1
|
Yu M, Zemke NR, Chen Z, Juric I, Hu R, Raviram R, Abnousi A, Fang R, Zhang Y, Gorkin DU, Li YE, Zhao Y, Lee L, Mishra S, Schmitt AD, Qiu Y, Dickel DE, Visel A, Pennacchio LA, Hu M, Ren B. Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues. Nat Struct Mol Biol 2025; 32:479-490. [PMID: 39681766 PMCID: PMC11919700 DOI: 10.1038/s41594-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics. Integrative analysis of the interactome with previous epigenome and transcriptome datasets from the same tissues revealed a strong correlation between the chromatin contacts and chromatin state at distal enhancers, as well as gene expression patterns at predicted target genes. We predicted target genes of 15,098 candidate enhancers and used them to annotate target genes of homologous candidate enhancers in the human genome that harbor risk variants of human diseases. We present evidence that schizophrenia and other adult disease risk variants are frequently found in fetal enhancers, providing support for the hypothesis of fetal origins of adult diseases.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ziyin Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Center for Immunology and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- New York Genome Center, New York, NY, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Meta, Bellevue, WA, USA
| | - Rongxin Fang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - David U Gorkin
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Neurosurgery and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuan Zhao
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anthony D Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- UCSD Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Arima Genomics, Inc., San Diego, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Sana Biotechnology, Seattle, WA, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
2
|
Ng YH, Chanda S, Janas JA, Yang N, Kokubu Y, Südhof TC, Wernig M. Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Reports 2021; 16:1763-1776. [PMID: 34171286 PMCID: PMC8282497 DOI: 10.1016/j.stemcr.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
The differentiation of pluripotent stem cells can be accomplished by sequential activation of signaling pathways or through transcription factor programming. Multistep differentiation imitates embryonic development to obtain authentic cell types, but it suffers from asynchronous differentiation with variable efficiency. Transcription factor programming induces synchronous and efficient differentiation with higher reproducibility but may not always yield authentic cell types. We systematically explored the generation of dopaminergic induced neuronal cells from mouse and human pluripotent stem cells. We found that the proneural factor Ascl1 in combination with mesencephalic factors Lmx1a and Nurr1 induce peripheral dopaminergic neurons. Co-delivery of additional midbrain transcription factors En1, FoxA2, and Pitx3 resulted in facile and robust generation of functional dopaminergic neurons of midbrain character. Our results suggest that more complex combinations of transcription factors may be needed for proper regional specification of induced neuronal cells generated by direct lineage induction. Ascl1 alone can induce tyrosine hydroxylase (TH)-positive ES-iN cells Ascl1 alone, or with Nurr1 and Lmx1a, induce peripheral TH-positive cells WNT1 and neurotrophic factors increase TH-positive iN cells in culture A 6-factor combination induces TH-positive dopamine iN cells of central identity
Collapse
Affiliation(s)
- Yi Han Ng
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuko Kokubu
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proc Natl Acad Sci U S A 2018; 115:E7351-E7360. [PMID: 30021854 DOI: 10.1073/pnas.1800039115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more "normal" neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.
Collapse
|
4
|
García MG, Carella A, Urdinguio RG, Bayón GF, Lopez V, Tejedor JR, Sierra MI, García-Toraño E, Santamarina P, Perez RF, Mangas C, Astudillo A, Corte-Torres MD, Sáenz-de-Santa-María I, Chiara MD, Fernández AF, Fraga MF. Epigenetic dysregulation of TET2 in human glioblastoma. Oncotarget 2018; 9:25922-25934. [PMID: 29899831 PMCID: PMC5995234 DOI: 10.18632/oncotarget.25406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/28/2018] [Indexed: 02/06/2023] Open
Abstract
Ten-eleven translocation (TET) enzymes are frequently deregulated in cancer, but the underlying molecular mechanisms are still poorly understood. Here we report that TET2 shows frequent epigenetic alterations in human glioblastoma including DNA hypermethylation and hypo-hydroxymethylation, as well as loss of histone acetylation. Ectopic overexpression of TET2 regulated neural differentiation in glioblastoma cell lines and impaired tumor growth. Our results suggest that epigenetic dysregulation of TET2 plays a role in human glioblastoma.
Collapse
Affiliation(s)
- María G García
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, El Entrego, Asturias, Spain
| | - Antonella Carella
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, El Entrego, Asturias, Spain
| | - Rocío G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, El Entrego, Asturias, Spain
| | - Gustavo F Bayón
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Virginia Lopez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, El Entrego, Asturias, Spain
| | - Juan Ramón Tejedor
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain.,Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Marta I Sierra
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Estela García-Toraño
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Pablo Santamarina
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Raúl F Perez
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Cristina Mangas
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - M Daniela Corte-Torres
- Biobanco del Principado de Asturias, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Inés Sáenz-de-Santa-María
- Otorhinolaryngology Service, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, CIBERONC, Oviedo, Spain
| | - María-Dolores Chiara
- Otorhinolaryngology Service, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, CIBERONC, Oviedo, Spain
| | - Agustín F Fernández
- Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain.,Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, El Entrego, Asturias, Spain
| |
Collapse
|
5
|
Lloret-Fernández C, Maicas M, Mora-Martínez C, Artacho A, Jimeno-Martín Á, Chirivella L, Weinberg P, Flames N. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape. eLife 2018; 7:32785. [PMID: 29553368 PMCID: PMC5916565 DOI: 10.7554/elife.32785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/16/2018] [Indexed: 01/02/2023] Open
Abstract
Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years.
