1
|
Tedbury PR, Mahboubi D, Puray-Chavez M, Shah R, Ukah OB, Wahoski CC, Fadel HJ, Poeschla EM, Gao X, McFadden WM, Gaitanidou M, Kesesidis N, Kirby KA, Vanderford TH, Kvaratskhelia M, Achuthan V, Behrens RT, Engelman AN, Sarafianos SG. Disruption of LEDGF/p75-directed integration derepresses antisense transcription of the HIV-1 genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627169. [PMID: 39677798 PMCID: PMC11643104 DOI: 10.1101/2024.12.06.627169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Disruption of HIV-1 Integrase (IN) interactions with the host-factor Lens Epithelium-Derived Growth Factor (LEDGF)/p75 leads to decreased, random integration, increased latent infection, and described here, accumulation of HIV-1 antisense RNA (asRNA). asRNA increase was observed following interruptions of IN-LEDGF/p75 interactions either through pharmacologic perturbations of IN-LEDGF/p75 by treatment with allosteric HIV-1 integrase inhibitors (ALLINIs) or in cell lines with LEDGF genetic knockout. Additionally, by impairing Tat-dependent HIV transcription, asRNA abundance markedly increases. Illumina sequencing characterization of asRNA transcripts in primary T cells infected in the presence of ALLINIs showed that most initiate from within the HIV-1. Overall, loss of IN-LEDGF/p75 interactions increase asRNA abundance. Understanding the relationship between ALLINIs, integration sites, asRNA, and latency could aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Darius Mahboubi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine; Columbia, MO, USA
- C.S. Bond Life Sciences Center, University of Missouri; Columbia, MO, USA
| | - Raven Shah
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Obiaara B. Ukah
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine; Columbia, MO, USA
- C.S. Bond Life Sciences Center, University of Missouri; Columbia, MO, USA
| | - Claudia C. Wahoski
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Hind J. Fadel
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Eric M. Poeschla
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Xinlin Gao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Maria Gaitanidou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Nikolaos Kesesidis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Karen A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Emory University; Atlanta, GA, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Vasudevan Achuthan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| |
Collapse
|
2
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
4
|
Saro A, Gao Z, Kambey PA, Pielnaa P, Marcellin DFH, Luo A, Zheng R, Huang Z, Liao L, Zhao M, Suo L, Lu S, Li M, Cai D, Chen D, Yu H, Huang J. HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2022; 42:2553-2569. [PMID: 34562223 PMCID: PMC11421612 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
Affiliation(s)
- Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Paul Pielnaa
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | | | - Aixiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Ruping Zheng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhongjun Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Mingxuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Liangpeng Suo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Deyang Cai
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Haiyang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Jeong HW, Kim SH, Sim SY, Yu KL, You JC. The HIV-1 nucleocapsid protein does not function as a transcriptional activator on its own cognate promoter. Virus Res 2011; 163:469-75. [PMID: 22119402 DOI: 10.1016/j.virusres.2011.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) is a multifunctional, zinc finger-containing protein known to be involved in almost every step of the viral life cycle. We therefore examined the effects of NC in vivo as a transcription activator on the basal transcriptional activity of the HIV-1 U3 and Rous sarcoma virus (RSV) promoters, as well as HIV-1 long terminal repeats (LTRs) such as the U3R and U3RU5 regions, using promoter-fused reporter gene assays, Western blot analyses, and quantitative real time-polymerase chain reaction. From these studies, we found that the basal transcriptional levels of the HIV-1 U3 and RSV promoters were barely enhanced by the presence of NC. Placing the U3R region upstream of reporter genes greatly increased transcriptional activity compared to that of the U3 promoter alone, and such activity was further increased by Tat expression. However, neither transcription driven by U3R itself nor Tat-mediated transcriptional activation of the U3R was further increased by the addition of NC. Similar results were also observed with U3RU5 of the HIV-1 LTR region in the presence of either NC or Gag protein. Thus, these results indicate that the HIV NC protein is unable to act as a transcriptional activator on its cognate and possibly other retroviral promoters.
Collapse
Affiliation(s)
- Hoe Won Jeong
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Herbein G, Gras G, Khan KA, Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology 2010; 7:34. [PMID: 20380698 PMCID: PMC2865443 DOI: 10.1186/1742-4690-7-34] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES 4266 Pathogens and Inflammation, IFR 133 INSERM, University of Franche-Comté, CHU Besançon, F-25030 Besançon, France.
| | | | | | | |
Collapse
|
8
|
Zheng L, Yang YD, Lu GC, Salvato MS. Extracellular HIV Tat and Tat cysteine rich peptide increase CCR5 expression in monocytes. J Zhejiang Univ Sci B 2005; 6:668-72. [PMID: 15973770 PMCID: PMC1389802 DOI: 10.1631/jzus.2005.b0668] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous work we reported that HIV Tat and 6 cysteine rich peptides of Tat induce tumor necrosis factor-related apoptosis-induced ligand (TRAIL) in human monocytes (Yang et al., 2003). Here our results showed that HIV Tat and Tat cysteine rich peptide increase CCR5 expression in human monocytes, and this activity is inhibited by rabbit anti-Tat. Boiled Tat does not increase CCR5 expression in monocytes. These results provide insight into a new mechanism by which HIV Tat plays a key role in the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi-da Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- †E-mail:
| | - Guo-cai Lu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Maria S. Salvato
- Institute of Human Virology, University of Maryland Biotechnology Center, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Matskevich AA, Cordelier P, Strayer DS. Conditional expression of IFN-alpha and IFN-gamma activated by HBV as genetic therapy for hepatitis B. J Interferon Cytokine Res 2004; 23:709-21. [PMID: 14769147 DOI: 10.1089/107999003772084824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) has potentially devastating consequences and is very difficult to treat. Therapy with recombinant interferons (IFN), especially IFN-alpha, may be effective. The blood IFN-alpha levels that are needed to maintain therapeutic IFN-alpha levels in the liver, however, often cause severe side effects. Gene delivery to the liver may provide a solution. Using a long-term expression construct could provide the desired levels of IFN locally without the need to maintain potentially problematic blood levels. Recombinant, Tag-deleted SV40-derived vectors transduce hepatocytes efficiently and provide permanent transgene expression. We designed an expression construct that was effective against HBV and whose activity was limited to HBV-infected cells. To do this, we exploited the ability of HBV X protein to activate NF-kappaB and, via NF-kappaB, to activate promoter activity of HIV long terminal repeat (LTR) in hepatocytes. Using HIVLTR as a conditional promoter upstream of human and murine IFN-alpha and IFN-gamma cDNAs, rSV40 vectors were used to test the responsiveness of IFN to HBV and the ability of these IFNs to inhibit HBV transcripts and protein production and to activate IFN signaling in neighboring untransduced cells. We found that in hepatocyte cell lines and in primary hepatocytes, HBV activated the promoter activity of the HIVLTR via NF-kappaB. When whole HBV genome was delivered to cells by transfection to simulate HBV infection, IFN expression was activated, IFNs were produced and secreted, and they protected cells from HBV. Levels of IFN proteins that were secreted in this context were comparable to targeted blood levels needed to control chronic hepatitis viral infection. Further, IFNs that were elicited and secreted in this manner were able to activate IFN-induced signaling pathways in neighboring, untransduced cells and so were likely to provide protection even to cells that the rSV40 vector did not transduce. Gene delivery using such rSV40 vectors expressing IFNs conditionally in response to HBV may be an attractive therapeutic option for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Alexey A Matskevich
- Department of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107
| | | | | |
Collapse
|
10
|
Fortin JF, Barat C, Beauséjour Y, Barbeau B, Tremblay MJ. Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction. J Biol Chem 2004; 279:39520-31. [PMID: 15258149 DOI: 10.1074/jbc.m407477200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A chronic state of immune hyperactivation is a feature of human immunodeficiency virus type-1 (HIV-1) infection. Studies on the molecular mechanisms by which HIV-1 can modulate the activation state of T cells indicate that both Nef and Tat can alter T cell activation. However, the vast majority of data has been obtained from experiments performed with vectors encoding a single virus protein. We demonstrate that infection of human CD4(+) T lymphocytes with fully infectious HIV-1 leads to a hyper-responsiveness of the interleukin-2 promoter. Hypersensitivity in HIV-1-infected T cells was observed upon stimulation with various agents that are engaging different signal transduction pathways. Experiments performed with recombinant heat stable antigen-encoding HIV-1 indicated that the virus-infected cells are the cells with an enhanced response. Both Nef and Tat are involved in this virus-mediated enhancing effect on interleukin-2 promoter activity. Interestingly, whereas Nef seems to be acting mainly through hyperactivation of nuclear factor of activated T cells (NFAT), Tat acts in an NFAT-independent manner. Mobility shift experiments demonstrated that the HIV-1-associated priming of human T cells for stimulation results in a greater induction of transcription factors recognized as essential players in T cell activation, i.e. NFAT, NF-kappaB, and AP-1. A hyper-responsive state was also established upon HIV-1 infection of a more natural cellular reservoir, i.e. primary CD4(+) T lymphocytes. Considering that the HIV-1 life cycle is tightly regulated by the T cell signaling machinery, the priming for activation of a major viral reservoir represents a means by which this retrovirus can create an ideal cellular microenvironment for its propagation and maintenance.
