1
|
Boukouvala E, Krey G. The Peroxisome Proliferator-Activated Receptors of Ray-Finned Fish: Unique Structures, Elusive Functions. Biomolecules 2024; 14:634. [PMID: 38927038 PMCID: PMC11201486 DOI: 10.3390/biom14060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.
Collapse
Affiliation(s)
- Evridiki Boukouvala
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), 57001 Thermi, Thessaloniki, Greece;
| | - Grigorios Krey
- Fisheries Research Institute, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), 64007 Nea Peramos, Kavala, Greece
| |
Collapse
|
2
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
3
|
Miao LH, Remø SC, Espe M, Philip AJP, Hamre K, Fjelldal PG, Skjærven K, Holen E, Vikeså V, Sissener NH. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification. FISH & SHELLFISH IMMUNOLOGY 2022; 123:194-206. [PMID: 35227881 DOI: 10.1016/j.fsi.2022.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This study sought to investigate whether a "natural diet" (mimicking the fatty acid composition of freshwater aquatic insects eaten by salmon parr) during the freshwater (FW) life stage of pre-smolt Atlantic salmon (Salmo salar L.) affected red blood cells and gill fatty acid composition as well as eicosanoid metabolism in gill during smolting at different temperatures. Before being transferred to seawater (SW), salmon parr were fed with a modified (MO) diet containing vegetable oils (rapeseed, palm, and linseed oils) supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA) to completely replace the fish oil (FO). Fatty acid composition in red blood cells and gill tissues was determined before SW transfer and six weeks after. Additionally, the expression of genes associated with eicosanoid metabolism and Na+/K+-ATPase (NKA) activity in salmon gill was examined at different temperatures before SW transfer and 24 h after. The results showed the changes in fatty acid composition, including sum monounsaturated fatty acids (MUFAs), docosahexaenoic acid (DHA), ARA, EPA, and sum n-6 polyunsaturated fatty acids (n-6 PUFA) in both red blood cells and gill tissues at the FW stage were consistent with the fatty acid profiles of the supplied MO and FO fish diets; however sum EPA and DHA composition exhibited opposite trends to those of the FO diet. The proportion of ARA, EPA, and n-6 PUFA increased, whereas sum MUFAs and DHA decreased in the red blood cells and gill tissues of MO-fed fish compared to those fed with the FO diet at FW stage. Additionally, 5-lipoxygenase-activating protein (Flap) expression was downregulated in MO-fed fish prior to SW transfer. During the process of SW transfer at different temperatures, the MO diet remarkably suppressed NKAα1a expression in MO-fed fish both at 12 and 16 °C. The MO diet also upregulated phospholipase A2 group IV (PLA2g4) expression in gills at 8, 12, and 16 °C, but suppressed phospholipase A2 group VI (PLA2g6) expression in gills at 12 °C compared to FO-fed fish at 12 °C and MO-fed fish at 8 °C. The MO diet also upregulated Cyclooxygenase 2 (Cox-2) expression at 8 °C compared to FO-fed fish and increased Arachidonate 5-lipoxygenase (5-Lox) expression in MO-fed fish at 16 °C compared to both FO-fed fish at 16 °C and MO-fed fish at 8 °C. Our study also determined that both SW transfer water temperatures and diets during the FW period jointly influenced the mRNA expression of PLA2g4, PLA2g6, and Lpl, whereas 5-Lox was more sensitive to dietary changes. In conclusion, the MO diet affected the fatty acid composition in gill and in red blood cells. When transferred to SW, dietary ARA supplementation could promote the bioavailability for eicosanoid synthesis in gill mainly via PLA2g4 activation, and potentially inhibit the stress and inflammatory response caused by different water temperatures through dietary EPA supplementation.
Collapse
Affiliation(s)
- L H Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 East Shanshui Road, Wuxi Jiangsu, 214081, PR China; Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| | - S C Remø
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - M Espe
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - A J P Philip
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Hamre
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - P G Fjelldal
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Skjærven
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - E Holen
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - V Vikeså
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway; Skretting ARC (Aquaculture Research Centre), Sjøhagen 3, 4016, Stavanger, Norway
| | - N H Sissener
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
4
|
Zhang LY, Shi HH, Wang CC, Wang YM, Wei ZH, Xue CH, Mao XZ, Zhang TT. Targeted Lipidomics Reveal the Effects of Different Phospholipids on the Phospholipid Profiles of Hepatic Mitochondria and Endoplasmic Reticulum in High-Fat/High-Fructose-Diet-Induced Nonalcoholic Fatty Liver Disease Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3529-3540. [PMID: 35212227 DOI: 10.1021/acs.jafc.1c07538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipid alternation in mitochondria and endoplasmic reticulum (ER) might be indicative of their abnormal morphology and function, which contribute to development of nonalcoholic fatty liver disease (NAFLD). However, the influence of dietary phospholipids (PLs) on the PL composition of the organellar membrane is largely unknown. High-fat/high-fructose (HFHF)-diet-induced NAFLD mice were administrated with different PLs (2%, w/w) with specific fatty acids and headgroups, including eicosapentaenoic acid (EPA)-phosphatidylcholine (PC)/phosphatidylethanolamine (PE)/phosphatidylserine (PS), docosahexaenoic acid (DHA)-PC/PE/PS, egg-PC/PE/PS, and soy-PC/PE/PS. After 8 weeks of feeding, PLs dramatically decreased hepatic lipid accumulation, in which EPA/DHA-PS had the best efficiency. Furthermore, lipidomic analysis revealed that the HFHF diet narrowed the difference in PL composition between mitochondria and ER, significantly reduced the PC/PE ratio, and changed the unsaturation of cardiolipin in mitochondria. Dietary PLs reversed these alterations. Heatmap analysis indicated that dietary PL groups containing the same fatty acids clustered together. Moreover, dietary PLs significantly increased the ratio of PC/PE in both hepatic mitochondria and ER, especially EPA-PE. This study showed that fatty acid composition of PLs might represent greater impact on the PL composition of the organellar membrane than headgroups.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
5
|
Increasing dietary n-6 fatty acids while keeping n-3 fatty acids stable decreases EPA in polar lipids of farmed Atlantic salmon ( Salmo salar). Br J Nutr 2021; 125:10-25. [PMID: 32660682 DOI: 10.1017/s0007114520002494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is an increased use of vegetable oils containing n-6 fatty acids (FA) in aquafeeds, and several trials indicate that there might be an increased requirement of EPA and DHA for Atlantic salmon when they are fed higher dietary n-6 FA. With a limited supply of EPA and DHA for production of aquafeeds, it is important to know how to efficiently use these FA to maintain growth and health of the fish. In the present trial, three diets containing equal amounts of n-3 FA (about 7·7 % of total FA) and different n-6:n-3 FA ratios (about 1, 2 and 6), as well as one diet with n-6:n-3 FA ratio at about 1 but twice as much n-3 FA, were fed to Atlantic salmon. Despite constant dietary n-3, increasing dietary n-6 led to significantly reduced n-3 in tissue polar lipids. Interestingly, EPA was significantly reduced while DHA was not. Maintaining a stable n-3 content in the polar lipids when increasing dietary n-6 FA was only obtained by simultaneously increasing the dietary n-3 content and with this maintaining the same n-6:n-3 FA ratio. Polar lipid n-6 FA in tissues thus primarily reflected the dietary n-6:n-3 FA ratio and not the absolute dietary n-6 FA content. Neutral lipids, on the other hand, reflected the dietary absolute levels of both n-3 and n-6 FA. This study indicates that a better use of dietary EPA is achieved by keeping the dietary n-6:n-3 FA ratio low.