Collapse
Affiliation(s)
- Carla Lloret-Fernández
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Carlos Mora-Martínez
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Alejandro Artacho
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, FISABIO, Valencia, Spain
| | - Ángela Jimeno-Martín
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Laura Chirivella
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Peter Weinberg
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University Medical Center, New York, United States
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|
6
|
Qin W, Chen S, Yang S, Xu Q, Xu C, Cai J. The Effect of Traditional Chinese Medicine on Neural Stem Cell Proliferation and Differentiation. Aging Dis 2017; 8:792-811. [PMID: 29344417 PMCID: PMC5758352 DOI: 10.14336/ad.2017.0428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are special types of cells with the potential for self-renewal and multi-directional differentiation. NSCs are regulated by multiple pathways and pathway related transcription factors during the process of proliferation and differentiation. Numerous studies have shown that the compound medicinal preparations, single herbs, and herb extracts in traditional Chinese medicine (TCM) have specific roles in regulating the proliferation and differentiation of NSCs. In this study, we investigate the markers of NSCs in various stages of differentiation, the related pathways regulating the proliferation and differentiation, and the corresponding transcription factors in the pathways. We also review the influence of TCM on NSC proliferation and differentiation, to facilitate the development of TCM in neural regeneration and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Qin
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiya Chen
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shasha Yang
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qian Xu
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuanshan Xu
- 3School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Cai
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
7
|
The Potential of Targeting Brain Pathology with Ascl1/Mash1. Cells 2017; 6:cells6030026. [PMID: 28832532 PMCID: PMC5617972 DOI: 10.3390/cells6030026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The proneural factor Achaete-scute complex-like 1 (Ascl1/Mash1) acts as a pioneering transcription factor that initializes neuronal reprogramming. It drives neural progenitors and non-neuronal cells to exit the cell cycle, and promotes neuronal differentiation by activating neuronal target genes, even those that are normally repressed. Importantly, force-expression of Ascl1 was shown to drive proliferative reactive astroglia formed during stroke and glioblastoma stem cells towards neuronal differentiation, and this could potentially diminish CNS damage resulting from their proliferation. As a pro-neural factor, Ascl1 also has the general effect of enhancing neurite growth by damaged or surviving neurons. Here, a hypothesis that brain pathologies associated with traumatic/ischemic injury and malignancy could be targeted with pro-neural factors that drives neuronal differentiation is formulated and explored. Although a good number of caveats exist, exogenous over-expression of Ascl1, alone or in combination with other factors, may be worth further consideration as a therapeutic approach in brain injury and cancer.
Collapse
|
8
|
Pasquini JM, Barrantes FJ, Quintá HR. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol 2017; 525:2861-2875. [DOI: 10.1002/cne.24243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juana M. Pasquini
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| | | | - Héctor R. Quintá
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
9
|
Analysis of expression of transcription factors in early human retina. Int J Dev Neurosci 2017; 60:94-102. [PMID: 28377129 DOI: 10.1016/j.ijdevneu.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/04/2017] [Accepted: 01/21/2017] [Indexed: 01/19/2023] Open
Abstract
The retina originates in the central nervous system. Due to its accessibility and simplicity, the retina has become an invaluable model for studying the basic mechanisms involved in development. To date, considerable knowledge regarding the interactions among genes that coordinate retinal development has been gained from extensive research in model animals. However, our understanding of retinal development in humans remains undeveloped. Here, we analyze the expression of transcription factors that are involved in the early development of the retina in human embryos at 6-12 weeks post-conception. Our work demonstrates that early developing neural retinas can be divided into two layers, the outer and inner neuroblast layers. Eye-field transcription factors and those related to the early development of the retina have distinct expression patterns in the two layers. Cell-type-specific transcription factors emerge at 8 weeks. These data provide clear and systemic structures for early retinal development in human.
Collapse
|
10
|
The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci 2017; 205:1-11. [PMID: 28392310 DOI: 10.1016/j.autneu.2017.03.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The autonomic nervous system (ANS) is complex and plays an important role in cardiac arrhythmia pathogenesis. A deeper understanding of the anatomy and development of the ANS has shed light on its involvement in cardiac arrhythmias. Alterations in levels of Sema-3a and NGF, both growth factors involved in innervation patterning during development of the ANS, leads to cardiac arrhythmias. Dysregulation of the ANS, including polymorphisms in genes involved in ANS development, have been implicated in sudden infant death syndrome. Disruptions in the sympathetic and/or parasympathetic systems of the ANS can lead to cardiac arrhythmias and can vary depending on the type of arrhythmia. Simultaneous stimulation of both the sympathetic and parasympathetic systems is thought to lead to atrial fibrillation whereas increased sympathetic stimulation is thought to lead to ventricular fibrillation or ventricular tachycardia. In inherited arrhythmia syndromes, such as Long QT and Catecholaminergic Polymorphic Ventricular Tachycardia, sympathetic system stimulation is thought to lead to ventricular tachycardia, subsequent arrhythmias, and in severe cases, cardiac death. On the other hand, arrhythmic events in Brugada Syndrome have been associated with periods of high parasympathetic tone. Increasing evidence suggests that modulation of the ANS as a therapeutic strategy in the treatment of cardiac arrhythmias is safe and effective. Further studies investigating the involvement of the ANS in arrhythmia pathogenesis and its modulation for the treatment of cardiac arrhythmias is warranted.
Collapse
|
11
|
Naizhen X, Linnoila RI, Kimura S. Co-expression of Achaete-Scute Homologue-1 and Calcitonin Gene-Related Peptide during NNK-Induced Pulmonary Neuroendocrine Hyperplasia and Carcinogenesis in Hamsters. J Cancer 2016; 7:2124-2131. [PMID: 27877229 PMCID: PMC5118677 DOI: 10.7150/jca.16399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/14/2016] [Indexed: 01/26/2023] Open
Abstract
Achaete-scute homologue-1 or ASCL1 (MASH1, hASH1) plays roles in neural development and pulmonary neuroendocrine (NE) differentiation, and it is expressed in certain lung cancers. This study was aimed to assess whether and/or how ASCL1 plays a role in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced pulmonary NE hyperplasia and carcinogenesis in hamsters. Hamsters were injected 3 times weekly with either NNK or solvent alone (control) for treatment periods of 6 and 24 weeks, both without and with 6-week recovery. Immunohistochemical analysis was carried out to examine the expressions of ASCL1, CGRP (calcitonin gene-related peptide), secretoglobin SCGB1A1 (club [Clara] cell specific 10 kD protein, CC10, CCSP), synaptophysin (SYP), and PCNA (proliferating cell nuclear antigen). The number of ASCL1-expressing NE foci per airway increased from 0.8 in controls to 1.6 and 2.0 during NNK exposure for 6 and 24 weeks, respectively, and the number of cells per foci doubled after NNK exposure. Most ASCL1-expressing cells in NEBs (neuroepithelial bodies) were also CGRP immunoreactive; NNK enhanced this co-expression with CGRP, a NE marker with known proliferation-promoting properties. NNK also increased PCNA expression within NE foci. NNK-induced tumors showed no immunoreactivity for NE markers. This study confirms ASCL1 as an excellent marker for pulmonary NE cells and demonstrates CGRP co-expression in ASCL1-positive NEB cells participating in NNK-induced NE hyperplasia.