Collapse
Affiliation(s)
- Jean-François Fortin
- Baxter Laboratory for Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA
| | | | | | | | | |
Collapse
|
11
|
Khan NA, Di Cello F, Nath A, Kim KS. Human immunodeficiency virus type 1 tat-mediated cytotoxicity of human brain microvascular endothelial cells. J Neurovirol 2004; 9:584-93. [PMID: 14602571 DOI: 10.1080/13550280390218760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Human immunodeficiency virus (HIV)-1 infection is often complicated with neurologic disorders, but the pathogenesis of HIV-1 encephalopathy is incompletely understood. Tat (HIV-1 transactivator protein) is released from HIV-1-infected cells and has been detected in the sera and cerebrospinal fluid of HIV-1-infected patients. Tat, along with increased inflammatory cytokines such as interferon-gamma (IFN-gamma), have been implicated in the pathogenesis of HIV-1-associated blood-brain barrier dysfunction. The present study examined the effects of Tat and IFN-gamma on human brain microvascular endothelial cells (HBMECs), which constitute the blood-brain barrier. Tat produced cytotoxicity of HBMECs, but required IFN-gamma. IFN-gamma treatment of HBMECs up-regulates vascular endothelial growth factor receptor-2 (VEGFR2/KDR), which is known to be the receptor for Tat. Tat activated KDR in the presence of IFN-gamma, and Tat-mediated cytopathic changes involve its interaction with KDR and phosphatidylinositol 3-kinase (PI3K). Further understanding and characterization of Tat-HBMEC interactions should help us understand HIV-1 neuropathogenesis and develop strategies to prevent HIV-1 encephalopathy.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Division of Pediatric Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
12
|
Matskevich AA, Strayer DS. Exploiting hepatitis C virus activation of NFkappaB to deliver HCV-responsive expression of interferons alpha and gamma. Gene Ther 2003; 10:1861-73. [PMID: 14502215 DOI: 10.1038/sj.gt.3302091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) may lead to liver failure and hepatocellular carcinoma. Current treatment for HCV includes high systemic doses of interferonalpha (IFNalpha), which is effective in less than half of patients and may have severe side effects. We designed conditional IFNalpha and IFNgamma expression constructs to be triggered by HCV-induced activation of NFkappaB, and delivered these using highly efficient recombinant Tag-deleted SV40-derived vectors. NFkappaB activates the HIV-1NL4-3 long terminal repeat (HIVLTR) as a promoter, which accounts for the conditional transgene expression. Human hepatocyte lines and primary rat hepatocytes (PRH) were transduced with SV[HIVLTR](IFN) vectors, and transfected with HCV cDNA. Production of human and murine IFNalpha and IFNgamma in cytosol and culture supernatants was measured. HCV activated the HIVLTR to produce and secrete IFNs, and did so largely through the NFkappaB binding sites of the HIVLTR. Levels of IFNs secreted, and the magnitude of induction in response to HCV, were greater in hepatocyte lines than in primary cultured hepatocytes. However, even in the latter, supernatant IFNalpha concentrations achieved by this approach were similar to therapeutic serum concentrations sought in systemic IFNalpha-treated patients. In coculture studies, secreted IFNalpha activated its cognate response elements in untransduced cells, suggesting that its potential inhibitory effects on HCV may not be limited to transduced cells. Although HCV replication in culture is difficult to assess, HCV-induced IFNalpha production demonstrably reduced HCV transcription. Conditional expression of IFNs within the liver may represent an attractive approach to therapy of severe chronic HCV infection that could avoid the side effects of systemic treatment regimens.
Collapse
Affiliation(s)
- A A Matskevich
- Department of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | |
Collapse
|
13
|
Esposito G, Ligresti A, Izzo AA, Bisogno T, Ruvo M, Di Rosa M, Di Marzo V, Iuvone T. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity. Mechanism and regulation. J Biol Chem 2002; 277:50348-54. [PMID: 12388547 DOI: 10.1074/jbc.m207170200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cannabinoids modulate nitric oxide (NO) levels in cells of the central nervous system. Here we studied the effect of cannabinoid CB(1) and CB(2) receptor agonists on the release of NO and cell toxicity induced by the human immuno-deficiency virus-1 Tat protein (HIV-1 Tat) in rat glioma C6 cells. The CB(1) and CB(2) agonist WIN 55,212-2 inhibited the expression of inducible NO synthase (iNOS) and NO release caused by treatment of C6 cells with HIV-1 Tat and interferon-gamma (IFN-gamma). The effect of WIN 55,212-2 was uniquely due to CB(1) receptors, as shown by experiments carried out with selective CB(1) and CB(2) receptor agonists and antagonists. CB(1) receptor stimulation also inhibited HIV-1 Tat + IFN-gamma-induced and NO-mediated cell toxicity. Moreover, cell treatment with HIV-1 Tat + IFN-gamma induced a significant inhibition of CB(1), but not CB(2), receptor expression. This effect was mimicked by the NO donor GSNO, suggesting that the inhibition of CB(1) expression was due to HIV-1 Tat + IFN-gamma-induced NO overexpression. HIV-1 Tat + IFN-gamma treatment also induced a significant inhibition of the uptake of the endocannabinoid anandamide by C6 cells with no effect on anandamide hydrolysis. These findings show that the endocannabinoid system, through the modulation of the l-arginine/NO pathway, reduces HIV-1 Tat-induced cytotoxicity, and is itself regulated by HIV-1 Tat.
Collapse
MESH Headings
- Animals
- Benzoxazines
- Camphanes/pharmacology
- Cannabinoid Receptor Modulators
- Cannabinoids/pharmacology
- Cell Survival/drug effects
- Endocannabinoids
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Products, tat/toxicity
- Glioma
- HIV-1/pathogenicity
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide/physiology
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Peptide Fragments/toxicity
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB2
- Receptors, Cannabinoid
- Receptors, Drug/agonists
- Receptors, Drug/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
He X, Fütterer J, Hohn T. Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucleic Acids Res 2002; 30:497-506. [PMID: 11788712 PMCID: PMC99825 DOI: 10.1093/nar/30.2.497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downstream sequences influence activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. We previously identified a DNA element located between positions +50 and +90 relative to the transcription start site to which rice nuclear proteins bind. In this study, using DNA UV crosslinking assays, we show that two rice nuclear proteins bind specifically to this DNA element. We demonstrate that the DNA element enhances RTBV promoter activity in a copy number-dependent manner when transferred to a position upstream of the promoter. In addition, using electrophoretic mobility shift assays, we show that at least two novel nuclear proteins from rice cell suspension cultures bind to a subregion (from +50 to +59) of the DNA element and that a protein from rice root, but not shoot, nuclear extracts interacts with a perfect palindromic sequence motif located within the sequence +45 to +59. Furthermore, a position-dependent GAGA motif, present in three copies within downstream promoter sequences from +1 to +50, is involved in the regulation of RTBV promoter activity.
Collapse
Affiliation(s)
- Xiaoyuan He
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
15
|
Gómez-Gonzalo M, Carretero M, Rullas J, Lara-Pezzi E, Aramburu J, Berkhout B, Alcamí J, López-Cabrera M. The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-kappaB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J Biol Chem 2001; 276:35435-43. [PMID: 11457829 DOI: 10.1074/jbc.m103020200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Co-infection with hepatitis B virus (HBV) and human immunodeficiency virus type-1 (HIV-1) is relatively common. However, the impact of this co-infection on the clinical outcome of HIV infection has not been elucidated. We herein demonstrate that the HBV X protein (HBx) superinduces ongoing HIV-1 replication and HIV-1 long terminal repeat (LTR) transcription by synergizing with Tat protein and with T-cell activation signals. Although HBx cooperated with mitogenic stimuli in the induction of reporter plasmids harboring the HIV-1 kappaB enhancer, in both a NF-kappaB-dependent manner and a NF-AT-dependent manner, deletion of this element from the LTR did not affect the HBx-mediated up-regulation in the presence of Tat and/or mitogens. In contrast, mutation of the proximal LTR Sp1-binding sites abolished the HBx-mediated synergistic activation, but only when it was accompanied by deletion of the kappaB enhancer. When HBx was targeted to the nucleus, its ability to synergize with cellular activation stimuli was maintained. Furthermore, mutations of HBx affecting its interaction with the basal transcription machinery abrogated the synergistic activation by HBx, suggesting that this protein exerts its function by acting as a nuclear co-activator. These results indicate that HBx could contribute to a faster progression to AIDS in HBV-HIV co-infected individuals.
