a crucial role in the physiopathology of neuroimmunological diseases. Thiol homeostasis may be useful for monitoring disease activity.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey.,Department of Medical Biochemistry, Erciş State Hospital, Van, Turkey
| | | | - Aslı Tuncer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rana Karabudak
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Li H, Liang B, Cao Y, Xu Y, Chen J, Yao Y, Shen J, Yao D. Effects of Chinese herbal medicines on lifespan in Drosophila. Exp Gerontol 2021; 154:111514. [PMID: 34400294 DOI: 10.1016/j.exger.2021.111514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
Food ingredients have shown beneficial effect in delaying aging and extend lifespan. There are Chinese herbal medicines in the category of "homology of medicine and food". In order to find out whether these herbal medicines can act as food component to slow aging, this study selected 12 Chinese herbal medicines containing strong antioxidant components, Canarium album, Amomum villosum, Elsholtzia splendens, Foeniculum vulgare, Fructus hordei germinatus, stir-baked Fructus hordei germinatus, Lilium brownie, Citrus medica, Sophora japonica, Myristica fragrans, Herba houttuyniae, Carthamus tinctoriu, and examined the effects on lifespan using Drosophila melanogaster as the model organism. Our results show that the extracts of the 12 Chinese herbal medicines have various effects on longevity. Some reduced the lifespan in both sexes. Some only shortened the lifespan in one sex. Some have no significant effect in both sexes. There are two herbal medicine extended lifespan, but only in females. The present results suggest that herbal medicines may provide potential candidates for anti-aging ingredients.
Collapse
Affiliation(s)
- Honglin Li
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Boying Liang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yue Cao
- College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yifan Xu
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiale Chen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yixin Yao
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Danyu Yao
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
15
|
Hidrox ® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants (Basel) 2021; 10:antiox10071046. [PMID: 34209690 PMCID: PMC8300770 DOI: 10.3390/antiox10071046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.
Collapse
|
16
|
Annunziata G, Capó X, Quetglas-Llabrés MM, Monserrat-Mesquida M, Tejada S, Tur JA, Ciampaglia R, Guerra F, Maisto M, Tenore GC, Novellino E, Sureda A. Ex Vivo Study on the Antioxidant Activity of a Winemaking By-Product Polyphenolic Extract (Taurisolo ®) on Human Neutrophils. Antioxidants (Basel) 2021; 10:antiox10071009. [PMID: 34201732 PMCID: PMC8300751 DOI: 10.3390/antiox10071009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress (OxS) has been linked to several chronic diseases and is recognized to have both major causes and consequences. The use of antioxidant-based nutraceuticals has been licensed as an optimal tool for management of OxS-related diseases. Currently, great interest is focused on the valorization of agri-food by-products as a source of bioactive compounds, including polyphenols. In this sense, we evaluated the efficacy of a novel nutraceutical formulation based on polyphenolic extract from Aglianico cultivar grape pomace (registered as Taurisolo®). In particular, we tested both native and in vitro gastrointestinal digested forms. The two extracts have been used to treat ex vivo neutrophils from subjects with metabolic syndrome, reporting a marked antioxidant activity of Taurisolo®, as shown by its ability to significantly reduce both the levels of reactive oxygen species (ROS) and the activities of catalase and myeloperoxidase in the cell medium after stimulation of neutrophils with phorbol 12-myristate 13-acetate (PMA). Interestingly, we observed an increase in intracellular enzymatic activities in PMA-treated cells, suggesting that Taurisolo® polyphenols might be able to activate nuclear factors, up-regulating the expression of this target antioxidant gene. In addition, Taurisolo® reversed the increase in malondialdehyde induced by PMA; reduced the expression of pro-inflammatory genes such as cyclooxygenase 2 (COX-2), tumor necrosis factor alpha (TNFα) and myeloperoxidase (MPO); and induced the expression of the anti-inflammatory cytokine IL-10. Overall, these results suggest the efficacy of Taurisolo® in contrasting the OxS at blood level, providing evidence for its therapeutic potential in the management of OxS-related pathological conditions in humans.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Silvia Tejada
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Neurophysiology, Biology Department and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Fabrizia Guerra
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Maria Maisto
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
- Correspondence: ; Tel.: +39-081-678-610
| | - Ettore Novellino
- NGN Healthcare—New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy;
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Mohammadi S, Zandi M, Dousti Kataj P, Karimi Zandi L. Chronic stress and Alzheimer's disease. Biotechnol Appl Biochem 2021; 69:1451-1458. [PMID: 34152660 DOI: 10.1002/bab.2216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Stress is a key factor in the development and progress of diseases. In neurodegenerative conditions, stress management can play an important role in maintaining the quality of life and the capacity to improve. Neurodegenerative diseases, including Alzheimer's disease, cause the motor and cognitive malfunctions that are spontaneously stressful and also can disturb the neural circuits that promote stress responses. The interruption of those circuits leads to aggressive and inappropriate behavior. In addition, stress contributes to illness and may exacerbate symptoms. In this review, we present stress-activated neural pathways involved in Alzheimer's disease from a clinical and experimental point of view, as well as supportive drugs and therapies.
Collapse
Affiliation(s)
- Shima Mohammadi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Dousti Kataj
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Karimi Zandi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Heme oxygenase-1 in blood and saliva during acute psychosis: A pilot study. Psychiatry Res 2021; 299:113857. [PMID: 33756209 DOI: 10.1016/j.psychres.2021.113857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Despite the extensive prevalence of psychosis and schizophrenia spectrum disorders, their biological underpinnings remain largely unexplained. Recently, the overproduction of heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme, was associated with oxidative stress and a neurologic phenotype similar to schizophrenia in transgenic mice. We sought to evaluate, by comparing patients experiencing an acute psychotic episode, and age/sex-matched healthy control participants, whether there was an association between HO-1 overexpression and psychosis. This cross-sectional pilot study included 16 patients and 17 control participants. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction were used to quantify HO-1 expression in blood and saliva. Four psychiatric questionnaires were used to measure psychiatric symptoms in participants. Higher levels of salivary HO-1 expression were detected in patients experiencing an acute psychotic episode when compared to control participants (84.01 vs. 61.26 ng/ml, p = 0.026), but plasma and lymphocyte HO-1 expression did not significantly differ between groups. Overexpression of HO-1 in saliva specimens was also positively associated with psychiatric symptom severity and disability. The overexpression of HO-1 in the saliva of patients with psychosis suggests that it may serve as a potential biomarker for this symptom which should be explored in larger clinical trials.
