1
|
Altvater-Hughes TE, Hodgins HP, Hodgins DC, Bauman CA, Mallard BA. Blood and colostral IgM and IgG B cell repertoires in high, average, and low immune responder Holstein Friesian cows and heifers. Vet Immunol Immunopathol 2025; 283:110926. [PMID: 40158251 DOI: 10.1016/j.vetimm.2025.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
In dairy cattle, genetic selection for higher antibody-mediated (AMIR) and cell-mediated (CMIR) immune responses can enhance disease resistance. Cattle produce a unique subset of B cells with B cell receptors with ultralong complementarity determining regions 3 (CDR3). Antibodies with these specialized structures have superior virus neutralization characteristics. Published studies of B cell receptors with ultralong CDR3s in dairy cattle have been limited by the number of animals examined (1-4 animals in each study), and by varying breeds and ages. The objective of this study was to assess the percentage of IgM and IgG sequences with ultralong CDR3s, and gene usage in blood and colostral lymphocytes from cows classified as high, average, and low immune responders based on their estimated breeding values. B lymphocytes were isolated from the blood of 14 heifers and 7 cows. In addition, cells were isolated from colostrum of the 7 cows. RNA was extracted, cDNA was produced, and IgM and IgG transcripts were amplified using polymerase chain reactions. Amplicons were sequenced using Oxford Nanopore long-read sequencing. In sequences derived from blood B cells, AMIR estimated breeding values were significantly and positively associated with higher percentages of IgG ultralong CDR3 sequences. High AMIR cows (n = 3) also produced colostrum with a significantly greater percentage of IgG ultralong CDR3 sequences (18.0 %) than average AMIR cows (n = 4, mean 8.8 %). Larger studies are needed to investigate the association between percentages of B cells expressing IgG ultralong CDR3s and observed health traits.
Collapse
Affiliation(s)
- T E Altvater-Hughes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - H P Hodgins
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - C A Bauman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Altvater-Hughes TE, Hodgins HP, Hodgins DC, Bauman CA, Paibomesai MA, Mallard BA. Investigating the IgM and IgG B Cell Receptor Repertoires and Expression of Ultralong Complementarity Determining Region 3 in Colostrum and Blood from Holstein-Friesian Cows at Calving. Animals (Basel) 2024; 14:2841. [PMID: 39409790 PMCID: PMC11475791 DOI: 10.3390/ani14192841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
In cattle, colostral maternal immunoglobulins and lymphocytes transfer across the neonate's intestinal epithelium to provide protection against pathogens. This study aimed to compare repertoires of B cell populations in blood and colostrum in cows for the first time, with an emphasis on ultralong complementarity determining region 3 (CDR3, ≥40 amino acids). Blood mononuclear cells (BMCs, n= 7) and colostral cells (n = 7) were isolated from Holstein-Friesian dairy cows. Magnetic-activated cell sorting was used to capture IgM and IgG B cells from BMCs. Colostral cells were harvested by centrifugation. RNA was extracted and cDNA was produced; IgM and IgG transcripts were amplified using polymerase chain reactions. Amplicons were sequenced using the Nanopore Native barcoding kit 24 V14 and MinION with R10.4 flow cells. In colostrum, there was a significantly greater percentage of IgM B cells with ultralong CDR3s (8.09% ± 1.73 standard error of the mean) compared to blood (4.22% ± 0.70, p = 0.05). There was a significantly greater percentage of IgG B cells in colostrum with ultralong CDR3s (12.98% ± 1.98) compared to blood (6.61% ± 1.11, p = 0.05). A higher percentage of IgM and IgG B cells with ultralong CDR3s in colostrum may be indicative of a potential role in protecting the neonate.
Collapse
Affiliation(s)
- Tess E. Altvater-Hughes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| | - Harold P. Hodgins
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| | - Cathy A. Bauman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| |
Collapse
|
3
|
Cheifetz TR, Knoop KA. The right educational environment: Oral tolerance in early life. Immunol Rev 2024; 326:17-34. [PMID: 39001685 PMCID: PMC11436309 DOI: 10.1111/imr.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a "window of tolerance," which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the "periweaning" period (postnatal day 11-21 in mice, 4-6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs-short-chain fatty acids, tryptophan metabolites, and bile acids-peak during the periweaning phase. Further, breastmilk immunoglobulins-IgA and IgG-regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.