Collapse
Affiliation(s)
- M Gómez-Gonzalo
- Unidad de Biologia Molecular, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, Zachary I. Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophys Res Commun 2001; 283:469-79. [PMID: 11327725 DOI: 10.1006/bbrc.2001.4790] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Apoptosis/drug effects
- Cells, Cultured
- Cysteine/chemistry
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activation/drug effects
- Fibroblast Growth Factor 2/pharmacology
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/pharmacology
- Humans
- Lymphokines/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Neovascularization, Physiologic/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/toxicity
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/drug effects
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- H Jia
- Department of Medicine, Ark Therapeutics Limited, London, WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down-regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis.
Collapse
Affiliation(s)
- T M Ross
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA
| |
Collapse
|
18
|
Kino T, Kopp JB, Chrousos GP. Glucocorticoids suppress human immunodeficiency virus type-1 long terminal repeat activity in a cell type-specific, glucocorticoid receptor-mediated fashion: direct protective effects at variance with clinical phenomenology. J Steroid Biochem Mol Biol 2000; 75:283-90. [PMID: 11282284 DOI: 10.1016/s0960-0760(00)00187-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucocorticoid administration and/or excess secretion have been associated with increased Human Immunodeficiency Virus Type-1 (HIV-1) replication and AIDS progression. The HIV-1 long terminal repeat (LTR) promoter contains glucocorticoid-responsive element (GRE)-like sequences that could mediate a positive effect of glucocorticoids on HIV-1. In addition, we recently demonstrated that the HIV-1 accessory protein Vpr is a potent coactivator of the glucocorticoid receptor, which, like the host coactivator p300, potentiates the effect of glucocorticoids on GRE-containing, glucocorticoid-responsive genes. Such an effect may increase the sensitivity of several host target tissues to glucocorticoids by several fold, and may, thus, contribute to a positive effect of glucocorticoids on the HIV-1-LTR in infected host cells. In this study, we determined the direct effect of glucocorticoids on HIV-1-LTR by examining the ability of dexamethasone to modulate the activity of this promoter coupled to the luciferase reporter gene in human cell lines. Dexamethasone markedly inhibited Tat-stimulated, p300- or Vpr-enhanced luciferase activities in a cell-type specific, dose-dependent, and glucocorticoid receptor-mediated fashion. This effect of dexamethasone was not potentiated by Vpr, was antagonized by the glucocorticoid receptor antagonist RU 486 and required the DNA-binding domain of the receptor. These data suggest that the inhibitory effect of glucocorticoids on the HIV-1-LTR may be exerted via non-GRE-dependent inhibition of the strongly positive host transcription factor NF-kappaB, which interacts with the DNA- and ligand-binding domains of the receptor. Alternatively, it is also possible that dexamethasone-activated glucocorticoid receptor competes with other transcription factors for their binding sites on the promoter region or squelches transcription factors shared by HIV-1-LTR and glucocorticoid-responsive promoters. We conclude that glucocorticoids suppress, rather than stimulate, the HIV-1 promoter, thus acting, protectively for the host. Their apparent negative clinical association with AIDS is most likely due to immunosuppression of the host.
Collapse
Affiliation(s)
- T Kino
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, Building 10, Room 9D42, National Institutes of Health, 10 Center Drive MSC 1583, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
19
|
Ojeda MO, Fernández-Ortega C, Rosaínz MJ. Dialyzable leukocyte extract suppresses the activity of essential transcription factors for HIV-1 gene expression in unstimulated MT-4 cells. Biochem Biophys Res Commun 2000; 273:1099-103. [PMID: 10891378 DOI: 10.1006/bbrc.2000.3065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) contains regulatory regions in its long terminal repeat (LTR) implicated in the control of viral gene expression. We previously demonstrated that Dialyzable Leukocyte Extract (DLE), a preparation derived from immune leukocytes, is able to inhibit HIV-1 replication in MT-4 cell cultures. Here, we examined the effect of DLE on the activation of NF-kappaB and Sp1 transcription factors. NF-kappaB activity was completely suppressed after seven days of treatment with 2.5 U/mL of DLE, with a parallel large reduction in the amounts of Sp1 complexes. These findings correlate with the maximum inhibitory effect on HIV-1 replication described in a previous report. IkappaBalpha and NF-kappaB p65(RelA) gene expression are not regulated by DLE in MT-4 cells. Although up to day, the precise molecular mechanism of DLE biological activity in HIV-1 infection remains unclear, this report presents data that indicate a potential downregulatory effect of DLE on HIV-1 gene expression.
Collapse
Affiliation(s)
- M O Ojeda
- Cell Biology Division, Center for Biological Research, Havana, Cuba
| | | | | |
Collapse
|
20
|
Manna SK, Aggarwal BB. Differential requirement for p56lck in HIV-tat versus TNF-induced cellular responses: effects on NF-kappa B, activator protein-1, c-Jun N-terminal kinase, and apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5156-66. [PMID: 10799874 DOI: 10.4049/jimmunol.164.10.5156] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.
Collapse
Affiliation(s)
- S K Manna
- Cytokine Research Section, Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Oshima T, Flores SC, Vaitaitis G, Coe LL, Joh T, Park JH, Zhu Y, Alexander B, Alexander JS. HIV-1 Tat increases endothelial solute permeability through tyrosine kinase and mitogen-activated protein kinase-dependent pathways. AIDS 2000; 14:475-82. [PMID: 10780709 DOI: 10.1097/00002030-200003310-00002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HIV-1 infection is associated with alterations of several vascular endothelial functions including adhesion molecule expression, growth, and vascular permeability. The bases of these errors are not known, but might involve secretion of the HIV-1 derived transcription factor 'Tat-1'. This study investigated Tat-1 mediated endothelial barrier changes and second message regulation of this phenomenon. METHODS We exposed human umbilical vein endothelial cell monolayers to Tat-1 (0-150 ng/ml) for up to 48 h and measured resulting changes in monolayer permeability. We also investigated the role of tyrosine and mitogen activated protein (MAP) kinases, and protein kinase G using the pharmacological blockers genistein, PD98059 and KT5823 respectively. RESULTS Tat-1 significantly reduced monolayer barrier and increased albumin permeability within 24 h. Tat-1 also stimulated tyrosine phosphorylation of multiple endothelial proteins, disorganized junctional phosphotyrosine staining and increased the number of these immunostaining structures. The increased permeability produced by Tat-1 was blocked by genistein and PD98059, but not by KT5823. Genistein and PD98059 pretreatment also prevented the changes in phosphotyrosine immunostaining produced by Tat-1 and blocked phosphorylation of several proteins including MAP kinase. CONCLUSION These results suggest that HIV may dysregulate endothelial barrier through the effects of Tat-1. These blocker experiments suggest that the effects of Tat are transcription/translation-dependent. These data demonstrate that Tat increases endothelial albumin permeability in vitro through tyrosine kinase and MAP kinase, but not protein kinase G pathways.
Collapse
Affiliation(s)
- T Oshima
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blázquez MV, Macho A, Ortiz C, Lucena C, López-Cabrera M, Sánchez-Madrid F, Muñoz E. Extracellular HIV type 1 Tat protein induces CD69 expression through NF-kappaB activation: possible correlation with cell surface Tat-binding proteins. AIDS Res Hum Retroviruses 1999; 15:1209-18. [PMID: 10480634 DOI: 10.1089/088922299310304] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HIV-1 Tat protein, essential for HIV-1 gene expression and viral replication, is known to be secreted by infected cells and has pleiotropic effects on various cell functions. It seems that extracellular Tat may exert its functions on cellular targets by at least two different mechanisms, namely, by adsorptive endocytosis, and by a possible interaction with cell surface receptor(s). Here we report that extracellular Tat activates AIM/CD69 gene transcription through an NF-kappaB-dependent pathway in the erythroleukemia cell line K562. Tat induces NF-kappaB binding to DNA as a result of IkappaBalpha phosphorylation and degradation, which depend on the intracellular redox state. We found that the second Tat-coding exon is required for CD69 gene trans-activation, but not for HIV LTR gene transcription. Fluorescein-labeled Tat proteins were used to study cell surface binding sites and cellular uptake of the proteins. Full-length Tat protein has specific binding sites on the surface of K562 cells, whereas truncated Tat1-48, which is efficiently internalized by the cells, does not bind to the cell surface. Our results suggest that extracellular Tat may activate a cell surface-mediated pathway that induces intracellular signal transduction in K562 cells, leading to the activation of NF-kappaB and the transcription of NF-kappaB-dependent genes, such as CD69.
