1
|
Khuntong S, Samranrit T, Koedprasong P, Teeka J, Chiu CH, Srila W, Areesirisuk A. Synergistic effects of Tween 20 and ethephon on yeast oil and β-carotene co-production by Rhodosporidium toruloides using purified biodiesel-derived crude glycerol as an alternative carbon source. BIORESOURCE TECHNOLOGY 2025; 422:132211. [PMID: 39938602 DOI: 10.1016/j.biortech.2025.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the impact of chemical inducers on the co-production of yeast oil (YO) and β-carotene from purified biodiesel-derived crude glycerol. The objective was to enhance YO and β-carotene co-production in Rhodosporidium toruloides through the application of individual and combined inducers at both flask and bioreactor scales. Among the individual inducers, 1 % w/v Tween 20 (TW) and 10 ppm ethephon (EP) significantly increased total yeast oil (TO) and total β-carotene (TC) concentrations, respectively. When TW and EP were used together, TO and TC production increased by 2.0 and 2.6-fold, respectively in the bioreactor compared to the flask. The YO primarily consisted of C16 and C18 long-chain fatty acids, and the β-carotene produced showed functional similarities to commercial β-carotene. This research highlights the potential of biodiesel waste as a sustainable feedstock for co-producing YO and β-carotene, with the dual-inducer strategy providing a simple and effective method for enhancing production efficiency.
Collapse
Affiliation(s)
- Sasitorn Khuntong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Thidarat Samranrit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Parichat Koedprasong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Jantima Teeka
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Witsanu Srila
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Atsadawut Areesirisuk
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
2
|
Sui X, Wang S, Yang X, Zhang P, Sun H, Bai X, Xiong Y. Characterization of Seven Shiga Toxin Phages Induced from Human-Derived Shiga Toxin-Producing Escherichia coli. Microorganisms 2025; 13:783. [PMID: 40284620 PMCID: PMC12029490 DOI: 10.3390/microorganisms13040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important pathogen that can cause asymptomatic infections, diarrhea, hemorrhagic colitis (HC), and life-threatening hemolytic uremic syndrome (HUS) in humans. Shiga toxins (Stxs) are the major virulence factors encoded by prophages, which play a crucial role in STEC pathogenesis and evolution. In this study, seven Stx phages were obtained from STEC isolates derived from four asymptomatic food handlers, two diarrheal patients, and one outbreak-related HUS case in China. These phages exhibited three morphologies: an icosahedral head with either a short or a long tail, and an elongated head with a long tail. Of these seven phages, three were sequenced; two showed a complete identity with their respective prophage sequences, while phage phiXuzhou21-Stx2a lacked a 6011 bp region-encoding integrase, excisionase, and hypothetical proteins. Comparative genome analysis revealed that the induced seven phages primarily varied in their regulatory regions, whereas the short-tailed phages showed high similarity in their morphogenesis-related regions. In addition, five of the seven phages demonstrated the ability to convert non-pathogenic E. coli strains into Stx-producing transduced strains. Under inducing conditions, Stx expression levels were significantly increased in these transduced strains. These findings underscore the diversity and adaptability of Stx phages and emphasize the importance of understanding their genetic and molecular interactions with host bacteria.
Collapse
Affiliation(s)
- Xinxia Sui
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
| | - Shuyun Wang
- Clinical Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan 250022, China
| | - Xi Yang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
| | - Peihua Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
| | - Hui Sun
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
| | - Xiangning Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Yanwen Xiong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.S.)
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| |
Collapse
|
3
|
Ouarroud B, El Maadoudi M, Kounnoun A, El Mamoun L, Barakat A. Prevalence of the Six Major Non-O157 Serogroups of Shiga Toxin-Producing Escherichia Coli in Food Marketed in Morocco. Foodborne Pathog Dis 2025. [PMID: 40009406 DOI: 10.1089/fpd.2024.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The six major non-O157 serogroups of Shiga toxin-producing Escherichia coli (STEC) are responsible for serious foodborne outbreaks worldwide. This research aimed to detect the six major non-O157 STEC in ground beef, artisanal dairy products, lettuce, spinach, turkey, and chicken sold in northern Morocco. Real-time polymerase chain reaction was utilized to identify the presence of the stx1, stx2, eae, wzx O26, wzx O45, wzx O103, wbdl O111, wzx O121, and ihp1 O145 genes. Out of 310 samples analyzed, Shiga toxin (stx) was detected in 55 enrichments (17.74%), stx, and eae were detected in 54/310 enrichments (17.42%), stx, eae, and genes of at least one of the six serogroups were detected in 34/310 enrichments (10.97%). Among the food matrices analyzed, ground beef showed the highest contamination rate with stx, eae, and O serogroups 13/70 (18.6%), followed by dairy 17/100 (17.00%), turkey 3/40 (7.5%), and chicken 1/40 (2.5%). No O serogroups were detected in lettuce and spinach. The most frequent serogroup was O26 (22/34; 64.7%), followed by O145 (12/34; 35.3%), O45 (12/34; 35.3%), O121 (8/34; 23.5%), O103 (8/34; 23.5%), and O111 (6/34; 17.6%). A set of 32 STEC strains were isolated from nine positive samples (9/34; 26.5%). A high rate of food contamination with STEC may indicate firstly a high public health risk due to this pathogen in beef and dairy products and secondly a lack of compliance with standard hygiene practices. Consequently, it emphasizes the urgent need for rigorous monitoring and intervention measures aimed at mitigating the incidence of STEC contamination.
