1
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
2
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
3
|
Guo J, Yu W, Li M, Chen H, Liu J, Xue X, Lin J, Huang S, Shu W, Huang X, Liu Z, Wang S, Qiao Y. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol Cell 2023; 83:1710-1724.e7. [PMID: 37141888 DOI: 10.1016/j.molcel.2023.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.
Collapse
Affiliation(s)
- Junfan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxia Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; WLA Laboratories, Shanghai 201208, China
| | - Min Li
- Shanghai Institute of Precision Medicine, Shanghai 200125, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Liu
- Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaowen Xue
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | | | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
4
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
6
|
Shand JAD, Potter HC, Pilmore HL, Cundy T, Murphy R. Increased Peripheral Blood Heteroplasmy of the mt.3243A>G Mutation Is Associated with Earlier End-Stage Kidney Disease: A Case Report and Review of the Literature. Nephron Clin Pract 2020; 144:358-362. [PMID: 32434190 DOI: 10.1159/000507732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/05/2020] [Indexed: 11/19/2022] Open
Abstract
The mitochondrial DNA mutation mt.3243A>G is most commonly associated with maternally inherited diabetes and deafness (MIM 52,000), but it has protean phenotypes including renal disease due to focal segmental glomerulosclerosis. We describe monozygotic twins who both harboured this mutation and developed ESRD. Although otherwise genetically identical, the twins differed in their peripheral blood leucocyte levels of circulating mt.3243A>G heteroplasmy: 20 versus 10%, when assessed at 42 years of age. The twin with the higher heteroplasmy load developed end-stage kidney disease 15 years earlier than her sister. A review of the published literature supports a relationship between heteroplasmy level and the age at the development of the end stage of renal failure in patients with mt.3243A>G-related kidney disease.
Collapse
Affiliation(s)
- James A D Shand
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand,
| | - Howard C Potter
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - Helen L Pilmore
- Department of Nephrology, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tim Cundy
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. SCIENCE ADVANCES 2019; 5:eaav9824. [PMID: 30949583 PMCID: PMC6447380 DOI: 10.1126/sciadv.aav9824] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.
Collapse
Affiliation(s)
- R. Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - C. Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - M. Upadhyay
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - A. Pajak
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - P. Clemente
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - R. Wibom
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - M. L. Simard
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - A. Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - C. Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - J. B. Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - N. G. Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
- Corresponding author.
| |
Collapse
|
8
|
Kytövuori L, Gardberg M, Majamaa K, Martikainen MH. The m.7510T>C mutation: Hearing impairment and a complex neurologic phenotype. Brain Behav 2017; 7:e00859. [PMID: 29299381 PMCID: PMC5745241 DOI: 10.1002/brb3.859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Mutations in mitochondrial DNA cause a variety of clinical phenotypes ranging from a mild hearing impairment (HI) to severe encephalomyopathy. The MT-TS1 gene is a hotspot for mutations causing HI. The m.7510T>C mutation in MT-TS1 has been previously associated with non-syndromic HI in four families from different ethnic backgrounds. MATERIALS AND METHODS We describe the clinical, genetic, and histopathological findings in a Finnish family with the heteroplasmic m.7510T>C mutation in mitochondrial DNA. RESULTS The family proband presented with a progressive mitochondrial disease phenotype including migraine, epilepsy, mild ataxia, and cognitive impairment in addition to HI. One young adult presented with HI only. Other family members had a mild phenotype comprising ataxia and tremor in addition to HI. Mutation heteroplasmy was 90% in the blood of maternal grandmother and ≥99% in the muscle and blood of the three other family members. Muscle histology was consistent with mitochondrial myopathy in three family members. The mitochondrial haplogroup of the family was a different branch of the haplogroup H than in the previous reports of this mutation. CONCLUSION Our results suggest that, in addition to sensorineural HI, the m.7510T>C mutation is associated with a spectrum of mitochondrial disease clinical features including migraine, epilepsy, cognitive impairment, ataxia, and tremor, and with evidence of mitochondrial myopathy.
Collapse
Affiliation(s)
- Laura Kytövuori
- Research Unit of Clinical Neuroscience University of Oulu Oulu Finland.,Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland.,Department of Neurology Oulu University Hospital Oulu Finland
| | - Maria Gardberg
- Department of Pathology University of Turku and Turku University Hospital Turku Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience University of Oulu Oulu Finland.,Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland.,Department of Neurology Oulu University Hospital Oulu Finland
| | - Mika H Martikainen
- Division of Clinical Neurosciences University of Turku and Turku University Hospital Turku Finland
| |
Collapse
|
9
|
Loh KW, Chan CY, Chiu CK, Bin Hasan MS, Kwan MK. Posterior spinal instrumented fusion for idiopathic scoliosis in patients with multisystemic neurodegenerative disorder: a report of two cases. J Orthop Surg (Hong Kong) 2016; 24:273-7. [PMID: 27574278 DOI: 10.1177/1602400231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome is a progressive multisystemic neurodegenerative disorder. MELAS syndrome impairs oxidative phosphorylation and predisposes patients to lactic acidosis, particularly under metabolic stress. We report 2 siblings with MELAS-associated idiopathic scoliosis who underwent posterior spinal instrumented fusion with measures taken to minimise anaesthetic and surgical stress, blood loss, and operating time.
Collapse
Affiliation(s)
- K W Loh
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - C Yw Chan
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - C K Chiu
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - M S Bin Hasan
- Department of Anaesthesiology, University of Malaya, Kuala Lumpur, Malaysia
| | - M K Kwan
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
MitoLSDB: a comprehensive resource to study genotype to phenotype correlations in human mitochondrial DNA variations. PLoS One 2013; 8:e60066. [PMID: 23585830 PMCID: PMC3621970 DOI: 10.1371/journal.pone.0060066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 01/16/2023] Open
Abstract
Human mitochondrial DNA (mtDNA) encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in). The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source) Variation Database (LOVD) software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants.
Collapse
|
11
|
An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet 2013; 9:e1003238. [PMID: 23382693 PMCID: PMC3561102 DOI: 10.1371/journal.pgen.1003238] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNATyr to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity. The ancient symbiosis between two prokaryotes that gave rise to the eukaryotic cell has required genomic cooperation for at least a billion years. Eukaryotic cells respire through the coordinated expression of their nuclear and mitochondrial genomes, both of which encode the proteins and RNAs required for mitochondrial transcription, translation, and aerobic respiration. Genetic interactions between these genomes are hypothesized to influence the effects of mitochondrial mutations on disease and drive mitochondrial–nuclear coevolution. Here we characterize the molecular cause and the cellular and organismal consequences of a mitochondrial–nuclear interaction in Drosophila between naturally occurring mutations in a mitochondrial tRNA and a nuclear-encoded tRNA synthetase. These mutations have little effect on their own; but, when combined, they severely compromise development and reproduction. tRNA synthetases attach the appropriate amino acid onto their cognate tRNA, and this reaction is required for efficient and accurate protein synthesis. We show that disruption of this interaction compromises mitochondrial function, providing hypotheses for the variable penetrance of diseases associated with mitochondrial tRNAs and for which pathways and processes are likely to be affected by mitochondrial–nuclear interactions.