Collapse
|
6
|
Nguyen TM, Mandiki SNM, Salomon JMAJ, Baruti JB, Thi NTT, Nguyen TH, Nhu TQ, Kestemont P. Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E.coli LPS as modified by different dietary plant oils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103828. [PMID: 32798494 DOI: 10.1016/j.dci.2020.103828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Dietary lipids could modify fatty acid (FA) composition in fish tissues. Long chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (ARA), eicosapentaneoic acid (EPA) and docosahexaenoic acid (DHA) are able to modulate the immune status in fish through an inflammatory process but their availability may be limited when fish are exclusively fed plant oils. This study was conducted to evaluate how to maximise the utilisation of dietary plant oil for an efficient inflammatory response in common carp head kidney leukocytes (HKLs) exposed to a gram-negative bacterial endotoxin, Escherichia coli lipopolysaccharides (LPS). HKLs were isolated from fish fed cod liver oil (CLO), linseed oil (LO), sesame oil (SO) a blend of SO and LO (SLO, v:v 1:1), and these plant oil diets supplemented with DHA (SO + DHA, SOD) or ARA (LO + ARA, LOA) for 6 weeks. Cells were then exposed to LPS at a dose of 10 μg/mL for 4 and 24 h. Peroxidase activity, total Ig, and NO levels were measured in the culture medium, while cells were used for expression analyses of candidate genes in pattern recognition (tlr-4), eicosanoid metabolism (pge2, 5-lox), pro-inflammatory (il-1, il-6, il-8, tnf-α, nf-kb, inos, cxc), anti-inflammatory (il-10, nf-kbi, tgf-β1) responses, and cytoprotective (gpx-1, prdx-3) processes. Results showed that LPS induced significantly inflammatory responses, evidenced by a high level of almost all the targeted humoral immune parameters and/or gene expression. Expression of inflammatory cytokines and other inflammatory mediators was upregulated after 4 h-LPS exposure and reverted to basal levels after 24 h. HKLs from fish fed SLO, LOA, or SOD diet exhibited a more efficient regulation of acute inflammatory processes than those fed CLO diet. The results indicate that the immune competence of fish fed plant oil mixture was comparable to the one of fish fed fish oil diet. Moreover, the supplementation of ARA or DHA induced similar immunomodulation in common carp.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Jean M A J Salomon
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Joel Bondekwe Baruti
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Nang Thu Tran Thi
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; Pharmacology Department, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Truong Quynh Nhu
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| |
Collapse
|
7
|
Reda RM, El Asely A, Salah AS, Mahmoud MA. Replacement of dietary fish oil with plant oils improves the immunological responses and the antioxidant status in Oreochromis niloticus exposed to suboptimal temperature. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2181-2196. [PMID: 32862264 DOI: 10.1007/s10695-020-00867-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Here, we investigated the effects of total dietary fish oil (FO) substitution with plant oil (PO) on hematological indices, immune status, antioxidant activity, IL1β and TNF-α gene expression, and hypoxia stress resistance in Oreochromis niloticus at suboptimal temperatures. Fish (n = 360) were randomly divided into 12 circular fiberglass tanks (500 L; 3 replicates for each dietary group, 30 fish/replicate, 90 fish/group). The control group was fed a basal diet with FO as the lipid source. The CO, SFO, and LSO groups were fed a basal diet with complete replacement of FO with corn, sunflower, and linseed oils, respectively. After 4 weeks, no effects on hematological indices were observed in fish fed the experimental diets. The LSO and CO groups showed a significant increase in γ globulin levels. The highest levels of non-specific immune parameters, antioxidant activity, and IL-1β and TNF-α gene expressions were recorded in the LSO group. The LSO group also exhibited good resistance to hypoxia stress. Therefore, the total dietary substitution of FO with PO (especially LSO and CO) is recommended as a valuable strategy to ameliorate the immunosuppressive effects of suboptimal temperatures and enhance the resistance of O. niloticus to hypoxia stress.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, 44511, Egypt.
| | - Amel El Asely
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine,, Benha University, Benha, Egypt
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine,, New Valley University, New Valley, Egypt
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine,, New Valley University, New Valley, Egypt
| |
Collapse
|
8
|
Out-of-season spawning affects the nutritional status and gene expression in both Atlantic salmon female broodstock and their offspring. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110717. [DOI: 10.1016/j.cbpa.2020.110717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
9
|
Bascur M, Muñoz-Ramírez C, Román-González A, Sheen K, Barnes DKA, Sands CJ, Brante A, Urzúa Á. The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) in the West Antarctic Peninsula. PLoS One 2020; 15:e0233513. [PMID: 32437403 PMCID: PMC7241748 DOI: 10.1371/journal.pone.0233513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Due to climate change, numerous ice bodies have been lost in the West Antarctic Peninsula (WAP). As a consequence, deglaciation is expected to impact the marine environment and its biota at physiological and ecosystem levels. Nuculana inaequisculpta is a marine bivalve widely distributed around Antarctica that plays an important role for ecosystem functioning. Considering that N. inaequisculpta inhabits coastal areas under effect of glacial melt and retreat, impacts on its nutritional condition are expected due to alterations on its physiology and food availability. To test this hypothesis, biochemical composition (lipids, proteins, and fatty acids) and energy content were measured in individuals of N. inaequisculpta collected in a fjord at different distances to the retreating glacier in the WAP. Oceanographic parameters of the top and bottom-water layers (temperature, salinity, dissolved oxygen, and chlorophyll-a) were measured to investigate how the environment changes along the fjord. Results showed that surface oceanographic parameters displayed a lower temperature and dissolved oxygen, but a higher salinity and chlorophyll-a content at nearest compared to farthest sites to the glacier. In contrast, a lower temperature and chlorophyll-a, and a higher salinity and dissolved oxygen was measured in the bottom-water layer toward the glacier. N. inaequisculpta had a higher amount of lipids (17.42 ± 3.24 vs. 12.16 ± 3.46%), protein (24.34 ± 6.12 vs. 21.05 ± 2.46%) and energy content (50.57 ± 6.97 J vs. 39.14 ± 5.80 J) in the farthest compared to the nearest site to the glacier. No differences were found in total fatty acids among all sites. It seems likely that lower individual fitness related to proximity to the glacier would not be related to nutritional quality of sediment food, but rather to food quantity.
Collapse
Affiliation(s)
- Miguel Bascur
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Carlos Muñoz-Ramírez
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Alejandro Román-González
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, England, United Kingdom
| | - Katy Sheen
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, England, United Kingdom
| | - David K. A. Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge, England, United Kingdom
| | - Chester J. Sands
- British Antarctic Survey, Natural Environment Research Council, Cambridge, England, United Kingdom
| | - Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
- * E-mail:
| |
Collapse
|
10
|
Nguyen TM, Mandiki SNM, Gense C, Tran TNT, Nguyen TH, Kestemont P. A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103488. [PMID: 31476324 DOI: 10.1016/j.dci.2019.103488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 05/02/2023]
Abstract
This study aimed to evaluate the influence of dietary pure linseed oil or sesame oil or a mixture on innate immune competence and eicosanoid metabolism in common carp (Cyprinus carpio). Carp of 100.4 ± 4.7 g were fed to satiation twice daily for 6 weeks with four diets prepared from three lipid sources (CLO; LO; SO; SLO). On day 42, plasma was sampled for immune parameter analyses, and kidney and liver tissues were dissected for gene expression analysis. On day 45, HKL and PBMCs from remaining fish were isolated and exposed to E. coli LPS at a dose of 10 μg/mL for 24 h. Results show that the SLO diet enhanced feed utilisation (P = 0.01), while no negative effects on growth or survival were observed in plant oil-fed fish compared to those fed a fish-oil based diet. Plant oil diets did not alter lysozyme and peroxidase activities or gene expression levels. Moreover, the diets did not affect the expression levels of some genes involved in eicosanoid metabolism processes (pla, pge2, lox5). Lys expression in HKL in vitro following exposure to LPS was up-regulated in LO-fed fish, while expression levels of pge2 were higher in SLO fish than in other groups (P < 0.05). The highest value for peroxidase activity in HKL exposed to LPS was found in the SLO-fed group (P < 0.05). In conclusion, our results indicate that dietary plant oils did not induce any negative effects on fish growth, survival, and immune competence status. Moreover, a dietary combination of SO and LO improved the feed utilisation efficiency and seemed more effective in inducing a better immunomodulatory response to LPS through a more active eicosanoid metabolism process.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium
| | - Curie Gense
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium
| | - Thi Nang Thu Tran
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium; Pharmacology department, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium.