Collapse
Affiliation(s)
- Bouchra Ouarroud
- Regional laboratory for analysis and research, national office for food safety (ONSSA), Department of biology, faculty of science and technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Mohammed El Maadoudi
- Regional laboratory for analysis and research, national office for food safety (ONSSA), Tangier, Morocco
| | - Ayoub Kounnoun
- Regional laboratory for analysis and research, national office for food safety (ONSSA), Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Lamyaa El Mamoun
- Regional laboratory for analysis and research, national office for food safety (ONSSA), Tangier, Morocco
| | - Amina Barakat
- Laboratory of intelligent automation & BioMedGenomics, department of biology, faculty of science and technology, Abdelmalek Essaadi University, Tangier, Morocco
| |
Collapse
|
4
|
Osek J, Wieczorek K. Isolation and molecular characterization of Shiga toxin-producing Escherichia coli (STEC) from bovine and porcine carcasses in Poland during 2019-2023 and comparison with strains from years 2014-2018. Int J Food Microbiol 2025; 428:110983. [PMID: 39566378 DOI: 10.1016/j.ijfoodmicro.2024.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
The presence of Shiga toxin-producing Escherichia coli (STEC) on bovine and porcine carcasses during 2019-2023 was investigated. A total of 368 bovine and 87 porcine carcasses were tested using the ISO/TS 13136 standard and the STEC isolates were further characterized with whole genomic sequencing (WGS). It was found that 119 (32.3 %) of bovine and 14 (16.1 %) of porcine carcasses were positive for the stx Shiga toxin gene. Further analysis of the stx-positive samples allowed to isolate 32 (26.9 %) bovine and two (14.3 %) porcine STEC, respectively. Bovine isolates were classified into 21 different serotypes with the most prevalent O168:H8 (3 isolates), whereas two porcine STEC belonged to two serotypes that were not identified in bovine strains. Isolates of bovine carcass origin were mainly positive for the stx2 Shiga toxin gene, either alone or in combination with stx1 type (26 of 32; 81.2 % isolates). Two STEC from porcine carcasses were positive for the stx2e variant only. All STEC, irrespective of the origin, were negative for the eae intimin gene. MLST and cgMLST analyses of all strains tested revealed that they were diverse. However, a close molecular relationship between some bovine isolates based on cgMLST schemes was observed. Comparison of the current bovine STEC with those isolated between 2014 and 2018 showed that some of them consisted of the same MLST sequence types. However, based on cgMLST analysis only two cases of three genomes of STEC isolates each (two from period 2019-2023 and one isolated between 2014 and 2018) revealed up to 50 allelic differences.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Food Safety, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Kinga Wieczorek
- Department of Food Safety, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
5
|
Basualdo J, Iocoli GA, Gómez MA, Zabaloy MC. Dairy effluent management systems as a potential persistence source of Shiga toxin-producing Escherichia coli (STEC) strains. Rev Argent Microbiol 2025; 57:70-77. [PMID: 39516110 DOI: 10.1016/j.ram.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic enterobacteria of significant public health importance due to their association with highly prevalent human diseases. STEC is ubiquitous in livestock environments, and its presence in the environment emphasizes the importance of properly managing agricultural effluents to reduce health risks from contamination. In order to detect STEC in the effluent treatment systems of two dairy farms ("A" and "B") in the southwest of Buenos Aires province, samples ("A", n=88; "B", n=72) were taken at two different times of the year (winter and spring) and at various points in the treatment systems. Analysis markers for virulence genes (stx, eae, saa, and ehxA) revealed the presence of STEC in 13.1% of the samples, showing an increase in spring and differences between dairy farms possibly related to their maintenance conditions. After manure, sediments showed the highest proportion of STEC-positive samples, which is relevant due to the ability of these strains to survive in the environment through biofilm formation. Eight genetic profiles were identified among all STEC-positive samples, which are associated with STEC strains that can cause hemolytic uremic syndrome (HUS) and other gastrointestinal diseases. This demonstrates the role of dairy farm environments in the region as reservoirs of pathogenic STEC strains and their impact on public health.
Collapse
Affiliation(s)
- Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gastón A Iocoli
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marisa A Gómez
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Yang X, Ma Y, Chu F, Wang H, Sui X, Liu Q, Zhang P, Bai X, Duan B, Xiong Y. Characterization of Escherichia coli strains producing Shiga Toxin 2f subtype from domestic Pigeon. Sci Rep 2024; 14:24481. [PMID: 39424949 PMCID: PMC11489412 DOI: 10.1038/s41598-024-76523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause mild diarrhea even severe hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the primary virulence factor. Two Stx types and several subtypes have been identified. STEC strains encoding stx2f (Stx2f-STECs) are frequently identified from pigeons. Stx2f was initially considered to be associated with mild symptoms, more recently Stx2f-STECs have been isolated from HUS cases, indicating their pathogenic potential. Here, we investigated the prevalence of Stx2f-STECs among domestic pigeons in two regions in China, characterized the strains using whole-genome sequencing (WGS), and assessed the Stx2f transcriptions. Thirty-two Stx2f-STECs (4.36%) were culture-positive out of 734 fecal samples (one strain per sample). No other stx subtype-containing strain was isolated. Four serotypes and two sequence types were determined, and a novel sequence type ST15057 was identified. All strains harbored the E. coli attaching and effacing gene eae. Two types of Stx2f prophages were assigned. Stx2f-STECs showed variable Stx transcription levels induced by mitomycin C. Whole genome single-nucleotide polymorphism (wgSNP) analysis revealed different genetic backgrounds between pigeon-derived strains and those from diarrheal or HUS patients. In contrast, pigeon-derived Stx2f-STECs from diverse regions exhibited genetic similarity. Our study reports the prevalence and characteristics of Stx2f-STECs from pigeons in China. The pigeon-derived strains might pose low public health risk.
Collapse
Affiliation(s)
- Xi Yang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yun Ma
- Branch 103, Sixth Division General Hospital, Xinjiang Production and Construction Corps, Wujiaqv, 831304, China
| | - Fujian Chu
- Shizhong District Center for Disease Control and Prevention, Zaozhuang, 277100, China
| | - Hua Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinxia Sui
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Peihua Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, 0372, Norway
| | - Biao Duan
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Yanwen Xiong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050011, China.