Collapse
|
12
|
Mende S, Royer L, Herr A, Schmiedel J, Deschauer M, Klopstock T, Kostic VS, Schroeder M, Reichmann H, Storch A. Whole blood genome-wide expression profiling and network analysis suggest MELAS master regulators. Neurol Res 2012; 33:638-55. [PMID: 21708074 DOI: 10.1179/1743132810y.0000000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The heteroplasmic mitochondrial DNA (mtDNA) mutation A3243G causes the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome as one of the most frequent mitochondrial diseases. The process of reconfiguration of nuclear gene expression profile to accommodate cellular processes to the functional status of mitochondria might be a key to MELAS disease manifestation and could contribute to its diverse phenotypic presentation. OBJECTIVE To determine master regulatory protein networks and disease-modifying genes in MELAS syndrome. METHODS Analyses of whole blood transcriptomes from 10 MELAS patients using a novel strategy by combining classic Affymetrix oligonucleotide microarray profiling with regulatory and protein interaction network analyses. RESULTS Hierarchical cluster analysis elucidated that the relative abundance of mutant mtDNA molecules is decisive for the nuclear gene expression response. Further analyses confirmed not only transcription factors already known to be involved in mitochondrial diseases (such as TFAM), but also detected the hypoxia-inducible factor 1 complex, nuclear factor Y and cAMP responsive element-binding protein-related transcription factors as novel master regulators for reconfiguration of nuclear gene expression in response to the MELAS mutation. Correlation analyses of gene alterations and clinico-genetic data detected significant correlations between A3243G-induced nuclear gene expression changes and mutant mtDNA load as well as disease characteristics. These potential disease-modifying genes influencing the expression of the MELAS phenotype are mainly related to clusters primarily unrelated to cellular energy metabolism, but important for nucleic acid and protein metabolism, and signal transduction. DISCUSSION Our data thus provide a framework to search for new pathogenetic concepts and potential therapeutic approaches to treat the MELAS syndrome.
Collapse
Affiliation(s)
- Susanne Mende
- Department of Neurology, Dresden University of Technology, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Mitochondria have a crucial role in cellular bioenergetics and apoptosis, and thus are important to support cell function and in determination of cell death pathways. Inherited mitochondrial diseases can be caused by mutations of mitochondrial DNA or of nuclear genes that encode mitochondrial proteins. Although many mitochondrial disorders are multisystemic, some are tissue specific--eg, optic neuropathy, sensorineural deafness, and type 2 diabetes mellitus. In the past few years, several disorders have been associated with mutations of nuclear genes responsible for mitochondrial DNA maintenance and function, and the potential contribution of mitochondrial abnormalities to progressive neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease has been recognised. The process of mitochondrial fission-fusion has become a focus of attention in human disease. Importantly, the mitochondrion is now a target for therapeutic interventions that encompass small molecules, transcriptional regulation, and genetic manipulation, offering opportunities to treat a diverse range of diseases.
Collapse
Affiliation(s)
- Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
14
|
Abstract
The last 25 years have witnessed remarkable advances in our understanding of the etiology and pathogenesis of Parkinson's disease. The ability to undertake detailed biochemical analyses of the Parkinson's disease postmortem brain enabled the identification of defects of mitochondrial and free-radical metabolism. The discovery of the first gene mutation for Parkinson's disease, in alpha-synuclein, ushered in the genetic era for the disease and the subsequent finding of several gene mutations causing parkinsonism, 15 at the time of writing. Technological advances both in sequencing technology and software analysis have allowed association studies of sufficiently large size accurately to describe genes conferring an increased risk for Parkinson's disease. What has been so surprising is the convergence of these 2 separate disciplines (biochemistry and genetics) in terms of reinforcing the importance of the same pathways (ie, mitochondrial dysfunction and free-radical metabolism). Other pathways are also important in pathogenesis, including protein turnover, inflammation, and post-translational modification, particularly protein phosphorylation and ubiquitination. However, even these additional pathways overlap with each other and with those of mitochondrial dysfunction and oxidative stress. This review explores these concepts with particular relevance to mitochondrial involvement.
Collapse
|
15
|
Schapira AHV. Monoamine oxidase B inhibitors for the treatment of Parkinson's disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs 2011; 25:1061-71. [PMID: 22133327 DOI: 10.2165/11596310-000000000-00000] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease is a disorder characterized pathologically by progressive neurodegeneration of the dopaminergic cells of the nigrostriatal pathway. Although the resulting dopamine deficiency is the cause of the typical motor features of Parkinson's disease (bradykinesia, rigidity, tremor), additional non-motor symptoms appear at various timepoints and are the result of non-dopamine nerve degeneration. Monoamine oxidase B (MAO-B) inhibitors are used in the symptomatic treatment of Parkinson's disease as they increase synaptic dopamine by blocking its degradation. Two MAO-B inhibitors, selegiline and rasagiline, are currently licensed in Europe and North America for the symptomatic improvement of early Parkinson's disease and to reduce off-time in patients with more advanced Parkinson's disease and motor fluctuations related to levodopa. A third MAO-B inhibitor (safinamide), which also combines additional non-dopaminergic properties of potential benefit to Parkinson's disease, is currently under development in phase III clinical trials as adjuvant therapy to either a dopamine agonist or levodopa. MAO-B inhibitors have also been studied extensively for possible neuroprotective or disease-modifying actions. There is considerable laboratory evidence that MAO-B inhibitors do exert some neuroprotective properties, at least in the Parkinson's disease models currently available. However, these models have significant limitations and caution is required in assuming that such results may easily be extrapolated to clinical trials. Rasagiline 1 mg/day has been shown to provide improved motor control in terms of Unified Parkinson's Disease Rating Scale (UPDRS) score at 18 months in those patients with early disease who began the drug 9 months before a second group. There are a number of possible explanations for this effect that may include a disease-modifying action; however, the US FDA recently declined an application for the licence of rasagiline to be extended to cover disease modification.
Collapse
|
16
|
Schapira AHV, Gegg M. Mitochondrial contribution to Parkinson's disease pathogenesis. PARKINSONS DISEASE 2011; 2011:159160. [PMID: 21687805 PMCID: PMC3109314 DOI: 10.4061/2011/159160] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 12/21/2022]
Abstract
The identification of the etiologies and pathogenesis of Parkinson's disease (PD) should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy) has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.