Collapse
|
19
|
Drissi I, Deschamps C, Alary R, Robert A, Dubreuil V, Le Mouël A, Mohammed M, Sabéran‐Djoneidi D, Mezger V, Naassila M, Pierrefiche O. Role of heat shock transcription factor 2 in the NMDA-dependent neuroplasticity induced by chronic ethanol intake in mouse hippocampus. Addict Biol 2021; 26:e12939. [PMID: 32720424 DOI: 10.1111/adb.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Ethanol consumption impairs learning and memory through disturbances of NMDA-type glutamate receptor-dependent synaptic plasticity (long-term depression [LTD] and long-term potentiation [LTP]) in the hippocampus. Recently, we demonstrated that two ethanol binge-like episodes in young adult rats selectively blocked NMDA-LTD in hippocampal slices, increased NMDA receptor sensitivity to a GluN2B subunit antagonist, and induced cognitive deficits. Here, using knockout adult mice, we show that a stress-responsive transcription factor of the heat shock factor family, HSF2, which is involved in the perturbation of brain development induced by ethanol, participates in these processes. In the absence of ethanol, hsf2-/- mice show a selective loss of LTD in the hippocampus, which is associated with an increased sensitivity of NMDA-field excitatory postsynaptic potentials (fEPSPs) to a GluN2B antagonist, compared with wild-type (WT) mice. These results suggest that HSF2 is required for proper glutamatergic synaptic transmission and LTD plasticity. After 1 month of chronic ethanol consumption in a two-bottle choice paradigm, WT mice showed an increase in hippocampal synaptic transmission, an enhanced sensitivity to GluN2B antagonist, and a blockade of LTD. In contrast, such modulation of synaptic transmission and plasticity were absent in hsf2-/- mice. We conclude that HSF2 is an important mediator of both glutamatergic neurotransmission and synaptic plasticity in basal conditions and also mediates ethanol-induced neuroadaptations of the hippocampus network after chronic ethanol intake.
Collapse
Affiliation(s)
- Ichrak Drissi
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
- Cambridge Institute for Medical Research University of Cambridge, Cambridge Biomedical Campus Cambridge UK
| | - Chloé Deschamps
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Rachel Alary
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Alexandre Robert
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Véronique Dubreuil
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Anne Le Mouël
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Myriame Mohammed
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Délara Sabéran‐Djoneidi
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Valérie Mezger
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Mickael Naassila
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Olivier Pierrefiche
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| |
Collapse
|
20
|
Hamdi H, Abid-Essefi S, Eyer J. Neuroprotective effects of Myricetin on Epoxiconazole-induced toxicity in F98 cells. Free Radic Biol Med 2021; 164:154-163. [PMID: 33429020 DOI: 10.1016/j.freeradbiomed.2020.12.451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Epoxiconazole is one of the most commonly used fungicides in the world. The exposition of humans to pesticides is mainly attributed to its residue in food or occupational exposure in agricultural production. Because of its lipophilic character, Epoxiconazole can accumulate in the brain Heusinkveld et al. (2013) [1]. Consequently, it is urgent to explore efficient strategies to prevent or treat Epoxiconazole-related brain damages. The use of natural molecules commonly found in our diet represents a promising avenue. Flavonoids belong to a major sub-group compounds possessing powerful antioxidant activities based on their different structural and sterical properties [2]. We choose to evaluate Myricetin, a flavonoid with a wide spectrum of pharmacological effects, for its possible protective functions against Epoxiconazole-induced toxicities. The cytotoxicity induced by this fungicide was evaluated by the cell viability, cell cycle arrest, ROS generation, antioxidant enzyme activities, and Malondialdehyde production, as previously described in Hamdi et al., 2019 [3]. The apoptosis was assessed through the evaluation of the mitochondrial transmembrane potential (ΔΨm), caspases activation, DNA fragmentation, cytoskeleton disruption, nuclear condensation, appearance of sub-G0/G1 peak (fragmentation of the nucleus) and externalization of Phosphatidylserine. This study indicates that pre-treatment of F98 cells with Myricetin during 2 h before Epoxiconazole exposure significantly increased the survival of cells, restored DNA synthesis of the S phase, abrogated the ROS generation, regulated the activities of Catalase (CAT) and Superoxide Dismutase (SOD), and reduced the MDA level. The loss of mitochondrial membrane potential, DNA fragmentation, cytoskeleton disruption, chromatin condensation, Phosphatidylserine externalization, and Caspases activation were also reduced by Myricetin. Together, these findings indicate that Myricetin is a powerful natural product able to protect cells from Epoxiconazole-induced cytotoxicity and apoptosis.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Joel Eyer
- Laboratoire Micro et NanomédecinesTranslationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de La Santé, Centre Hospitalier Universitaire, 49033, Angers, France.
| |
Collapse
|
21
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
22
|
Zhuang K, Jiang X, Liu R, Ye C, Wang Y, Wang Y, Quan S, Huang H. Formononetin Activates the Nrf2/ARE Signaling Pathway Via Sirt1 to Improve Diabetic Renal Fibrosis. Front Pharmacol 2021; 11:616378. [PMID: 33519483 PMCID: PMC7845558 DOI: 10.3389/fphar.2020.616378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is the main factor responsible for the induction of diabetic renal fibrosis. Thus, improving the state of oxidative stress can effectively prevent the further deterioration of diabetic nephropathy (DN). Previous research has shown that formononetin (FMN), a flavonoid with significant antioxidant activity and Sirt1 activation effect, can improve diabetic renal fibrosis. However, the exact mechanisms underlying the effect of FMN on diabetic renal fibrosis have yet to be elucidated. In this study, we carried out in vivo experiments in a db/db (diabetic) mouse model and demonstrated that FMN activated the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway and improved oxidative stress by increasing levels of sirtuin-1 (Sirt1) protein level in renal tissue. We also found that this process reversed the up-regulation of fibronectin (FN) and intercellular adhesion molecule 1 (ICAM-1) and led to an improvement in renal insufficiency. In vitro results further showed that FMN significantly reversed the upregulation of FN and ICAM-1 in glomerular mesangial cells (GMCs) exposed to high glucose. FMN also promoted the expression of Nrf2 and widened its nuclear distribution. Thus, our data indicated that FMN inhibited hyperglycemia-induced superoxide overproduction by activating the Nrf2/ARE signaling pathway. We also found that FMN up-regulated the expression of Sirt1 and that Sirt1 deficiency could block the activation of the Nrf2/ARE signaling pathway in GMCs induced by high glucose. Finally, we found that Sirt1 deficiency could reverse the down-regulation of FN and ICAM-1 induced by FMN. Collectively, our data demonstrated that FMN up-regulated the expression of Sirt1 to activate the Nrf2/ARE signaling pathway, improved oxidative stress in DN to prevent the progression of renal fibrosis. Therefore, FMN probably represents an efficient therapeutic option of patients with DN.