| |
Collapse
|
11
|
Nguyen TM, Mandiki SNM, Tran TNT, Larondelle Y, Mellery J, Mignolet E, Cornet V, Flamion E, Kestemont P. Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. FISH & SHELLFISH IMMUNOLOGY 2019; 92:288-299. [PMID: 31195114 DOI: 10.1016/j.fsi.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Omnivorous fish species such as the common carp (Cyprinus carpio) are able to biosynthesise long chain polyunsaturated fatty acids (LC-PUFAs) from plant oil PUFA precursors, but the influence of the amount and quality of the LC-PUFAs biosynthesised from these oils on the immunocompetence status of the fish has received little attention. This study aims to evaluate whether the conversion of PUFA by carp induces a sufficient biosynthesis of LC-PUFA to maintain a good immunocompetence status in this species. Six iso-nitrogenous (crude protein = 39.1%) and iso-lipidic (crude lipids = 10%) diets containing three different lipid sources (cod liver oil (CLO) as fish oil; linseed oil (LO) and sunflower oil (SFO) as plant oils) were formulated with or without β-glucan supplementation at 0.25 g/kg diet. Juvenile carp (16.3 ± 0.6 g initial body weight) were fed a daily ration of 4% body weight for 9 weeks and then infected at day 64 with the bacteria Aeromonas hydrophyla. No significant differences in survival rate, final body weight, specific growth rate and feed conversion rate were observed between diets. After bacterial infection, mortality rate did not differ between fish fed CLO and plant oil-based diets, indicating that the latter oils did not affect the overall immunocompetence status of common carp. Plant oil-based diets did not alter lysozyme activity in healthy and infected fish. No negative effects of plant oils on complement activity (ACH50) were observed in healthy fish, even if both plant oil-based diets induced a decrease in stimulated fish two days after infection. Furthermore, the levels of various immune genes (nk, lys, il-8, pla, pge, alox) were not affected by plant oil-based diets. The expression of pla and pge genes were higher in SFO-fed fish than in CLO ones, indicating that this plant oil rich in linoleic acid (LA) better stimulated the eicosanoid metabolism process than fish oil. In response to β-glucan supplementation, some innate immune functions seemed differentially affected by plant oil-based diets. LO and SFO induced substantial LC-PUFA production, even if fish fed CLO displayed the highest EPA and DHA levels in tissues. SFO rich in LA induced the highest ARA levels in fish muscle while LO rich in α-linolenic acid (ALA) sustained higher EPA production than SFO. A significantly higher fads-6a expression level was observed in SFO fish than in LO ones, but this was not observed for elovl5 expression. In conclusion, the results show that common carp fed plant oil-based diets are able to produce substantial amounts of LC-PUFA for sustaining growth rate, immune status and disease resistance similar to fish fed a fish oil-based diet. The differences in the production capacity of LC-PUFAs by the two plant oil-based diets were associated to a differential activation of some immune pathways, explaining how the use of these oils did not affect the overall immunocompetence of fish challenged with bacterial infection. Moreover, plant oil-based diets did not induce substantial negative effects on the immunomodulatory action of β-glucans, confirming that these oils are suitable for sustaining a good immunocompetence status in common carp.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thi Nang Thu Tran
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Julie Mellery
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
12
|
Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European Seabass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 2019; 233:46-59. [PMID: 31004746 DOI: 10.1016/j.cbpb.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
The replacement of fish oil (FO) with other lipid sources (e.g. animal fats, AF) in aquafeeds improves the sustainability of aquaculture, even though alternatives have different fatty acid (FA) profiles. FO contains a higher proportion of long-chain polyunsaturated fatty acids (LC-PUFAs) than AF. LC-PUFAs have key physiological roles, despite limited biosynthetic capacity in marine fish. Therefore, replacing FO in feeds may limit physiological responses when fish face environmental challenges such as an acute change in salinity. To test this hypothesis, juvenile seabass (62.6 ± 1.6 g, 50 fish/ 500 L tank) were fed three different isoproteic and isolipidic diets in which the replacement levels of FO by AF varied (0%, 75% or 100% AF). Fish were fed the experimental diets at 2% their body weight (BW) daily for 85 days (20.0 ± 1.0 °C; 35‰). Thereafter, half of the fish were transferred to tanks at 15‰ or 35‰ salinity and sampled at 24 h and 72 h. Plasma osmolality, Na+, glucose, cholesterol and lactate levels were altered by the changing salinity, although cortisol remained unchanged. Standard metabolic rate was similar irrespective of the experimental factors. However, maximal metabolic rate decreased by 4-10% in fish subjected to a 15‰ salinity. Intestinal chymotrypsin activity was modified by the diet, with this digestive enzyme along with trypsin showing a two-fold increase in activity at 15‰ salinity. Hepatic lipid peroxidation (LPO) showed a ~1.4-fold increase at 15‰ salinity. Additionally, LPO and glutathione reductase activity were ~1.6-fold higher in fish fed the FO diet. Citrate synthase activity in gills was increased in fish fed the 100% AF diet. Therefore, both dietary replacement of FO by AF and environmental salinity have an impact on the metabolic response of seabass, although interactions between both factors (diet and salinity) are negligible in the metabolic parameters investigated. The results are relevant to the aquaculture industry considering the potential usage of AF to replace FO in aquafeeds and because of the variations in salinity experienced by fish cultured in transitional waters.
Collapse
|
13
|
Vagner M, Pante E, Viricel A, Lacoue-Labarthe T, Zambonino-Infante JL, Quazuguel P, Dubillot E, Huet V, Le Delliou H, Lefrançois C, Imbert-Auvray N. Ocean warming combined with lower omega-3 nutritional availability impairs the cardio-respiratory function of a marine fish. ACTA ACUST UNITED AC 2019; 222:jeb.187179. [PMID: 30630962 DOI: 10.1242/jeb.187179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Highly unsaturated fatty acids of the omega-3 series (HUFA) are major constituents of cell membranes, yet are poorly synthesised de novo by consumers. Their production, mainly supported by aquatic microalgae, has been decreasing with global change. The consequences of such reductions may be profound for ectotherm consumers, as temperature tightly regulates the HUFA content in cell membranes, maintaining their functionality. Integrating individual, tissue and molecular approaches, we examined the consequences of the combined effects of temperature and HUFA depletion on the key cardio-respiratory functions of the golden grey mullet, an ectotherm grazer of high ecological importance. For 4 months, fish were exposed to two contrasting HUFA diets [4.8% eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) on dry matter (DM) versus 0.2% EPA+DHA on DM] at 12 and 20°C. Ventricular force development coupled with gene expression profiles measured on cardiac muscle suggest that combining HUFA depletion with warmer temperatures leads to: (1) a proliferation of sarcolemmal and sarcoplasmic reticulum Ca2+ channels and (2) a higher force-generating ability by increasing extracellular Ca2+ influx via sarcolemmal channels when the heart has to sustain excessive effort due to stress and/or exercise. At the individual scale, these responses were associated with a greater aerobic scope, maximum metabolic rate and net cost of locomotion, suggesting the higher energy cost of this strategy. This impaired cardiac performance could have wider consequences for other physiological performance such as growth, reproduction or migration, all of which greatly depend on heart function.
Collapse
Affiliation(s)
- Marie Vagner
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Eric Pante
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Amelia Viricel
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Thomas Lacoue-Labarthe
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Patrick Quazuguel
- Ifremer, UMR 6539 LEMAR, Center Ifremer ZI Pointe du diable, 29280 Plouzané, France
| | - Emmanuel Dubillot
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Valerie Huet
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Herve Le Delliou
- Ifremer, UMR 6539 LEMAR, Center Ifremer ZI Pointe du diable, 29280 Plouzané, France
| | - Christel Lefrançois
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Nathalie Imbert-Auvray
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
14
|
Katan T, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:290-304. [PMID: 31003197 DOI: 10.1016/j.cbd.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
Little is known about how variation in omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios affects lipid metabolism and eicosanoid synthesis in salmon, and the potential underlying molecular mechanisms. The current study examined the impact of five plant-based diets (12-week exposure) with varying ω6:ω3 (0.3-2.7) on the growth, tissue lipid composition (muscle and liver), and hepatic transcript expression of lipid metabolism and eicosanoid synthesis-related genes in Atlantic salmon. Growth performance and organ indices were not affected by dietary ω6:ω3. The liver and muscle FA composition was highly reflective of the diet (ω6:ω3 of 0.2-0.8 and 0.3-1.9, respectively) and suggested elongation and desaturation of the ω3 and ω6 precursors 18:3ω3 and 18:2ω6. Furthermore, proportions of ω6 and ω3 PUFA in both tissues showed significant positive correlations with dietary inclusion (% of diet) of soy and linseed oils, respectively. Compound-specific stable isotope analysis (CSIA) further demonstrated that liver long-chain polyunsaturated fatty acid (LC-PUFA) synthesis (specifically 20:5ω3 and 20:4ω6) was largely driven by dietary 18:3ω3 and 18:2ω6, even when 20:5ω3 and 22:6ω3 were supplied at levels above minimum requirements. In addition, significant positive and negative correlations were identified between the transcript expression of LC-PUFA synthesis-related genes and liver ω6 and ω3 LC-PUFA, respectively, further supporting FA biosynthesis. Liver ω3 LC-PUFA also correlated negatively with the eicosanoid synthesis-related transcripts pgds and cox1. This is the first study to use CSIA, hepatic transcriptome, and tissue lipid composition analyses concurrently to demonstrate the impact of plant-based diets with varying ω6:ω3 on farmed Atlantic salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| |
Collapse
|
15
|
Liu Y, Jiao JG, Gao S, Ning LJ, Mchele Limbu S, Qiao F, Chen LQ, Zhang ML, Du ZY. Dietary oils modify lipid molecules and nutritional value of fillet in Nile tilapia: A deep lipidomics analysis. Food Chem 2019; 277:515-523. [DOI: 10.1016/j.foodchem.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
|
16
|
Colombo SM, Parrish CC, Wijekoon MPA. Optimizing long chain-polyunsaturated fatty acid synthesis in salmonids by balancing dietary inputs. PLoS One 2018; 13:e0205347. [PMID: 30304012 PMCID: PMC6179257 DOI: 10.1371/journal.pone.0205347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The increasing use of terrestrial plant lipids to replace of fish oil in commercial aquafeeds requires understanding synthesis and storage of long chain-polyunsaturated fatty acids (LC-PUFA) in farmed fish. Manipulation of dietary fatty acids may maximize tissue storage of LC-PUFA, through increased production and selective utilization. A data synthesis study was conducted to estimate optimal levels of fatty acids that may maximize the production and storage of LC-PUFA in the edible portion of salmonids. Data were compiled from four studies with Atlantic salmon, rainbow trout, and steelhead trout (total n = 180) which were fed diets containing different terrestrial-based oils to replace fish oil. LC-PUFA (%) were linearly correlated between diet and muscle tissue (p < 0.001; r2 > 44%), indicating proportional storage after consumption. The slope, or retention rate, was highest for docosahexaenoic acid (DHA) at 1.23, indicating that an additional 23% of DHA was stored in the muscle. Dietary saturated fatty acids were positively related to DHA stored in the muscle (p < 0.001; r2 = 22%), which may involve membrane structural requirements, as well as selective catabolism. DHA was found to be optimally stored with a dietary n-3: n-6 ratio of 1.03: 1. These new results provide a baseline of optimal dietary ratios that can be tested experimentally to determine the efficacy of balancing dietary fatty acids for maximum LC-PUFA storage.