| |
Collapse
|
7
|
Darwish A, Ebissy E, Hafez A, Ateya A, El-Sayed A. Nucleotide sequence variants, gene expression and serum profile of immune and antioxidant markers associated with bacterial diarrhea susceptibility in Barki lambs. BMC Vet Res 2024; 20:462. [PMID: 39394128 PMCID: PMC11468138 DOI: 10.1186/s12917-024-04288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Despite the fact that diarrhea is more accurately described as a clinical symptom than a disease. Diarrhea is one of the most important issues in ovine medicine, particularly in lambs, and because of high morbidity and mortality rate, sluggish growth performance, and veterinary costs, it is believed to be a major source of economic loss. Salmonella and enterotoxigenic Escherichia coli are the most common and commercially significant agents responsible for diarrhea. OBJECTIVE The objective of this study was to monitor the nucleotide sequence variations, gene expression, serum inflammatory and oxidative stress biomarkers in diarrheic lambs. Another aim was to identify different pathotypes and virulence genes of Salmonella and E. coli causing diarrhea. METHODOLOGY Blood samples were taken from 50 Barki who were diarrheal and 50 who appeared to be healthy, and then divided in 3 portions, with EDTA added to the first part for CBC, DNA and RNA extraction. The second sample received 5000 I.U. of heparin calcium, and a clean plain tube was used for the third component. The second and third sections were centrifuged to extract serum and plasma until the biochemical and immunological analysis was completed. Fecal samples were collected for bacteriological examination, and the bacteria were identified by PCR analysis. PCR-DNA sequencing was conducted for immune (SELL, JAK2, SLC11A1, IL10, FEZF1, NCF4, LITAF, SBD2, NFKB, TNF-α, IL1B, IL6, LGALS, and CATH1), antioxidant (SOD1, CAT, GPX1, GST, Nrf2, Keap1, HMOX1, and NQO1), and GIT health (CALB1, GT, and MUC2) genes in healthy and diarrheic lambs. RESULTS Virulent genetic markers of pathogenic characteristics of E. coli (astA, Vt2e (Stx2e), CFA/I, groES and luxS) and Salmonella (invA, SopB, bcfC and avrA) were detected in all diarrheic lambs. PCR-DNA sequencing of immune, antioxidant and intestinal health genes found eleven single nucleotide polymorphisms (SNPs) linked to either diarrhea resistance or susceptibility in Barki lambs. Transcript levels of immune, antioxidant, and GIT health (CALB1, GT, and MUC2) genes varied between healthy and diarrheic lambs. Nucleotide sequence variation of the genes under inquiry between reference sequences in GenBank and those of the animals under investigation verified all identified SNPs. Significant (P = 0.001) erythrocytosis, neutrophilic leukocytosis, with lymphocytopenia were observed in diarrheic lambs. Significant (P = 0.001) increases in serum IL-1α, IL-1β, IL-6, TNF-α (90.5 ± 1.7, 101.8 ± 1.7, 72.3 ± 6.6, 71.26 ± 4.89 Pg/ml, respectively), serum Fb, Cp, Hp, SAA (230.7 ± 12.4 mg/dl, 6.5 ± 0.07 mg/dl, 2.5 ± 0.09 g/dl, 7.4 ± 0.4 mg/L, respectively), free radicals (MDA, NO), cortisol (6.91 ± 0.18 μg/dl) and growth hormone, with significant (P = 0.001) decreases in serum IL-10 (81.71 ± 1.05 Pg/ml), antioxidants (CAT, GPx), insulin, triiodothyronine (T3) and thyroxine (T4) in diarrheic lambs. CONCLUSIONS The study's findings provided credence to the theory that marker-assisted selection (MAS) could be used to predict and prevent diarrhea in Barki sheep by selecting lambs based on SNPs in genes linked to inflammation, antioxidants, and intestinal health. In order to establish an efficient management protocol and determine the most susceptible risk period for disease occurrence, gene expression profiles of the genes under investigation, pro-inflammatory cytokines and acute phase proteins may also be utilized as proxy biomarkers for lamb enteritis.
Collapse
Affiliation(s)
- Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Amani Hafez
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal , of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| |
Collapse
|
8
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
9
|
Wolde D, Eguale T, Medhin G, Haile AF, Alemayehu H, Mihret A, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Diarrheagenic Escherichia coli in Stool Specimens Collected from Patients Attending Primary Healthcare Facilities in Ethiopia: Whole-Genome Sequencing-Based Molecular Characterization. Int J Mol Sci 2024; 25:10251. [PMID: 39408580 PMCID: PMC11476756 DOI: 10.3390/ijms251910251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The diarrheagenic Escherichia coli (DEC) is the major cause of diarrheal diseases in Africa, including Ethiopia. However, the genetic diversity of E. coli pathotypes found in Ethiopia has not been studied well. This study aimed to characterize potential DEC belonging to enteropathogenic (EPEC), Shiga toxin-producing (STEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) E. coli pathotypes from stool specimens of patients attending primary healthcare units (n = 260) in Addis Ababa and Hossana using whole-genome sequencing. Real-time PCR assays were used to identify DEC isolates belonging to EPEC, STEC, EAEC, ETEC, and EIEC pathotypes, which were then subjected to whole-genome sequencing on the Illumina platform. Twenty-four whole-genome nucleotide sequences of DEC strains with good enough quality were analyzed for virulence-associated genes (VAGs), antibiotic resistance genes (ARGs), phylogenetic groups, serogroups, and sequence types. The majority (62.5%) of DEC isolates belonged to the phylogenetic group B1. The identified DEC isolates belonged to 21 different serogroups and 17 different sequence types. All tested DEC isolates carried multiple VAGs and ARGs. The findings highlight the high diversity in the population structure of the studied DEC isolates, which is important for designing targeted interventions to reduce the diarrheal burden in Ethiopia.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
- Ohio State Global One Heath, Addis Ababa P.O. Box 1176, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Adane Mihret
- College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Abuzerr S, Hadi M, Zinszer K, Nasseri S, Yunesian M, Mahvi AH, Nabizadeh R, Mohammed SH. Quantitative microbial risk assessment for Escherichia Coli O157: H7 via drinking water in the Gaza Strip, Palestine. SAGE Open Med 2024; 12:20503121241258071. [PMID: 38846513 PMCID: PMC11155367 DOI: 10.1177/20503121241258071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Microbial contamination of drinking water, particularly by pathogens such as Escherichia coli O157: H7, is a significant public health concern worldwide, especially in regions with limited access to clean water like the Gaza Strip. However, few studies have quantified the disease burden associated with E. coli O157: H7 contamination in such challenging water management contexts. Objective This study aimed to conduct a comprehensive Quantitative Microbial Risk Assessment to estimate the annual infection risk and disease burden attributed to E. coli O157: H7 in Gaza's drinking water. Methods Applying the typical four steps of the Quantitative Microbial Risk Assessment technique-hazard identification, exposure assessment, dose-response analysis, and risk characterization-the study assessed the microbial risk associated with E. coli O157: H7 contamination in Gaza's drinking water supply. A total of 1317 water samples from various sources across Gaza were collected and analyzed for the presence of E. coli O157: H7. Using Microsoft ExcelTM and @RISKTM software, a Quantitative Microbial Risk Assessment model was constructed to quantify the risk of infection associated with E. coli O157: H7 contamination. Monte Carlo simulation techniques were employed to assess uncertainty surrounding input variables and generate probabilistic estimates of infection risk and disease burden. Results Analysis of the water samples revealed the presence of E. coli O157: H7 in 6.9% of samples, with mean, standard deviation, and maximum values of 1.97, 9.74, and 112 MPN/100 ml, respectively. The risk model estimated a median infection risk of 3.21 × 10-01 per person per year and a median disease burden of 3.21 × 10-01 Disability-Adjusted Life Years per person per year, significantly exceeding acceptable thresholds set by the WHO. Conclusion These findings emphasize the urgent need for proactive strategies to mitigate public health risks associated with waterborne pathogens in Gaza.