Collapse
Affiliation(s)
- Anthony H V Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London NW3 2PF, UK
| | | |
Collapse
|
17
|
Abstract
A major focus in Parkinson's disease (PD) research is to produce drugs or other interventions that can slow or stop clinical progression. This should include an effect on both motor and non-motor symptoms and so target dopaminergic and non-dopaminergic pathways. It is logical to assume that the best chance of developing such therapies will be based on forming a better understanding of the aetiology and pathogenesis of PD and to identify critical molecular targets. There have been great advances in finding different genetic causes and risk factors for PD, but less so in the discovery of environmental contributions. The separate genetic causes still share common pathways to cell dysfunction and death, and these interconnect at several levels. Despite the major advances in genetics and PD pathogenesis, we still do not have good models of PD that can be used with confidence to accurately predict the effect of drugs on disease progression. Clinical trial design and study population selection are also areas that represent significant challenges to testing any putative neuro-protective agent. Several drugs have attracted attention as potential neuroprotective agents in PD. There are numerous studies demonstrating beneficial effects in the laboratory, but clinical efficacy for neuroprotection remains unproven.
Collapse
Affiliation(s)
- Anthony H V Schapira
- University Department of Clinical Neurosciences, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
18
|
Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 2010; 224:331-5. [PMID: 20362572 DOI: 10.1016/j.expneurol.2010.03.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 12/21/2022]
Abstract
Complex I is the first protein component of the mitochondrial respiratory chain and as such plays a crucial role in ATP production and mitochondrial function in general. Mitochondrial dysfunction has been identified in a number of neurodegenerative diseases. In some of these the mitochondrial abnormality is primary and in others secondary. Mitochondrial toxins are capable of producing relatively selective neuronal cell death and have been used to produce models of human neurodegenerative diseases e.g. 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) for Parkinson's disease, and 3-nitropropionic acid for Huntington's disease. Annonacin, an ingredient of local soursop, is a Complex I inhibitor and has been incriminated as the cause of a parkinsonian tauopathy disorder in Guadeloupe. A systematic analysis has identified several environmentally available potent lipophilic Complex I inhibitors that can induce neuronal cell death in striatal cultures and somatodendritic redistribution of tau protein. It is possible that these compounds may contribute to the pathogenesis of neurodegenerative disorders, although further work must be done to confirm their potential participation in pathogenesis.
Collapse
|
19
|
Abstract
PURPOSE To establish a reliable technique for harvesting the orbicularis oculi muscle to facilitate diagnosis of chronic progressive external ophthalmoplegia, a mitochondrial myopathy. METHODS In this retrospective observational case series, 10 patients clinically suspected to have chronic progressive external ophthalmoplegia underwent surgery for upper eyelid ptosis. A protocol for orbicularis biopsy was developed. Initial cases of levator muscle biopsy yielded inadequate, unorientated skeletal muscle with significant contraction artifact that prevented the study of morphologic features. To improve yield and quality, orbicularis oculi muscle biopsy was performed in the later patients following a standard muscle biopsy protocol used for limb muscles. This involved suturing a third of the muscle on a wooden stick, to keep it at isometric length. The specimen was sent fresh in saline-moistened gauze to the pathologist who then divided the muscle for various studies. RESULTS The biopsies of orbicularis muscle performed using this protocol resulted in adequate skeletal muscle with an acceptable level of artifact. Mitochondrial myopathy was diagnosed in 9 of 10 cases. CONCLUSIONS The orbicularis oculi muscle is a good source of skeletal muscle for investigating muscle disorders, and it is easily collected during blepharoplasty or ptosis surgery. This has avoided the need for a standard proximal limb muscle biopsy, thereby reducing morbidity and cost to the patients.
Collapse
|
20
|
Doyle SR, Chan CK. Mitochondrial gene therapy: an evaluation of strategies for the treatment of mitochondrial DNA disorders. Hum Gene Ther 2009; 19:1335-48. [PMID: 18764763 DOI: 10.1089/hum.2008.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) disorders include a vast range of pathological conditions, despite each sharing a mutual inability to produce ATP efficiently as a result of defective oxidative phosphorylation. There is no clear consensus regarding an effective therapeutic approach, and consequently the current treatment strategies are largely supportive rather than curative. This is almost certainly the result of there being virtually no defined genotype-phenotype relationships among the mtDNA disorders; hence an identical mutation may be responsible for multiple phenotypes, or the same phenotype may be produced by different mutations. In light of this, the development of gene therapy to treat mtDNA disorders offers a promising approach, as it potentially circumvents the complication of the aforementioned genotype-phenotype inconsistency and ultimately the current inability to treat individual disorders with sufficient efficacy. Such an approach will ultimately require the combination of efficient mitochondrial targeting, and an effective therapeutic molecule. Although promising proof-of-principle developments in this field have been demonstrated, the realization of a successful therapeutic mitochondrial gene therapy strategy has not come to fruition. This review critiques the key approaches under development by discussing the theory underlying each strategy, and detailing the current progress made. We also emphasize the potential hurdles that must be acknowledged and overcome if the potential of a therapeutic gene therapy to treat mitochondrial DNA disorders is to be realized.
Collapse
Affiliation(s)
- Stephen R Doyle
- Department of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | |
Collapse
|
21
|
|
22
|
Schapira AHV. Mitochondrial Dysfunction in Neurodegenerative Diseases. Neurochem Res 2008; 33:2502-9. [DOI: 10.1007/s11064-008-9855-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/13/2008] [Indexed: 12/26/2022]
|
23
|
Bye A, Høydal MA, Catalucci D, Langaas M, Kemi OJ, Beisvag V, Koch LG, Britton SL, Ellingsen Ø, Wisløff U. Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO2max. Physiol Genomics 2008; 35:213-21. [PMID: 18780757 DOI: 10.1152/physiolgenomics.90282.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between inborn maximal oxygen uptake (VO(2max)) and skeletal muscle gene expression is unknown. Since low VO(2max) is a strong predictor of cardiovascular mortality, genes related to low VO(2max) might also be involved in cardiovascular disease. To establish the relationship between inborn VO(2max) and gene expression, we performed microarray analysis of the soleus muscle of rats artificially selected for high- and low running capacity (HCR and LCR, respectively). In LCR, a low VO(2max) was accompanied by aggregation of cardiovascular risk factors similar to the metabolic syndrome. Although sedentary HCR were able to maintain a 120% higher running speed at VO(2max) than sedentary LCR, only three transcripts were differentially expressed (FDR <or=0.05) between the groups. Sedentary LCR expressed high levels of a transcript with strong homology to human leucyl-transfer RNA synthetase, of whose overexpression has been associated with a mutation linked to mitochondrial dysfunction. Moreover, we studied exercise-induced alterations in soleus gene expression, since accumulating evidence indicates that long-term endurance training has beneficial effects on the metabolic syndrome. In terms of gene expression, the response to exercise training was more pronounced in HCR than LCR. HCR upregulated several genes associated with lipid metabolism and fatty acid elongation, whereas LCR upregulated only one transcript after exercise training. The results indicate only minor differences in soleus muscle gene expression between sedentary HCR and LCR. However, the inborn level of fitness seems to influence the transcriptional adaption to exercise, as more genes were upregulated after exercise training in HCR than LCR.