Collapse
Affiliation(s)
- M V Blázquez
- Departamento de Fisiología e Immunología, Universidad de Córdoba, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Fogel S, Guittaut M, Legrand A, Monsigny M, Hébert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 1999; 9:383-7. [PMID: 10089212 DOI: 10.1093/glycob/9.4.383] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal lectins play important roles in a variety of biological processes via their recognition of glycoconjugates. Galectin-3 is a beta-galactoside-binding lectin whose expression is associated with various pathological processes including human T lymphotropic virus (HTLV)-I-infection of human T cell lines and human immunodeficiency virus (HIV) infection of T-lymphoblastic Molt-3 cell line. In the case of HIV-infected cells, it has been suggested that the increase in galectin-3 expression could be related to the expression of the viral regulatory gene tat. These results prompt us to perform more extensive analyses of the relationship between galectin-3 and HIV-1 Tat expressions. In this study, we found that Tat protein expression induces an upregulation of galectin-3 in several human cell lines. In co-transfection experiments, the 5'-regulatory sequences of the galectin-3 gene were significantly upregulated by expression vectors encoding the Tat protein. Analysis performed with 5'-regulatory deleted sequences suggested that galectin-3 induction by Tat is dependent on activation of the Sp-1 binding transcription factor.
Collapse
Affiliation(s)
- S Fogel
- Glycobiology, Centre de Biophysique Moléculaire, UPR no. 4301 du CNRS conventionnée avec l'Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cédex 2, France
| | | | | | | | | |
Collapse
|
24
|
Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol 1998; 72:8952-60. [PMID: 9765440 PMCID: PMC110312 DOI: 10.1128/jvi.72.11.8952-8960.1998] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors CCR5 and CXCR4 are the primary fusion coreceptors utilized for CD4-mediated entry by macrophage (M)- and T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively. Here we demonstrate that HIV-1 Tat protein, a potent viral transactivator shown to be released as a soluble protein by infected cells, differentially induced CXCR4 and CCR5 expression in peripheral blood mononuclear cells. CCR3, a less frequently used coreceptor for certain M-tropic strains, was also induced. CXCR4 was induced on both lymphocytes and monocytes/macrophages, whereas CCR5 and CCR3 were induced on monocytes/macrophages but not on lymphocytes. The pattern of chemokine receptor induction by Tat was distinct from that by phytohemagglutinin. Moreover, Tat-induced CXCR4 and CCR5 expression was dose dependent. Monocytes/macrophages were more susceptible to Tat-mediated induction of CXCR4 and CCR5 than lymphocytes, and CCR5 was more readily induced than CXCR4. The concentrations of Tat effective in inducing CXCR4 and CCR5 expression were within the picomolar range and close to the range of extracellular Tat observed in sera from HIV-1-infected individuals. The induction of CCR5 and CXCR4 expression correlated with Tat-enhanced infectivity of M- and T-tropic viruses, respectively. Taken together, our results define a novel role for Tat in HIV-1 pathogenesis that promotes the infectivity of both M- and T-tropic HIV-1 strains in primary human leukocytes, notably in monocytes/macrophages.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- DNA Primers/genetics
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Products, tat/genetics
- Gene Products, tat/pharmacology
- Gene Products, tat/physiology
- HIV Infections/etiology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/pathogenicity
- HIV-1/physiology
- Humans
- Macrophages/drug effects
- Macrophages/virology
- Monocytes/drug effects
- Monocytes/virology
- Phytohemagglutinins/pharmacology
- Receptors, CCR3
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- T-Lymphocytes/drug effects
- T-Lymphocytes/virology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- L Huang
- Divisions of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
25
|
Kumar A, Manna SK, Dhawan S, Aggarwal BB. HIV-Tat Protein Activates c-Jun N-Terminal Kinase and Activator Protein-1. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Human immunodeficiency virus-1 tat (HIV-tat) protein, like other proinflammatory cytokines (such as TNF), activates a wide variety of cellular responses, some of which play a critical role in progression of HIV infection. Whether HIV-tat, like TNF, also activates c-Jun N-terminal kinase (JNK) and the transcription factor activator protein (AP)-1 is not known. We show that treatment of human histiocytic lymphoma U937 cells with the HIV-tat protein causes activation of JNK and AP-1 in a time- and dose-dependent manner. Transfection of a T cell line, H9 cells with the HIV-tat gene also resulted in an activation of JNK that was not further increased by treatment of cells with exogenous HIV-tat protein. Neutralizing Ab against HIV-tat inhibited the HIV-tat-mediated JNK activation. The activation of JNK by HIV-tat appears to be mediated through generation of free radical species, since pretreatment of cells with N-acetylcysteine (NAC) abolished the effect. Overall our results demonstrate that HIV-tat activates JNK and AP-1, which may contribute to the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Ashok Kumar
- *Cytokine Research Section, Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Sunil K. Manna
- *Cytokine Research Section, Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Subhash Dhawan
- †Laboratory of Immunochemistry, Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Bharat B. Aggarwal
- *Cytokine Research Section, Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| |
Collapse
|
26
|
Kundu M, Sharma S, De Luca A, Giordano A, Rappaport J, Khalili K, Amini S. HIV-1 Tat elongates the G1 phase and indirectly promotes HIV-1 gene expression in cells of glial origin. J Biol Chem 1998; 273:8130-6. [PMID: 9525916 DOI: 10.1074/jbc.273.14.8130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection of the central nervous system (CNS) gives rise to many of the neurological complications in patients with AIDS. Infection of microglial cells and astrocytes in the brain promotes the release of HIV-1 Tat and other candidate neurotoxins that may be associated with the widespread neuropathology. To examine the contribution of HIV-1 Tat to the interplay between virus and CNS cells, the human astrocytic cell line, U-87MG, was treated with recombinant Tat protein. Fluorescence-activated cell sorting analysis indicated that Tat induces a G1 arrest in these cells. Consistent with this observation, lower levels of cyclin E-Cdk2 kinase activity and phosphorylated Rb were detected in the Tat-treated cells compared with the control cells. Interestingly, our observations indicate that the underphosphorylated form of Rb that is prevalent in Tat-treated cells promotes HIV-1 transcription by a mechanism involving the NF-kappaB enhancer region. Taken together, the data presented here provide the first evidence that the HIV-1 regulatory protein, Tat, may manipulate the host cell cycle to promote viral gene expression. The significance of these findings relates to the current hypothesis that indirect effects of HIV-1 infection of the CNS may contribute to the neurological complications associated with AIDS dementia complex.
Collapse
Affiliation(s)
- M Kundu
- Center for NeuroVirology and NeuroOncology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ott M, Lovett JL, Mueller L, Verdin E. Superinduction of IL-8 in T Cells by HIV-1 Tat Protein Is Mediated Through NF-κB Factors. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Elevated levels of circulating IL-8, a potent chemotactic factor for granulocytes and T lymphocytes, are found in HIV-infected individuals. The HIV-1 transactivator protein Tat increased IL-8 secretion in T cell lines following CD3- and CD28-mediated costimulation. Full-length Tat (Tat101) enhanced IL-8 transcription through up-regulated transcription factor binding to the CD28-responsive element (CD28RE) in the IL-8 promoter. Expression of the Tat splice variant Tat72 (72 amino acids) also enhanced IL-8 production following T cell stimulation via a different, most likely post-transcriptional, mechanism. The CD28RE in the IL-8 promoter was characterized as a low-affinity NF-κB binding site recognized by the transcription factors p50 (NF-κB1), p65 (RelA) and c-rel. Transcription factor binding to “classical” NF-κB sites in the HIV-1, the human IL-2, and lymphotoxin promoters, recognized by p50 and p65 following CD3+28-mediated costimulation, was unaffected by Tat101 as was binding to the AP-1 motif in the IL-8 promoter. These experiments identify the CD28RE in the IL-8 promoter as a c-rel recognition site and a Tat101-responsive element. The effect of Tat101 on CD28REs in the IL-8 promoter and the subsequent up-regulation of IL-8 secretion is likely to contribute to the immune dysregulation observed during HIV-1 infection.