Collapse
Affiliation(s)
- Samer Abuzerr
- Department of Medical Sciences, University College of Science and Technology—Khan Younis, Gaza, Occupied Palestinian Territory
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montréal, QC, Canada
| | - Mahdi Hadi
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kate Zinszer
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montréal, QC, Canada
| | - Simin Nasseri
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, TUMS, Tehran, Iran
| | - Amir Hossein Mahvi
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shimels Hussien Mohammed
- Department of Public Health, School of Public Health, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Elsayed TR, Nour E, Hamed AA, Hassan AAM, Elenany YE. The Influence of Lactobacillus spp. Secondary Metabolites Isolated from Immature Egyptian Honey on Human Pathogens, Transcription of Virulence Genes and Lung Cancer. Indian J Microbiol 2024; 64:671-682. [PMID: 39011000 PMCID: PMC11246380 DOI: 10.1007/s12088-024-01224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
This work aimed to isolate, and identify Lactic Acid Bacteria LAB from Egyptian immature citrus honey, and characterize their secondary metabolites, as well as determine the antibacterial activities and transcription of virulence genes (stx1, stx2, and eae) influenced by these bacterial secondary metabolites. From twenty hives, twenty immature citrus bee honey samples were taken. Traditional cultural and biochemical testing were used, followed by molecular confirmation. Further, LAB isolates' antibacterial and cytotoxic properties were investigated. 16S rRNA gene sequencing were assessed and, two lactic acid bacterial isolates were identified as Lactobacillus acidophilus Ch2 and Levilactobacillus brevis Ch1. Both isolates have good antagonistic action against clinical pathogens, with Levilactobacillus brevis Ch1 exhibiting the best antibacterial activity against all indicator pathogens examined. When compared to untreated cancer cells, the isolates demonstrated significant cytotoxic activity. Ch1 and Ch2 cell viability percentages were 39.5% and 18.76%, respectively. Furthermore, when exposed to Levilactobacillus brevis Ch1 metabolites, Shiga-producing Escherichia coli (STEC) virulence gene expression was suppressed. To identify bacterial secondary metabolites, a high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF) approach was developed. Twenty-seven metabolites from diverse chemical classes were discovered in the crude extracts with antibacterial and anticancer characteristics. This is the first thorough investigation on the metabolic profile of LAB isolated from immature Egyptian honey and the findings suggested that isolates or their secondary metabolites could be used in the food sector as medicinal alternatives or as a biocontrol agent.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, 11785 Egypt
| | - Eman Nour
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, 11785 Egypt
| | - Ahmed A Hamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasrel Aini St., Cairo, 11562 Egypt
| | | | - Yasser Essam Elenany
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 3 El Gamaa St., Giza, 12613 Egypt
| |
Collapse
|
12
|
Koti K, Rodas-Gonzalez A, Nadon C, McAllister T, Yang X, Narváez-Bravo C. Evaluating disinfectant efficacy on mixed biofilms comprising Shiga toxigenic Escherichia coli, lactic acid bacteria, and spoilage microorganisms. Front Microbiol 2024; 15:1360645. [PMID: 38633705 PMCID: PMC11021663 DOI: 10.3389/fmicb.2024.1360645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
This study aimed to investigate the impact of temperature and the presence of other microorganisms on the susceptibility of STEC to biocides. Mature biofilms were formed at both 10°C and 25°C. An inoculum of planktonic bacteria comprising 106 CFU/mL of spoilage bacteria and 103 CFU/mL of a single E. coli strain (O157, O111, O103, and O12) was used to form mixed biofilms. The following bacterial combinations were tested: T1: Carnobacterium piscicola + Lactobacillus bulgaricus + STEC, T2: Comamonas koreensis + Raoultella terrigena + STEC, and T3: Pseudomonas aeruginosa + C. koreensis + STEC. Tested biocides included quaternary ammonium compounds (Quats), sodium hypochlorite (Shypo), sodium hydroxide (SHyd), hydrogen peroxide (HyP), and BioDestroy®-organic peroxyacetic acid (PAA). Biocides were applied to 6-day-old biofilms. Minimum Bactericidal Concentrations (MBC) and Biofilm Eradication Concentrations (BEC) were determined. Planktonic cells and single-species biofilms exhibited greater susceptibility to sanitizers (p < 0.0001). Lactobacillus and Carnobacterium were more susceptible than the rest of the tested bacteria (p < 0.0001). Single species biofilms formed by E. coli O111, O121, O157, and O45 showed resistance (100%) to Shypo sanitizer (200 ppm) at 25°C. From the most effective to the least effective, sanitizer performance on single-species biofilms was PAA > Quats > HyP > SHyd > Shypo. In multi-species biofilms, spoilage bacteria within T1, T2, and T3 biofilms showed elevated resistance to SHyd (30%), followed by quats (23.25%), HyP (15.41%), SHypo (9.70%), and BioDestroy® (3.42%; p < 0.0001). Within T1, T2, and T3, the combined STEC strains exhibited superior survival to Quats (23.91%), followed by HyP (19.57%), SHypo (18.12%), SHyd (16.67%), and BioDestroy® (4.35%; p < 0.0001). O157:H7-R508 strains were less tolerant to Quats and Shypo when combined with T2 and T3 (p < 0.0001). O157:H7 and O103:H2 strains in mixed biofilms T1, T2, and T3 exhibited higher biocide resistance than the weak biofilm former, O145:H2 (p < 0.0001). The study shows that STEC within multi-species biofilms' are more tolerant to disinfectants.