Collapse
Affiliation(s)
- Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rath PP, Jenkins S, Michaelides M, Smith A, Sweeney MG, Davis MB, Fitzke FW, Bird AC. Characterisation of the macular dystrophy in patients with the A3243G mitochondrial DNA point mutation with fundus autofluorescence. Br J Ophthalmol 2008; 92:623-9. [PMID: 18441172 PMCID: PMC2569141 DOI: 10.1136/bjo.2007.131177] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The mitochondrial DNA A3243G point mutation is associated with a wide variety of systemic manifestations including a macular dystrophy. The characteristics of fundus autofluorescence (AF) in these patients are distinctive and have not been previously described. METHODS A complete history and ophthalmic examination, including fundus photography and autofluorescence imaging, was performed on twelve probands harbouring the A3243G point mutation. RESULTS Four patients had diabetes, 10/12 hearing loss, and 7/12 were visually symptomatic. A positive family history was present in 5/12. Fundus findings consisted of two primary phenotypes: discontinuous circumferentially oriented perifoveal atrophy (9/12) or an appearance consistent with pattern dystrophy (3/12). In both phenotypes pale deposits and pigment clumping were seen at the level of the retinal pigment epithelium, with occasional changes also noted outside the arcades and nasal to the optic nerve. Fundus AF imaging revealed decreased autofluorescence in areas of atrophy and increased AF of the pale subretinal deposits. In areas of the retina that appeared normal clinically, variable sized flecks of increased and decreased AF were present. CONCLUSIONS The mitochondrial DNA A3243G point mutation can result in disease with a variable presentation. Fundus autofluorescence reveals a recognisable phenotype in most cases that is different from other macular dystrophies.
Collapse
Affiliation(s)
- P P Rath
- Moorfields Eye Hospital, London, UK
- Retina Vitreous Consultants, Pittsburgh, PA, USA
| | - S Jenkins
- Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, London, UK
| | - M Michaelides
- Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, London, UK
| | - A Smith
- Moorfields Eye Hospital, London, UK
- County Hospital, Hereford, UK
| | - M G Sweeney
- Department of Molecular Neuroscience, Institute of Neurology, London, UK
| | - M B Davis
- Department of Molecular Neuroscience, Institute of Neurology, London, UK
| | | | - A C Bird
- Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, London, UK
| |
Collapse
|
25
|
Schapira A. MITOCHONDRIAL DNA AND DISEASE. Continuum (Minneap Minn) 2008. [DOI: 10.1212/01.con.0000275629.24690.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Fornuskova D, Brantova O, Tesarova M, Stiburek L, Honzik T, Wenchich L, Tietzeova E, Hansikova H, Zeman J. The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues. Biochim Biophys Acta Mol Basis Dis 2008; 1782:317-25. [PMID: 18319067 DOI: 10.1016/j.bbadis.2008.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 01/07/2023]
Abstract
The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits.
Collapse
Affiliation(s)
- Daniela Fornuskova
- Department of Pediatrics and Center of Applied Genomics, First Faculty of Medicine, Charles University in Prague, Ke Karlovu 2, Prague 2, 128 08, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Uusimaa J, Moilanen JS, Vainionpää L, Tapanainen P, Lindholm P, Nuutinen M, Löppönen T, Mäki-Torkko E, Rantala H, Majamaa K. Prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children. Ann Neurol 2007; 62:278-87. [PMID: 17823937 DOI: 10.1002/ana.21196] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We studied the prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children in a defined population in Northern Ostrobothnia, Finland. METHODS Children with diagnoses commonly associated with mitochondrial diseases were ascertained. Blood DNA from 522 selected children was analyzed for 3243A>G. Children with the mutation were clinically examined. Information on health history before the age of 18 years was collected from previously identified adult patients with 3243A>G. Mutation segregation analysis in buccal epithelial cells was performed in mothers with 3243A>G and their children whose samples were analyzed anonymously. RESULTS Eighteen children were found to harbor 3243A>G in a population of 97,609. A minimum estimate for the prevalence of 3243A>G was 18.4 in 100,000 (95% confidence interval, 10.9-29.1/100,000). Information on health in childhood was obtained from 37 adult patients with 3243A>G. The first clinical manifestations appearing in childhood were sensorineural hearing impairment, short stature or delayed maturation, migraine, learning difficulties, and exercise intolerance. Mutation analysis from 13 mothers with 3243A>G and their 41 children gave a segregation rate of 0.80. The mothers with heteroplasmy greater than 50% tended to have offspring with lower or equal heteroplasmy, whereas the opposite was true for mothers with heteroplasmy less than or equal to 50% (p = 0.0016). INTERPRETATION The prevalence of 3243A>G is relatively high in the pediatric population, but the morbidity in children is relatively low. The random genetic drift model may be inappropriate for the transmission of the 3243A>G mutation.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee YC, Lu YC, Chang MH, Soong BW. Common mitochondrial DNA and POLG1 mutations are rare in the Chinese patients with adult-onset ataxia on Taiwan. J Neurol Sci 2007; 254:65-8. [PMID: 17300808 DOI: 10.1016/j.jns.2007.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with common features of adult-onset cerebellar ataxia. Many patients with clinically suspected SCA are subsequently diagnosed with common SCA gene mutations. Previous reports suggest some common mitochondrial DNA (mtDNA) point mutations and mitochondrial DNA polymerase gene (POLG1) mutations might be additional underlying genetic causes of cerebellar ataxia. We tested whether mtDNA point mutations A3243G, A8344G, T8993G, and T8993C, or POLG1 mutations W748S and A467T are found in patients with adult-onset ataxia who did not have common SCA mutations. METHODS Four hundred seventy-six unrelated patients with suspected SCA underwent genetic testing for SCA 1, 2, 3, 6, 7, 8, 10, 12, 17, and DRPLA gene mutations. After excluding these SCA mutations and patients with paternal transmission history, 265 patients were tested for mtDNA mutations A3243G, A8344G, T8993G, T8993C, and POLG1 W748S and A467T mutations. RESULTS No mtDNA A3243G, A8344G, T8993G, T8993C, or POLG1 W748S and A467T mutation was detected in any of the 265 ataxia patients, suggesting that the upper limit of the 95% confidence interval for the prevalence of these mitochondrial mutations in Chinese patients with adult-onset non-SCA ataxia is no higher than 1.1%. CONCLUSIONS The mtDNA mutations A3243G, A8344G, T8993G, T8993C, or POLG1 W748S and A467T are very rare causes of adult-onset ataxia in Taiwan. Routine screening for these mutations in ataxia patients with Chinese origin is of limited clinical value.
Collapse
Affiliation(s)
- Yi-Chung Lee
- Section of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
29
|
Vedolin L, de Souza CFM, Silveira RS, Lopes BC, Laybauer LS, Saraiva Pereira ML, Giugliani R. Conventional MRI and MR spectroscopy in nonclassical mitochondrial disease: report of three patients with mitochondrial DNA deletion. Childs Nerv Syst 2006; 22:1355-9. [PMID: 16552564 DOI: 10.1007/s00381-006-0082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 10/14/2005] [Indexed: 10/24/2022]
Abstract
OBJECTS The objectives were to present magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) findings in three patients with deletion on mitochondrial DNA (mtDNA) and nonclassical mitochondrial disorders (NCMD), correlating these findings with the percentage of deleted mtDNA. RESULTS Our study confirms the high prevalence of white matter (WM), basal ganglia, and posterior fossa lesions in NCMD, ranging from mild to severe involvement. The subcortical WM, caudate, thalamus, globus pallidus, and dorsal brain stem were more frequently affected. A lactate peak was the most frequent finding at the MRS. We found a correlation between the percentage of mtDNA deletion and degree of MRS abnormalities. CONCLUSIONS Our findings showed that MRS is a useful investigational tool in patients with NCMD. Supplementary studies are necessary to elucidate the correlation of quantitative mtDNA deletion and neuroimaging phenotype.