Collapse
Affiliation(s)
- Melanie Ott
- The Picower Institute for Medical Research, Manhasset, NY 11030
| | | | - Laurel Mueller
- The Picower Institute for Medical Research, Manhasset, NY 11030
| | - Eric Verdin
- The Picower Institute for Medical Research, Manhasset, NY 11030
| |
Collapse
|
28
|
Benelli R, Mortarini R, Anichini A, Giunciuglio D, Noonan DM, Montalti S, Tacchetti C, Albini A. Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 1998; 12:261-8. [PMID: 9517988 DOI: 10.1097/00002030-199803000-00003] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE AND DESIGN Extracellular Tat released from HIV-1-infected cells is a mitogenic and motogenic factor for endothelial and Kaposi's sarcoma (KS)-derived cells and is angiogenic in vivo. Here we show for the first time that Tat induces migration of human dendritic cells in a concentration-dependent manner and that the Arg-Gly-Asp (RGD) and basic Tat peptides contribute to dendritic and monocyte cell migration. In vivo, Tat stimulates invasion of macrophages into a matrigel sponge. METHODS Monocyte and dendritic cell chemotaxis was assessed using the Boyden chamber assay. RESULTS Tat induced migration of monocyte-derived dendritic cells at the same levels as the N-formyl-Met-Leu-Phe peptide, and of monocytes at levels comparable to RANTES. Peptide mapping of the chemotactic activity of Tat showed that the RGD domain, which has been shown to support integrin-mediated cell migration, and the basic domain which binds and activates the tyrosine kinase receptor KDR on endothelial cells, both had activity. Antibody-blocking experiments indicate that responses to the RGD domain was inhibited by beta1 and alpha vbeta3 integrin blocking antibodies. Combination of the Tat RGD and basic peptides did not show additive effects; however, Tat co-operated with macrophage-chemotactic protein or RANTES in inducing monocyte migration. CONCLUSIONS Our results show that Tat can act as a chemoattractant for dendritic cells, and that both the RGD and basic domains are involved in this response. These same domains attract monocytes. The alpha vbeta3 and beta1 integrins are equally involved in Tat-induced monocyte migration, while the alpha vbeta3 integrin largely mediates the dendritic cell response to Tat.
Collapse
Affiliation(s)
- R Benelli
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li JM, Shen X, Hu PP, Wang XF. Transforming growth factor beta stimulates the human immunodeficiency virus 1 enhancer and requires NF-kappaB activity. Mol Cell Biol 1998; 18:110-21. [PMID: 9418859 PMCID: PMC121461 DOI: 10.1128/mcb.18.1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) is the prototype of a large superfamily of signaling molecules involved in the regulation of cell growth and differentiation. In certain patients infected with human immunodeficiency virus type 1 (HIV-1), increased levels of TGF-beta promoted the production of virus and also impaired the host immune system. In an effort to understand the signaling events linking TGF-beta action and HIV production, we show here that TGF-beta can stimulate transcription from the HIV-1 long terminal repeat (LTR) promoter through NF-kappaB binding sites in both HaCaT and 300.19 pre-B cells. When introduced into a minimal promoter, NF-kappaB binding sites supported nearly 30-fold activation from the luciferase reporter upon TGF-beta treatment. Electrophoretic mobility shift assay indicated that a major factor binding to the NF-kappaB site is the p50-p65 heterodimeric NF-kappaB in HaCaT cells. Coexpression of Gal4-p65 chimeric proteins supported TGF-beta ligand-dependent gene expression from a luciferase reporter gene driven by Gal4 DNA binding sites. NF-kappaB activity present in HaCaT cells was not affected by TGF-beta treatment as judged by the unchanged DNA binding activity and concentrations of p50 and p65 proteins. Consistently, steady-state levels of IkappaB alpha and IkappaB beta proteins were not changed by TGF-beta treatment. Our results demonstrate that TGF-beta is able to stimulate transcription from the HIV-1 LTR promoter by activating NF-kappaB through a mechanism distinct from the classic NF-kappaB activation mechanism involving the degradation of IkappaB proteins.
Collapse
Affiliation(s)
- J M Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
30
|
Yamaguchi Y, Wada T, Handa H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 1998; 3:9-15. [PMID: 9581978 DOI: 10.1046/j.1365-2443.1998.00162.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DRB is a classic inhibitor of transcription by RNA polymerase II (pol II). Although it has been demonstrated that DRB inhibits the elongation step of transcription, its mode of action has been elusive. DRB also markedly inhibits human immunodeficiency virus (HIV) transcription, by targeting the elongation which is enhanced by the HIV-encoded transactivator Tat. Two factors essential for DRB action have recently been identified. These factors, positive transcription elongation factor b (P-TEFb) and DRB sensitivity-inducing factor (DSIF), positively and negatively regulate pol II elongation, and are likely to be relevant to the function of Tat. In this review, we summarize the recent findings on these factors, and discuss a possible model for the molecular mechanism of DRB action.
Collapse
Affiliation(s)
- Y Yamaguchi
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
31
|
Barthelemy S, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. RESEARCH IN VIROLOGY 1998; 149:43-52. [PMID: 9561563 DOI: 10.1016/s0923-2516(97)86899-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcription of HIV1 provirus is regulated by both cellular and viral factors. Various evidence suggests that Tat protein secreted by HIV1-infected cells may have additional action in the pathogenesis of AIDS because of its ability to also be taken up by non-infected cells. Curcumin [diferuloylmethane or 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is the yellow pigment in turmeric Curcuma longa (Linn). It exhibits a variety of pharmacological effects including antiinflammatory and antiretroviral activities. Here, we demonstrated that curcumin used at 10 to 100 nM inhibited Tat transactivation of HIV1-LTR lacZ by 70 to 80% in HeLa cells. In order to develop more efficient curcumin derivatives, we synthesized and tested in the same experimental system the inhibitory activity of reduced curcumin (C1), which lacks the spatial structure of curcumin; allyl-curcumin (C2), which possesses a condensed allyl derivative on curcumin that plays the role of metal chelator; and tocopheryl-curcumin (C3), which enhances the antioxidant activity of the molecule. Results obtained with C1, C2 and C3 curcumin derivatives showed a significant inhibition (70 to 85%) of Tat transactivation. Despite the fact that tocopheryl-curcumin (C3) failed to scavenge O2.-, this curcumin derivative exhibited the most activity; 70% inhibition was obtained at 1 nM, while only 35% inhibition was obtained with the curcumin.
Collapse
Affiliation(s)
- S Barthelemy
- Laboratoire de Synthèse, Physico-Chimie et Radiobiologie, Faculté de Pharmacie, Toulouse, France
| | | | | | | | | | | |
Collapse
|
32
|
Huang L, Li CJ, Pardee AB. Human immunodeficiency virus type 1 TAT protein activates B lymphocytes. Biochem Biophys Res Commun 1997; 237:461-4. [PMID: 9268734 DOI: 10.1006/bbrc.1997.7162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 infection causes B cell hyperactivation. Tat protein, a potent virus-encoded transactivator, has the potential to activate B cells based on its pleiotropic biological properties: (1) Tat regulates cellular gene expression; (2) Tat modulates growth of various cell types; and (3) Tat is released from infected T cells and acts on bystander uninfected cells in a paracrine fashion. To test a possible activating effect of Tat on B cells, we examined the effect of purified Tat on the expression of Fas, an activation marker, in B cells in primary culture. Flow cytometric analysis demonstrated that treatment of peripheral blood mononuclear cells with Tat, at concentrations in the range of extracellular Tat as determined in vivo, up-regulated Fas expression in B cells. Reverse transcriptase-PCR further demonstrated that Tat induced Fas expression in B cells at the mRNA level. These results indicate that exogenous Tat alone can activate B cells, suggesting that Tat may contribute to B cell hyperactivation during the early stage of HIV-1 infection and activation-induced B cell death mediated by Fas during the late stage of HIV-1 infection.