Collapse
Affiliation(s)
- Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
- * E-mail:
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | | |
Collapse
|
17
|
Fatty acid profiles in muscle of large yellow croakers ( Larimichthys crocea ) can be used to distinguish between the samples of Dai-qu stock and Min-yuedong stock. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Conde-Sieira M, Gesto M, Batista S, Linares F, Villanueva JLR, Míguez JM, Soengas JL, Valente LMP. Influence of vegetable diets on physiological and immune responses to thermal stress in Senegalese sole (Solea senegalensis). PLoS One 2018; 13:e0194353. [PMID: 29566022 PMCID: PMC5864020 DOI: 10.1371/journal.pone.0194353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
The substitution of fish resources as ingredients for aquafeeds by those based on vegetable sources is needed to ensure aquaculture sustainability in the future. It is known that Senegalese sole (Solea senegalensis) accepts high dietary content of plant ingredients without altering growth or flesh quality parameters. However, scarce information is available regarding the long-term impact of vegetable diets (combining the inclusion of both vegetable protein and oils) on the stress response and immunity of this fish species. This study aims to evaluate the concomitant effect of the extended use of vegetable protein-based diets with fish oil (FO) replacement (0, 50 or 100%) by vegetable oils (VO), on the response to acute (10 min) or prolonged (4 days) stress, induced by thermal shock. Plasma levels of cortisol, glucose and lactate as well as hepatic levels of glucose, glycogen and lactate were evaluated as primary and secondary responses to stress, 6 and 18 months after feeding the experimental diets (6 and 18 MAF). The brain monoaminergic activity in telencephalon and hypothalamus, and non-specific immune parameters were also evaluated. As expected, thermal shock induced an increase in values of plasma parameters related to stress, which was more evident in acute than in prolonged stress. Stress also affected lactate levels in the liver and the values of the alternative complement pathway-ACH50 in the plasma. Dietary substitution of FO induced an effect per se on some parameters such as decreased hepatic glucose and glycogen levels and peroxidase activity in plasma as well enhanced serotonergic activity in brain of non-stressed fish. The results obtained in some parameters indicate that there is an interaction between the use of vegetable diets with the physiological response to thermal stress, as is the case of the hepatic lactate, serotonergic neurotransmission in brain, and the activity of ACH50 in plasma. These results suggest that the inclusion of VO in plant protein based diets point to a slightly inhibited stress response, more evident for an acute than a prolonged stress.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
- * E-mail:
| | - Manuel Gesto
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sónia Batista
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Linares
- CIMA, Centro de Investigacións Mariñas, Vilanova de Arousa, Pontevedra, Spain
| | - José L. R. Villanueva
- IGAFA, Instituto Galego de formación en Acuicultura, Illa de Arousa, Pontevedra, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Luísa M. P. Valente
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Arnemo M, Kavaliauskis A, Andresen AMS, Bou M, Berge GM, Ruyter B, Gjøen T. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1065-1080. [PMID: 28280951 DOI: 10.1007/s10695-017-0353-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.
Collapse
Affiliation(s)
- Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | - Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | | | - Marta Bou
- Nofima, P. O. Box 210, 1431, Ås, Norway
| | | | | | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
20
|
Low levels of very-long-chain n-3 PUFA in Atlantic salmon ( Salmo salar) diet reduce fish robustness under challenging conditions in sea cages. J Nutr Sci 2017; 6:e32. [PMID: 29152236 PMCID: PMC5672314 DOI: 10.1017/jns.2017.28] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to determine the minimum requirements of the essential n-3 fatty acids EPA and DHA in Atlantic salmon (Salmo salar) that can secure their health under challenging conditions in sea cages. Individually tagged Atlantic salmon were fed 2, 10 and 17 g/kg of EPA + DHA from 400 g until slaughter size (about 3·5 kg). The experimental fish reared in sea cages were subjected to the challenging conditions typically experienced under commercial production. Salmon receiving the lowest EPA + DHA levels showed lower growth rates in the earlier life stages, but no significant difference in final weights at slaughter. The fatty acid composition of various tissues and organs had remarkably changed. The decreased EPA + DHA in the different tissue membrane phospholipids were typically replaced by pro-inflammatory n-6 fatty acids, most markedly in the skin. The EPA + DHA levels were maintained at a higher level in the liver and erythrocytes than in the muscle, intestine and skin. After delousing at high water temperatures, the mortality rates were 63, 52 and 16 % in the salmon fed 2, 10 and 17 g/kg EPA + DHA. Low EPA + DHA levels also increased the liver, intestinal and visceral fat amount, reduced intervertebral space and caused mid-intestinal hyper-vacuolisation. Thus, 10 g/kg EPA + DHA in the Atlantic salmon diet, a level previously regarded as sufficient, was found to be too low to maintain fish health under demanding environmental conditions in sea cages.
Collapse
Key Words
- ARA, arachidonic acid
- Aquafeed
- DHA
- EFA, essential fatty acid
- EPA
- Essential fatty acids
- Fish nutritional requirements
- NL, neutral lipid
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PL, phospholipid
- PS, phosphatidylserine
- VLC, very-long-chain
- VO, vegetable oil
Collapse
|
21
|
Torniainen J, Kainz MJ, Jones RI, Keinänen M, Vuorinen PJ, Kiljunen M. Influence of the marine feeding area on the muscle and egg fatty-acid composition of Atlantic salmon Salmo salar spawners estimated from the scale stable isotopes. JOURNAL OF FISH BIOLOGY 2017; 90:1717-1733. [PMID: 28101948 DOI: 10.1111/jfb.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Fatty acids in muscle tissue and eggs of female Atlantic salmon Salmo salar spawners were analysed to evaluate the dietary quality of their final feeding areas in the Baltic Sea. The final likely feeding area was identified by comparing stable carbon and nitrogen isotope composition of the outermost growth region (final annulus) of scales of returned S. salar with that of reference S. salar caught from different feeding areas. Some overlap of stable-isotope reference values among the three areas, in addition to prespawning fasting, decreased the ability of muscle tri-acylglycerols to discriminate the final likely feeding area and the area's dietary quality. Among three long-chained polyunsaturated fatty acids, docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6), the proportions of ARA in total lipids of spawning S. salar muscle and eggs showed a significant negative correlation with increasing probability of S. salar having returned from the Baltic Sea main basin (i.e. the Baltic Sea proper). The results suggest that ARA in muscle and eggs is the best dietary indicator for dietary characteristics of final marine feeding area dietary characteristics among S. salar in the Baltic Sea.
Collapse
Affiliation(s)
- J Torniainen
- University of Jyvaskyla, Department of Biological and Environmental Science, P. O. Box 35, FI-40014, Jyvaskyla, Finland
- University of Jyvaskyla, Natural History Museum, P. O. Box 35, FI-40014, Jyvaskyla, Finland
| | - M J Kainz
- WasserCluster - Biologische Station Lunz, A-3293, Lunz am See, Austria
| | - R I Jones
- University of Jyvaskyla, Department of Biological and Environmental Science, P. O. Box 35, FI-40014, Jyvaskyla, Finland
| | - M Keinänen
- Natural Resources Institute Finland (Luke), P. O. Box 2, FI-00791, Helsinki, Finland
| | - P J Vuorinen
- Natural Resources Institute Finland (Luke), P. O. Box 2, FI-00791, Helsinki, Finland
| | - M Kiljunen
- University of Jyvaskyla, Department of Biological and Environmental Science, P. O. Box 35, FI-40014, Jyvaskyla, Finland
| |
Collapse
|
22
|
Kjær MA, Ruyter B, Berge GM, Sun Y, Østbye TKK. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. PLoS One 2016; 11:e0168230. [PMID: 27973547 PMCID: PMC5156434 DOI: 10.1371/journal.pone.0168230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.