Collapse
Affiliation(s)
- Kai Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiyu Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Renbin Liu
- Department of Traditional Chinese Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Cunsi Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yumei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunhan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Hcini E, Ben Slima A, Kallel I, Zormati S, Traore AI, Gdoura R. Does supplemental zeolite (clinoptilolite) affect growth performance, meat texture, oxidative stress and production of polyunsaturated fatty acid of Turkey poults? Lipids Health Dis 2018; 17:177. [PMID: 30055621 PMCID: PMC6064620 DOI: 10.1186/s12944-018-0820-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Following the ban on the use of growth factors, the use of zeolite in poultry feed could be a solution to obtain healthier food products that are more demanded by the consumer. METHODS Zeolite (Clinoptilolite) was added to turkey male and female feed at concentrations 1% or 2% and was evaluated for its effectiveness on performance of the production. The turkeys were given free and continuous access to a nutritionally non-limiting diet (in meal form) that was either a basal diet or a 'Zeolite supplemented-diet' (the basal diet supplemented with clinoptilolite at a level of 1% or 2%). RESULTS It was found that adding zeolite in the turkey diet had a positive effect on growth performance and increased weight gain compared to the control. In addition, zeolite treatment had a positive effect on oxidative stress and organoleptic parameters that were measured. It was found that adding zeolite in the turkey diet reduced the MDA level in the liver and in the meat, as compared to the control. Quality of meat was measured as a significantly increase (p < 0.05) in pH for male meat, indicated that the zeolite could maintain the quality of longer period. The adding of zeolite in the turkey diet increased level of polyunsaturated fatty acid. CONCLUSION This study showed the significance of using zeolite, as a feed additive for turkey, as part of a comprehensive program to improve growth performance and oxidative stress parameters and to increase level of polyunsaturated fatty acid on the turkey body.
Collapse
Affiliation(s)
- Emna Hcini
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahlem Ben Slima
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Kallel
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Zormati
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Radhouane Gdoura
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
25
|
Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92:569-579. [DOI: 10.1016/j.biopha.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
|
26
|
Chen Y, Chen H, Li W, Miao J, Chen N, Shao X, Cao Y. Polyphenols in Eucalyptus leaves improved the egg and meat qualities and protected against ethanol-induced oxidative damage in laying hens. J Anim Physiol Anim Nutr (Berl) 2017; 102:214-223. [PMID: 28276101 DOI: 10.1111/jpn.12680] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023]
Abstract
Polyphenols in Eucalyptus leaves (PE) were value resources due to various pharmacological activities, but data on the effect on laying hens are very scare. This study was conducted to determine the effect of PE on the laying performance, egg traits, meat quality, antioxidant status and liver tissues of laying hens. One hundred and twenty 256-day-old Yueqinhuang laying hens were randomly assigned to four treatment groups (different levels of PE at 0, 0.5, 0.8 and 1.2 g/kg diet) for 63 days with 15 replicates per group. Addition of 0.8 g/kg PE not only improved the egg trait by increasing the eggshell thickness and decreasing MDA production and cholesterol content in the egg yolk, but also significantly enhanced meat quality of hens, as suggested by the increase pH45 min (p < .01) and a* value, and decrease drip loss rate (p < .01). Meanwhile, under acute ethanol-induced oxidative damage condition, supplementation of 0.8 g/kg PE enhanced the serum antioxidant status by increasing enzymatic activities (GSH-PX, T-SOD, T-AOC), inhibited oxidative damage and provided protective effect to liver tissue. In conclusion, addition of 0.8 g/kg PE not only improved the egg traits and meat quality without obvious adverse effects, but also increased the serum antioxidant status of the hens and protected their liver tissue from ethanol-induced oxidative damage. This study indicated that PE could be utilized as an effective feed additive for laying hens to improve health performance and egg traits.
Collapse
Affiliation(s)
- Y Chen
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Center for Bioactive Natural Products, Guangzhou, China
| | - H Chen
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou, China.,Infinitus (China) Company, Jiangmen City, Guangdong, China
| | - W Li
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Center for Bioactive Natural Products, Guangzhou, China
| | - J Miao
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Center for Bioactive Natural Products, Guangzhou, China
| | - N Chen
- Guangdong Institute of Poultry Sciences, Guangzhou, Guangdong, China
| | - X Shao
- Guangdong Institute of Poultry Sciences, Guangzhou, Guangdong, China
| | - Y Cao
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Center for Bioactive Natural Products, Guangzhou, China
| |
Collapse
|
27
|
Mihailović M, Arambašić Јovanović J, Uskoković A, Grdović N, Dinić S, Vidović S, Poznanović G, Mujić I, Vidaković M. Protective Effects of the Mushroom Lactarius deterrimus Extract on Systemic Oxidative Stress and Pancreatic Islets in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2015; 2015:576726. [PMID: 26221612 PMCID: PMC4499631 DOI: 10.1155/2015/576726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to assess the in vivo effects of the extract of the medicinal mushroom, Lactarius deterrimus, when administered (60 mg/kg, i.p.) daily for four weeks to streptozotocin- (STZ-) induced diabetic rats. Diabetic rats treated with the L. deterrimus extract displayed several improved biochemical parameters in the circulation: reduced hyperglycemia, lower triglyceride concentration and reduced glycated hemoglobin, glycated serum protein, and advanced glycation end product (AGE) levels. This treatment also adjusted the diabetes-induced redox imbalance. Thus, higher activities of the antioxidative enzymes, superoxide dismutase, and catalase in the circulation were accompanied by increased levels of free intracellular thiols and glutathionylated proteins after treatment with the L. deterrimus extract. In addition to a systemic antioxidant effect, the administration of the extract to diabetic rats also had a positive localized effect on pancreatic islets where it decreased AGE formation, and increased the expression of chemokine CXCL12 protein that mediates the restoration of β-cell population through the activation of the serine/threonine-specific Akt protein kinase prosurvival pathway. As a result, the numbers of proliferating cell nuclear antigen- (PCNA-) and insulin-positive β-cells were increased. These results show that the ability of the L. deterrimus extract to alleviate oxidative stress and increase β-cell mass represents a therapeutic potential for diabetes management.