Collapse
Affiliation(s)
- L Huang
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts, 02115, USA.
| | | | | |
Collapse
|
33
|
Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E. Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol 1997; 71:6113-27. [PMID: 9223506 PMCID: PMC191872 DOI: 10.1128/jvi.71.8.6113-6127.1997] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
When transcriptionally active, the human immunodeficiency virus (HIV) promoter contains a nucleosome-free region encompassing both the promoter/enhancer region and a large region (255 nucleotides [nt]) downstream of the transcription start site. We have previously identified new binding sites for transcription factors downstream of the transcription start site (nt 465 to 720): three AP-1 sites (I, II, and III), an AP3-like motif (AP3-L), a downstream binding factor (DBF) site, and juxtaposed Sp1 sites. Here, we show that the DBF site is an interferon-responsive factor (IRF) binding site and that the AP3-L motif binds the T-cell-specific factor NF-AT. Mutations that abolish the binding of each factor to its cognate site are introduced in an infectious HIV-1 molecular clone to study their effect on HIV-1 transcription and replication. Individual mutation of the DBF or AP3-L site as well as the double mutation AP-1(III)/AP3-L did not affect HIV-1 replication compared to that of the wild-type virus. In contrast, proviruses carrying mutations in the Sp1 sites were totally defective in terms of replication. Virus production occurred with slightly delayed kinetics for viruses containing combined mutations in the AP-1(III), AP3-L, and DBF sites and in the AP3-L and DBF-sites, whereas viruses mutated in the AP-1(I,II,III) and AP3-L sites and in the AP-1(I,II,III), AP3-L, and DBF sites exhibited a severely defective replicative phenotype. No RNA-packaging defect could be measured for any of the mutant viruses as determined by quantification of their HIV genomic RNA. Measurement of the transcriptional activity of the HIV-1 promoter after transient transfection of the HIV-1 provirus DNA or of long terminal repeat-luciferase constructs showed a positive correlation between the transcriptional and the replication defects for most mutants.
Collapse
Affiliation(s)
- C Van Lint
- The Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chinen J, Aguilar-Cordova E, Ng-Tang D, Lewis DE, Belmont JW. Protection of primary human T cells from HIV infection by Trev: a transdominant fusion gene. Hum Gene Ther 1997; 8:861-8. [PMID: 9143912 DOI: 10.1089/hum.1997.8.7-861] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gene therapy is one of several approaches that are being tested in the search for an effective anti-human immunodeficiency virus (HIV) treatment. In this strategy, a "protective" gene would be introduced into target cells, rendering them relatively resistance to the virus-induced cytopathicity. Tat and Rev are viral proteins essential for HIV gene expression. Tat increases viral gene transcription and Rev is responsible for the nuclear export of mRNA encoding structural viral proteins. A fusion protein (Trev) was constructed, joining Tat and Rev transdominant mutant gene sequences. Previously, we showed that Trev inhibits both Tat and Rev activities in Jurkat T cells. To determine whether Trev could inhibit HIV replication in primary cells, we transferred the trev gene to peripheral blood lymphocytes and challenged them with different HIV strains. Levels of HIV p24 antigen (Ag) were reduced 4- to 15-fold in cultures of Trev-CD4+ T cells infected with two HIV primary clinical isolates and were not detectable in cultures infected with HIV strains NL4-3 and SF2. In contrast, cultures of nontransduced CD4+ T cells infected with the same viruses had levels of HIV p24 Ag up to 10 ng/ml. Trev-transduced CD4+ T cells demonstrated increased survival following HIV challenge for the length of the experiments (30 days). We did not observe rapid emergence of Trev-resistant HIV in our cultures. Following HIV challenge, cell-associated Trev protein was increased, supporting the hypothesis that cells surviving Trev expression provided a cell survival advantage. This work showed that Trev was able to inhibit HIV replication in primary CD4+ T cells, and, therefore the trev gene could be a candidate for gene therapy against HIV.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/virology
- Cell Line
- Cells, Cultured
- Cloning, Molecular
- Cytopathogenic Effect, Viral
- Gene Expression
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV/physiology
- HeLa Cells
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/virology
- Mutation
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J Chinen
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Li YP. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 1997; 71:4098-102. [PMID: 9094689 PMCID: PMC191564 DOI: 10.1128/jvi.71.5.4098-4102.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleolar shuttle protein B23 was found to bind to human immunodeficiency virus protein Tat, and this binding required the nucleolar localization motif of Tat. A fusion protein containing the B23 binding domain and beta-galactosidase caused mislocalization of Tat to the cytoplasm and inhibited the transactivation activity of Tat. These data suggest that B23 is a human factor necessary for the nucleolar localization of Tat.
Collapse
Affiliation(s)
- Y P Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
36
|
Morgavi P, Bonifaci N, Pagani M, Costigliolo S, Sitia R, Rubartelli A. The association of HIV-1 Tat with nuclei is regulated by Ca2+ ions and cytosolic factors. J Biol Chem 1997; 272:11256-60. [PMID: 9111028 DOI: 10.1074/jbc.272.17.11256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat, a nuclear transcription factor, has been shown to function extracellularly, implying that some Tat molecules escape nuclear import and are secreted. This raises the question of what regulates, in HIV-1-infected cells, the nuclear targeting of the polypeptide. Here we show that cytosolic components activated by Ca2+ ions are required to reveal the karyophilic properties of Tat: in vitro translated Tat molecules do not associate with isolated nuclei unless preincubated with Ca2+. Moreover, Ca2+ ions induce karyophilicity of chemically synthesized Tat molecules only upon addition of cytosolic extracts. The Ca2+-induced karyophilicity is prevented by inhibitors of either tyrosine kinases (herbimycin A and genistein) or tyrosine phosphatases (vanadate), suggesting the involvement of Ca2+-dependent phosphorylation/dephosphorylation events. In line with these observations, the transcriptional activity of Tat is inhibited by treatment with either vanadate or genistein. The same occurs with Tat mutants lacking either one or both the two tyrosine residues (positions 26 and 47). Hence, Ca2+-dependent tyrosine kinase(s) and phosphatase(s) act on accessory cellular protein(s), which in turn are responsible of Tat karyophilicity.
Collapse
Affiliation(s)
- P Morgavi
- National Institute of Cancer Research, 16132 Genova, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Dal Monte P, Landini MP, Sinclair J, Virelizier JL, Michelson S. TAR and Sp1-independent transactivation of HIV long terminal repeat by the Tat protein in the presence of human cytomegalovirus IE1/IE2. AIDS 1997; 11:297-303. [PMID: 9147420 DOI: 10.1097/00002030-199703110-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The HIV Tat protein is a transcriptional transactivator of the HIV-1 long terminal repeat (LTR) promoter element. Its activity depends on its direct interaction with the trans-activation response (TAR) element, although TAR-independent activation by Tat has been demonstrated in different cells. Herpesviruses in general and human cytomegalovirus (HCMV) in particular are often isolated from HIV-1-infected patients and could play a role in the activation of latent HIV and in a subsequent increase in HIV replication. HCMV immediate early gene products (IE1 and IE2) are nuclear phosphoproteins that play a pivotal role in HCMV replication and have been shown to transregulate both viral and cellular gene expression. It has repeatedly been shown that HCMV IE1/IE2 can independently transactivate HIV-1 LTR. The aim of this study was to investigate IE1/IE2 transactivation of HIV-1 LTR in a CD4+ T-cell line in the absence and presence of HIV-1 Tat to establish whether IE1/IE2 can synergize with Tat. METHODS HIV-1 LTR transactivation by HCMV IE1/IE2 in the presence and absence of HIV-1 Tat was determined by transient transfection experiments of J-Jhan lymphoblastoid cells with a series of different expression vectors. RESULTS We found a strong synergistic transactivation between HIV Tat and the IE1-IE2 complex on HIV LTR activity using vectors driven either by wild-type LTR or by the nuclear factor NF-kappa(B) response element-mutated HIV LTR. IE1/IE2 synergism with HIV Tat was also observed in Sp1 binding site-mutated for TAR-deleted LTR, which cannot be activated by Tat alone. This cooperation is abolished when the region in IE2 that binds the TATA box binding protein is deleted. CONCLUSIONS The results obtained indicate that Sp1-binding and TAR sequences are not strictly required for Tat responsiveness when Tat is directed to the HIV promoter by HCMV IE1-IE2. This synergistic effect is mediated by the IE2 and TATA-binding region, and could play a major role in HIV activation when cells are infected by both viruses, a feature often observed in AIDS patients.