Collapse
Affiliation(s)
- Xu Naizhen
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R. Ilona Linnoila
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Gao Y, Sun T. Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 2016; 53:4275-85. [PMID: 26223804 PMCID: PMC4733441 DOI: 10.1007/s12035-015-9367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies.
Collapse
Affiliation(s)
- Yanxia Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tao Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Induction of specific neuron types by overexpression of single transcription factors. In Vitro Cell Dev Biol Anim 2016; 52:961-973. [PMID: 27251161 DOI: 10.1007/s11626-016-0056-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.
Collapse
|
14
|
Molinaro AM, Pearson BJ. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biol 2016; 17:87. [PMID: 27150006 PMCID: PMC4858873 DOI: 10.1186/s13059-016-0937-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/08/2016] [Indexed: 12/01/2022] Open
Abstract
Background The planarian Schmidtea mediterranea is a master regenerator with a large adult stem cell compartment. The lack of transgenic labeling techniques in this animal has hindered the study of lineage progression and has made understanding the mechanisms of tissue regeneration a challenge. However, recent advances in single-cell transcriptomics and analysis methods allow for the discovery of novel cell lineages as differentiation progresses from stem cell to terminally differentiated cell. Results Here we apply pseudotime analysis and single-cell transcriptomics to identify adult stem cells belonging to specific cellular lineages and identify novel candidate genes for future in vivo lineage studies. We purify 168 single stem and progeny cells from the planarian head, which were subjected to single-cell RNA sequencing (scRNAseq). Pseudotime analysis with Waterfall and gene set enrichment analysis predicts a molecularly distinct neoblast sub-population with neural character (νNeoblasts) as well as a novel alternative lineage. Using the predicted νNeoblast markers, we demonstrate that a novel proliferative stem cell population exists adjacent to the brain. Conclusions scRNAseq coupled with in silico lineage analysis offers a new approach for studying lineage progression in planarians. The lineages identified here are extracted from a highly heterogeneous dataset with minimal prior knowledge of planarian lineages, demonstrating that lineage purification by transgenic labeling is not a prerequisite for this approach. The identification of the νNeoblast lineage demonstrates the usefulness of the planarian system for computationally predicting cellular lineages in an adult context coupled with in vivo verification. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0937-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa M Molinaro
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, M5G0A4, Canada.
| |
Collapse
|
15
|
Yang L, Ke XX, Xuan F, Tan J, Hou J, Wang M, Cui H, Zhang Y. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biother Radiopharm 2016; 31:44-51. [PMID: 26910576 DOI: 10.1089/cbr.2015.1952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.
Collapse
Affiliation(s)
- Liqun Yang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Xiao-Xue Ke
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Fan Xuan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Juan Tan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Jianbing Hou
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Mei Wang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Hongjuan Cui
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Yundong Zhang
- 2 Department of Neurosurgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University , Chongqing, P.R. China
| |
Collapse
|
16
|
Somnay YR, Dull BZ, Eide J, Jaskula-Sztul R, Chen H. Chrysin suppresses achaete-scute complex-like 1 and alters the neuroendocrine phenotype of carcinoids. Cancer Gene Ther 2015; 22:496-505. [PMID: 26403073 PMCID: PMC4607661 DOI: 10.1038/cgt.2015.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
Carcinoids are neuroendocrine neoplasms that cause significant morbidity and mortality, and for which few effective therapies are available. Given the recent identification of the anti-cancer flavonoid chrysin, we sought to investigate its therapeutic potential in carcinoids. Here, we report chrysin’s ability to modulate the achaete-scute complex-like1 (ASCL1), a neuroendocrine-specific transcription factor highly implicated in the malignant phenotype of carcinoids and other neuroendocrine cancers. Moreover, we elucidate the role of ASCL1 in carcinoid growth and bioactivity. Treatment of two carcinoid cell lines (BON and H727) with varying chrysin concentrations suppressed cell proliferation, while reducing expression of ASCL1 and the neuroendocrine biomarker chromogranin A (CgA), demonstrated by Western blotting. Propidium iodide and PE AnnexinV/7-AAD staining and sorting following chrysin treatment revealed S/G2 phase arrest and apoptosis, respectively. This was corroborated by chrysin-induced cleavage of caspase-3 and PARP and activation of p21Waf1/Cip1. Furthermore, direct ASCL1 knockdown with an ASCL1-specific small interfering RNA inhibited CgA and synaptophysin expression as well as carcinoid proliferation, while also reducing cyclin B1 and D1, and increasing p21Waf1/Cip1 and p27Kip1 expression, suggesting an arrest of the cell-cycle. Collectively, these findings warrant the deliberation of targeted ASCL1 suppression by chrysin or other agents as a therapeutic approach for carcinoid management.
Collapse
Affiliation(s)
- Y R Somnay
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - B Z Dull
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - J Eide
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - R Jaskula-Sztul
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Surgery, University of Alabama-Birmingham, Birmingham, AL, USA
| | - H Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Surgery, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Pathak NM, Pathak V, Lynch AM, Irwin N, Gault VA, Flatt PR. Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Mol Cell Endocrinol 2015; 412:95-103. [PMID: 26048772 DOI: 10.1016/j.mce.2015.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
The weight-lowering and gluco-regulatory actions of oxyntomodulin (Oxm) have been well-documented however potential actions of this peptide in brain regions associated with learning and memory have not yet been evaluated. The present study examined the long-term actions of a stable acylated analogue of Oxm, (dS(2))Oxm(K-γ-glu-Pal), together with parent (dS(2))Oxm peptide, on hippocampal neurogenesis, gene expression and metabolic control in high fat (HF) mice. Groups of HF mice (n = 12) received twice-daily injections of Oxm analogues (both at 25 nmol/kg body weight) or saline vehicle (0.9% wt/vol) over 28 days. Hippocampal gene expression and histology were assessed together with evaluation of energy intake, body weight, non-fasting glucose and insulin, glucose tolerance, insulin sensitivity and lipids. Oxm analogues significantly reduced body weight, improved glucose tolerance, glucose-mediated insulin secretion, insulin sensitivity, islet architecture and lipid profile. Analysis of brain histology revealed significant reduction in hippocampal oxidative damage (8-oxoguanine), enhanced hippocampal neurogenesis (doublecortin) and improved hippocampal and cortical synaptogenesis (synaptophysin) following treatment. Furthermore, Oxm analogues up-regulated hippocampal mRNA expression of MASH1, Synaptophysin, SIRT1, GLUT4 and IRS1, and down-regulated expression of LDL-R and GSK3β. These data demonstrate potential of stable Oxm analogues, and particularly (dS(2))Oxm(K-γ-glu-Pal) to improve metabolic function and enhance neurogenesis, synaptic plasticity, insulin signalling and exert protective effects against oxidative damage in hippocampus and cortex brain regions in HF mice.