Collapse
Affiliation(s)
- Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena Arambašić Јovanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Senka Vidović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ibrahim Mujić
- Biotechnical Faculty, University of Bihać, Kulina Bana 2, 77000 Bihać, Bosnia and Herzegovina
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
- *Melita Vidaković:
| |
Collapse
|
28
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
29
|
Lee KM, Kang HS, Yun CH, Kwak HS. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells. Biomol Ther (Seoul) 2013; 20:492-8. [PMID: 24009840 PMCID: PMC3762280 DOI: 10.4062/biomolther.2012.20.5.492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/17/2012] [Accepted: 06/23/2012] [Indexed: 01/21/2023] Open
Abstract
Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.
Collapse
Affiliation(s)
- Ki-Mo Lee
- Department of Biomedicinal Science & Biotechnology, Pai-Chai University, Daejon 302-735, Republic of Korea ; School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Liu S, Hou W, Yao P, Li N, Zhang B, Hao L, Nüssler AK, Liu L. Heme oxygenase-1 mediates the protective role of quercetin against ethanol-induced rat hepatocytes oxidative damage. Toxicol In Vitro 2012; 26:74-80. [PMID: 22056766 DOI: 10.1016/j.tiv.2011.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/29/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022]
Abstract
Quercetin, one of the most widely distributed flavonoids in plants, possesses strong free radical scavenging ability and potent hepatoprotective effects. However, the protective effect and mechanism of quercetin on ethanol-induced oxidative damage in hepatocytes remain unclear. In this study, primary rat hepatocytes were incubated with ethanol and quercetin in the presence or absence of ZnPP 9, an antagonist of HO-1 induction. The ethanol-induced hepatotoxicity was found to be greatly diminished by pre-treatment of quercetin and this hepatoprotective effect could be partly blocked by ZnPP 9. This study also showed that quercetin significantly stimulated HO-1 expression at both mRNA and protein levels, then subsequently induced HO-1 activity. To further study the signaling pathways underlying quercetin-induced HO-1 up-regulation, HO-1 expression and activity in cytosolic microsomal fractions and Nrf2 expression in nuclear fractions were analyzed following quercetin or/and MAPK inhibitor(s) as well as PI3K inhibitor incubation for primary rat hepatocytes. These results indicated that ERK was required to induce HO-1 expression in rat hepatocytes. In summary, these data suggested that quercetin attenuates ethanol-induced oxidative stress through a pathway which involves ERK activation and HO-1 upregulation.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oxidative stress and inflammation: essential partners in alcoholic liver disease. Int J Hepatol 2012; 2012:853175. [PMID: 22500241 PMCID: PMC3303590 DOI: 10.1155/2012/853175] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a multifaceted disease that is characterized by hepatic steatosis or fat deposition and hepatitis or inflammation. Over the past decade, multiple lines of evidence have emerged on the mechanisms associated with ALD. The key mechanisms identified so far are sensitization to gut-derived endotoxin/lipopolysaccharide resulting in proinflammatory cytokine production and cellular stress due to oxidative processes, contributing to the development and progression of disease. While oxidative stress and inflammatory responses are studied independently in ALD, mechanisms linking these two processes play a major role in pathogenesis of disease. Here we review major players of oxidative stress and inflammation and highlight signaling intermediates regulated by oxidative stress that provokes proinflammatory responses in alcoholic liver disease.
Collapse
|
32
|
Alpha-lipoic acid preserves the structural and functional integrity of red blood cells by adjusting the redox disturbance and decreasing O-GlcNAc modifications of antioxidant enzymes and heat shock proteins in diabetic rats. Eur J Nutr 2011; 51:975-86. [DOI: 10.1007/s00394-011-0275-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
33
|
Etheridge N, Mayfield RD, Harris RA, Dodd PR. Identifying changes in the synaptic proteome of cirrhotic alcoholic superior frontal gyrus. Curr Neuropharmacol 2011; 9:122-8. [PMID: 21886576 PMCID: PMC3137166 DOI: 10.2174/157015911795017164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 01/25/2023] Open
Abstract
Hepatic complications are a common side-effect of alcoholism. Without the detoxification capabilities of the liver, alcohol misuse induces changes in gene and protein expression throughout the body. A global proteomics approach was used to identify these protein changes in the brain. We utilised human autopsy tissue from the superior frontal gyrus (SFG) of six cirrhotic alcoholics, six alcoholics without comorbid disease, and six non-alcoholic non-cirrhotic controls. Synaptic proteins were isolated and used in two-dimensional differential in-gel electrophoresis coupled with mass spectrometry. Many expression differences were confined to one or other alcoholic sub-group. Cirrhotic alcoholics showed 99 differences in protein expression levels from controls, of which half also differed from non-comorbid alcoholics. This may reflect differences in disease severity between the sub-groups of alcoholics, or differences in patterns of harmful drinking. Alternatively, the protein profiles may result from differences between cirrhotic and non-comorbid alcoholics in subjects’ responses to alcohol misuse. Ten proteins were identified in at least two spots on the 2D gel; they were involved in basal energy metabolism, synaptic vesicle recycling, and chaperoning. These post-translationally modified isoforms were differentially regulated in cirrhotic alcoholics, indicating a level of epigenetic control not previously observed in this disorder.
Collapse
Affiliation(s)
- N Etheridge
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | | | | | | |
Collapse
|
34
|
Awofala AA. Genetic approaches to alcohol addiction: gene expression studies and recent candidates from Drosophila. INVERTEBRATE NEUROSCIENCE 2010; 11:1-7. [PMID: 21153676 DOI: 10.1007/s10158-010-0113-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 11/25/2010] [Indexed: 12/27/2022]
Abstract
Ethanol intake causes gene expression changes resulting in cellular and molecular adaptations that could be associated with a predisposition to alcohol dependence. Recently, several research groups have used high-throughput gene expression profiling to search for alcohol-responsive genes in Drosophila melanogaster. Comparison of data from these studies highlights the functional similarities in their results despite differences in their experimental approach and selection cases. Notably, alcohol-responsive gene sets associated with stress response, olfaction, metabolism, proteases, transcriptional regulation, regulation of signal transduction, nucleic acid binding and cytoskeletal organisation were markedly common to these studies. These data support the view that changes in gene expression in alcoholics are associated with widespread cellular functions.
Collapse
Affiliation(s)
- Awoyemi A Awofala
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
35
|
Yang ES, Lee SM, Park JW. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells. Arch Pharm Res 2010; 33:1065-71. [PMID: 20661717 DOI: 10.1007/s12272-010-0713-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/03/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022]
Abstract
It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.