Collapse
Affiliation(s)
- P Dal Monte
- Department of Clinical and Experimental Medicine, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
38
|
Liu YZ, Latchman DS. The octamer-binding proteins Oct-1 and Oct-2 repress the HIV long terminal repeat promoter and its transactivation by Tat. Biochem J 1997; 322 ( Pt 1):155-8. [PMID: 9078256 PMCID: PMC1218171 DOI: 10.1042/bj3220155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the HIV-1 long terminal repeat (LTR) contains four potential binding sites for the octamer-binding protein, Oct-1, which is known to interact with the HIV-1 Tat protein, the effect of the Oct-1 factor on HIV LTR-driven gene expression has not previously been reported. We show here that both Oct-1, and to a lesser extent the related Oct-2 protein, can repress both the basal activity of the HIV-1 LTR and its transactivation by Tat. These effects are still observed with an HIV LTR construct containing only a single octamer-binding site located between the TATA box and the transcriptional start site. The stronger inhibitory effect of Oct-1 on both these promoters is dependent upon its C-terminal region which cannot be effectively replaced by the equivalent region of Oct-2. These effects are discussed in terms of the regulation of HIV LTR activity in different cell types and in response to T-cell activation.
Collapse
Affiliation(s)
- Y Z Liu
- Department of Molecular Pathology, University College London Medical School, U.K
| | | |
Collapse
|
39
|
Rubartelli A, Sitia R. Secretion of Mammalian Proteins that Lack a Signal Sequence. UNUSUAL SECRETORY PATHWAYS: FROM BACTERIA TO MAN 1997. [DOI: 10.1007/978-3-662-22581-3_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Chen G, Rothnie HM, He X, Hohn T, Fütterer J. Efficient transcription from the rice tungro bacilliform virus promoter requires elements downstream of the transcription start site. J Virol 1996; 70:8411-21. [PMID: 8970962 PMCID: PMC190930 DOI: 10.1128/jvi.70.12.8411-8421.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Elements downstream of the transcription start site enhance the activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. This enhancer region was located to the first 90 nucleotides of the RTBV leader sequence. Within this region, at least two components which act together to enhance expression from the RTBV promoter could be identified. One is a position- and orientation-independent DNA element within a CT-rich region, and the other is a position-dependent element. Either element was found to be capable of acting independently on a heterologous promoter. The enhancer activity of the DNA element correlates with specific binding of nuclear proteins. Nuclear proteins also recognize an RNA transcript covering the first 90 nucleotides of the RTBV leader.
Collapse
Affiliation(s)
- G Chen
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Kingsman SM, Kingsman AJ. The regulation of human immunodeficiency virus type-1 gene expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:491-507. [PMID: 8856047 DOI: 10.1111/j.1432-1033.1996.0491h.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite 15 years of intensive research we still do not have an effective treatment for AIDS, the disease caused by human immunodeficiency virus (HIV). Recent research is, however, revealing some of the secrets of the replication cycle of this complex retrovirus, and this may lead to the development of novel antiviral compounds. In particular the virus uses strategies for gene expression that seem to be unique in the eukaryotic world. These involve the use of virally encoded regulatory proteins that mediate their effects through interactions with specific viral target sequences present in the messenger RNA rather than in the proviral DNA. If there are no cellular counterparts of these RNA-dependent gene-regulation pathways then they offer excellent targets for the development of antiviral compounds. The viral promoter is also subject to complex regulation by combinations of cellular factors that may be functional in different cell types and at different cell states. Selective interference of specific cellular factors may also provide a route to inhibiting viral replication without disrupting normal cellular functions. The aim of this review is to discuss the regulation of HIV-1 gene expression and, as far as it is possible, to relate the observations to viral pathogenesis. Some areas of research into the regulation of HIV-1 replication have generated controversy and rather than rehearsing this controversy we have imposed our own bias on the field. To redress the balance and to give a broader view of HIV-1 replication and pathogenesis we refer you to a number of excellent reviews [Cullen, B. R. (1992) Microbiol. Rev. 56, 375-394; Levy, J. A. (1993) Microbiol. Rev. 57, 183-394; Antoni, B. A., Stein, S. & Rabson, A. B. (1994) Adv. Virus Res. 43, 53-145; Rosen, C. A. & Fenyoe, E. M. (1995) AIDS (Phila.) 9, S1-S3].
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/prevention & control
- Acquired Immunodeficiency Syndrome/therapy
- Amino Acid Sequence
- Base Sequence
- Enhancer Elements, Genetic
- Gene Expression Regulation, Viral
- Gene Products, tat/physiology
- Genome, Viral
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA-Binding Proteins/metabolism
- TATA Box
- Transcription, Genetic
- Virus Replication
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- S M Kingsman
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
42
|
Suñé C, García-Blanco MA. Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol 1995; 69:6572-6. [PMID: 7666561 PMCID: PMC189562 DOI: 10.1128/jvi.69.10.6572-6576.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sp1-DNA binding sites have been reported to be essential for basal and Tat-activated transcription of the human immunodeficiency virus type 1 long terminal repeat (LTR). The role of the Sp1 transcription factor itself in regulation of the retroviral LTR, however, has not been clearly defined. It is now known, for instance, that the Sp1-DNA binding sites function also as thyroid hormone receptor response elements (V. Desay-Yajnik and H. H. Samuels, Mol. Cell. Biol. 13:5057-5069, 1993). In this report, we present data that demonstrate a strict requirement for Sp1 for both basal transcription and Tat-mediated trans activation of the human immunodeficiency virus type 1 LTR in vitro.
Collapse
Affiliation(s)
- C Suñé
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
43
|
Suñé C, García-Blanco MA. Transcriptional trans activation by human immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors. J Virol 1995; 69:3098-107. [PMID: 7707538 PMCID: PMC189011 DOI: 10.1128/jvi.69.5.3098-3107.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of human immunodeficiency virus type 1 (HIV-1) genes is regulated by the trans activator Tat. Tat exerts its effects by increasing the rate of transcription, but the mechanism by which it does so is still unknown. To study the cellular factors required for Tat trans activation, we have expressed functional Gst-Tat fusion protein and used it to construct affinity columns. Our findings are as follows. (i) A Gst-Tat affinity matrix depleted HeLa nuclear extracts of a factor(s) required for Tat function. A Tat mutant bearing the missense mutation lysine to alanine at position 41 was incapable of this depletion. (ii) Tat trans activation was recovered by addition of unfractionated nuclear extract, the 0.5 M KCl elution fraction from the Tat affinity column, or sedimentation gradient fractions of HeLa extracts. The activity from the gradients sedimented with an apparent molecular mass of 200 kDa. (iii) Tat trans activation could not be recovered by use of recombinant human TATA-binding protein or partially purified TFIID. (iv) trans activation by Tat was blocked by heating of the nuclear extract under conditions in which basal transcription was not decreased. Our data demonstrate for the first time the existence of unique Tat coactivators distinct from factors required for general basal transcription.
Collapse
Affiliation(s)
- C Suñé
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
44
|
Sheridan PL, Schorpp M, Voz ML, Jones KA. Cloning of an SNF2/SWI2-related protein that binds specifically to the SPH motifs of the SV40 enhancer and to the HIV-1 promoter. J Biol Chem 1995; 270:4575-87. [PMID: 7876228 DOI: 10.1074/jbc.270.9.4575] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have isolated a human cDNA clone encoding HIP116, a protein that binds to the SPH repeats of the SV40 enhancer and to the TATA/inhibitor region of the human immunodeficiency virus (HIV)-1 promoter. The predicted HIP116 protein is related to the yeast SNF2/SWI2 transcription factor and to other members of this extended family and contains seven domains similar to those found in the vaccinia NTP1 ATPase. Interestingly, HIP116 also contains a C3HC4 zinc-binding motif (RING finger) interspersed between the ATPase motifs in an arrangement similar to that found in the yeast RAD5 and RAD16 proteins. The HIP116 amino terminus is unique among the members of this family, and houses a specific DNA-binding domain. Antiserum raised against HIP116 recognizes a 116-kDa nuclear protein in Western blots and specifically supershifts SV40 and HIV-1 protein-DNA complexes in gel shift experiments. The binding site for HIP116 on the SV40 enhancer directly overlaps the site for TEF-1, and like TEF-1, binding of HIP116 to the SV40 enhancer is destroyed by mutations that inhibit SPH enhancer activity in vivo. Purified fractions of HIP116 display strong ATPase activity that is preferentially stimulated by SPH DNA and can be inhibited specifically by antibodies to HIP116. These findings suggest that HIP116 might affect transcription, directly or indirectly, by acting as a DNA binding site-specific ATPase.