Collapse
Affiliation(s)
- N M Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - A M Lynch
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - N Irwin
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V A Gault
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK.
| | - P R Flatt
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| |
Collapse
|
18
|
Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett 2015; 9:2507-2514. [PMID: 26137098 DOI: 10.3892/ol.2015.3088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/19/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroblastoma is the one of the most common extracranial childhood malignancies, accounting for ∼15% of tumor-associated deaths in children. It is generally considered that neuroblastoma originates from neural crest cells in the paravertebral sympathetic ganglia and the adrenal medulla. However, the mechanism by which neuroblastoma arises during sympathetic neurogenesis and the cellular mechanism that drives neuroblastoma development remains unclear. The present study investigated the cell components during neuroblastoma development in the tyrosine hydroxylase-v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (TH-MYCN) mouse model, a transgenic mouse model of human neuroblastoma. The present study demonstrates that paired-like homeobox 2b (Phox2B)+ neuronal progenitors are the major cellular population in hyperplastic lesions and primary tumors. In addition, Phox2B+ neuronal progenitors in hyperplastic lesions or primary tumors were observed to be in an actively proliferative and undifferentiated state. The current study also demonstrated that high expression levels of Phox2B promotes neuroblastoma cell proliferation and xenograft tumor growth. These findings indicate that the proliferation of undifferentiated Phox2B+ neuronal progenitors is a cellular mechanism that promotes neuroblastoma development and indicates that Phox2B is a critical regulator in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Dunke Zhang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hailong Zhao
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P.R. China
| | - Zhen Dong
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Rui Yang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Qingyou Xia
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
19
|
Yazawa T. Recent advances in histogenesis research of lung neuroendocrine cancers: Evidence obtained from functional analyses of primitive neural/neuroendocrine cell-specific transcription factors. Pathol Int 2015; 65:277-85. [PMID: 25708144 DOI: 10.1111/pin.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
Small cell carcinoma (SmCC) and large cell neuroendocrine carcinoma (LENEC) are categorized as neuroendocrine cancers (NECs) of the lung and have extremely poor prognoses. The lack of an effective therapeutic strategy against SmCC and LCNEC is a serious issue. Because the regulation of the cellular phenotype is complicated by the actions of various transcription factors, investigations into the function of neural/neuroendocrine cell-specific transcription factors are important for elucidating the cellular characteristics and histogenesis of SmCC and LCNEC and for establishing innovative therapeutic strategies against them. In this review, the functions of ASCL1, NeuroD1, REST, TTF1, and class III/IV POU, that are specifically and highly expressed in lung NECs, are introduced. These transcription factors transactivate and/or transrepress various genes and are involved in neural progenitor phenotyping, neuroendocrine and stem cell marker expression, and epithelial-to-mesenchymal transition. Based on the evidence that certain carcinoids express ASCL1, NeuroD1, TTF1, and class III/IV POU and that lung NECs can develop from non-NE cells/non-NEC cells, the relationships among lung NECs, carcinoid tumors, and non-NECs are discussed. Finally, a model of the histogenesis of lung NECs in view of similarities in the expression of primitive neural/neuroendocrine cell-specific transcription factors is proposed.
Collapse
Affiliation(s)
- Takuya Yazawa
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
20
|
Peng H, Ke XX, Hu R, Yang L, Cui H, Wei Y. Essential role of GATA3 in regulation of differentiation and cell proliferation in SK-N-SH neuroblastoma cells. Mol Med Rep 2014; 11:881-6. [PMID: 25351211 PMCID: PMC4262502 DOI: 10.3892/mmr.2014.2809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is a common solid malignant tumor of the sympathetic nervous system, which contributes to 15% of cancer‑related mortality in children. The differentiation status of neuroblastoma is correlated with clinical outcome, and the induction of differentiation thus constitutes a therapeutic approach in this disease. However, the molecular mechanisms that control the differentiation of neuroblastoma remain poorly understood. The present study aimed to define whether GATA3 is involved in the differentiation of neuroblastoma cells. The results demonstrated that GATA3 is a prognostic marker for survival in patients with neuroblastoma, and that high‑level GATA3 expression is associated with increased self‑renewal and proliferation of neuroblastoma cells. Retinoic acid treatment led to GATA3 downregulation together with neuronal differentiation, suppression of cell proliferation and inhibition of tumorigenecity in neuroblastoma cells. These findings suggest that GATA3 is a key regulator of neuroblastoma differentiation, and provide a novel potential therapeutic strategy for the induction of neuroblastoma differentiation.
Collapse
Affiliation(s)
- Hongwei Peng
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Yuquan Wei
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Instant neurons: directed somatic cell reprogramming models of central nervous system disorders. Biol Psychiatry 2014; 75:945-51. [PMID: 24525100 DOI: 10.1016/j.biopsych.2013.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/21/2013] [Accepted: 10/12/2013] [Indexed: 12/30/2022]
Abstract
Nuclear transplantation, cell fusion, and induced pluripotent stem cell studies have revealed a surprising degree of plasticity in mature mammalian cell fates. Somatic cell reprogramming also has been achieved more recently by the directed conversion of nonneuronal somatic cells, such as skin fibroblasts, to neuronal phenotypes. This approach appears particularly applicable to the in vitro modeling of human neurologic disorders. Central nervous system neurons are otherwise difficult to obtain from patients with neurologic disorders; however, nonhuman models may not reflect patient pathology. Somatic cell reprogramming may afford models of nonfamilial "sporadic" neurologic disorders, which are likely caused by multiple interacting genetic and nongenetic factors. Directed somatic cell reprogramming, which does not pass through typical in vivo developmental stages, toward many mature neuronal phenotypes has now been described. This article reviews the field and discusses the potential utilities of such models, such as for the development of personalized medicine strategies.