Collapse
|
36
|
Liu S, Hou W, Yao P, Zhang B, Sun S, Nüssler AK, Liu L. Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 2010; 24:516-522. [PMID: 19327393 DOI: 10.1016/j.tiv.2009.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/10/2009] [Accepted: 03/18/2009] [Indexed: 11/20/2022]
Abstract
The pathogenesis and progression of alcoholic liver disease (ALD) are associated with free radical injury and oxidative stress, which could be partially attenuated by antioxidants and free radical scavengers. Quercetin, one of the most widely distributed flavonoids in plants, is a natural antioxidant. The hypothesis that quercetin could prevent the ethanol-induced oxidative damage in hepatocytes was investigated. The ethanol-intoxicated (100mM for 8h) rat primary hepatocytes were post-treated (2h), simultaneously treated or pre-treated (2h) with quercetin respectively, while the time-dependent (0.5-8h) and dose-dependent (25-200muM) quercetin pre-treatment were used in the present study. The parameters of lactate dehydrogenase (LDH), aspartate transaminase (AST), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were determined to address the alterations of cell damage and antioxidant state after quercetin intervention. The toxic insult of ethanol to hepatocytes was challenged by quercetin and these parameters almost returned to the level of control group when hepatocytes were pre-treated with quercetin at the dose of 50muM for 2-4h before ethanol exposure. In conclusion, quercetin pre-treatment provided protection against ethanol-induced oxidative stress in hepatocytes and may be used as a new natural drug for the prevention and/or treatment of ALD.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Halima BA, Sarra K, Kais R, Salwa E, Najoua G. Indicators of oxidative stress in weanling and pubertal rats following exposure to nicotine via milk. Hum Exp Toxicol 2009; 29:489-96. [DOI: 10.1177/0960327109354440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine, a major toxic component of tobacco, has been identified as an important risk factor for infant and children diseases. It is concentrated in breast milk and is absorbed by the infant. The purpose of the present study was to investigate the effects of maternal nicotine exposure during lactation on breast-fed rats and at the pubertal age by measuring biomarkers of oxidative stress. Particularly, a new parameter, the thiol concentration was evaluated. Two groups of lactating Wistar rats were used. For the first group, female rats were given an intraperitoenal injection of nicotine or saline (2 mg/kg per day) during lactation. For the second group, we reproduced the same process described above and then the female and male pups were separately kept after weaning without any treatment until the puberty (at 45 days of age). In the liver and lung of the offspring, we examined the malondialdehyde (MDA) level, the thiol concentration, and the activities of two antioxidant enzymes: superoxyde dismutase (SOD) and catalase (CAT). In the plasma, alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were measured. For rats aged 21 days, the treatment significantly reduced the thiol concentration, SOD, and CAT activities but increased MDA level, AST, and ALT activities. For rats aged 45 days, the males and females did not react the same way. In fact, the males were more affected. These results indicate that maternal nicotine exposure during the lactation period induces oxidative stress in the liver and lung of lactating offspring, which is maintained until the puberty, especially for the male rats.
Collapse
Affiliation(s)
- Ben Ahmed Halima
- Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, Tunis, Tunisia,
| | - Khlifi Sarra
- Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Rtibi Kais
- Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Elfazaa Salwa
- Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Gharbi Najoua
- Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| |
Collapse
|
38
|
Schreiner CM, Bell SM, Scott WJ. Microarray analysis of murine limb bud ectoderm and mesoderm after exposure to cadmium or acetazolamide. ACTA ACUST UNITED AC 2009; 85:588-98. [PMID: 19274763 DOI: 10.1002/bdra.20577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of drugs, environmental chemicals, and physical agents induce a common limb malformation in the offspring of pregnant mice exposed on day 9 of gestation. This malformation, postaxial, right-sided forelimb ectrodactyly, is thought to arise via an alteration of hedgehog signaling. METHODS We have studied two of these teratogens, acetazolamide and cadmium, using the technique of microarray analysis of limb bud ectoderm and mesoderm to search for changes in gene expression that could indicate a common pathway to postaxial limb reduction. RESULTS Results indicated a generalized up-regulation of gene expression after exposure to acetazolamide but a generalized down-regulation due to cadmium exposure. An intriguing observation was a cadmium-induced reduction of Mt1 and Mt2 expression in the limb bud mesoderm indicating a lowering of embryonic zinc. CONCLUSIONS We propose that these two teratogens and others (valproic acid and ethanol) lower sonic hedgehog signaling by perturbation of zinc function in the sonic hedgehog protein.
Collapse
Affiliation(s)
- Claire M Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
39
|
Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 2009; 18:2929-42. [PMID: 19443488 DOI: 10.1093/hmg/ddp230] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Strnad P, Tao GZ, So P, Lau K, Schilling J, Wei Y, Liao J, Omary MB. "Toxic memory" via chaperone modification is a potential mechanism for rapid Mallory-Denk body reinduction. Hepatology 2008; 48:931-42. [PMID: 18697205 DOI: 10.1002/hep.22430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED The cytoplasmic hepatocyte inclusions, Mallory-Denk bodies (MDBs), are characteristic of several liver disorders, including alcoholic and nonalcoholic steatohepatitis. In mice, MDBs can be induced by long-term feeding with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 3 to 4 months or rapidly reformed in DDC-induced then recovered mice by DDC refeeding or exposure to a wide range of toxins for only 5 to 7 days. The molecular basis for such a rapid reinduction of MDBs is unknown. We hypothesized that protein changes retained after DDC priming contribute to the rapid MDB reappearance and associate with MDB formation in general terms. Two-dimensional differential-in-gel-electrophoresis coupled with mass spectrometry were used to characterize protein changes in livers from the various treatment groups. The alterations were assessed by real-time reverse-transcription polymerase chain reaction and confirmed by immunoblotting. DDC treatment led to pronounced charged isoform changes in several chaperone families, including Hsp25, 60, 70, GRP58, GRP75, and GRP78, which lasted at least for 1 month after discontinuation of DDC feeding, whereas changes in other proteins normalized during recovery. DDC feeding also resulted in altered expression of Hsp72, GRP75, and Hsp25 and in functional impairment of Hsp60 and Hsp70 as determined using a protein complex formation and release assay. The priming toward rapid MDB reinduction lasts for at least 3 months after DDC discontinuation, but becomes weaker after prolonged recovery. MDB reinduction parallels the rapid increase in p62 and Hsp25 levels as well as keratin 8 cross-linking that is normally associated with MDB formation. CONCLUSION Persistent posttranslational modifications in chaperone proteins, coupled with protein cross-linking and altered chaperone expression and function likely contribute to the "toxic memory" of DDC-primed mice. We hypothesize that similar changes are important contributors to inclusion body formation in several diseases.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Medicine, Palo Alto VA Medical Center, Palo Alto, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mandrekar P. Signaling mechanisms in alcoholic liver injury: Role of transcription factors, kinases and heat shock proteins. World J Gastroenterol 2007; 13:4979-85. [PMID: 17854141 PMCID: PMC4434622 DOI: 10.3748/wjg.v13.i37.4979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver injury comprises of interactions of various intracellular signaling events in the liver. Innate immune responses in the resident Kupffer cells of the liver, oxidative stress-induced activation of hepatocytes, fibrotic events in liver stellate cells and activation of liver sinusoidal endothelial cells all contribute to alcoholic liver injury. The signaling mechanisms associated with alcoholic liver injury vary based on the cell type involved and the extent of alcohol consumption. In this review we will elucidate the oxidative stress and signaling pathways affected by alcohol in hepatocytes and Kupffer cells in the liver by alcohol. The toll-like receptors and their down-stream signaling events that play an important role in alcohol-induced inflammation will be discussed. Alcohol-induced alterations of various intracellular transcription factors such as NFκB, PPARs and AP-1, as well as MAPK kinases in hepatocytes and macrophages leading to induction of target genes that contribute to liver injury will be reviewed. Finally, we will discuss the significance of heat shock proteins as chaperones and their functional regulation in the liver that could provide new mechanistic insights into the contributions of stress-induced signaling mechanisms in alcoholic liver injury.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Liver Center, Department of Medicine, University of Massachusetts Medical School, LRB 213, 364 Plantation Street, Worcester, MA 01605-2324, USA.