Collapse
Affiliation(s)
- Talia R. Cheifetz
- Department of Immunology, Mayo Clinic, Rochester MN
- Mayo Graduate School of Biomedical Sciences, Rochester MN
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN
- Department of Pediatrics, Mayo Clinic, Rochester MN
| |
Collapse
|
4
|
Gormley A, Jang KB, Garavito-Duarte Y, Deng Z, Kim SW. Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals (Basel) 2024; 14:1858. [PMID: 38997970 PMCID: PMC11240334 DOI: 10.3390/ani14131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The objectives of this review are to identify the nutritional challenges faced by modern sows and present potential solutions to mitigate excessive maternal tissue loss and reproductive failure as it relates to recent genetic improvements. Current feeding programs have limitations to support the rapid genetic improvements in reproductive performance for modern sows. Since 2012, both litter size at birth and fetal weight have increased by 2.26 pigs per litter and 0.22 kg per piglet, respectively, thereby increasing the nutrient needs for sows during gestation and lactation. Prediction models generated in this review predict that modern sows would need 31% more lysine during gestation when compared with current feeding programs. Physiological challenges facing modern sows are also addressed in this review. High oxidative stress, pelvic organ prolapse, and lameness can directly affect the sow, whereas these physiological challenges can have negative impacts on colostrum and milk quality. In response, there is growing interest in investigating the functional roles of select bioactive compounds as feed additives to mitigate the severity of these challenges. Selenium sources, catechins, and select plant extracts have been utilized to reduce oxidative stress, calcium chloride and phytase have been used to mitigate pelvic organ prolapse and lameness, algae and yeast derivatives have been used to improve colostrum and milk quality, and fiber sources and probiotics have been commonly utilized to improve sow intestinal health. Collectively, this review demonstrates the unique challenges associated with managing the feeding programs for modern sows and the opportunities for revision of the amino acid requirements as well as the use of select bioactive compounds to improve reproductive performance.
Collapse
Affiliation(s)
| | | | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (A.G.); (K.B.J.); (Y.G.-D.); (Z.D.)
| |
Collapse
|
5
|
Caffé B, Blackwell A, Fehrenkamp BD, Williams JE, Pace RM, Lackey KA, Ruiz L, Rodríguez JM, McGuire MA, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kvist LJ, Otoo GE, Pareja RG, Bode L, Gebeyehu D, Gindola DK, Boothman S, Flores K, McGuire MK, Meehan CL. Human milk immune factors, maternal nutritional status, and infant sex: The INSPIRE study. Am J Hum Biol 2023; 35:e23943. [PMID: 37358306 PMCID: PMC10749986 DOI: 10.1002/ajhb.23943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
OBJECTIVES Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFβ2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition. METHODS We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed-effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects. RESULTS IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified. CONCLUSIONS IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers-Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.
Collapse
Affiliation(s)
- Beatrice Caffé
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Bethaney D Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
- Washington, Wyoming, Alaska, Montana, Idaho (WWAMI) Medical Education Program, University of Idaho, Moscow, Idaho, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ryan M Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Kimberly A Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Microhealth Group, Oviedo, Spain
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Mark A McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, UK
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | | | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Dubale Gebeyehu
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Debela K Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Sarah Boothman
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Katherine Flores
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
7
|
Jarosz Ł, Ciszewski A, Marek A, Grądzki Z, Kaczmarek B, Rysiak A. The Effect of Feed Supplementation with EM Bokashi® Multimicrobial Probiotic Preparation on Selected Parameters of Sow Colostrum and Milk as Indicators of the Specific and Nonspecific Immune Response. Probiotics Antimicrob Proteins 2022; 14:1029-1041. [PMID: 34596883 PMCID: PMC9671987 DOI: 10.1007/s12602-021-09850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of the study was to determine the effect of EM Bokashi® on selected parameters of the specific and nonspecific immune response of sows by in colostrum and milk samples. The percentage of cells with expression of CD19+, CD5+CD19+, CD21+, SWC3a (macrophage/monocyte), and CD11b+ molecules on the monocytes and granulocytes as well as the concentrations of lysozyme and acute phase proteins - serum amyloid-A (SAA) and haptoglobin (Hp) were evaluated. The study was carried out on a commercial pig farm, including 150 sows (Polish Large White × Polish Landrace) at the age of 2-4 years. Sixty female sows were divided into two groups: I - control and II - experimental. For the experimental group, a probiotic in the form of the preparation EM Bokashi® in the amount of 10 kg/tonne of feed was added to the basal feed from mating to weaning. The material for the study consisted of colostrum and milk. The samples were collected from all sows at 0, 24, 48, 72, 96, 120, 144, and 168 h after parturition. The study showed that exposure of the pregnant sow to the probiotic microbes contained in EM Bokashi® significantly affects the immunological quality of the colostrum and milk and caused an increase in the percentage of the subpopulations of B cells with CD19+, CD21+, and CD5+CD19+ expression in the colostrum and milk, which demonstrates an increase in the protective potential of colostrum and indicates stimulation of humoral immune mechanisms that protect the sow and the piglets against infections.