Collapse
|
23
|
Holen E, He J, Araujo P, Seliussen J, Espe M. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2016; 54:22-29. [PMID: 27060506 DOI: 10.1016/j.fsi.2016.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway.
| | - Juyun He
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | | | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| |
Collapse
|
24
|
Long-term feeding of Atlantic salmon in seawater with low dietary long-chain n-3 fatty acids affects tissue status of the brain, retina and erythrocytes. Br J Nutr 2016; 115:1919-29. [DOI: 10.1017/s0007114516000945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractIn two long-term feeding trials in seawater, Atlantic salmon were fed EPA+DHA in graded levels, from 1·3 to 7·4 % of fatty acids (FA, 4–24 g/kg feed) combined with approximately 10 % 18 : 3n-3, at 6 and 12°C. Dietary EPA appeared to be sufficient in all diet groups, as no differences were seen in polar lipid tissue concentrations of either the brain, retina or erythrocytes. For DHA, a reduction in tissue levels was observed with low dietary supply. Effects on brain DHA at ≤1·4 % EPA+DHA of dietary FA and retina DHA at ≤2·7 % EPA+DHA of dietary FA were only observed in fish reared at 6°C, suggesting an effect of temperature, whereas tissue levels of n-6 FA increased as a response to increased dietary n-6 FA in both the brain and the retina at both temperatures. DHA levels in erythrocytes were affected by ≤2·7 % EPA+DHA at both temperatures. Therefore, DHA appears to be the limiting n-3 FA in diets where EPA and DHA are present in the ratios found in fishmeal and fish oil. To assess the physiological significance of FA differences in erythrocytes, the osmotic resistance was tested, but it did not vary between dietary groups. In conclusion, ≤2·7 % EPA+DHA of FA (≤9 g/kg feed) is not sufficient to maintain tissue DHA status in important tissues of Atlantic salmon throughout the seawater production cycle despite the presence of dietary 18 : 3n-3, and effects may be more severe at low water temperatures.
Collapse
|
25
|
Cui L, Decker EA. Phospholipids in foods: prooxidants or antioxidants? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:18-31. [PMID: 26108454 DOI: 10.1002/jsfa.7320] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 05/25/2023]
Abstract
Lipid oxidation is one of the major causes of quality deterioration in natural and processed foods and thus a large economic concern in the food industry. Phospholipids, especially lecithins, are already widely used as natural emulsifiers and have been gaining increasing interest as natural antioxidants to control lipid oxidation. This review summarizes the fatty acid composition and content of phospholipids naturally occurring in several foods. The role of phospholipids as substrates for lipid oxidation is discussed, with a focus on meats and dairy products. Prooxidant and antioxidant mechanisms of phospholipids are also discussed to get a better understanding of the possible opportunities for using phospholipids as food antioxidants.
Collapse
Affiliation(s)
- Leqi Cui
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Bioactive Natural Products Research Group, Department of Biochemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Geay F, Mellery J, Tinti E, Douxfils J, Larondelle Y, Mandiki SNM, Kestemont P. Effects of dietary linseed oil on innate immune system of Eurasian perch and disease resistance after exposure to Aeromonas salmonicida achromogen. FISH & SHELLFISH IMMUNOLOGY 2015; 47:782-796. [PMID: 26497094 DOI: 10.1016/j.fsi.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil (LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA (6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas salmonicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neutrophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte populations, plasma lysozyme and alternative complement pathway activities were observed between dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida. These findings demonstrated that the use of linseed oil does not deplete the innate immune system of Eurasian perch juveniles.
Collapse
Affiliation(s)
- F Geay
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - J Douxfils
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - S N M Mandiki
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - P Kestemont
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium.
| |
Collapse
|
27
|
Torrecillas S, Montero D, Caballero MJ, Pittman KA, Custódio M, Campo A, Sweetman J, Izquierdo M. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production? Front Immunol 2015; 6:397. [PMID: 26300883 PMCID: PMC4525062 DOI: 10.3389/fimmu.2015.00397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The main objective of this study was to assess the effects of 4 g kg(-1) dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced dietary n-3/n-6 ratio for an appropriate GALT-immune response against MOS in European sea bass juveniles.
Collapse
Affiliation(s)
- Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria José Caballero
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Marco Custódio
- Department of Biology, University of Bergen, Bergen, Norway
| | - Aurora Campo
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
28
|
Ruiz-Lopez N, Stubhaug I, Ipharraguerre I, Rimbach G, Menoyo D. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar) Fed Vegetable and Fish Oil Blends. Mar Drugs 2015; 13:4255-69. [PMID: 26184234 PMCID: PMC4515615 DOI: 10.3390/md13074255] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022] Open
Abstract
The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.
Collapse
Affiliation(s)
- Noemi Ruiz-Lopez
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, 28040 Madrid, Spain.
| | - Ingunn Stubhaug
- Skretting Aquaculture Research Centre (ARC), P.O. Box 48, N-4001 Stavanger, Norway.
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6-8, D-24118 Kiel, Germany.
| | - David Menoyo
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
29
|
Wilke T, Faulkner S, Murphy L, Kealy L, Kraan S, Brouns F. Seaweed enrichment of feed supplied to farm-raised Atlantic salmon (Salmo salar) is associated with higher total fatty acid and LCn-3 PUFA concentrations in fish flesh. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toine Wilke
- Faculty of Health, Medicine and Life Sciences, Health Food Innovation, School of Nutrition, Toxicology and Metabolism (NUTRIM); Maastricht University; Maastricht The Netherlands
| | - Simon Faulkner
- Ocean Harvest Technology; Unit 5, N17 Business Park Milltown, Co. Galway Ireland
| | - Laura Murphy
- Ocean Harvest Technology; Unit 5, N17 Business Park Milltown, Co. Galway Ireland
| | - Laura Kealy
- Ocean Harvest Technology; Unit 5, N17 Business Park Milltown, Co. Galway Ireland
| | - Stefan Kraan
- Ocean Harvest Technology; Unit 5, N17 Business Park Milltown, Co. Galway Ireland
| | - Fred Brouns
- Faculty of Health, Medicine and Life Sciences, Health Food Innovation, School of Nutrition, Toxicology and Metabolism (NUTRIM); Maastricht University; Maastricht The Netherlands
| |
Collapse
|
30
|
Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. Br J Nutr 2014; 112:1274-85. [DOI: 10.1017/s0007114514002062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During the last few decades, plant protein ingredients such as soya proteins have replaced fishmeal in the diets of aquacultured species. This may affect the requirement and metabolism of methionine as soya contains less methionine compared with fishmeal. To assess whether methionine limitation affects decarboxylated S-adenosylmethionine availability and polyamine status, in the present study, juvenile Atlantic salmon were fed a methionine-deficient plant protein-based diet or the same diet supplemented with dl-methionine for 8 weeks. The test diets were compared with a fishmeal-based control diet to assess their effects on the growth performance of fish. Methionine limitation reduced growth and protein accretion, but when fish were fed the dl-methionine-supplemented diet their growth and protein accretion equalled those of fish fed the fishmeal-based control diet. Methionine limitation reduced free methionine concentrations in the plasma and muscle, while those in the liver were not affected. S-adenosylmethionine (SAM) concentrations were higher in the liver of fish fed the methionine-deficient diet, while S-adenosylhomocysteine concentrations were not affected. Putrescine concentrations were higher and spermine concentrations were lower in the liver of fish fed the methionine-deficient diet, while the gene expression of SAM decarboxylase (SAMdc) and the rate-limiting enzyme of polyamine synthesis ornithine decarboxylase (ODC) was not affected. Polyamine turnover, as assessed by spermine/spermidine acetyltransferase (SSAT) abundance, activity and gene expression, was not affected by treatment. However, the gene expression of the cytokine TNF-α increased in fish fed the methionine-deficient diet, indicative of stressful conditions in the liver. Even though taurine concentrations in the liver were not affected by treatment, methionine and taurine concentrations in muscle decreased due to methionine deficiency. Concomitantly, liver phospholipid and cholesterol concentrations were reduced, while NEFA concentrations were elevated. In conclusion, methionine deficiency did not increase polyamine turnover through depletion of hepatic SAM, as assessed by SSAT activity and abundance.