| |
Collapse
|
42
|
Hallare A, Nagel K, Köhler HR, Triebskorn R. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 63:378-88. [PMID: 16125774 DOI: 10.1016/j.ecoenv.2005.07.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/06/2005] [Accepted: 07/08/2005] [Indexed: 05/04/2023]
Abstract
The present study examines the effects of ethanol (ETOH), dimethyl sulfoxide (DMSO), and acetone on zebrafish embryos and the implications of the observed results on the use of these solvents to zebrafish early life stage tests. The embryos were exposed to different concentrations (0.0, 0.0001, 0.001, 0.01, 0.1, 0.05, 1, 1.5, and 2.0% v/v) of the respective solvents by diluting reagent-grade solvent with reconstituted water [DIN 38415-6-Suborganismische Testverfahren (Gruppe T) Teil 6: Giftigkeit gegenüber Fischen. Deutsches Institute für Normung e.V]. The following endpoints were investigated (mortality, hatching rate, abnormalities, heart rate, and hsp 70 induction). No effect on survival was recorded for both acetone and DMSO even up to the highest concentration. On the other hand, embryos exposed to 1.5% and 2.0% ethanol showed a significant reduction in survival rate. No developmental defects occurred with any of the solvents at the 0.1% concentration. However, starting with 1.0%, weak to very pronounced abnormalities (weak pigmentation, edema, crooked bodies, eye defect, tail defect, reduced heartbeat, and abnormal hatching) were observed depending on the solvent type and the concentration used. Ethanol has been shown to be the most embryotoxic solvent while DMSO and acetone have comparably lesser effects. Heat shock protein 70 was induced by all solvents but at different concentration ranges. DMSO has been shown to be the most potent inducer of stress proteins. Based on the study, the chemicals tested here may be used as carrier solvents in the zebrafish embryo assay at levels below 1.5, 1.5, and 1% v/v for acetone, DMSO, and ethanol, respectively. For stress protein analysis of the exposed embryos, however, the solvent levels should be below 0.1%, 0.01%, and 1.5%, respectively. Additional and separate investigations utilizing other biomarkers should be carried out to further validate the suitability of using these solvents in a typical zebrafish embryo assay.
Collapse
Affiliation(s)
- Arnold Hallare
- Animal Physiological Ecology, University of Tübingen, 72072 Tübingen, Germany.
| | | | | | | |
Collapse
|
43
|
Porras N, Strauss M, Rodriguez M, Anselmi G. Hsp70 accumulation and ultrastructural features of lung and liver induced by ethanol treatment with and without l-carnitine protection in rats. ACTA ACUST UNITED AC 2006; 57:227-37. [PMID: 16410189 DOI: 10.1016/j.etp.2005.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 09/01/2005] [Indexed: 01/15/2023]
Abstract
This study examined Hsp70 accumulation and the subcellular characteristics of liver and lung when exposed to ethanol (EtOH), with and without L-carnitine protection. Female Sprague-Dawley rats, 150-200 g body weight, were randomized into four groups: Control (CON), Alcohol (ALC), L-carnitine (CAR) and Alcohol-L-carnitine (ALC-CAR). EtOH was administered per os at a dose of 4 g/kg body weight (1 ml) daily for 4 weeks. Before alcohol intake, an oral dose of 500 mg/kg body weight of L-carnitine was also administered to the ALC-CAR group. The liver and lung samples were subjected to Hsp70 Western blot and ultrastructural analysis. The Hsp70 accumulation was higher in the liver than in the lung samples. Hepatic Hsp70 accumulation was similar for all groups in contrast to lung, where the Hsp70 accumulation depends on the group studied. The ultrastructural results showed lung but not liver alterations, evidencing a stressful condition and subsequent cellular injury for lung tissue but not for liver. The ALC-CAR group showed less lung damage than the non-protected group and resembles the general appearance of the CON and CAR groups. EtOH intoxication induced differential cellular response in liver and lung in a dose and tissue dependent manner. L-carnitine seems to reduce lung EtOH-induced subcellular damage. The promotion of heat shock or stress proteins might represent one of the mechanisms involved that need to be further investigated.