Collapse
Affiliation(s)
- Łukasz Jarosz
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Artur Ciszewski
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Agnieszka Marek
- grid.411201.70000 0000 8816 7059Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Zbigniew Grądzki
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Beata Kaczmarek
- grid.411201.70000 0000 8816 7059Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna Rysiak
- grid.29328.320000 0004 1937 1303Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
8
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
10
|
Ke C, Ma Y, Pan D, Wan Z, Feng T, Yu D, Liu X, Wang H, Du M, Huang L, Zhang Y, Du L, Wang X, Li K, Yu D, Zhang M, Huang J, Qu J, Ren L, Hu Y, Cao G, Hu X, Wu S, Han H, Zhao Y. FcRn is not the receptor mediating the transfer of serum IgG to colostrum in pigs. Immunology 2021; 163:448-459. [PMID: 33738807 DOI: 10.1111/imm.13328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
In contrast to humans or rabbits, in which maternal IgG is transmitted to offspring prenatally via the placenta or the yolk sac, large domestic animals such as pigs, cows and sheep transmit IgG exclusively through colostrum feeding after delivery. The extremely high IgG content in colostrum is absorbed by newborns via the small intestine. Although it is widely accepted that the neonatal Fc receptor, FcRn, is the receptor mediating IgG transfer across both the placenta and small intestine, it remains unclear whether FcRn also mediates serum IgG transfer across the mammary barrier to colostrum/milk, especially in large domestic animals. In this study, using a FcRn knockout pig model generated with a CRISPR-Cas9-based approach, we clearly demonstrate that FcRn is not responsible for the IgG transfer from serum to colostrum in pigs, although like in other mammals, it is involved in IgG homeostasis and mediates IgG absorption in the small intestine of newborns.
Collapse
Affiliation(s)
- Cuncun Ke
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zihui Wan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tao Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Haitao Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Minjie Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linhua Huang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yifu Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xifeng Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Kongpan Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junwei Qu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Gengsheng Cao
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Differences in Intestinal Barrier Development between Intrauterine Growth Restricted and Normal Birth Weight Piglets. Animals (Basel) 2021; 11:ani11040990. [PMID: 33916133 PMCID: PMC8065605 DOI: 10.3390/ani11040990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Animals with intrauterine growth restriction (IUGR) are defined as neonates born at term but with low birth weight and a characteristic shape of the head. A number of structural and functional modifications in the IUGR intestine affecting its digestive and absorptive function and impairing intestinal barrier function have been reported in the past. Far less is known about the immune system in the gut of IUGR pigs. Therefore, the aim of the present study was to evaluate the structures of the immune system of the gut mucosa in IUGR neonates. We found that the immune deficiency in the gut mucosa that results from restricted intrauterine development occurs at postnatal day (PD) 7, but it disappears thereafter within a week. However, all examined IUGR piglets had an increased number of intraepithelial leukocytes in the gut mucosa on PD 14. We have shown that the immune system of the gut of IUGR piglets is able to quickly compensate for the immunological deficiency postnatally and hardly shows any morphological disabilities in later life. Abstract Intrauterine growth restricted (IUGR) piglets are born at term but have low birth mass and a characteristic shape of the head. Impaired general condition, especially in intestinal function, leads to an increase in the occurrence of diarrhoea and high mortality in the first days of life. So far, the mechanical and immunological gut barrier functions in IUGR are poorly understood. The aim of this study was to microscopically evaluate the early postnatal changes in the gut mucosa occurring in IUGR piglets. Whole-tissue small intestine samples were collected from littermate pairs (IUGR and normal) on postnatal day (PD) 7, 14 and 180 and analysed by light microscopy. We found that in the IUGR piglets, the percentage of intraepithelial leukocytes was reduced in the duodenum on PD 7, but it increased in the proximal and middle jejunum both on PD 7 and PD 14, which suggested the development of an inflammatory process. The number of goblet cells was also reduced on PD 14. The average size of the Peyer’s patches in the distal jejunum and ileum showed significant reduction on PD 7 as compared to normal pigs; however, on PD 14, it returned to normal. On PD 180, we did not find any differences in the measured parameters between the IUGR and the normal pigs. In conclusion, we found that in one-week-old IUGR pig neonates, the gut barrier and the immune system structures display signs of retarded development but recover within the second postnatal week of life.