Collapse
Affiliation(s)
- Kavitha Koti
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Tim McAllister
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Claudia Narváez-Bravo
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Ren K, Duan M, Su T, Ying D, Wu S, Wang Z, Duan N. A colorimetric and SERS dual-mode aptasensor for the detection of Shiga toxin type II based on Mn/Fe-MIL(53)@AuNSs. Talanta 2024; 270:125636. [PMID: 38211356 DOI: 10.1016/j.talanta.2024.125636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Shiga toxin type II (Stx2), the major virulence component of enterohemorrhagic Escherichia coli, is strongly associated with the life-threatening hemolytic uremic syndrome thus posing a substantial risk to food safety and human health. In this work, a dual-mode aptasensor with colorimetric and surface-enhanced Raman scattering was developed for Stx2 specific detection based on noble metal nanoparticles and Raman reporter loaded metal-organic framework (Mn/Fe-MIL(53)@AuNSs-MBA). The Mn/Fe-MIL(53)@AuNSs could catalyze the H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), thereby enabling visual detection. Meanwhile, the SERS signal from MBA can be enhanced by the decorated AuNSs. Under optimal conditions, a linear range of 0.05-500 ng/mL with limit of detection (LOD) of 26 pg/mL was achieved in colorimetric mode and a linear range of 5-1000 ng/mL with LOD of 0.82 ng/mL in SERS mode, in which the dual-mode results complement each other, widening the linear range, increasing the accuracy and reliability of the detection. The method was further applied to the detection of Stx2 in milk with average recovery of 101.1 %, demonstrating its superior potential for bacterial toxin monitoring.
Collapse
Affiliation(s)
- Kexin Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Dichen Ying
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
15
|
Binsker U, Deneke C, Hamid HM, Gadicherla AK, Göhler A, Käsbohrer A, Hammerl JA. Genomic dissection of Escherichia marmotae provides insights into diversity and pathogenic potential. ISME COMMUNICATIONS 2024; 4:ycae126. [PMID: 39526133 PMCID: PMC11546641 DOI: 10.1093/ismeco/ycae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Anthropogenic activities enhance the interconnection of human, animal, and environmental habitats and drive the evolution and inter-niche transmission of bacteria. Clear identification of emerging bacteria and pathogen control is therefore a public health priority. In 2015, the novel Escherichia species Escherichia marmotae was assigned, but due to the lack of appropriate detection and typing technologies, the One Health impact of this species is still being unraveled. E. marmotae represents a missing link in the impact of Escherichia spp. Here, we report 25 E. marmotae identified by next-generation sequencing that were previously phenotypically characterized as Escherichia coli during national zoonosis monitoring of food-producing animals. Applying fastANI to 153 738 published Escherichia spp. genome assemblies, we identified further 124 E. marmotae, originally classified as E. coli. Phylogenomics of all 149 isolates reveals an undefined population structure that is independent of the ecological niche. We highlight the phenotypic, genomic, and plasmid diversity of E. marmotae and provide evidence for gene flow across the species. The latter is illustrated by the acquisition of antibiotic resistance plasmids and pathogenicity islands, such as the type III secretion system. Thus, our comprehensive genomic overview of an emerging potential opportunistic pathogen underlines the importance of improved detection and characterization.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Hafiz Muhammad Hamid
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Ashish K Gadicherla
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
- Center for quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, 53706 WI, United States
| | - André Göhler
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
- Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
16
|
Naidoo N, Zishiri OT. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 2023; 24:791. [PMID: 38124028 PMCID: PMC10731853 DOI: 10.1186/s12864-023-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19-198, ECP19-798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.
Collapse
Affiliation(s)
- Natalie Naidoo
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
17
|
Flach MG, Dogan OB, Miller MF, Sanchez-Plata MX, Brashears MM. Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations. Foods 2023; 12:4349. [PMID: 38231835 PMCID: PMC10705955 DOI: 10.3390/foods12234349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Finalyse, a T4 bacteriophage, is a pre-harvest intervention that utilizes a combination of bacteriophages to reduce incoming Escherichia coli O157:H7 prevalence by destroying the bacteria on the hides of harvest-ready cattle entering commercial abattoirs. The objective of this study was to evaluate the efficacy of Finalyse, as a pre-harvest intervention, on the reduction in pathogens, specifically E. coli O157:H7, on the cattle hides and lairage environment to overall reduce incoming pathogen loads. Over 5 sampling events, a total of 300 composite hide samples were taken using 25 mL pre-hydrated Buffered Peptone Water (BPW) swabs, collected before and after the hide wash intervention, throughout the beginning, middle, and end of the production day (n = 10 swabs/sampling point/timepoint). A total of 171 boot swab samples were also simultaneously taken at the end of the production day by walking from the front to the back of the pen in a pre-determined 'Z' pattern to monitor the pen floor environment from 3 different locations in the lairage area. The prevalence of pathogens was analyzed using the BAX® System Real-Time PCR Assay. There were no significant reductions observed for Salmonella and/or any Shiga toxin-producing E. coli (STEC) on the hides after the bacteriophage application (p > 0.05). Escherichia coli O157:H7 and O111 hide prevalence was very low throughout the study; therefore, no further analysis was conducted. However, boot swab monitoring showed a significant reduction in E. coli O157:H7, O26, and O45 in the pen floor environment (p < 0.05). While using Finalyse as a pre-harvest intervention in the lairage areas of commercial beef processing facilities, this bacteriophage failed to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence was low; however, some STECs were reduced in the lairage environment, where the bacteriophage was applied. Overall, an absolute conclusion was not formed on the effectiveness of Finalyse and its ability to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence on the hides was low.
Collapse
Affiliation(s)
| | | | | | | | - Mindy M. Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.G.F.); (O.B.D.); (M.F.M.); (M.X.S.-P.)
| |
Collapse
|
18
|
Wang L, Bai X, Ylinen E, Zhang J, Saxén H, Matussek A. Genetic Characterization of Intimin Gene ( eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland. Toxins (Basel) 2023; 15:669. [PMID: 38133173 PMCID: PMC10748226 DOI: 10.3390/toxins15120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, β3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5-17 years, while β3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Jinan Center for Disease Control and Prevention, Jinan 250021, China
| | - Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Elisa Ylinen
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Ji Zhang
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North 4442, New Zealand;
| | - Harri Saxén
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Andreas Matussek
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| |
Collapse
|
19
|
McCarthy SC, Macori G, Burgess CM, Duffy G, Fanning S. Hybrid genome assemblies of four Shiga toxin-producing Escherichia coli strains containing a complete locus of enterocyte effacement and an O-Island 122. Microbiol Resour Announc 2023; 12:e0004623. [PMID: 37905991 PMCID: PMC10652964 DOI: 10.1128/mra.00046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
This study describes the hybrid genome assemblies of four Shiga toxin-producing Escherichia coli strains isolated from the recto-anal junction of slaughter-age Irish sheep. In silico serotyping and genome analysis determined that each of the strains harbored a Shiga-toxin subtype, a complete locus of enterocyte effacement, and a rare O-island 122.