Collapse
Affiliation(s)
- Leonardo Vedolin
- Neuroradiology Department, Mãe de Deus Center, Hospital Mãe de Deus, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Scaglia F, Northrop JL. The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: a review of treatment options. CNS Drugs 2006; 20:443-64. [PMID: 16734497 DOI: 10.2165/00023210-200620060-00002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondrial encephalomyopathies are a multisystemic group of disorders that are characterised by a wide range of biochemical and genetic mitochondrial defects and variable modes of inheritance. Among this group of disorders, the mitochondrial myopathy, encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome is one of the most frequently occurring, maternally inherited mitochondrial disorders. As the name implies, stroke-like episodes are the defining feature of the MELAS syndrome, often occurring before the age of 15 years. The clinical course of this disorder is highly variable, ranging from asymptomatic, with normal early development, to progressive muscle weakness, lactic acidosis, cognitive dysfunction, seizures, stroke-like episodes, encephalopathy and premature death. This syndrome is associated with a number of point mutations in the mitochondrial DNA, with over 80% of the mutations occurring in the dihydrouridine loop of the mitochondrial transfer RNA(Leu(UUR)) [tRNA(Leu)((UUR))] gene. The pathophysiology of the disease is not completely understood; however, several different mechanisms are proposed to contribute to this disease. These include decreased aminoacylation of mitochondrial tRNA, resulting in decreased mitochondrial protein synthesis; changes in calcium homeostasis; and alterations in nitric oxide metabolism. Currently, no consensus criteria exist for treating the MELAS syndrome or mitochondrial dysfunction in other diseases. Many of the therapeutic strategies used have been adopted as the result of isolated case reports or limited clinical studies that have included a heterogeneous population of patients with the MELAS syndrome, other defects in oxidative phosphorylation or lactic acidosis due to disorders of pyruvate metabolism. Current approaches to the treatment of the MELAS syndrome are based on the use of antioxidants, respiratory chain substrates and cofactors in the form of vitamins; however, no consistent benefits have been observed with these treatments.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
31
|
Dakubo GD, Parr RL, Costello LC, Franklin RB, Thayer RE. Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 2006; 59:10-6. [PMID: 16394275 PMCID: PMC1860255 DOI: 10.1136/jcp.2005.027664] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2005] [Indexed: 12/14/2022]
Abstract
Mutations in mitochondrial DNA are frequent in cancer and the accompanying mitochondrial dysfunction and altered intermediary metabolism might contribute to, or signal, tumour pathogenesis. The metabolism of human prostate peripheral zone glandular epithelial cells is unique. Compared with many other soft tissues, these glandular epithelial cells accumulate high concentrations of zinc, which inhibits the activity of m-aconitase, an enzyme involved in citrate metabolism through Krebs cycle. This causes Krebs cycle truncation and accumulation of high concentrations of citrate to be secreted in prostatic fluid. The accumulation of zinc also inhibits terminal oxidation. Therefore, these cells exhibit inefficient energy production. In contrast, malignant transformation of the prostate is associated with an early metabolic switch, leading to decreased zinc accumulation and increased citrate oxidation. The efficient energy production in these transformed cells implies increased electron transport chain activity, increased oxygen consumption, and perhaps, excess reactive oxygen species (ROS) production compared with normal prostate epithelial cells. Because ROS have deleterious effects on DNA, proteins, and lipids, the altered intermediary metabolism may be linked with ROS production and accelerated mitochondrial DNA mutations in prostate cancer.
Collapse
Affiliation(s)
- G D Dakubo
- Genesis Genomics Inc, 1294 Balmoral Street, Thunder Bay, Ontario, Canada, P7B 5Z5.
| | | | | | | | | |
Collapse
|
32
|
Abstract
We present here a patient with muscle fatigue and poor growth since the age of 6 y. The diagnosis of a mitochondrial disease was based on the presence of ragged red fibers in the muscle biopsy and on a combined defect of mitochondrial DNA-encoded respiratory enzymes. Epilepsia partialis continua with stroke-like episodes appeared 2 mo before death at the age of 18 and prompted a search for mitochondrial DNA mutations associated with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Minisequencing of the patient's DNA samples revealed a heteroplasmic T3271C mutation with a 78-94% mutation load in her fibroblasts or autopsy-derived tissue samples. This is the ninth reported non-Japanese patient with T3271C mutation. Our patient shows that despite very high proportion of mutant mtDNA, the T3271C mutation can give rise to mild symptoms in childhood and to a rapid terminal phase that simulates encephalitis.
Collapse
Affiliation(s)
- Laura Stenqvist
- Department of Neurology, Biomedicum Helsinki, Helsinki University, FIN-00290 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
33
|
Marriage BJ, Clandinin MT, Macdonald IM, Glerum DM. Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol Genet Metab 2004; 81:263-72. [PMID: 15059613 DOI: 10.1016/j.ymgme.2003.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 11/29/2022]
Abstract
Marked progress has been made over the past 15 years in defining the specific biochemical defects and underlying molecular mechanisms of oxidative phosphorylation disorders, but limited information is currently available on the development and evaluation of effective treatment approaches. Metabolic therapies that have been reported to produce a positive effect include coenzyme Q(10) (ubiquinone), other antioxidants such as ascorbic acid and vitamin E, riboflavin, thiamine, niacin, vitamin K (phylloquinone and menadione), and carnitine. The goal of these therapies is to increase mitochondrial ATP production, and to slow or arrest the progression of clinical symptoms. In the present study, we demonstrate for the first time that there is a significant increase in ATP synthetic capacity in lymphocytes from patients undergoing cofactor treatment. We also examined in vitro cofactor supplementation in control lymphocytes in order to determine the effect of the individual components of the cofactor treatment on ATP synthesis. A dose-dependent increase in ATP synthesis with CoQ(10) incubation was demonstrated, which supports the proposal that CoQ(10) may have a beneficial effect in the treatment of oxidative phosphorylation (OXPHOS) disorders.
Collapse
Affiliation(s)
- Barbara J Marriage
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
34
|
Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003; 370:751-62. [PMID: 12467494 PMCID: PMC1223225 DOI: 10.1042/bj20021594] [Citation(s) in RCA: 590] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 12/04/2002] [Accepted: 12/06/2002] [Indexed: 01/20/2023]
Abstract
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.