Collapse
|
12
|
Lactoferrin and Immunoglobulin Concentrations in Milk of Gestational Diabetic Mothers. Nutrients 2021; 13:nu13030818. [PMID: 33801292 PMCID: PMC7998843 DOI: 10.3390/nu13030818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with an increased risk of having a high-care newborn and has an impact on maternal wellbeing. This study aimed to assess the effect of GDM on the lactoferrin (LF), secretory immunoglobulin A (SIgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations in early colostrum, colostrum, and transitional milk samples of hyperglycemic (n = 53) and normoglycemic (n = 49) mothers using enzyme-linked immunosorbent assay (ELISA). The concentrations of milk lactoferrin and SIgA, but not IgG and IgM, from hyperglycemic and normoglycemic mothers, showed a similar negative correlation with lactation from the first to the fifteenth day. Apart from early colostral IgG, there were no differences in concentrations of LF and immunoglobulins in milk from hyperglycemic and normoglycemic mothers. For hyperglycemia compensated by diet (GDM G1) or insulin treatment (GDM G2), slight differences were seen for LF and IgG, but not for SIgA and IgM, during an early stage of lactation only. Early colostral IgG and colostral LF of insulin-treated mothers were higher (10.01 ± 4.48 mg/L and 11.50 ± 0.58 g/L, respectively) than for diet-control diabetic mothers (7.65 ± 5.67 mg/L and 8.05 ± 1.38 g/L, respectively). GDM of mothers does not have a significant impact on immunological quality of early milk.
Collapse
|
13
|
Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms 2020; 8:microorganisms8121883. [PMID: 33260718 PMCID: PMC7760247 DOI: 10.3390/microorganisms8121883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine mastitis remains a primary focus of dairy cattle disease research due to its considerable negative economic impact on the dairy industry. Subclinical mastitis (SCM), commonly caused by Staphylococcus aureus, lacks overt clinical signs and the diagnosis is based on bacteriological culture and somatic cell counts of milk, both of which have limitations. The main objective of this study was to identify, characterize and quantify the differential abundance of milk whey proteins from cows with S. aureus SCM compared to whey from healthy cows. Using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with liquid chromatography and tandem mass spectrometry, 28 high-abundant proteins were detected in whey from mastitic milk, 9 of which had host defense functions. These included acute phase proteins involved in innate immunity and antimicrobial functions (e.g., serotransferrin, complement C3, fibrinogen gamma-B chain and cathepsin B), and proteins associated with the immune response to pathogens (e.g., polymeric immunoglobulin receptor-like protein, MHC class I antigen and beta-2-microglobulin). These results provide a unique 2D map of the modulated milk proteome during S. aureus mastitis. The broader importance is that the identified proteins, particularly those with host-defense biological functions, represent potential candidate biomarkers of subclinical mastitis in dairy cows.
Collapse
|
14
|
Characterization of the Maternally Derived Antibody Immunity against Rhdv-2 after Administration in Breeding Does of an Inactivated Vaccine. Vaccines (Basel) 2020; 8:vaccines8030484. [PMID: 32872139 PMCID: PMC7564433 DOI: 10.3390/vaccines8030484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Inactivated strain-specific vaccines have been successfully used to control rabbit haemorrhagic disease (RHD) caused by RHDV-2 in the rabbit industry. It is unknown whether and how vaccination of breeding does contributed to protect the population of young susceptible rabbit kits. The present study investigates whether the immunity against RHDV-2 produced by vaccination of breeding does is transmitted to their progeny and its dynamic once inherited by kits. For this purpose, New Zealand female rabbits of 8–9 weeks of age were allocated into 2 groups of 40 subjects each and bred during 6 reproductive cycles. The first experimental group was vaccinated with a commercially available inactivated vaccine against RHDV-2 whereas the second group was inoculated with PBS. Moreover, the present study was also meant to identify the mechanisms of transmission of that maternal immunity. For this reason, rabbit kits of vaccinated and non-vaccinated breeding does were cross-fostered before milk uptake. The RHDV-2 antibody response was monitored in the blood serum of breeding does and of their kits by competition ELISA (cELISA) and solid-phase ELISA (spELISA). Since it has been clearly demonstrated that cELISA positive rabbits are protected from RHD, we avoided the resorting of the challenge of the kits with RHDV-2. Results showed that RHDV-2 antibodies were inherited by kits up to one year from vaccination of breeding does. Once inherited, the maternally derived antibody response against RHDV-2 lasted at least until 28 days of life. Finally, the study also elucidated that the major contribution to the maternal derived immunity against RHDV-2 in kits was provided during gestation and probably transmitted through transplacental mechanisms although lactation provided a little contribution to it. The present study contributed to elucidate the characteristics of the maternal antibody immunity produced by vaccination and its mechanisms of transmission.