Collapse
|
22
|
Kameda Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 2014; 357:527-48. [PMID: 24770894 DOI: 10.1007/s00441-014-1847-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan,
| |
Collapse
|
23
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
24
|
Li Y, Linnoila RI. Multidirectional differentiation of Achaete-Scute homologue-1-defined progenitors in lung development and injury repair. Am J Respir Cell Mol Biol 2012; 47:768-75. [PMID: 22878413 DOI: 10.1165/rcmb.2012-0027oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multiple cells contribute to the function of lungs. Pulmonary neuroendocrine cells (PNECs) are important for the regulation of breathing and carcinogenesis, although they represent only a small population of the airway lining. Achaete-Scute homologue-1 (Ascl1), a proneural basic helix-loop-helix transcription factor, is critical for the development of PNECs. We postulated that Ascl1-defined cells (ASDCs) may be progenitors, and traced their fate during development and injury repair. R26R-stop-lacZ (Rosa) reporter mice were crossed with Ascl1-Cre or Ascl1-CreERTM mice, in which the Ascl1 promoter drives the expression of Cre or inducible Cre recombinase, respectively. ASDCs and their descendants will be permanently labeled. The labeled cells were characterized by immunohistochemistry, using highly specific differentiation markers. Lineage studies revealed a population that proliferates before the pseudoglandular stage, and widely contributes to different compartments. When ASDCs were labeled on Embryonic Day 9.5, they gave rise to both airway and alveolar cells, but when labeled on Embryonic Day 11.5, they only gave rise to airway cells. In postnatal naphthalene injury, ASDCs contributed to regenerating Clara cells. In conclusion, Ascl1-defined cells in the lung represent a novel multipotent lineage, indicating a close relationship of neuroendocrine cells with other cell types.
Collapse
Affiliation(s)
- Yan Li
- Experimental Pathology Section, Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Miki M, Ball DW, Linnoila RI. Insights into the achaete-scute homolog-1 gene (hASH1) in normal and neoplastic human lung. Lung Cancer 2012; 75:58-65. [PMID: 21684625 DOI: 10.1016/j.lungcan.2011.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/12/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022]
Abstract
Achaete-scute homolog-1 (ASH1) is pivotal for the development of pulmonary neuroendocrine (NE) cells. We examined human ASH1 (hASH1) expression across a comprehensive panel of human lung cancer cell lines, primary human lung tumors and normal fetal and post-natal lungs. While hASH1 was a cardinal feature of NE carcinomas, a subgroup of non-NE lung cancers also exhibited expression of this factor. Twenty lung cancer cell lines out of 33 were positive for hASH1 mRNA by reverse transcription PCR, including 6/6 small cell carcinomas (SCLC), 5/5 carcinoids, 6/7 non-SCLC with NE features, and 3/14 other non-SCLC. Among human primary tumors, 2/2 SCLC, 5/5 pulmonary carcinoids, and 10/41 non-SCLC (only 4 of which had NE features) were positive for hASH1 by immunohistochemistry and RNA-RNA in situ hybridization. In normal human fetal lung, the expression of hASH1 and the neural marker synaptophysin was highly concordant in neuroepithelial bodies and solitary NE cells, while the rest of the epithelium was negative. In childhood and adulthood, the markers became progressively discordant, with a majority of hASH1-immunoreactive foci (69%) being negative for synaptophysin in adults, potentially representing dormant NE cell progenitors. We conclude that hASH1 provides an early indication of NE program in human lung.
Collapse
Affiliation(s)
- Makoto Miki
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S. Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 2012; 241:1289-300. [PMID: 22689348 DOI: 10.1002/dvdy.23819] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 12/11/2022] Open
Abstract
Hes1 gene represses the expression of proneural basic helix-loop-helix (bHLH) factor Mash1, which is essential for the differentiation of the sympathetic ganglia and carotid body glomus cells. The sympathetic ganglia, carotid body, and common carotid artery in Wnt1-Cre/R26R double transgenic mice were intensely labeled by X-gal staining, i.e., the neural crest origin. The deficiency of Hes1 caused severe hypoplasia of the superior cervical ganglion (SCG). At embryonic day (E) 17.5-E18.5, the volume of the SCG in Hes1 null mutants was reduced to 26.4% of the value in wild-type mice. In 4 of 30 cases (13.3%), the common carotid artery derived from the third arch artery was absent in the null mutants, and the carotid body was not formed. When the common carotid artery was retained, the organ grew in the wall of the third arch artery and glomus cell precursors were provided from the SCG in the null mutants as well as in wild-types. However, the volume of carotid body in the null mutants was only 52.5% of the value in wild-types at E17.5-E18.5. These results suggest that Hes1 plays a critical role in regulating the development of neural crest derivatives in the mouse cervical region.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
28
|
Lee G, Studer L. Modelling familial dysautonomia in human induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2011; 366:2286-96. [PMID: 21727134 DOI: 10.1098/rstb.2011.0026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease.