Collapse
Affiliation(s)
- Noraidys Porras
- Sección de Biología Celular, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Apdo: 47019, Caracas 1041-A, Venezuela
| | | | | | | |
Collapse
|
44
|
Carbone DL, Doorn JA, Kiebler Z, Sampey BP, Petersen DR. Inhibition of Hsp72-mediated protein refolding by 4-hydroxy-2-nonenal. Chem Res Toxicol 2005; 17:1459-67. [PMID: 15540944 PMCID: PMC2956495 DOI: 10.1021/tx049838g] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was applied to liver cytosol from rats fed a diet consisting of high fat and ethanol to identify 4-hydroxy-2-nonenal (4-HNE)-modified proteins in vivo. Cytosolic Hsp72, the inducible variant of the Hsp70 heat shock protein family, was consistently among the proteins modified by 4-HNE. Despite 1.3-fold induction of Hsp72 in the livers of ethanol-fed animals, no increase in Hsp70-mediated luciferase refolding in isolated heptocytes was observed, suggesting inhibition of this process by 4-HNE. A 50% and 75% reduction in luciferase refolding efficiency was observed in rabbit reticulocyte lysate (RRL) supplemented with recombinant Hsp72 which had been modified in vitro with 10 and 100 microM 4-HNE, respectively. This observation was accompanied by a 25% and 50% decrease in substrate binding by the chaperone following the same treatment; however, no effect on complex formation between Hsp72 and its co-chaperone Hsp40 was observed. Trypsin digest and mass spectral analysis of Hsp72 treated with 10 and 100 microM 4-HNE consistently identified adduct formation at Cys267 in the ATPase domain of the chaperone. The role of this residue in the observed inhibition was demonstrated through the use of DnaK, a bacterial Hsp70 variant lacking Cys267. DnaK was resistant to 4-HNE inactivation. Additionally, Hsp72 was resistant to inactivation by the thiol-unreactive aldehyde malondialdehyde (MDA), further supporting a role for Cys in Hsp72 inhibition by 4-HNE. Finally, the affinity of Hsp72 for ATP was decreased 32% and 72% following treatment of the chaperone with 10 and 100 microM 4-HNE, respectively. In a model of chronic alcoholic liver injury, induction of Hsp72 was not accompanied by an increase in protein refolding ability. This is likely the result of 4-HNE modification of the Hsp72 ATPase domain.
Collapse
Affiliation(s)
| | | | | | | | - Dennis R. Petersen
- To whom correspondence should be addressed. Tel: 303-315-6159. Fax: 303-315-0274.
| |
Collapse
|
45
|
Jordão AA, Chiarello PG, Arantes MR, Meirelles MS, Vannucchi H. Effect of an acute dose of ethanol on lipid peroxidation in rats: action of vitamin E. Food Chem Toxicol 2004; 42:459-64. [PMID: 14871588 DOI: 10.1016/j.fct.2003.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 10/17/2003] [Indexed: 10/26/2022]
Abstract
Free radical generation is an important step in the pathogenesis of ethanol-associated liver injury. Administration of ethanol induces an increase in lipid peroxidation both by enhancing the production of oxygen reactive species and by decreasing the levels of endogenous antioxidants. This work focuses on the generation of free radicals provoked by an acute ethanol dose in rats, and the role of different dietary levels of vitamin E. The objective of this investigation was to study the effect of three different dietary levels of vitamin E (deficient, control and supplemented with 20 times higher levels) on plasma and liver lipid peroxidation (assayed by TBARS), vitamin E in plasma and liver, and hepatic glutathione concentration, in rats receiving the different diets. The animals were submitted to an acute dose of ethanol (5 g/kg body weight) administered by gavage at the end of an experimental 4 week period and were sacrificed at 0, 2, 4, 8 and 24 h after ethanol administration. Dietary vitamin E caused a dose-dependent increase in liver and plasma concentration of the vitamin, but ethanol administration decreased hepatic vitamin E in all groups. TBARS concentrations were higher in liver of rats that received the deficient diet, independent of ethanol, however, liver TBARS concentrations were low in control and supplemented groups, but increased with ethanol ingestion. Glutathione levels were lowered by ethanol administration in all groups, in different times, but recovered to this original level in 24 h time. In conclusion, vitamin E deficiency alone induces liver lipid peroxidation in rats, acute administration of ethanol affect vitamin E and GSH level and maintenance of adequate or higher vitamin E levels acts as a protective factor against free radical generation.
Collapse
Affiliation(s)
- Alceu Afonso Jordão
- Postgraduation in Food Science, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto-SP, Brazil.
| | | | | | | | | |
Collapse
|
46
|
Renis M, Cardile V, Grasso S, Palumbo M, Scifo C. Switching off HSP70 and i-NOS to study their role in normal and H2O2-stressed human fibroblasts. Life Sci 2003; 74:757-769. [PMID: 14654168 DOI: 10.1016/j.lfs.2003.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
i-NOS and HSP70 antisense oligonucleotides were used to study the role of the two well known stress-regulated molecules on cell survival of both untreated control, and H2O2-stressed human fibroblasts. Cell survival was assessed either by LDH release or by MTT assay. The levels of cytosolic i-NOS and HSP70 were tested by using immunoblotting analysis, and reactive oxygen species (ROS) production was quantified. Compared to the values observed in untreated control cells, anti HSP70-transfected human fibroblasts showed an increase in ROS production, i-NOS level and LDH release. The addition of 0.12 mM H2O2 for 20 min. to the HSP70-deprived fibroblasts did not modify the percentage of LDH release observed in H2O2 stressed cells, but reduced cell viability increasing both ROS production and i-NOS level. Anti i-NOS-transfected fibroblasts, compared to the control untreated cells, showed no modification in ROS production, while cell survival was improved. When treated with H2O2 the i-NOS depleted cells counteracted ROS formation as well as LDH release but negatively affected cell viability and HSP70 levels, compared to the results obtained with H2O2 alone-treated fibroblasts. The data indicates that the induced decrease in HSP70 level in oxidative stress conditions makes fibroblasts more prone to oxidative injury and also increases i-NOS level. Whereas in one way the forced decrease in i-NOS expression seems to counteract ROS production stimulated by the oxidative insult in the cells, in another way, since it causes a decrease in HSP70 expression as well as in cell viability, it seems to activate some unidentified pathways affecting cell demise.
Collapse
Affiliation(s)
- Marcella Renis
- Department of Biological Chemistry, Medicinal Chemistry and Molecular Biology, University of Catalina, Viale A. Doria, 6, 95125 Catania, Italy.
| | | | | | | | | |
Collapse
|
47
|
Mahmoud KZ, Edens FW. Influence of selenium sources on age-related and mild heat stress-related changes of blood and liver glutathione redox cycle in broiler chickens (Gallus domesticus). Comp Biochem Physiol B Biochem Mol Biol 2003; 136:921-34. [PMID: 14662314 DOI: 10.1016/s1096-4959(03)00288-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Selenium is an essential trace element that up-regulates a major component of the antioxidant defense mechanism by controlling the body's glutathione (GSH) pool and its major Se-containing antioxidant enzyme, glutathione peroxidase (GPX). Evidence has emerged suggesting that organic selenium, natural seleno-amino acids found in plants, grains and selenized yeast, maintains the antioxidant defense system more efficiently than inorganic selenium. Inorganic selenium is a pro-oxidant, whereas organic selenium possesses antioxidant properties itself. As a pro-oxidant, inorganic selenium is not suitable for animals or humans. Therefore, we examined the GSH-GPX system in broiler chickens and determined that organic selenium was indeed more beneficial than inorganic selenium. Chickens fed the organic selenium as Sel-Plex, a selenized yeast, had elevated GPX activity in both blood and liver in a thermoneutral environment and after heat distress. More importantly, the ability to reduce the oxidized glutathione (GSSG to 2 GSH) was enhanced and facilitated by maintenance of glutathione reductase activity. Organic selenium-fed chickens were less affected by mild heat distress than inorganic selenium-fed chickens, and this assessment was based upon less induction of heat shock protein 70 (hsp70) in organic selenium-fed chickens. Our results clearly show that heat distress, a potent inducer of oxidative stress and hsp70, can be partially ameliorated by feeding organic selenium. We attribute this observation to an enhanced GSH-GPX antioxidant system in organic selenium-fed chickens.