Collapse
Affiliation(s)
- P L Sheridan
- Salk Institute for Biological Studies, La Jolla, California 92037
| | | | | | | |
Collapse
|
45
|
Herrmann CH, Rice AP. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 1995; 69:1612-20. [PMID: 7853496 PMCID: PMC188757 DOI: 10.1128/jvi.69.3.1612-1620.1995] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Efficient replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) requires the virus transactivator proteins known as Tat. In order to understand the molecular mechanisms involved in Tat transactivation, it is essential to identify the cellular target(s) of the Tat activation domain. Using an in vitro kinase assay, we previously identified a cellular protein kinase activity, Tat-associated kinase (TAK), that specifically binds to the activation domains of Tat proteins. Here it is demonstrated that TAK fulfills the genetic criteria established for a Tat cofactor. TAK binds in vitro to the activation domains of the Tat proteins of HIV-1 and HIV-2 and the distantly related lentivirus equine infectious anemia virus but not to mutant Tat proteins that contain nonfunctional activation domains. In addition, it is shown that TAK is sensitive to dichloro-1-beta-D-ribofuranosylbenzimidazole, a nucleoside analog that inhibits a limited number of kinases and is known to inhibit Tat transactivation in vivo and in vitro. We have further identified an in vitro substrate of TAK, the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation of the carboxyl-terminal domain has been proposed to trigger the transition from initiation to active elongation and also to influence later stages during elongation. Taken together, these results imply that TAK is a very promising candidate for a cellular factor that mediates Tat transactivation.
Collapse
Affiliation(s)
- C H Herrmann
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030-3498
| | | |
Collapse
|
46
|
McElhinny JA, MacMorran WS, Bren GD, Ten RM, Israel A, Paya CV. Regulation of I kappa B alpha and p105 in monocytes and macrophages persistently infected with human immunodeficiency virus. J Virol 1995; 69:1500-9. [PMID: 7853483 PMCID: PMC188740 DOI: 10.1128/jvi.69.3.1500-1509.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms regulating human immunodeficiency virus (HIV) persistence in human monocytes/macrophages are partially understood. Persistent HIV infection of U937 monocytic cells results in NF-kappa B activation. Whether virus-induced NF-kappa B activation is a mechanism that favors continuous viral replication in macrophages remains unknown. To further delineate the molecular mechanisms involved in the activation of NF-kappa B in HIV-infected monocytes and macrophages, we have focused on the regulation of the I kappa B molecules. First, we show that persistent HIV infection results in the activation of NF-kappa B not only in monocytic cells but also in macrophages. In HIV-infected cells, I kappa B alpha protein levels are decreased secondary to enhanced protein degradation. This parallels the increased I kappa B alpha synthesis secondary to increased I kappa B alpha gene transcription, i.e., increased RNA and transcriptional activity of its promoter-enhancer. Another protein with I kappa B function, p105, is also modified in HIV-infected cells: p105 and p50 steady-state protein levels are increased as a result of increased synthesis and proteolytic processing of p105. Transcriptional activity of p105 is also increased in infected cells and is also mediated by NF-kappa B through a specific kappa B motif. These results demonstrate the existence of a triple autoregulatory loop in monocytes and macrophages involving HIV, p105 and p50, and MAD3, with the end result of persistent NF-kappa B activation and viral persistence. Furthermore, persistent HIV infection of monocytes and macrophages provides a useful model with which to study concomitant modifications of different I kappa B molecules.
Collapse
Affiliation(s)
- J A McElhinny
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | |
Collapse
|
47
|
Rhim H, Rice AP. HIV-1 Tat protein is able to efficiently transactivate the HIV-2 LTR through a TAR RNA element lacking both dinucleotide bulge binding sites. Virology 1995; 206:673-8. [PMID: 7831824 DOI: 10.1016/s0042-6822(95)80087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Each of the two stem-loop structures in the HIV-2 TAR (TAR-2) RNA element contains a dinucleotide bulge that specifies a binding site in vitro for the HIV-2 Tat transactivator protein. A TAR-2 RNA with both bulges deleted is very weakly transactivated in vivo by the HIV-2 Tat protein. To gain insight into general features of Tat protein:TAR RNA interactions, we have analyzed the significance of the dinucleotide bulges in TAR-2 RNA for in vitro binding and in vivo transactivation by the related HIV-1 Tat protein. The HIV-1 Tat protein has been shown previously to bind efficiently to wild-type TAR-2 RNA and fully transactivates the HIV-2 LTR. We found that the 5' proximal bulge and the 3' distal bulge appear to specify a high and low affinity binding site in vitro, respectively, for the HIV-1 Tat protein. Wild-type TAR-2 RNA was found to be able to bind HIV-1 Tat proteins simultaneously at each bulge binding site in vitro. A TAR-2 RNA with both bulges deleted was greatly defective for in vitro binding by the HIV-1 Tat protein. Surprisingly, the TAR-2 RNA with both bulges deleted was efficiently transactivated in vivo by the HIV-1 Tat protein, indicating that the HIV-1 Tat protein (but not HIV-2 Tat protein) is able to strongly activate transcription of a TAR RNA with no apparent bulge binding site.
Collapse
Affiliation(s)
- H Rhim
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
48
|
Dragic T, Hazan U, Alizon M. [14] Detection of cell fusion mediated by the envelopes of human retroviruses by transactivation of a reporter gene. VIRAL GENE TECHNIQUES 1995. [DOI: 10.1016/s1067-2389(06)80046-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Chirmule N, Than S, Khan SA, Pahwa S. Human immunodeficiency virus Tat induces functional unresponsiveness in T cells. J Virol 1995; 69:492-8. [PMID: 7983746 PMCID: PMC188597 DOI: 10.1128/jvi.69.1.492-498.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Soluble proteins of the human immunodeficiency virus (HIV) might play a significant role in the pathogenesis of HIV infection. The addition of synthetic Tat peptides, but not that of the recombinant Nef or Vif protein, inhibited proliferative responses of CD4+ tetanus antigen-specific, exogenous interleukin-2 (IL-2)-independent T-cell clones in a dose-dependent manner. In addition, Tat peptides inhibited the anti-CD3 monoclonal antibody-induced proliferative responses of both purified CD4+ and CD8+ T cells. Tat did not affect proliferative responses induced by phorbol myristate acetate plus ionomycin. The Tat peptides at the concentrations used (0.1 to 3 micrograms/ml) did not affect the viability of the cells as determined by trypan blue exclusion. Treatment of Tat peptides with polyclonal Tat antibodies abrogated the inhibitory effect of Tat. Soluble Tat proteins secreted by HeLa cells transfected with the tat gene also inhibited antigen-induced proliferation of the T-cell clones. Tat inhibited the anti-CD3 monoclonal antibody-induced IL-2 mRNA expression and IL-2 secretion but did not affect IL-2 receptor alpha-chain mRNA or protein expression on peripheral blood T cells. Finally, treatment of T-cell clones with the Tat peptide did not affect the antigen-induced increase in intracellular calcium, hydrolysis of phosphatidyl inositol to inositol trisphosphate, or translocation of protein kinase C from the cytosol to the membrane. These studies demonstrate that the mechanism of the Tat-mediated inhibition of T-cell functions involves a phospholipase C gamma 1-independent pathway.
Collapse
Affiliation(s)
- N Chirmule
- Department of Pediatrics, North Shore University Hospital-Cornell University Medical College, Manhasset, New York 11030
| | | | | | | |
Collapse
|
50
|
Klein U, Salvador ML, Bogorad L. Activity of the Chlamydomonas chloroplast rbcL gene promoter is enhanced by a remote sequence element. Proc Natl Acad Sci U S A 1994; 91:10819-23. [PMID: 7971968 PMCID: PMC45117 DOI: 10.1073/pnas.91.23.10819] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The chloroplast gene rbcL encodes the large subunit of ribulose bisphosphate carboxylase. In Chlamydomonas reinhardtii, this gene is transcribed more actively than any other protein-encoding chloroplast gene studied to date. To delineate the rbcL gene promoter, chimeric reporter genes containing fragments of the 5' region of the rbcL gene fused to the coding sequence of the bacterial uidA gene, encoding beta-glucuronidase, were stably introduced into the chloroplast genome of Chlamydomonas by microprojectile bombardment. The relative transcription rates of endogenous and introduced genes were determined in transgenic cell lines in vivo. The basic rbcL promoter is located within the region of the gene extending from positions -18 to +63, taking position +1 as the site of initiation of transcription. A chimeric reporter gene containing only the basic promoter is transcribed only 1-15% as actively as the endogenous rbcL gene, depending on the conditions under which cells are grown and tested. However, a chimeric gene containing rbcL sequences extending to position +170 or beyond is transcribed at about the same rate as the endogenous gene. Deletion of the sequence between positions +170 and +126, well within the protein-encoding region, reduces the rate of transcription to that of reporter genes with the basic promoter alone.
Collapse
Affiliation(s)
- U Klein
- Biological Laboratories, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|