Collapse
Affiliation(s)
- Siobhán C. McCarthy
- UCD-Center for Food Safety, School of Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
- Food Safety Department, Teagasc Food Research Center, Ashtown, Dublin, Ireland
| | - Guerrino Macori
- UCD-Center for Food Safety, School of Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Geraldine Duffy
- Food Safety Department, Teagasc Food Research Center, Ashtown, Dublin, Ireland
| | - Séamus Fanning
- UCD-Center for Food Safety, School of Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
20
|
Sui X, Yang X, Luo M, Wang H, Liu Q, Sun H, Jin Y, Wu Y, Bai X, Xiong Y. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins (Basel) 2023; 15:640. [PMID: 37999503 PMCID: PMC10675304 DOI: 10.3390/toxins15110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne zoonotic pathogen that causes diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) worldwide. Since the infection can be asymptomatic, the circulation of STEC in some asymptomatic carriers, especially in healthy-food-related professionals, is not yet well understood. In this study, a total of 3987 anal swab samples from asymptomatic food handlers were collected, and ten swabs recovered STEC strains (0.251%). Of the ten STEC isolates, seven serotypes and eight sequence types (ST) were determined using whole genome sequencing (WGS). Two stx1 subtypes (stx1a and stx1c) and four stx2 subtypes (stx2a, stx2b, stx2d, and stx2e) were detected. Seven different insertion sites were found in fourteen Stx prophages, and the dmsB and yfhL were the newly identified insertion sites. The ten strains showed the variable Stx transcription levels after the mitomycin C induction. The whole-genome phylogeny indicated that the strains from the asymptomatic food handlers were genetically distant from the strains of HUS patients. The STEC isolates circulating in asymptomatic carriers might pose a low potential to cause disease.
Collapse
Affiliation(s)
- Xinxia Sui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Hua Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yannong Wu
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Xiangning Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Yanwen Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
21
|
Uyanik T, Gücükoğlu A, Gürler H, Kanat S, Bölükbaş A, Çadirci Ö. Clonal spread of non-O157 Shiga toxigenic Escherichia coli O21:H25 in raw water buffalo milks. J Appl Microbiol 2023; 134:lxad277. [PMID: 37994679 DOI: 10.1093/jambio/lxad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
AIMS This study was conducted to investigate the presence of Shiga toxin-producing O157 and non-O157 E. coli in raw water buffalo milk, as well as to determine the virulence gene profiles, phylogroups, sequence types, and serotypes of the isolated strains. METHODS AND RESULTS A total of 200 hand-milked raw water buffalo milk samples were collected from 200 different water buffaloes over a period of three months from 20 different farms. Isolation of STEC was performed using CHROMagar STEC. Presence of stx1, stx2, and eaeA genes were investigated by mPCR. Phylogroups and sequence types of E. coli strains were determined by Clermont phylotyping and MLST. Serotyping was performed using PCR or WGS. According to the results, two milk samples obtained from two different farms were found as STEC-positive. All Stx-positive E. coli isolates belonged to phylogenetic group A and were assigned to ST10. WGS results indicated that serotype of two isolates was O21:H25 and average nucleotide identity was detected at 99.99%. Thirteen additional registered E. coli O21:H25 assembled WGS data were obtained from EnteroBase and a phylogenetic tree was constructed. CONCLUSIONS With this study, the presence of stx2 harboring E. coli O21:H25 in milk was identified for the first time. Although the identified serotype is considered a non-pathogen seropathotype, we conclude it could play an important role in the environmental circulation of Stx-phages and consequently contribute to the emergence of new STEC-related outbreaks.
Collapse
Affiliation(s)
- Tolga Uyanik
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Ondokuz Mayis University, 55280 Atakum/Samsun, Turkey
| | - Ali Gücükoğlu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Ondokuz Mayis University, 55280 Atakum/Samsun, Turkey
| | - Hande Gürler
- Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Ondokuz Mayıs University, 55280 Atakum/Samsun, Turkey
| | - Sibel Kanat
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Ondokuz Mayis University, 55280 Atakum/Samsun, Turkey
| | - Ayşegül Bölükbaş
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Ondokuz Mayis University, 55280 Atakum/Samsun, Turkey
| | - Özgür Çadirci
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Ondokuz Mayis University, 55280 Atakum/Samsun, Turkey
| |
Collapse
|
22
|
Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Du Preez I, Njom HA, Ateba CN. Safety Properties of Escherichia coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety. Foods 2023; 12:3989. [PMID: 37959107 PMCID: PMC10650914 DOI: 10.3390/foods12213989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main methods of controlling contamination by foodborne pathogens often involve the application of antimicrobial agents, which are now becoming less efficient. There is a growing need for the development of new approaches to combat these pathogens, especially those that harbour antimicrobial resistant and virulent determinants. Strategies to also limit their presence on food contact surfaces and food matrices are needed to prevent their transmission. Recent studies have revealed that bacteriophages are useful non-antibiotic options for biocontrol of E. coli O157:H7 in both animals and humans. Phage biocontrol can significantly reduce E. coli O157:H7, thereby improving food safety. However, before being certified as potential biocontrol agents, the safety of the phage candidates must be resolved to satisfy regulatory standards, particularly regarding phage resistance, antigenic properties, and toxigenic properties. In this review, we provide a general description of the main virulence elements of E. coli O157:H7 and present detailed reports that support the proposals that phages infecting E. coli O157:H7 are potential biocontrol agents. This paper also outlines the mechanism of E. coli O157:H7 resistance to phages and the safety concerns associated with the use of phages as a biocontrol.
Collapse
Affiliation(s)
- Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Ilse Du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Henry Akum Njom
- Agricultural Research Council, Private Bag X1251, Potchefstroom 2531, South Africa;
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| |
Collapse
|
23
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
24
|
Rocha-Ramírez LM, Hernández-Chiñas U, Moreno-Guerrero SS, Ramírez-Pacheco A, Eslava CA. In Vitro Effect of the Cell-Free Supernatant of the Lactobacillus casei Strain IMAU60214 against the Different Pathogenic Properties of Diarrheagenic Escherichia coli. Microorganisms 2023; 11:1324. [PMID: 37317298 DOI: 10.3390/microorganisms11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) and enterohemorrhagic E. coli (EHEC) are E. coli pathotypes associated with unmanageable diarrhea in children and adults. An alternative to the treatment of infections caused by these microorganisms is the use of the bacteria of the Lactobacillus genus; however, the beneficial effects on the intestinal mucosa are specific to the strain and species. The interest of this study consisted of analyzing the coaggregation properties of Lactobacillus casei IMAU60214, as well as the effect of cell-free supernatant (CSF) on growth and anti-cytotoxic activity in a cell model of the human intestinal epithelium for an agar diffusion assay (HT-29) and the inhibition of biofilm formation on plates of DEC strains of the EAEC and EHEC pathotypes. The results showed that L. casei IMAU60214 exhibits time-dependent coaggregation (35-40%) against EAEC and EHEC that is similar to the control E. coli ATCC 25922. The CSF showed antimicrobial activity (20-80%) against EAEC and EHEC depending on the concentration. In addition, the formation and dispersion of biofilms of the same strains decrease, and the proteolytic pre-treatment with catalase and/or proteinase K (1 mg/mL) of CSF reduces the antimicrobial effect. When evaluating the effect in HT-29 cells pre-treated with CFS on the toxic activity induced by the EAEC and EHEC strains, a reduction of between 30 and 40% was observed. The results show that L. casei IMAU60214 and its CSF have properties that interfere with some properties associated with the virulence of the EAEC and EHEC strains that cause intestinal infection, which supports their use for the control and prevention of infections caused by these bacteria.