Collapse
Affiliation(s)
- Gabsang Lee
- Centre for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
29
|
John N, Cinelli P, Wegner M, Sommer L. Transforming growth factor β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 2011; 29:689-99. [PMID: 21308864 DOI: 10.1002/stem.607] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During vertebrate development, neural crest stem cells (NCSCs) give rise to neural cells of the peripheral nervous system and to a variety of mesenchymal cell types, including smooth muscle, craniofacial chondrocytes, and osteocytes. Consistently, mesenchymal stem cells (MSCs) have recently been shown to derive in part from the neural crest (NC), although the mechanisms underlying MSC generation remains to be identified. Here, we show that transforming growth factor β (TGFβ)-mediated suppression of the NCSC transcription factor Sox10 induces a switch in neural to mesenchymal potential in NCSCs. In vitro and in vivo, TGFβ signal inactivation results in persistent Sox10 expression, decreased cell cycle exit, and perturbed generation of mesenchymal derivatives, which eventually leads to defective morphogenesis. In contrast, TGFβ-mediated downregulation of Sox10 or its genetic inactivation suppresses neural potential, confers mesenchymal potential to NC cells in vitro, and promotes cell cycle exit and precocious mesenchymal differentiation in vivo. Thus, negative regulation of Sox10 by TGFβ signaling promotes the generation of mesenchymal progenitors from NCSCs. Our study might lay the grounds for future applications demanding defined populations of MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Nessy John
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
30
|
Kaneko-Ishino T, Ishino F. Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Dev Growth Differ 2010; 52:533-43. [PMID: 20646026 DOI: 10.1111/j.1440-169x.2010.01194.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The evolution of two mammalian-specific traits, viviparous reproduction with a placenta and genomic imprinting, have been addressed by multiple studies of two retrotransposon derived, mammalian-specific genes. These gene targeting experiments in mice, together with recent comparative genomic analyses among three mammalian groups, suggest that extremely rare events; namely exaptations from retrotransposons, made crucial contributions to the establishment and diversification of mammals via placental formation. We propose that nearly neutral evolution, as well as Darwinian evolution (natural selection), plays an important role in the exaptation process. Comparative genomic analysis of various imprinted regions has also revealed that an imprinting control element essential for parent-of-origin specific monoallelic expression of imprinted genes emerged in each of the imprinted regions, possibly by the insertion of exogenous DNAs, such as retrotransposons. In both cases, DNA methylation in germ cells must have been of critical importance to repress the exogenous DNAs inserted into the genomes of mammalian ancestors. We propose that the ability of germ line DNA methylation enabled the emergence of certain mammalian-specific features during the course of evolution.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa, Japan
| | | |
Collapse
|
31
|
Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adh Migr 2010; 4:567-85. [PMID: 20962585 PMCID: PMC3011260 DOI: 10.4161/cam.4.4.12890] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/02/2010] [Indexed: 12/11/2022] Open
Abstract
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively, and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: 1) what establishes the pathways of migration and 2) what controls the final destination and differentiation of various neural crest subpopulations. These questions will be addressed in this review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube, and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted, or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk. The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: 1) the vagal-level neural crest cells exhibit modest developmental bias; 2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively; 3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.
Collapse
Affiliation(s)
- Bryan R Kuo
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
32
|
Jensen-Taubman S, Wang XY, Linnoila RI. Achaete-scute homologue-1 tapers neuroendocrine cell differentiation in lungs after exposure to naphthalene. Toxicol Sci 2010; 117:238-48. [PMID: 20554700 DOI: 10.1093/toxsci/kfq177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The basic helix-loop-helix transcription factor achaete-scute homologue-1 (ASH1) plays a critical role in regulating the neuroendocrine (NE) phenotype in normal and neoplastic lung. Transgenic (TG) mice that constitutively express human ASH1 (hASH1) under control of the Clara cell 10-kDa protein (CC10) promoter in non-NE airway lining cells display progressive epithelial hyperplasia and bronchiolar metaplasia or bronchiolization of the alveoli (BOA). However, little is known about the involvement of hASH1 in regeneration of the conducting airway. In this study, we investigated the impact of hASH1 on airway cell injury and repair in the TG mice following an intraperitoneal injection of naphthalene, which specifically ablates bronchiolar Clara cells and induces pulmonary NE cell hyperplasia. We discovered an overall attenuation of NE maturation coupled with increased proliferation in TG mice during post-naphthalene repair. In addition, BOA lesions revealed enhanced epithelial cell proliferation while preserving Clara cell markers CC10 and the principal naphthalene-metabolizing enzyme cytochrome P4502F2. These data suggest that ASH1 may play an important role in maintaining a progenitor phenotype that promotes renewal of both NE and epithelial cells. Moreover, ASH1 may propagate a stem cell microenvironment in BOA where epithelium becomes resistant to naphthalene toxicity.
Collapse
Affiliation(s)
- Sandra Jensen-Taubman
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 2010; 28:3799-807. [PMID: 19851284 PMCID: PMC2770102 DOI: 10.1038/emboj.2009.309] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022] Open
Abstract
Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.
Collapse
|
34
|
|
35
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
36
|
Morikawa Y, Zehir A, Maska E, Deng C, Schneider MD, Mishina Y, Cserjesi P. BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 2009; 136:3575-84. [PMID: 19793887 DOI: 10.1242/dev.038133] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Induction of the sympathetic nervous system (SNS) from its neural crest (NC) precursors is dependent on BMP signaling from the dorsal aorta. To determine the roles of BMP signaling and the pathways involved in SNS development, we conditionally knocked out components of the BMP pathways. To determine if BMP signaling is a cell-autonomous requirement of SNS development, the Alk3 (BMP receptor IA) was deleted in the NC lineage. The loss of Alk3 does not prevent NC cell migration, but the cells die immediately after reaching the dorsal aorta. The paired homeodomain factor Phox2b, known to be essential for survival of SNS precursors, is downregulated, suggesting that Phox2b is a target of BMP signaling. To determine if Alk3 signals through the canonical BMP pathway, Smad4 was deleted in the NC lineage. Loss of Smad4 does not affect neurogenesis and ganglia formation; however, proliferation and noradrenergic differentiation are reduced. Analysis of transcription factors regulating SNS development shows that the basic helix-loop-helix factor Ascl1 is downregulated by loss of Smad4 and that Ascl1 regulates SNS proliferation but not noradrenergic differentiation. To determine if the BMP-activated Tak1 (Map3k7) pathway plays a role in SNS development, Tak1 was deleted in the NC lineage. We show that Tak1 is not involved in SNS development. Taken together, our results suggest multiple roles for BMP signaling during SNS development. The Smad4-independent pathway acts through the activation of Phox2b to regulate survival of SNS precursors, whereas the Smad4-dependent pathway controls noradrenergic differentiation and regulates proliferation by maintaining Ascl1 expression.
Collapse
Affiliation(s)
- Yuka Morikawa
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 2009; 461:402-6. [PMID: 19693009 PMCID: PMC2784695 DOI: 10.1038/nature08320] [Citation(s) in RCA: 646] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/28/2009] [Indexed: 12/14/2022]
Abstract
The isolation of human induced pluripotent stem cells (iPSCs)1-3 offers a novel strategy for modeling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs4-7. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy caused by a point mutation in IKBKAP8 involved in transcriptional elongation9. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood due to the lack of an appropriate model system. Here we report the derivation of patient specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC derived lineages demonstrates tissue specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell based assays revealing marked defects in neurogenic differentiation and migration behavior. Finally, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining novel insights into human disease pathogenesis and treatment.