Collapse
Affiliation(s)
- Kamel Z Mahmoud
- Department of Animal Production, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | | |
Collapse
|
48
|
Rakonczay Z, Boros I, Jármay K, Hegyi P, Lonovics J, Takacs T. Ethanol administration generates oxidative stress in the pancreas and liver, but fails to induce heat-shock proteins in rats. J Gastroenterol Hepatol 2003; 18:858-867. [PMID: 12795760 DOI: 10.1046/j.1440-1746.2003.03076.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Heat-shock proteins (HSP) play an essential role in the sequestration and reparation of denatured cellular proteins. Because ethanol treatment can result in oxidative stress-induced protein damage, it is possible that expression of HSP is altered after ethanol consumption. Dose-response and time-course studies were performed to investigate whether acute and chronic intragastric ethanol administration can induce tissue damage, oxidative stress and expression of the heat-shock proteins HSP60 and HSP72 in the pancreas and liver of male Wistar rats. METHODS Laboratory and morphological analysis of pancreatic and liver damage were investigated. The degree of oxidative stress was assessed by measurement of the reduced glutathione content, lipid peroxidation and protein oxidation. The levels of HSP were examined by western blot analysis. RESULTS Ethanol administration dose- and time-dependently elevated the serum ethanol concentration and hepatic enzyme activities. Chronic ethanol treatment also resulted in morphological damage of the liver. We observed that acute and chronic ethanol consumption had markedly different effects on the oxidative parameters in the pancreas and liver. Acute ethanol administration caused oxidative stress in the liver, whereas there was no such effect in the pancreas. In contrast, chronic ethanol feeding resulted in oxidative stress in both the pancreas and the liver. Furthermore, neither acute nor chronic ethanol intake induced the synthesis of HSP, a major defense system against cellular damage in the examined organs. CONCLUSION Ethanol administration generates oxidative stress in the pancreas and liver, but fails to induce HSP in rats.
Collapse
Affiliation(s)
- Zoltán Rakonczay
- First Department of Medicine, University of Szeged and Hungarian Academy of Sciences, Biological Research Center, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
49
|
Cardile V, Pavone A, Gulino R, Renis M, Scifo C, Perciavalle V. Expression of brain-derived neurotrophic factor (BDNF) and inducible nitric oxide synthase (iNOS) in rat astrocyte cultures treated with Levetiracetam. Brain Res 2003; 976:227-233. [PMID: 12763257 DOI: 10.1016/s0006-8993(03)02720-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to investigate the effects of Levetiracetam, a new antiepileptic drug, on the synthesis of brain-derived neurotrophic factor (BDNF) and inducible nitric oxide synthase (iNOS) in rat cortical astrocyte cultures. The astrocytes were treated for 48 h with different concentrations of Levetiracetam and the expression of BDNF and iNOS was analyzed by immunostaining and immunoblotting analyses. We observed that Levetiracetam is able to stimulate expression of both BDNF and iNOS in a concentration-dependent manner on rat cortical astrocyte cultures. For the BDNF, this effect appears at very low concentrations (1 and 10 microgram/ml), while expression of iNOS appears only at higher dosages (50 microgram/ml). We conclude that Levetiracetam might exert neuroprotective effects, at least in part, via stimulation of neurotrophic factors, thus reducing the extent of inflammation and neuronal death under pathological conditions such as epilepsy.
Collapse
Affiliation(s)
- Venera Cardile
- Department of Physiological Sciences, University of Catania, V.le Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Colombrita C, Calabrese V, Stella AMG, Mattei F, Alkon DL, Scapagnini G. Regional rat brain distribution of heme oxygenase-1 and manganese superoxide dismutase mRNA: relevance of redox homeostasis in the aging processes. Exp Biol Med (Maywood) 2003; 228:517-24. [PMID: 12709579 DOI: 10.1177/15353702-0322805-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence supports the notion that reduction of cellular expression and activity of antioxidant proteins and the resulting increase of oxidative stress are fundamental causes in the aging processes and neurodegenerative diseases. In the present study, we evaluated, in the brains of young and aged rats, the gene expression profiles of two inducible proteins critically involved in the cellular defense against endogenous or exogenous oxidants: heme oxygenase-1 (HO-1) and manganese superoxide dismutase-2 (SOD-2). SOD-2 is an essential antioxidant and HO-1 has been reported to be very active in regulating cellular redox homeostasis. Deregulation of these enzymes has been extensively reported to play a crucial role in the pathogenesis of neurodegenerative disorders. To measure the regional distribution of HO-1 and SOD-2 transcript levels in the rat brain, we have developed a real time quantitative reverse transcription-polymerase chain reaction protocol. Although these two genes presented a highly dissimilar range of expression, with SOD-2 >HO-1, both transcripts were highly expressed in the cerebellum and the hippocampus, showing in a different scale a strikingly parallel distribution gradient. To further investigate the regional brain expression of these mRNAs, we performed in situ hybridization using specific riboprobes. In situ hybridization results showed that both transcripts were highly concentrated in the hippocampus, the cerebellum and some specific regions of the brain cortex. We have also quantified, by reverse transcription-polymerase chain reaction, the brain expression of HO-1 and SOD-2 mRNAs in middle aged (12 months) and aged (28 months) rats. We found that the hippocampus of aged rats presents a significant down regulation of SOD2 mRNA expression and a parallel upregulation of HO-1 mRNA compared with young (6 months) and middle-aged rats. Furthermore, in the cerebellum of the aged rats, we detected a parallel significant upregulation of both HO-1 and SOD-2 transcripts. These regional age-dependent differences may help to explain the increased susceptibility to oxidative damage in these two brain areas during aging.
Collapse
Affiliation(s)
- Claudia Colombrita
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|