Collapse
Affiliation(s)
- Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
- Departamento de Salud Pública, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Silvia Selene Moreno-Guerrero
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez. Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Arturo Ramírez-Pacheco
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez. Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Carlos A Eslava
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
- Departamento de Salud Pública, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
25
|
Nada HG, El-Tahan AS, El-Didamony G, Askora A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: one health menace. BMC Microbiol 2023; 23:127. [PMID: 37173663 PMCID: PMC10176883 DOI: 10.1186/s12866-023-02873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen, that is transmitted from a variety of animals, especially cattle to humans via contaminated food, water, feaces or contact with infected environment or animals. The ability of STEC strains to cause gastrointestinal complications in human is due to the production of Shiga toxins (sxt). However, the transmission of multidrug-resistance STEC strains are linked with a severity of disease outcomes and horizontal spread of resistance genes in other pathogens. The result of this has emerged as a significant threat to public health, animal health, food safety, and the environment. Therefore, the purpose of this study is to investigate the antibiogram profile of enteric E. coli O157 isolated from food products and cattle faeces samples in Zagazig City, Al-Sharkia, Egypt, and to reveal the presence of Shiga toxin genes stx1 and stx2 as virulence factors in multidrug-resistant isolates. In addition to this, the partial 16S rRNA sequencing was used for the identification and genetic recoding of the obtained STEC isolates. RESULTS There was a total of sixty-five samples collected from different geographical regions at Zagazig City, Al-Sharkia-Egypt, which were divided into: 15 chicken meat (C), 10 luncheon (L), 10 hamburgers (H), and 30 cattle faeces (CF). From the sixty-five samples, only 10 samples (one from H, and 9 from CF) were identified as suspicious E. coli O157 with colourless colonies on sorbitol MacConkey agar media with Cefixime- Telurite supplement at the last step of most probable number (MPN) technique. Eight isolates (all from CF) were identified as multidrug-resistant (MDR) as they showed resistance to three antibiotics with multiple antibiotic resistance (MAR) index ≥ 0.23, which were assessed by standard Kirby-Bauer disc diffusion method. These eight isolates demonstrated complete resistance (100%) against amoxicillin/clavulanic acid, and high frequencies of resistance (90%, 70%, 60%,60%, and 40%) against cefoxitin, polymixin, erythromycin, ceftazidime, and piperacillin, respectively. Those eight MDR E. coli O157 underwent serological assay to confirm their serotype. Only two isolates (CF8, and CF13), both from CF, were showed strong agglutination with antisera O157 and H7, as well as resistance against 8 out of 13 of the used antibiotics with the highest MAR index (0.62). The presence of virulence genes Shiga toxins (stx1 and stx2) was assessed by PCR technique. CF8 was confirmed for carrying stx2, while CF13 was carrying both genes stx1, and stx2. Both isolates were identified by partial molecular 16S rRNA sequencing and have an accession number (Acc. No.) of LC666912, and LC666913 on gene bank. Phylogenetic analysis showed that CF8, and CF13 were highly homologous (98%) to E. coli H7 strain, and (100%) to E. coli DH7, respectively. CONCLUSION The results of this study provides evidence for the occurrence of E. coli O157:H7 that carries Shiga toxins stx1 and/or stx2, with a high frequency of resistance to antibiotics commonly used in human and veterinary medicine, in Zagazig City, Al-Sharkia, Egypt. This has a high extent of public health risk posed by animal reservoirs and food products with respect to easy transmission causing outbreaks and transfer resistance genes to other pathogens in animal, human, and plants. Therefore, environmental, animal husbandry, and food product surveillance, as well as, clinical infection control, must be strengthened to avoid the extra spread of MDR pathogens, especially MDR STEC strains.
Collapse
Affiliation(s)
- Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Amera Saeed El-Tahan
- Microbiology and Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gamal El-Didamony
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Askora
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
26
|
Oguadinma I, Mishra A, Dev Kumar G. Antibiotic resistance associated lactic acid cross tolerance in Shiga-toxin producing E. coli. Front Microbiol 2023; 14:1059144. [PMID: 37180239 PMCID: PMC10169816 DOI: 10.3389/fmicb.2023.1059144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The occurrence of antibiotic resistant (ABR) bacteria in foods is a growing public health challenge. We evaluated sanitizer cross-tolerance among ABR Escherichia coli (E. coli) O157:H7 and non-O157:H7 Shiga-toxin producing E. coli (STEC) serogroups. Sanitizer tolerance in STEC could be a public health concern as mitigation strategies against the pathogen might be compromised. Methods Resistance to ampicillin and streptomycin were evolved in E. coli serogroups: O157:H7 (H1730, and ATCC 43895), O121:H19 and O26:H11. Resistance to antibiotics was evolved chromosomally through incremental exposure to ampicillin (amp C) and streptomycin (strep C). Transformation using a plasmid was performed to confer resistance to ampicillin to generate amp P strep C. Results The minimum inhibitory concentration (MIC) of lactic acid for all strains evaluated was 0.375% v/v. Analysis of bacterial growth parameters in tryptic soy broth amended with 0.0625% v/v, 0.125% v/v, and 0.25% v/v (subMIC) lactic acid indicated that growth correlated positively with the lag phase duration, and negatively with both the maximum growth rate and change in population density for all strains evaluated except for the highly tolerant variant- O157:H7 amp P strep C. Strains O121 NR (non-ABR), O121 amp C, O121 amp P strep C, O157:H7 H1730 amp C and O157:H7 H1730 amp P strep C were not inactivated after exposure to 1% and 2.5% v/v lactic acid for 300 s. No recovery of cells was observed after the strains were exposed to 5% v/v lactic acid for 300 s. ABR strains O157:H7 H1730 amp C and O157: H7 H1730 amp P strep C demonstrated a high tolerance to lactic acid (P ≤ 0.05). Conclusion ABR in isolate E. coli O157: H7 H1730 may improve tolerance to lactic acid. Increased tolerance may be discerned by evaluating growth parameters of bacteria in presence of sub-MIC levels of lactic acid.