Collapse
Affiliation(s)
- Rodrigue Rossignol
- INSERM-EMI 9929, Physiologie mitochondriale, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux-cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Marriage BJ, Clandinin MT, MacDonald IM, Glerum DM. The use of lymphocytes to screen for oxidative phosphorylation disorders. Anal Biochem 2003; 313:137-44. [PMID: 12576069 DOI: 10.1016/s0003-2697(02)00539-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biochemical analysis of oxidative phosphorylation (OXPHOS) disorders is traditionally carried out on muscle biopsies, cultured fibroblasts, and transformed lymphocytes. Here we present a new screening technique using lymphocytes to identify OXPHOS dysfunction and initially avoid an invasive diagnostic procedure. Lymphocytes represent an easily obtainable source of tissue that presents advantages over the use of fibroblasts or lymphoblast cell lines. The time delay in culturing skin fibroblasts and the interactions between cell transformation and mitochondrial activity are avoided in this methodology. The method requires a small amount of blood (<5 mL); can be completed in a few hours, and allows for repeated measurements. Our assay has been adapted from published methods utilizing cultured fibroblasts and transformed lymphocytes, and our data suggest that measurement of ATP synthesis in lymphocytes is an effective screening tool for diagnosing OXPHOS disorders. This method may also provide an objective tool for monitoring response to treatment and evaluating progression of disease.
Collapse
Affiliation(s)
- Barbara J Marriage
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada T6G 0H7.
| | | | | | | |
Collapse
|
36
|
Edland SD, Tobe VO, Rieder MJ, Bowen JD, McCormick W, Teri L, Schellenberg GD, Larson EB, Nickerson DA, Kukull WA. Mitochondrial genetic variants and Alzheimer disease: a case-control study of the T4336C and G5460A variants. Alzheimer Dis Assoc Disord 2002; 16:1-7. [PMID: 11882743 DOI: 10.1097/00002093-200201000-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The T4336C mitochondrial genetic variant was associated with Alzheimer disease in several previous studies. Recent investigations, however, failed to confirm this association. We tested this association in newly diagnosed Alzheimer disease cases and controls of similar age and gender recruited from an established HMO serving Seattle, Washington and surrounding areas. In this, the largest case-control study reported to date, the T4336C variant was not associated with Alzheimer disease overall (present in 6 of 236 cases and 7 of 328 controls; odds ratio = 1.20, 95% CI 0.33 to 4.22). There was evidence of effect modification by Apolipoprotein E (APOE) status--among subjects with an APOE epsilon 4 allele, the T4336C variant was associated with disease (present in 5 of 139 cases and none of 82 controls; odds ratio = infinity, 95% CI 0.73 to infinity). APOE may be an important modifier of the T4336C effect, potentially explaining variable findings across previous studies. Alternatively, the positive findings reported to date may simply reflect the problem of "type I" error inherent in genetic association studies. Substantially larger samples than are currently available would be required to resolve this question. G5460(A/T) variants were also investigated and found not to be associated with Alzheimer disease.
Collapse
Affiliation(s)
- Steven D Edland
- Department of Epidemiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The mitochondrial encephalomyopathies are a genetically heterogeneous group of disorders associated with impaired oxidative phosphorylation. Patients may exhibit a wide range of clinical symptoms and experience significant morbidity and mortality. There is currently no curative treatment. At present the majority of genetically defined mitochondrial encephalomyopathies are caused by mutations in mitochondrial DNA. The underlying molecular mechanisms and the complex relationship between genotype and phenotype in these mitochondrial DNA diseases remain only partially understood. We describe the key features of mitochondrial DNA genetics and outline some of the common disease phenotypes associated with mtDNA defects. A classification of pathogenic mitochondrial DNA point mutations which may have therapeutic implications is outlined.
Collapse
Affiliation(s)
- T Pulkes
- Muscle and Neurogenetics Sections, University Department of Clinical Neurology, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK
| | | |
Collapse
|
38
|
Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 2001; 50:133-41. [PMID: 11506394 DOI: 10.1002/ana.1050] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aerobic training has been shown to increase work and oxidative capacity in patients with mitochondrial myopathies, but the mechanisms underlying improvement are not known. We evaluated physiological (cycle exercise, 31P-MRS), biochemical (enzyme levels), and genetic (proportion of mutant/wild-type genomes) responses to 14 weeks of bicycle exercise training in 10 patients with heteroplasmic mitochondrial DNA (mtDNA) mutations. Training increased peak work and oxidative capacities (20-30%), systemic arteriovenous O2 difference (20%), and 31P-MRS indices of metabolic recovery (35%), consistent with enhanced muscle oxidative phosphorylation. Mitochondrial volume in vastus lateralis biopsies increased significantly (50%) and increases in deficient respiratory chain enzymes were found in patients with Complex I (36%) and Complex IV (25%) defects, whereas decreases occurred in 2 patients with Complex III defects (approximately 20%). These results suggest that the cellular basis of improved oxygen utilization is related to training-induced mitochondrial proliferation likely resulting in increased levels of functional, wild-type mtDNA. However, genetic analysis indicated the proportion of wild-type mtDNA was unchanged (3/9) or fell (6/9), suggesting a trend toward preferential proliferation of mutant genomes. The long-term implications of training-induced increases in mutant relative to wild-type mtDNA, despite positive physiological and biochemical findings, need to be assessed before aerobic training can be proposed as a general treatment option.
Collapse
Affiliation(s)
- T Taivassalo
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Presbyterian Hospital, Dallas, TX 75231, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ko CH, Lam CW, Tse PW, Kong CK, Chan AK, Wong LJ. De novo mutation in the mitochondrial tRNALeu(UUR) gene (A3243G) with rapid segregation resulting in MELAS in the offspring. J Paediatr Child Health 2001; 37:87-90. [PMID: 11168879 DOI: 10.1046/j.1440-1754.2001.00611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 14-year-old Chinese boy with a normal perinatal and early developmental history presented at 5 years of age with migraine, intractable epilepsy, ataxia, supraventricular tachycardia, paralytic ileus and progressive mental deterioration. Computerized tomography revealed multiple cerebral infarcts in the parieto-occipital region without basal ganglial calcification. Magnetic resonance imaging showed increased signal intensity in T2 weighted images in the same regions. A cerebral digital subtraction angiogram was normal. Venous lactate, pyruvate, lactate to pyruvate ratio and cerebrospinal fluid lactate were elevated. Muscle biopsy did not reveal any ragged red fibres; dinucleotide-tetrazolium reductase activity was normal. Mitochondrial DNA analysis detected an adenine to guanine mutation at nucleotide position 3243 of tRNALeu(UUR). All four tissues analysed demonstrated heteroplasmy: leucocyte 56%, hair follicle 70%; buccal cell 64%; muscle 54%. The mother and brother of the proband, both asymptomatic, were also found to have a heteroplasmic A3243G mutation in the leucocytes, hair follicle and buccal cells. Other members of the maternal lineage, including the maternal grandmother, did not have the mutation. This report describes a patient with mitochondrial encephalopathy, lactic acidosis, stroke-like episodes, who presented with multisystem involvement. The absence of ragged red fibres in muscle biopsy did not preclude the diagnosis. Mutational analysis of mitochondrial DNA conveniently confirmed the diagnosis of the disorder. A de novo mutation is demonstrated in this family.