Collapse
|
15
|
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis. Front Immunol 2019; 10:1077. [PMID: 31156633 PMCID: PMC6529568 DOI: 10.3389/fimmu.2019.01077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces "holes" in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by "last ditch" polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a "red herring" that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs).
Collapse
Affiliation(s)
- John E. Butler
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Yuming Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Benedictus L, Ravesloot L, Poppe K, Daemen I, Boerhout E, van Strijp J, Broere F, Rutten V, Koets A, Eisenberg S. Immunization of young heifers with staphylococcal immune evasion proteins before natural exposure to Staphylococcus aureus induces a humoral immune response in serum and milk. BMC Vet Res 2019; 15:15. [PMID: 30616609 PMCID: PMC6323680 DOI: 10.1186/s12917-018-1765-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background Staphylococcus aureus, a leading cause of mastitis in dairy cattle, causes severe mastitis and/or chronic persistent infections with detrimental effects on the cows’ wellbeing, lifespan and milk production. Despite years of research there is no effective vaccine against S. aureus mastitis. Boosting of non-protective pre-existing immunity to S. aureus, induced by natural exposure to S. aureus, by vaccination may interfere with vaccine efficacy. The aim was to assess whether experimental immunization of S. aureus naïve animals results in an immune response that differs from immunity following natural exposure to S. aureus. Results First, to define the period during which calves are immunologically naïve for S. aureus, Efb, LukM, and whole-cell S. aureus specific serum antibodies were measured in a cohort of newborn calves by ELISA. Rising S. aureus specific antibodies indicated that from week 12 onward calves mounted an immune response to S. aureus due to natural exposure. Next, an experimental immunization trial was set up using 8-week-old heifer calves (n = 16), half of which were immunized with the immune evasion molecules Efb and LukM. Immunization was repeated after one year and before parturition and humoral and cellular immunity specific for Efb and LukM was determined throughout the study. Post-partum, antibody levels against LukM and EfB were significantly higher in serum, colostrum and milk in the experimentally immunized animals compared to animals naturally exposed to S. aureus. LukM specific IL17a responses were also significantly higher in the immunized cows post-partum. Conclusions Experimental immunization with staphylococcal immune evasion molecules starting before natural exposure resulted in significantly higher antibody levels against Efb and LukM around parturition in serum as well as the site of infection, i.e. in colostrum and milk, compared to natural exposure to S. aureus. This study showed that it is practically feasible to vaccinate S. aureus naïve cattle and that experimental immunization induced a humoral immune response that differed from that after natural exposure only. Electronic supplementary material The online version of this article (10.1186/s12917-018-1765-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindert Benedictus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Lars Ravesloot
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Kim Poppe
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ineke Daemen
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Eveline Boerhout
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Ruminants Research and Development, MSD Animal Health, Boxmeer, The Netherlands
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Ad Koets
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Susanne Eisenberg
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Niedersächsische Tierseuchenkasse, Hanover, Germany
| |
Collapse
|
17
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
18
|
Rainard P. Mammary microbiota of dairy ruminants: fact or fiction? Vet Res 2017; 48:25. [PMID: 28412972 PMCID: PMC5392980 DOI: 10.1186/s13567-017-0429-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Explorations of how the complex microbial communities that inhabit different body sites might contribute to health and disease have prompted research on the ways the harmonious relationship between a host and its microbiota could be used to keep animals healthy in their production conditions. In particular, there is a growing interest in the bacterial signatures that can be found in the milk of healthy or mastitic dairy cows. The concept of sterility of the healthy mammary gland of dairy ruminants has been challenged by the results of studies using bacterial DNA-based methodology. The newly obtained data have led to the concept of the intramammary microbiota composed of a complex community of diverse bacteria. Accordingly, mammary gland infections are not mere infections by a bacterial pathogen, but the consequence of mammary dysbiosis. This article develops the logical implications of this paradigm shift and shows how this concept is incompatible with current knowledge concerning the innate and adaptive immune system of the mammary gland of dairy ruminants. It also highlights how the concept of mammary microbiota clashes with results of experimental infections induced under controlled conditions or large field experiments that demonstrated the efficacy of the current mastitis control measures.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR1282, 37380, Nouzilly, France.
| |
Collapse
|