Collapse
|
31
|
Olufsen M, Cangialosi MV, Arukwe A. Modulation of membrane lipid composition and homeostasis in salmon hepatocytes exposed to hypoxia and perfluorooctane sulfonamide, given singly or in combination. PLoS One 2014; 9:e102485. [PMID: 25047721 PMCID: PMC4105415 DOI: 10.1371/journal.pone.0102485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 µM singly or in combination with either cobalt chloride (CoCl2: 0 and 150 µM) or deferroxamine (DFO: 0 and 100 µM) for 24 and 48 h. CoCl2 and DFO were used to induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) levels. Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR. Hypoxic condition was confirmed with time-related increases of HIF-1α mRNA levels in CoCl2 and DFO exposed cells. In general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure. Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (Δ5- and Δ6-desaturases: FAD5 and FAD6, respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA) showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that most of the observed responses were stronger in combined stressor exposure conditions, compared to individual stressor exposure. In general, our data show that hypoxia may, singly or in combination with PFOSA produce deleterious health, physiological and developmental consequences through the alteration of membrane lipid profile in organisms.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental Science “Prof. G. Stagno d’Alcontres”, University of Messina, Messina, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
32
|
Martinez-Rubio L, Evensen Ø, Krasnov A, Jørgensen SM, Wadsworth S, Ruohonen K, Vecino JLG, Tocher DR. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV). BMC Genomics 2014; 15:462. [PMID: 24919788 PMCID: PMC4079957 DOI: 10.1186/1471-2164-15-462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/27/2014] [Indexed: 02/04/2023] Open
Abstract
Background Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV. Results Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions. Conclusions Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-462) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Martinez-Rubio
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Betancor MB, Howarth FJE, Glencross BD, Tocher DR. Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of post-smolt Atlantic salmon (Salmo salar). Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:74-89. [PMID: 24807616 DOI: 10.1016/j.cbpb.2014.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Abstract
To investigate interactions of dietary LC-PUFA, a dose-response study with a range of docosahexaenoic acid (DHA; 22:6n-3) levels (1 g kg(-1), 5 g kg(-1), 10 g kg(-1), 15 g kg(-1) and 20 g kg(-1)) was performed with post-smolts (111 ± 2.6g; mean ± S.D.) over a nine-week feeding period. Additional diets included 10 g kg(-1) DHA in combination with 10 g kg(-1) of either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), and a diet containing 5 g kg(-1) each of DHA and EPA. The liver, brain, head kidney and gill were collected at the conclusion of the trial, and lipid and fatty acid compositions were determined as well as expression of genes of LC-PUFA biosynthesis. Total lipid content and class composition were largely unaffected by changes in dietary LC-PUFA. However, phospholipid (PL) fatty acid compositions generally reflected that of the diet, although the response varied between tissues. The liver most strongly reflected diet, followed by the head kidney. In both tissues increasing dietary DHA led to significantly increased DHA in PL and inclusion of EPA or ARA led to higher levels of these fatty acids. The brain showed the most conserved composition and gene expression profile, with increased dietary LC-PUFA resulting in only minor changes in PL fatty acids. Dietary LC-PUFA significantly affected the expression of Δ6 and Δ5 desaturases, Elovl 2, 4 and 5, and SREBPs although this varied between tissues with greatest effects observed in the liver followed by the head kidney, similar to PL fatty acid compositions.
Collapse
Affiliation(s)
- Mónica B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA Scotland, United Kingdom.
| | - Fraser J E Howarth
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA Scotland, United Kingdom
| | - Brett D Glencross
- CSIRO Food Futures Flagship, GPO Box 2583, Brisbane QLD 4001, Australia
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA Scotland, United Kingdom
| |
Collapse
|
34
|
Holen E, Espe M, Andersen SM, Taylor R, Aksnes A, Mengesha Z, Araujo P. A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. FISH & SHELLFISH IMMUNOLOGY 2014; 37:286-298. [PMID: 24565893 DOI: 10.1016/j.fsi.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
This study assess which pathways and molecular processes are affected by exposing salmon head kidney cells or liver cells to arginine supplementation above the established requirements for growth support. In addition to the conventional mono cultures of liver and head kidney cells, co cultures of the two cell types were included in the experimental set up. Responses due to elevated levels of arginine were measured during inflammatory (lipopolysaccharide/LPS) and non -inflammatory conditions. LPS up regulated the genes involved in polyamine turnover; ODC (ornithine decarboxylase), SSAT (spermidine/spermine-N1-acetyltransferase) and SAMdc (S-adenosyl methionine decarboxylase) in head kidney cells when co cultured with liver cells. Regardless of treatment, liver cells in co culture up regulated ODC and down regulated SSAT when compared to liver mono cultures. This suggests that polyamines have anti-inflammatory properties and that both salmon liver cells and immune cells seem to be involved in this process. The transcription of C/EBP β/CCAAT, increased during inflammation in all cultures except for liver mono cultures. The observed up regulation of this gene may be linked to glucose transport due to the highly variable glucose concentrations found in the cell media. PPARα transcription was also increased in liver cells when receiving signals from head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8), cyclooxygenase 2 (COX2) and CD83 were elevated during LPS treatment in all the head kidney cell cultures while arginine supplementation reduced IL-1β and IL-8 transcription in liver cells co cultured with head kidney cells. This is probably connected to p38MAPK signaling as arginine seem to affect p38MAPK signaling contrary to the LPS induced p38MAPK signaling, suggesting anti-inflammatory effects of arginine/arginine metabolites. This paper shows that co culturing these two cell types reveals the connection between metabolism and inflammation, suggesting different pathways and candidate biomarkers to be further explored.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway.
| | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | - Synne M Andersen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | | | | | - Zebasil Mengesha
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway; Department of Industrial Chemistry, Bahir Dar University, P.B. 79, Bahir Dar, Ethiopia
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
35
|
Xie D, Chen F, Lin S, Wang S, You C, Monroig Ó, Tocher DR, Li Y. Cloning, functional characterization and nutritional regulation of Δ6 fatty acyl desaturase in the herbivorous euryhaline teleost Scatophagus argus. PLoS One 2014; 9:e90200. [PMID: 24594899 PMCID: PMC3940778 DOI: 10.1371/journal.pone.0090200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating Δ6 desaturation activity. Quantitative real-time PCR showed that highest Δ6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of Δ6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts.
Collapse
Affiliation(s)
- Dizhi Xie
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Fang Chen
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Siyuan Lin
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Shuqi Wang
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Cuihong You
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Óscar Monroig
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Yuanyou Li
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
36
|
Randall KM, Reaney MJT, Drew MD. Effect of dietary coriander oil and vegetable oil sources on fillet fatty acid composition of rainbow trout. CANADIAN JOURNAL OF ANIMAL SCIENCE 2013. [DOI: 10.4141/cjas2013-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Randall, K. M., Reaney, M. J. T. and Drew, M. D. 2013. Effect of dietary coriander oil and vegetable oil sources on fillet fatty acid composition of rainbow trout. Can. J. Anim. Sci. 93: 345–352. A 16-wk feeding trial was conducted to examine the effect of adding coriander oil to vegetable oil (VO) diets on the bioconversion of linoleic acid (LA; 18:2n-6) to arachidonic acid (ARA; 20:4n-6) and alpha-linolenic acid (ALA; 18:3n-3) to eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in rainbow trout. The experimental treatments were a 4×2 factorial arrangement of diets using four dietary oils (fish, flax, canola and camelina oils) and two levels of coriander oil (0 and 5 g kg−1 inclusion levels). Twenty-four tanks of triploid female rainbow trout (130 g initial weight; n=3) were used in the experiment. The experiment lasted 112 d during which fish were fed to satiation twice per day. The fatty acid composition of fillets from coriander-fed fish had increased concentrations of 20:5n-3 and 22:6n-3 (P<0.05). Furthermore, a trend to increased (20:5n-3+22:6n-3)/20:4n-6 ratios was seen when coriander oil was added to the diet (P=0.067). These results suggest that the addition of coriander oil to VO diets can significantly increase the bioconversion of 18:3n-3 to 20:5n-3 and 22:6n-3 in rainbow trout.
Collapse
Affiliation(s)
- K. M. Randall
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - M. J. T. Reaney
- Department of Plant Science, University of Saskatchewan, 51 campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - M. D. Drew
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| |
Collapse
|
37
|
Martinez-Rubio L, Morais S, Evensen Ø, Wadsworth S, Vecino JG, Ruohonen K, Bell JG, Tocher DR. Effect of functional feeds on fatty acid and eicosanoid metabolism in liver and head kidney of Atlantic salmon (Salmo salar L.) with experimentally induced heart and skeletal muscle inflammation. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1533-1545. [PMID: 23567858 DOI: 10.1016/j.fsi.2013.03.363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/04/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Heart and Skeletal Muscle Inflammation (HSMI) is an emerging viral disease caused by a novel Atlantic salmon reovirus (ASRV) affecting farmed fish. Primary symptoms associated with HSMI include myocardial and skeletal muscle necrosis indicating a severe inflammatory process. Recently, we applied the concept of clinical nutrition to moderate the long-term inflammatory process associated with HSMI in salmon subjected to experimental ASRV challenge. The use of functional feeds with lower lipid (hence energy) content reduced the inflammatory response to ASRV infection and the severity of associated heart lesions. The aim of the present study was to elucidate possible mechanisms underpinning the observed effects of the functional feeds, focussing on eicosanoid and fatty acid metabolism in liver and head kidney. Here we show that liver was also a site for histopathological lesions in HSMI showing steatosis reflecting impaired lipid metabolism. This study is also the first to evaluate the expression of a suite of key genes involved in pathways relating diet and membrane phospholipid fatty acid compositions, and the inflammatory response after ASRV infection. The expression of hepatic Δ6 and Δ5 desaturases was higher in fish fed the functional feeds, potentially increasing their capacity for endogenous production and availability of anti-inflammatory EPA. Effects on mobilization of lipids and changes in the LC-PUFA composition of membrane phospholipids, along with significant changes in the expression of the genes related to eicosanoid pathways, showed the important role of the head kidney in inflammatory diseases caused by viral infections. The results from the present study suggest that clinical nutrition through functional feeding could be an effective complementary therapy for emerging salmon viral diseases associated with long-term inflammation.