Collapse
Affiliation(s)
- C H Ko
- Department of Paediatrics, Caritas Medical Centre, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
40
|
Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson IP, Morgan-Hughes JA, Hanna MG. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199912)46:6%3c916::aid-ana16%3e3.0.co;2-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 2000; 25:1315-41. [PMID: 11059804 DOI: 10.1023/a:1007604414773] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide and other reactive nitrogen species appear to play several crucial roles in the brain. These include physiological processes such as neuromodulation, neurotransmission and synaptic plasticity, and pathological processes such as neurodegeneration and neuroinflammation. There is increasing evidence that glial cells in the central nervous system can produce nitric oxide in vivo in response to stimulation by cytokines and that this production is mediated by the inducible isoform of nitric oxide synthase. Although the etiology and pathogenesis of the major neurodegenerative and neuroinflammatory disorders (Alzheimer's disease, amyothrophic lateral sclerosis, Parkinson's disease, Huntington's disease and multiple sclerosis) are unknown, numerous recent studies strongly suggest that reactive nitrogen species play an important role. Furthermore, these species are probably involved in brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. Recent evidence also indicates the importance of cytoprotective proteins such as heat shock proteins (HSPs) which appear to be critically involved in protection from nitrosative and oxidative stress. In this review, evidence for the involvement of nitrosative stress in the pathogenesis of the major neurodegenerative/ neuroinflammatory diseases and the mechanisms operating in brain as a response to imbalance in the oxidant/antioxidant status are discussed.
Collapse
Affiliation(s)
- V Calabrese
- Department of Chemistry, Faculty of Medicine, University of Catania, Italy
| | | | | |
Collapse
|
42
|
Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson IP, Morgan-Hughes JA, Hanna MG. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 1999; 46:916-9. [PMID: 10589546 DOI: 10.1002/1531-8249(199912)46:6<916::aid-ana16>3.0.co;2-r] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report on 4 male patients with clinical, radiological, and muscle biopsy findings typical of the mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) phenotype. Skeletal muscle mitochondrial DNA (mtDNA) analysis showed that all patients harbored a heteroplasmic G13513A mutation in the ND5 subunit gene. One of these cases (Patient 1) presented with symptoms characteristic of Leber's hereditary optic neuropathy (LHON) 2 years before the first stroke-like episode. Quantitative analysis in several postmortem tissue sections showed that the relative proportions of mutant mtDNA were generally lower than those reported with other pathogenic mtDNA mutations. Single-fiber polymerase chain reaction studies demonstrated significantly higher amounts of mutant mtDNA in ragged red fibers (RRFs) compared with non-RRFs. This study indicates that the G13513A transition is likely to be pathogenic, that it can cause an LHON/MELAS overlap syndrome, and that it may be a more frequent cause of MELAS than previously recognized.
Collapse
Affiliation(s)
- T Pulkes
- Department of Clinical Neurology, Institute of Neurology, Queen Square, London, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Prasad AN, Prasad C, Stafstrom CE. Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 1999; 40:1329-52. [PMID: 10528928 DOI: 10.1111/j.1528-1157.1999.tb02004.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in understanding the genetics of epilepsy is proceeding at a dizzying pace. Due in large part to rapid progress in molecular genetics, gene defects underlying many of the inherited epilepsies have been mapped, and several more are likely to be added each year. In this review, we summarize the available information on the genetic basis of human epilepsies and epilepsy syndromes, and correlate these advances with rapidly expanding information about the mechanisms of epilepsy gained from both spontaneous and transgenic animal models. We also provide practical suggestions for clinicians confronted with families in which multiple members are afflicted with epilepsy.
Collapse
Affiliation(s)
- A N Prasad
- Department of Pediatrics, The Charles A. Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
44
|
Latkany P, Ciulla TA, Cacchillo PF, Malkoff MD. Mitochondrial maculopathy: geographic atrophy of the macula in the MELAS associated A to G 3243 mitochondrial DNA point mutation. Am J Ophthalmol 1999; 128:112-4. [PMID: 10482110 DOI: 10.1016/s0002-9394(99)00057-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To report ocular findings in the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) in a family with the A to G 3243 mitochondrial (mt) DNA point mutation. METHODS Case reports. Ocular findings are described from four family members with the MELAS associated A to G 3243 mt DNA point mutation. RESULTS Findings included ophthalmoplegia, neurosensory deafness, reduction of photopic and scotopic electroretinogram b-wave amplitudes, and myopathy, as well as macular retinal pigment epithelial atrophy. No family members had nyctalopia, attenuation of retinal blood vessels, or retinal bone spicule pigmentation. CONCLUSION The finding of slowly progressive macular retinal pigment epithelial atrophy expands the reported phenotypic diversity of patients with A3243G mt DNA mutations.
Collapse
Affiliation(s)
- P Latkany
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
45
|
Walecki J, Sokól M, Pieniazek P, Maciejewski B, Tarnawski R, Krupska T, Wydmański J, Brzeziński J, Grieb P. Role of short TE 1H-MR spectroscopy in monitoring of post-operation irradiated patients. Eur J Radiol 1999; 30:154-61. [PMID: 10401596 DOI: 10.1016/s0720-048x(99)00053-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-surgical radiation therapy is a routine procedure in the treatment of primary malignant brain tumors. Along with modest therapeutic effects conventional fractionated radiotherapy, in spite of any modifications, produces damage to non-malignant brain tissues lying within the treatment volume, the extent of which depends on radiation dose. Serial 1H-MRS allows non-invasive investigation of tissue metabolic profiles. In the present study the ratios of resonance signals assigned to the major 1H-MRS-visible metabolites (N-acetylaspartate, choline, creatine, inositol, lactate and lipid methylene group) were evaluated before, during and after post-surgical fractionated radiotherapy in brain regions close to and more distant from the tumor bed, receiving different radiation exposures (60 and < 40 Gy, respectively). The study group consisted of ten patients (aged 28-51). A MRI/MRS system (Elscint 2T Prestige) operating at the field strength of 2 T and the proton resonance frequency of 81.3 MHz has been used and the 1H-MR spectra were acquired using single voxel double-spin-echo PRESS sequence with a short TE. The spectra were post-processed with automatic fitting in the frequency domain. It was found that although the metabolite profiles depend on the dose obtained, but other stress factors (like surgery) seem to contribute to the overall picture of the metabolic status of the brain as well. In studies of early irradiation injuries, an increase of choline related ratios may serve rather as cell proliferation indictors than as cell injury ones, whereas the mI/Cr ratio appears as one of the first indicators of local irradiation injury. In order to establish the prognostic marker for early radiation damage, however, it seems necessary to analyze all visible metabolites as well. None of the metabolites separately may serve as such an indicator due to the complexity of tissue metabolism. Interestingly, MRI reveals no changes during the therapy process, whereas the metabolite ratios are being affected in the course of time, thus supporting the presumption that the 1H-MRS is a valuable method of radiation therapy monitoring.