Collapse
|
38
|
Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells 2009; 27:888-97. [PMID: 19350691 DOI: 10.1634/stemcells.2008-0678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoblasts, precursor of melanocytes, are generated from the neural crest and differentiate into melanocytes during their migration throughout the entire body. The melanoblasts are thought to be progenitor cells that differentiate only into melanocyte. Here, we show that melanoblasts, even after they have already migrated throughout the skin, are multipotent, being able to generate neurons, glial cells, and smooth muscle cells in addition to melanocytes. We isolated Kit-positive and CD45-negative (Kit+/CD45-) cells from both embryonic and neonate skin by flow cytometry and cultured them on stromal cells. The Kit+/CD45- cells formed colonies containing neurons, glial cells, and smooth muscle cells, together with melanocytes. The Kit+/CD45- cells expressed Mitf-M, Sox10, and Trp-2, which are genes known to be expressed in melanoblasts. Even a single Kit+/CD45- cell formed colonies that contained neurons, glial cells, and melanocytes, confirming their multipotential cell fate. The colonies formed from Kit+/CD45- cells retained Kit+/CD45- cells even after 21 days in culture and these retained cells also differentiated into neurons, glial cells, and melanocytes, confirming their self-renewal capability. When the Kit signal was inhibited by the antagonist ACK2, the Kit+/CD45- cells did not form colonies that contained multidifferentiated cells. These results indicate that melanoblasts isolated from skin have multipotency and self-renewal capabilities.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
39
|
Watanabe H, Fujisawa T, Holstein TW. Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ 2009; 51:167-83. [PMID: 19379274 DOI: 10.1111/j.1440-169x.2009.01103.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cnidarians are widely regarded as one of the first organisms in animal evolution possessing a nervous system. Conventional histological and electrophysiological studies have revealed a considerable degree of complexity of the cnidarian nervous system. Thanks to expressed sequence tags and genome projects and the availability of functional assay systems in cnidarians, this simple nervous system is now genetically accessible and becomes particularly valuable for understanding the origin and evolution of the genetic control mechanisms underlying its development. In the present review, the anatomical and physiological features of the cnidarian nervous system and the interesting parallels in neurodevelopmental mechanisms between Cnidaria and Bilateria are discussed.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- University of Heidelberg, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
40
|
Büchmann-Møller S, Miescher I, John N, Krishnan J, Deng CX, Sommer L. Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 2009; 330:329-38. [PMID: 19361496 DOI: 10.1016/j.ydbio.2009.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 01/13/2023]
Abstract
During vertebrate development, neural crest cells are exposed to multiple extracellular cues that drive their differentiation into neural and non-neural cell lineages. Insights into the signals potentially involved in neural crest cell fate decisions in vivo have been gained by cell culture experiments that have allowed the identification of instructive growth factors promoting either proliferation of multipotent neural crest cells or acquisition of specific fates. For instance, members of the TGFbeta factor family induce neurogenesis and smooth muscle cell formation at the expense of other fates in culture. In vivo, conditional ablation of various TGFbeta signaling components resulted in malformations of non-neural derivatives of the neural crest, but it is unclear whether these phenotypes involved aberrant fate decisions. Moreover, it remains to be shown whether neuronal determination indeed requires TGFbeta factor activity in vivo. To address these issues, we conditionally deleted Smad4 in the neural crest, thus inactivating all canonical TGFbeta factor signaling. Surprisingly, neural crest cell fates were not affected in these mutants, with the exception of sensory neurogenesis in trigeminal ganglia. Rather, Smad4 regulates survival of smooth muscle and proliferation of autonomic and ENS neuronal progenitor cells. Thus, Smad signaling plays multiple, lineage-specific roles in vivo, many of which are elicited only after neural crest cell fate decision.
Collapse
Affiliation(s)
- Stine Büchmann-Møller
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat 2009; 22:36-46. [PMID: 18846544 DOI: 10.1002/ca.20695] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of homeostatic circulation in mammals and birds is reliant upon autonomic innervation of the heart. Neural branches of mixed cellular origin and function innervate the heart at the arterial and venous poles as it matures, eventually coupling autonomic output to the cardiac components, including the conduction system. The development of neural identity is controlled by specific networks of genes and growth factors, whereas functional properties are governed by the use of different neurotransmitters. In this review, we summarize briefly the anatomic arrangement of the vertebrate autonomic nervous system and describe, in detail, the innervation of the heart. We discuss the timing of cardiac innervation in the chick and mouse, emphasizing the relationship of the cardiac neural networks to the anatomical structures within the heart. We also discuss the variable contribution of the neural crest to vagal cardiac nerves, and summarize the main neurotransmitters secreted by the developing sympathetic and parasympathetic autonomic divisions. We provide an overview of the main growth factor and gene families involved in neural development, discussing how these factors may impact upon the development of cardiac abnormalities in congenital syndromes associated with autonomic dysfunction.
Collapse
Affiliation(s)
- Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
42
|
Titus TA, Yan YL, Wilson C, Starks AM, Frohnmayer JD, Bremiller RA, Cañestro C, Rodriguez-Mari A, He X, Postlethwait JH. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics. Mutat Res 2008; 668:117-32. [PMID: 19101574 DOI: 10.1016/j.mrfmmm.2008.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
Abstract
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
Collapse
Affiliation(s)
- Tom A Titus
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shi H, Cui H, Alam G, Gunning WT, Nestor A, Giovannucci D, Zhang M, Ding HF. Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia. J Comp Neurol 2008; 508:867-78. [PMID: 18399538 DOI: 10.1002/cne.21719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sympathetic ganglia are primarily composed of noradrenergic neurons and satellite glial cells. Although both cell types originate from neural crest cells, the identities of the progenitor populations at intermediate stages of the differentiation process remain to be established. Here we report on the identification in vivo of glial and neuronal progenitor cells in postnatal sympathetic ganglia, by using mouse superior cervical ganglia as a model system. There are significant levels of cellular proliferation in mouse superior cervical ganglia during the first 18 days after birth. A majority of the proliferating cells express both nestin and brain lipid-binding protein (BLBP). Bromodeoxyuridine (BrdU) fate-tracing experiments demonstrate that these nestin and BLBP double-positive cells represent a population of glial progenitors for sympathetic satellite cells. The glial differentiation process is characterized by a marked downregulation of nestin and upregulation of S100, with no significant changes in the levels of BLBP expression. We also identify a small number of proliferating cells that express nestin and tyrosine hydroxylase, a key enzyme of catecholamine biosynthesis that defines sympathetic noradrenergic neurons. Together, these results establish nestin as a common marker for sympathetic neuronal and glial progenitor cells and delineate the cellular basis for the generation and maturation of sympathetic satellite cells.