Collapse
Affiliation(s)
- Laura Martinez-Rubio
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Functional feeds reduce heart inflammation and pathology in Atlantic Salmon (Salmo salar L.) following experimental challenge with Atlantic salmon reovirus (ASRV). PLoS One 2012; 7:e40266. [PMID: 23226193 PMCID: PMC3511526 DOI: 10.1371/journal.pone.0040266] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/22/2012] [Indexed: 12/17/2022] Open
Abstract
Heart and Skeletal Muscle Inflammation (HSMI), recently associated with a novel Atlantic salmon reovirus (ASRV), is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2) were compared to a standard commercial reference feed (ST) in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA). The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present study demonstrated that dietary modulation through clinical nutrition had major influences on the development and severity of the response to ASRV infection in salmon. Thus, HSMI was reduced in fish fed the functional feeds, particularly FF1. The modulation of gene expression between fish fed the different feeds provided further insight into the molecular mechanisms and progression of the inflammatory and immune responses to ASRV infection in salmon.
Collapse
|
39
|
Ren HT, Yu JH, Xu P, Tang YK. Influence of dietary fatty acids on muscle fatty acid composition and expression levels of Δ6 desaturase-like and Elovl5-like elongase in common carp (Cyprinus carpio var. Jian). Comp Biochem Physiol B Biochem Mol Biol 2012; 163:184-92. [DOI: 10.1016/j.cbpb.2012.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 12/01/2022]
|
40
|
Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br J Nutr 2012; 109:1508-17. [PMID: 22883314 DOI: 10.1017/s0007114512003364] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dietary intake of linoleic acid (LA) has increased dramatically during the twentieth century and is associated with a greater prevalence of obesity. Vegetable oils are recognised as suitable alternatives to fish oil (FO) in feed for Atlantic salmon (Salmo salar L.) but introduce high amounts of LA in the salmon fillet. The effect on fish consumers of such a replacement remains to be elucidated. Here, we investigate the effect of excessive dietary LA from soyabean oil (SO) on endocannabinoid levels in Atlantic salmon and mice, and study the metabolic effects in mice when SO replaces FO in feed for Atlantic salmon. Atlantic salmon were fed FO and SO for 6 months, and the salmon fillet was used to produce feed for mice. Male C57BL/6J mice were fed diets of 35% of energy as fat based on FO- and SO-enriched salmon for 16 weeks. We found that replacing FO with SO in feed for Atlantic salmon increased LA, arachidonic acid (AA), decreased EPA and DHA, elevated the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and increased TAG accumulation in the salmon liver. In mice, the SO salmon diet increased LA and AA and decreased EPA and DHA in the liver and erythrocyte phospholipids, and elevated 2-AG and AEA associated with increased feed efficiency, weight gain and adipose tissue inflammation compared with mice fed the FO salmon diet. In conclusion, excessive dietary LA elevates endocannabinoids in the liver of salmon and mice, and increases weight gain and counteracts the anti-inflammatory properties of EPA and DHA in mice.
Collapse
|
41
|
Wågbø AM, Cangialosi MV, Cicero N, Letcher RJ, Arukwe A. Perfluorooctane Sulfonamide-Mediated Modulation of Hepatocellular Lipid Homeostasis and Oxidative Stress Responses in Atlantic Salmon Hepatocytes. Chem Res Toxicol 2012; 25:1253-64. [DOI: 10.1021/tx300110u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ane Marit Wågbø
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Nicola Cicero
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health
Division, Environment Canada, National
Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3,
Canada
| | - Augustine Arukwe
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
42
|
Kowalska A, Zakęś Z, Siwicki AK, Jankowska B, Jarmołowicz S, Demska-Zakęś K. Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:375-88. [PMID: 21656178 PMCID: PMC3309137 DOI: 10.1007/s10695-011-9514-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/18/2011] [Indexed: 05/17/2023]
Abstract
The aim of the study was to determine the impact of applying different proportions of linseed (LO) and sunflower (SFO) oils in pikeperch diets on growth, histological changes in the liver, immunological and blood chemical parameters. The fish were fed isoenergetic and isoprotein feeds containing SFO (group 100SFO) or LO (group 100LO) in quantities of 67 g kg/feed, and a mixture of oils: 47 g SFO and 20 g LO kg/feed (group 70SFO/30LO) and 20 g SFO and 47 g LO kg/feed (group 30SFO/70LO). Dietary ratios of polyunsaturated fatty acids from the n-3 and n-6 series (n3/n6 index) were 0.36-2.15. Pikeperch were reared for 56 days in three replicates for each dietary treatment. Various dietary oils and ratios of n3/n6 did not impact fish growth, feed conversion ratio, viscerosomatic and hepatosomatic index, and size of the hepatocytes. Feeding the fish high quantities of LO and SO oils (groups 100LO and 100SFO) reduced the immunological response of the phagocytes and lymphocytes in the fish. Moreover, this resulted in significant differences among groups in the quantity of linolenic and linoleic acid in whole fish bodies, viscera, fillets, and livers. Various quantities of vegetable oils in the fish diets did not impact the quantity of arachidonic, eicosapentaenoic and docosahexaenoic acid in the fillets and livers. The immunological index and low quantities of linoleic acid in the fillets obtained in group 30SFO/70LO indicate that the n3/n6 dietary ratio of 1.35 was the most advantageous for feeding juvenile pikeperch feeds with vegetable oils.
Collapse
Affiliation(s)
- Agata Kowalska
- Department of Aquaculture, Stanisław Sakowicz Inland Fisheries Institute, Olsztyn, Poland.
| | | | | | | | | | | |
Collapse
|
43
|
Kowalska A, Zakęś Z, Siwicki AK, Jankowska B, Jarmołowicz S, Demska-Zakęś K. Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:375-388. [PMID: 21656178 DOI: 10.1016/j.aquaculture.2010.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/18/2011] [Indexed: 05/28/2023]
Abstract
The aim of the study was to determine the impact of applying different proportions of linseed (LO) and sunflower (SFO) oils in pikeperch diets on growth, histological changes in the liver, immunological and blood chemical parameters. The fish were fed isoenergetic and isoprotein feeds containing SFO (group 100SFO) or LO (group 100LO) in quantities of 67 g kg/feed, and a mixture of oils: 47 g SFO and 20 g LO kg/feed (group 70SFO/30LO) and 20 g SFO and 47 g LO kg/feed (group 30SFO/70LO). Dietary ratios of polyunsaturated fatty acids from the n-3 and n-6 series (n3/n6 index) were 0.36-2.15. Pikeperch were reared for 56 days in three replicates for each dietary treatment. Various dietary oils and ratios of n3/n6 did not impact fish growth, feed conversion ratio, viscerosomatic and hepatosomatic index, and size of the hepatocytes. Feeding the fish high quantities of LO and SO oils (groups 100LO and 100SFO) reduced the immunological response of the phagocytes and lymphocytes in the fish. Moreover, this resulted in significant differences among groups in the quantity of linolenic and linoleic acid in whole fish bodies, viscera, fillets, and livers. Various quantities of vegetable oils in the fish diets did not impact the quantity of arachidonic, eicosapentaenoic and docosahexaenoic acid in the fillets and livers. The immunological index and low quantities of linoleic acid in the fillets obtained in group 30SFO/70LO indicate that the n3/n6 dietary ratio of 1.35 was the most advantageous for feeding juvenile pikeperch feeds with vegetable oils.
Collapse
Affiliation(s)
- Agata Kowalska
- Department of Aquaculture, Stanisław Sakowicz Inland Fisheries Institute, Olsztyn, Poland.
| | | | | | | | | | | |
Collapse
|
44
|
Amlund H, Andreasen L, Torstensen BE. Dietary methylmercury and vegetable oil affects brain lipid composition in Atlantic salmon (Salmo salar L.). Food Chem Toxicol 2012; 50:518-25. [DOI: 10.1016/j.fct.2011.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
|
45
|
Abstract
Under intensive culture conditions, fish are subject to increased stress owing to environmental (water quality and hypoxia) and health conditions (parasites and infectious diseases). All these factors have negative impacts on fish well-being and overall performance, with consequent economic losses. Though good management practices contribute to reduce stressor effects, stress susceptibility is always high under crowded conditions. Adequate nutrition is essential to avoid deficiency signs, maintain adequate animal performance and sustain normal health. Further, it is becoming evident that diets overfortified with specific nutrients [amino acids, essential fatty acids (FAs), vitamins or minerals] at levels above requirement may improve health condition and disease resistance. Diet supplements are also being evaluated for their antioxidant potential, as fish are potentially at risk of peroxidative attack because of the large quantities of highly unsaturated FAs in both fish tissues and diets. Functional constituents other than essential nutrients (such as probiotics, prebiotics and immunostimulants) are also currently being considered in fish nutrition aiming to improve fish growth and/or feed efficiency, health status, stress tolerance and resistance to diseases. Such products are becoming more and more important for reducing antibiotic utilization in aquafarms, as these have environmental impacts, may accumulate in animal tissues and increase bacterial resistance. This study reviews knowledge of the effect of diet nutrients on health, welfare and improvement of disease resistance in fish.