Collapse
Affiliation(s)
- J Walecki
- Institute of Oncology, Gliwice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Morgan-Hughes JA, Hanna MG. Mitochondrial encephalomyopathies: the enigma of genotype versus phenotype. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:125-45. [PMID: 10076022 DOI: 10.1016/s0005-2728(98)00162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade a large body of evidence has accumulated implicating defects of human mitochondrial DNA in the pathogenesis of a group of disorders known collectively as the mitochondrial encephalomyopathies. Although impaired oxidative phosphorylation is likely to represent the final common pathway leading to cellular dysfunction in these diseases, fundamental issues still remain elusive. Perhaps the most challenging of these is to understand the mechanisms which underlie the complex relationship between genotype and phenotype. Here we examine this relationship and discuss some of the factors which are likely to be involved.
Collapse
Affiliation(s)
- J A Morgan-Hughes
- University Department of Clinical Neurology, Institute of Neurology, Queen Square, London WC1H 3BG, UK
| | | |
Collapse
|
47
|
Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Kärppä M, Majamaa-Voltti KA, Rusanen H, Sorri M, Peuhkurinen KJ, Hassinen IE. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 1998; 63:447-54. [PMID: 9683591 PMCID: PMC1377301 DOI: 10.1086/301959] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial diseases are characterized by considerable clinical variability and are most often caused by mutations in mtDNA. Because of the phenotypic variability, epidemiological studies of the frequency of these disorders have been difficult to perform. We studied the prevalence of the mtDNA mutation at nucleotide 3243 in an adult population of 245,201 individuals. This mutation is the most common molecular etiology of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes), one of the clinical entities among the mitochondrial disorders. Patients with diabetes mellitus, sensorineural hearing impairment, epilepsy, occipital brain infarct, ophthalmoplegia, cerebral white-matter disease, basal-ganglia calcifications, hypertrophic cardiomyopathy, or ataxia were ascertained on the basis of defined clinical criteria and family-history data. A total of 615 patients were identified, and 480 samples were examined for the mutation. The mutation was found in 11 pedigrees, and its frequency was calculated to be >=16. 3/100,000 in the adult population (95% confidence interval 11.3-21. 4/100,000). The mutation had arisen in the population at least nine times, as determined by mtDNA haplotyping. Clinical evaluation of the probands revealed a syndrome that most frequently consisted of hearing impairment, cognitive decline, and short stature. The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases.
Collapse
Affiliation(s)
- K Majamaa
- Department of Neurology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wilichowski E, Korenke GC, Ruitenbeek W, De Meirleir L, Hagendorff A, Janssen AJ, Lissens W, Hanefeld F. Pyruvate dehydrogenase complex deficiency and altered respiratory chain function in a patient with Kearns-Sayre/MELAS overlap syndrome and A3243G mtDNA mutation. J Neurol Sci 1998; 157:206-13. [PMID: 9619647 DOI: 10.1016/s0022-510x(98)00068-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Combined alteration of the pyruvate dehydrogenase complex and respiratory chain function is described in a 21 year-old male patient with overlapping MELAS (mitochondrial encephalomyopathy, lactic acidosis, and 'stroke-like' episodes) and Kearns-Sayre syndrome. Progressive external ophthalmoplegia, pigmentary retinopathy and right bundle branch block were present when he experienced the first 'stroke-like' episode at 18 years old. The A>G tRNALeu(UUR) point mutation at nucleotide 3243 of the mitochondrial DNA was predominant in muscle tissue (79%) and present, but at lower levels in fibroblasts (49%) and blood cells (37%). Biochemical analysis revealed diminished activities of pyruvate dehydrogenase (23%) and respiratory chain complexes I and IV (57%, respectively) in muscle, but normal activities in the fibroblasts. Immunochemical studies of the muscular pyruvate dehydrogenase components showed normal content of E1alpha, E1beta and E2 protein. Molecular screening of the E1alpha gene did not indicate a nuclear mutation. These observations suggest that mitochondrial DNA defects may be associated with altered nuclear encoded enzymes which are actively imported into mitochondria and constitute components of the mitochondrial matrix. Biochemical workup of mitochondrial disorders should not be restricted to the respiratory chain even if mitochondrial DNA mutations are present.
Collapse
Affiliation(s)
- E Wilichowski
- Department of Pediatrics and Neuropediatrics, University of Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Neurogenetic Diseases. Brain Pathol 1997. [DOI: 10.1111/j.1750-3639.1997.tb01021.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Tengan CH, Gabbai AA, Shanske S, Zeviani M, Moraes CT. Oxidative phosphorylation dysfunction does not increase the rate of accumulation of age-related mtDNA deletions in skeletal muscle. Mutat Res 1997; 379:1-11. [PMID: 9330617 DOI: 10.1016/s0027-5107(97)00076-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several reports described an age-related accumulation of a particular mitochondrial DNA (mtDNA) deletion ('common deletion') in post-mitotic tissues. These findings led to the hypothesis that free radicals generated inside the mitochondria could damage mtDNA during a normal life span. The impaired electron transfer function resulting from mtDNA damage would increase the production of free radicals creating a vicious cycle. If this vicious cycle is an important player in the somatic accumulation of mtDNA deletions, patients with impaired oxidative phosphorylation (regardless of the primary defect) should have an accelerated accumulation of mtDNA deletions. We tested this hypothesis by performing three analyses: (a) comparing the amounts of the mtDNA 'common deletion' in normal controls and patients with genetically characterized mitochondrial disorders associated with pathogenic mtDNA point mutations or deletions other than the common deletion; (b) analyzing the co-segregation of the age-related mtDNA common deletion with a pathogenic mtDNA point mutation; and (c) by the detection of multiple mtDNA deletions by long PCR in controls and patients with mitochondrial disorders. We observed a positive correlation between age and common deletion levels in controls (r = 0.80) and patients (r = 0.69). The slopes of the curves were similar, suggesting that the rate of accumulation of the age-related common deletion was the same in both groups. We could not find a co-segregation of the pathogenic point mutated mtDNA molecules with the common deletion nor increased number of age-related deletions in patients. Our data do not support the hypothesis that a vicious cycle (damage to mtDNA would affect the respiratory function, leading to the generation of more free radicals, which in turn would provoke additional mtDNA damage) is an important factor in the accumulation of age-related mtDNA deletions.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aging/genetics
- Child
- Child, Preschool
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Epilepsies, Myoclonic/genetics
- Epilepsies, Myoclonic/pathology
- Epilepsies, Myoclonic/physiopathology
- Female
- Gene Deletion
- Humans
- MELAS Syndrome/genetics
- MELAS Syndrome/pathology
- MELAS Syndrome/physiopathology
- Male
- Middle Aged
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Oxidative Phosphorylation
- Point Mutation
- Polymerase Chain Reaction
Collapse
Affiliation(s)
- C H Tengan
- Department of Neurology, University of Miami, School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|