Collapse
Affiliation(s)
- Huilin Shi
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Doonan R, Hatzold J, Raut S, Conradt B, Alfonso A. HLH-3 is a C. elegans Achaete/Scute protein required for differentiation of the hermaphrodite-specific motor neurons. Mech Dev 2008; 125:883-93. [PMID: 18586090 DOI: 10.1016/j.mod.2008.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
Basic helix-loop-helix (bHLH) proteins of the Achaete/Scute (Ac/Sc) family are required for neurogenesis in both Drosophila and vertebrates. These transcription factors are commonly referred to as 'proneural' factors, as they promote neural fate in many contexts. Although Ac/Sc proteins have been studied in Hydra, jellyfish, many insects, and several vertebrates, the role of these proteins in Caenorhabditis elegans neurogenesis is relatively uncharacterized. The C. elegans genome consists of three Ac/Sc genes, previously identified as hlh-3, hlh-6, and hlh-14. Here, we characterize the role of hlh-3 in nervous system development. Although hlh-3 appears to be expressed in all neural precursors, we find that hlh-3 null mutants have a mostly functional nervous system. However, these mutants are egg-laying defective, resulting from a block in differentiation of the HSN motor neurons. Detectable HSNs have misdirected axon projection, which appears to result from a lack of netrin signaling within the HSNs. Thus, our findings suggest a novel link between Ac/Sc bHLH proteins and the expression of genes required for proper interpretation of axon guidance cues. Lastly, based on sequence identity, expression pattern, and a role in neural differentiation, hlh-3 is most likely an ortholog of Drosophila asense.
Collapse
Affiliation(s)
- Ryan Doonan
- Department of Biology, University College London, London, England WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
45
|
Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 2008; 319:179-91. [PMID: 18501887 PMCID: PMC2517160 DOI: 10.1016/j.ydbio.2008.03.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/19/2008] [Accepted: 03/22/2008] [Indexed: 12/22/2022]
Abstract
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.
Collapse
Affiliation(s)
- Tyler J Hendershot
- Department of Neurosciences, Program in Neurosciences and Degenerative Disease, University of Toledo Health Sciences Center, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nakajima T, Ota M, Ito K. Differentiation of autonomic neurons by BMP-independent mechanisms. Cell Tissue Res 2008; 332:25-35. [DOI: 10.1007/s00441-007-0563-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/22/2007] [Indexed: 11/30/2022]
|
47
|
Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2007; 2:e1272. [PMID: 18060066 PMCID: PMC2092394 DOI: 10.1371/journal.pone.0001272] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 09/04/2007] [Indexed: 12/21/2022] Open
Abstract
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and β-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.
Collapse
Affiliation(s)
- Atsushi Nagai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Woo K. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Hong J. Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Han S. Jeong
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Kwang S. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Seok H. Hong
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - In H. Park
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Sommer L. Growth factors regulating neural crest cell fate decisions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:197-205. [PMID: 17076283 DOI: 10.1007/978-0-387-46954-6_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of its unique ability to generate a wide variety of both neural and nonneural derivatives, the neural crest is an ideal model system to study the factors regulating cell lineage decisions in stem and progenitor cells. The use of various cell culture techniques and in vivo functional assays, including cell type-specific gene manipulation in mouse, helped to identify signaling factors involved in this process. Moreover, it became apparent that the biological functions of growth factors acting on neural crest cells depend on the context provided by the extracellular microenvironment. Thus, signaling molecules have to be viewed as parts of complex networks that change with time and location. Neural crest cells have to integrate these signals to ensure the generation of appropriate numbers of differentiating progeny. It will be important to determine how such signaling networks are established and how they elicit multiple signaling responses in neural crest cells to activate appropriate genetic programs.
Collapse
Affiliation(s)
- Lukas Sommer
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hoenggerberg, Zürich, Switzerland.
| |
Collapse
|
49
|
Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem 2007; 55:1075-88. [PMID: 17595340 DOI: 10.1369/jhc.7a7179.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of chick-quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest-derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
50
|
Wang XY, Dakir EH, Naizhen X, Jensen-Taubman SM, DeMayo FJ, Linnoila RI. Achaete-scute homolog-1 linked to remodeling and preneoplasia of pulmonary epithelium. J Transl Med 2007; 87:527-39. [PMID: 17507989 DOI: 10.1038/labinvest.3700552] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix protein achaete-scute homolog-1 (ASH1) is involved in lung neuroendocrine (NE) differentiation and tumor promotion in SV40 transgenic mice. Constitutive expression of human ASH-1 (hASH1) in mouse lung results in hyperplasia and remodeling that mimics bronchiolization of alveoli (BOA), a potentially premalignant lesion of human lung carcinomas. We now show that this is due to sustained cellular proliferation in terminal bronchioles and resistance to apoptosis. Throughout the airway epithelium the expression of anti-apoptotic Bcl-2 and c-Myb was increased and Akt/mTOR pathway activated. Moreover, the expression of matrix metalloproteases (MMPs) including MMP7 was specifically enhanced at the bronchiolo-alveolar duct junction and BOA suggesting that MMPs play a key role in this microenvironment during remodeling. We also detected MMP7 in 70% of human BOA lesions. Knockdown of hASH1 gene in human lung cancer cells in vitro suppressed growth by increasing apoptosis. We also show that forced expression of hASH1 in immortalized human bronchial epithelial cells decreases apoptosis. We conclude that the impact of hASH1 is not limited to cells with NE phenotype. Rather, constitutive expression of hASH1 in lung epithelium promotes remodeling through multiple pathways that are commonly activated during lung carcinogenesis. The collective results suggest a novel model of BOA formation via hASH1-induced suppression of the apoptotic pathway. Our study yields a promising new preclinical tool for chemoprevention of peripheral lung carcinomas.
Collapse
Affiliation(s)
- Xiao-Yang Wang
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|