Collapse
Affiliation(s)
- A Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
46
|
Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br J Nutr 2011; 106:1457-69. [PMID: 21736795 DOI: 10.1017/s0007114511001954] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study investigates the effects of genotype on responses to alternative feeds in Atlantic salmon. Microarray analysis of the liver transcriptome of two family groups, lean or fat, fed a diet containing either a fish oil (FO) or a vegetable oil (VO) blend indicated that pathways of cholesterol and lipoprotein metabolism might be differentially affected by the diet depending on the genetic background of the fish, and this was further investigated by real-time quantitative PCR, plasma and lipoprotein biochemical analysis. Results indicate a reduction in VLDL and LDL levels, with no changes in HDL, when FO is replaced by VO in the lean family group, whereas in fat fish fed FO, levels of apoB-containing lipoproteins were low and comparable with those fed VO in both family groups. Significantly lower levels of plasma TAG and LDL-TAG were measured in the fat group that was independent of diet, whereas plasma cholesterol was significantly higher in fish fed the FO diet in both groups. Hepatic expression of genes involved in cholesterol homeostasis, β-oxidation and lipoprotein metabolism showed relatively subtle changes. A significantly lower expression of genes considered anti-atherogenic in mammals (ATP-binding cassette transporter A1, apoAI, scavenger receptor class B type 1, lipoprotein lipase (LPL)b (TC67836) and LPLc (TC84899)) was found in lean fish, compared with fat fish, when fed VO. Furthermore, the lean family group appeared to show a greater response to diet composition in the cholesterol biosynthesis pathway, mediated by sterol-responsive element-binding protein 2. Finally, the presence of three different transcripts for LPL, with differential patterns of nutritional regulation, was demonstrated.
Collapse
|
47
|
Seguineau C, Racotta IS, Palacios E, Delaporte M, Moal J, Soudant P. The influence of dietary supplementation of arachidonic acid on prostaglandin production and oxidative stress in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:87-93. [PMID: 21624493 DOI: 10.1016/j.cbpa.2011.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
In a previous study, dietary supplementation with arachidonic acid (ARA) to oysters Crassostrea gigas increased haemocyte numbers, phagocytosis, and production of reactive oxygen species level (ROS) by haemocytes (Delaporte et al., 2006). To assess if the observed stimulation of these cellular responses resulted from changes of ARA-related prostaglandin (PG) production, we analysed prostaglandin E2 metabolite (PGEM) content on the same oysters fed three levels of ARA. Dietary supply of polyunsaturated fatty acids (PUFA) could also induce an oxidative stress that could similarly increase cellular responses; therefore, two indicators of oxidative stress were analysed: peroxidation level and antioxidant defence status. Together the observed positive correlation between ARA and PGEM levels and the absence of lipid peroxidation and antioxidant activity changes supports the hypothesis of an immune stimulation via PG synthesis. Although ARA proportion in oyster tissues increased by up to 7-fold in response to ARA dietary supplementation, peroxidation index did not change because of a compensatory decrease in n-3 fatty acid proportion, mainly 22:6n-3. To further confirm the involvement of PG in the changes of haemocyte count, phagocytosis and ROS production upon ARA supplementation, it would be interesting to test cyclooxygenase and lipooxygenase inhibitors in similar experiments.
Collapse
Affiliation(s)
- Catherine Seguineau
- Université de Bretagne Occidentale, Brest, France et UMR 100 Physiologie et Ecophysiologie des Mollusques Marins, Centre IFREMER de Brest, BP70, 29280 Plouzané, France
| | | | | | | | | | | |
Collapse
|
48
|
Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br J Nutr 2011; 106:633-47. [PMID: 21535902 DOI: 10.1017/s0007114511000729] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to study whether lipid metabolism may be affected by maximum replacement of dietary fish oil and fish meal with vegetable oils (VO) and plant proteins (PP), Atlantic salmon (Salmo salar L.) smolts were fed a control diet containing fish oil and fish meal or one of three plant-based diets through the seawater production phase for 12 months. Diets were formulated to meet all known nutrient requirements. The whole-body lipid storage pattern was measured after 12 months, as well as post-absorptive plasma, VLDL and liver TAG. To further understand the effects on lipid metabolism, expression of genes encoding for proteins involved in VLDL assembly (apoB100), fatty acid uptake (FATP1, cd36, LPL and FABP3, FABP10 and FABP11) were measured in liver and visceral adipose tissue. Maximum dietary VO and PP increased visceral lipid stores, liver TAG, and plasma VLDL and TAG concentrations. Increased plasma TAG correlated with an increased expression of apoB100, indicating increased VLDL assembly in the liver of fish fed the high-plant protein- and VO-based diet. Atlantic salmon fed intermediate replacement levels of VO or PP did not have increased body fat or visceral mass. Overall, the present results demonstrate an interaction between dietary lipids and protein on lipid metabolism, increasing overall adiposity and TAG in the body when fish meal and fish oil are replaced concomitantly at maximised levels of VO and PP.
Collapse
|
49
|
Oterhals Å, Berntssen MHG. Effects of refining and removal of persistent organic pollutants by short-path distillation on nutritional quality and oxidative stability of fish oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12250-12259. [PMID: 21070072 DOI: 10.1021/jf102660v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Food and feed legislations are implemented to control the level of unwanted persistent organic pollutants (POPs) below health risk concerns. Short-path distillation is established as the most effective industrial process to remove POPs in fish oil. However, the technology involves heating of the oil to high temperature levels (>200 °C) that possibly give unwanted heat-induced side reactions and coevaporation of minor compounds of importance for the nutritional quality of the oil. The effects on retention of vitamins, cholesterol, and unsaponifiable compounds, geometrical isomerization, loss of polyunsaturated fatty acids (PUFA), oxidation level, and oxidative stability have been studied on the basis of experiments designed to optimize and model the effect of process conditions (i.e., evaporator temperature, feed rate, and addition of working fluid) on the reduction of POPs. Loss of volatile nutrients was observed, but the extent will depend on the process conditions needed to obtain target decontamination level, as well as the concentration ratio and difference in vapor pressure between free and esterified forms of the studied compounds. Some reduction in oxidation level was documented with preservation of PUFA level and quality. Oxidative stability was influenced both positively and negatively depending on the applied process conditions. Generally, no adverse negative effects on the nutritional quality of the fish oil could be documented. Optimal process conditions were modeled that ensure removal of POPs to within legislation levels while retaining most of the vitamin levels in fish oil. A 76% reduction of the WHO-PCDD/F-PCB-TEQ level in the used feedstock was needed to be in accordance with the voluntary industrial monograph of GOED. This could be achieved on the basis of operation conditions giving <20% loss of vitamins. A 90% decontamination rate gave vitamin retentions in the 60-90% range.
Collapse
Affiliation(s)
- Åge Oterhals
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Kjerreidviken 16, N-5141 Fyllingsdalen, Norway
| | | |
Collapse
|
50
|
Pre-digestion of dietary lipids has only minor effects on absorption, retention and metabolism in larval stages of Atlantic cod (Gadus morhua). Br J Nutr 2010; 105:846-56. [DOI: 10.1017/s0007114510004459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hypothesis of the present study was that cod larvae have a limitation in lipid digestion, and that absorption of lipids would increase by pre-hydrolysation. The diets used were designed to contain 15 % lipid, of which 40 % was phosphatidylcholine (PC) and 60 % was TAG. Cod larvae (40 d post hatch (dph)) were fed a single meal where either PC or TAG was radioactively labelled, and the labelled PC or TAG was either intact or hydrolysed (pre-digested). The larvae were then incubated individually in chambers with collection of CO2 for 10 h. The following fractions were analysed for radioactivity: the incubation water (evacuated feed); the intestine; the body; the CO2 trap. The larvae ate a 16–29 μg diet, equivalent to 3·4–5·2 % of dry body weight. In the whole population, 0–16 % of the lipid was evacuated. The larvae that had eaten less than 1·9–2·7 μg lipid absorbed close to 100 % of the lipid, absorption being defined conservatively as the amount contained in the carcass and CO2, excluding the intestinal tissue. In these larvae, approximately 100 % of the absorbed lipid was also catabolised. In the larvae that ingested more than 1·9–2·7 μg lipid, there was a linear reduction in lipid absorption to a minimum of 55 % at the highest lipid intakes parallel to an increasing retention of lipids in the carcass. There were only minor differences in digestion, absorption, retention and metabolism of lipids between the larvae fed the different diets, and the larvae tended to retain lipid classes as they were present in the feed. The study shows that 40-dph Atlantic cod larvae have an efficient utilisation of dietary lipids supplied as intact PC and TAG.
Collapse
|