Collapse
Affiliation(s)
- Ikechukwu Oguadinma
- Center for Food Safety, The University of Georgia, Griffin, GA, United States
| | - Abhinav Mishra
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| | | |
Collapse
|
27
|
Identification of AHL Synthase in Desulfovibrio vulgaris Hildenborough Using an In-Silico Methodology. Catalysts 2023. [DOI: 10.3390/catal13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are anaerobic bacteria that form biofilm and induce corrosion on various material surfaces. The quorum sensing (QS) system that employs acyl homoserine lactone (AHL)-type QS molecules primarily govern biofilm formation. Studies on SRB have reported the presence of AHL, but no AHL synthase have been annotated in SRB so far. In this computational study, we used a combination of data mining, multiple sequence alignment (MSA), homology modeling and docking to decode a putative AHL synthase in the model SRB, Desulfovibrio vulgaris Hildenborough (DvH). Through data mining, we shortlisted 111 AHL synthase genes. Conserved domain analysis of 111 AHL synthase genes generated a consensus sequence. Subsequent MSA of the consensus sequence with DvH genome indicated that DVU_2486 (previously uncharacterized protein from acetyltransferase family) is the gene encoding for AHL synthase. Homology modeling revealed the existence of seven α-helices and six β sheets in the DvH AHL synthase. The amalgamated study of hydrophobicity, binding energy, and tunnels and cavities revealed that Leu99, Trp104, Arg139, Trp97, and Tyr36 are the crucial amino acids that govern the catalytic center of this putative synthase. Identifying AHL synthase in DvH would provide more comprehensive knowledge on QS mechanism and help design strategies to control biofilm formation.
Collapse
|
28
|
Pakbin B, Brück WM, Brück TB. Molecular Mechanisms of Shigella Pathogenesis; Recent Advances. Int J Mol Sci 2023; 24:2448. [PMID: 36768771 PMCID: PMC9917014 DOI: 10.3390/ijms24032448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Shigella species are the main cause of bacillary diarrhoea or shigellosis in humans. These organisms are the inhabitants of the human intestinal tract; however, they are one of the main concerns in public health in both developed and developing countries. In this study, we reviewed and summarised the previous studies and recent advances in molecular mechanisms of pathogenesis of Shigella Dysenteriae and non-Dysenteriae species. Regarding the molecular mechanisms of pathogenesis and the presence of virulence factor encoding genes in Shigella strains, species of this bacteria are categorised into Dysenteriae and non-Dysenteriae clinical groups. Shigella species uses attachment, invasion, intracellular motility, toxin secretion and host cell interruption mechanisms, causing mild diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome diseases in humans through the expression of effector delivery systems, protein effectors, toxins, host cell immune system evasion and iron uptake genes. The investigation of these genes and molecular mechanisms can help us to develop and design new methods to detect and differentiate these organisms in food and clinical samples and determine appropriate strategies to prevent and treat the intestinal and extraintestinal infections caused by these enteric pathogens.
Collapse
Affiliation(s)
- Babak Pakbin
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| |
Collapse
|
29
|
Antunes L, João AL, Nunes T, Henriques AR. Burden of disease estimation based on Escherichia coli quantification in ready-to-eat meals served in Portuguese institutional canteens. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
A review of Shiga-toxin producing Escherichia coli (STEC) contamination in the raw pork production chain. Int J Food Microbiol 2022; 377:109832. [PMID: 35834920 DOI: 10.1016/j.ijfoodmicro.2022.109832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Epidemiological evidence of Shiga toxin-producing Escherichia coli (STEC) infections associated with the consumption of contaminated pork highlight the need for increased awareness of STEC as an emerging pathogen in the pork supply chain. The objective of this review is to contribute to our understanding of raw pork products as potential carriers of STEC into the food supply. We summarize and critically analyze primary literature reporting the prevalence of STEC in the raw pork production chain. The reported prevalence rate of stx-positive E. coli isolates in live swine, slaughtered swine, and retail pork samples around the world ranged from 4.4 % (22/500) to 68.3 % (82/120), 22 % (309/1395) to 86.3 % (69/80), and 0.10 % (1/1167) to 80 % (32/40), respectively, depending upon the sample categories, detection methods, and the hygiene condition of the slaughterhouses and retail markets. In retail pork, serogroup O26 was prevalent in the U.S., Europe, and Africa. Serogroup O121 was only reported in the U.S. Furthermore, serogroup O91 was reported in the U.S., Asia, and South American retail pork samples. The most common virulence gene combination in retail pork around the globe were as follows: the U.S.: serogroup O157 + stx, non-O157 + stx, unknown serogroups+stx + eae; Europe: unknown serogroups+(stx + eae, stx2 + eae, or stx1 + stx2 + eae); Asia: O157 + stx1 + stx2 + ehxA, Unknown+stx1 + eaeA + ehxA, or only eae; Africa: O157 + stx2 + eae + ehxA. STEC strains derived from retail pork in the U.S. fall under low to moderate risk categories capable of causing human disease, thus indicating the need for adequate cooking and prevention of cross contamination to minimize infection risk in humans.
Collapse
|
31
|
Shiga Toxin Subtypes, Serogroups, Phylogroups, RAPD Genotypic Diversity, and Select Virulence Markers of Shiga-Toxigenic Escherichia coli Strains from Goats in Mid-Atlantic US. Microorganisms 2022; 10:microorganisms10091842. [PMID: 36144444 PMCID: PMC9505625 DOI: 10.3390/microorganisms10091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding Shiga toxin subtypes in E. coli from reservoir hosts may give insight into their significance as human pathogens. The data also serve as an epidemiological tool for source tracking. We characterized Shiga toxin subtypes in 491 goat E. coli isolates (STEC) from the mid-Atlantic US region (stx1 = 278, stx2 = 213, and stx1/stx2 = 95). Their serogroups, phylogroups, M13RAPD genotypes, eae (intimin), and hly (hemolysin) genes were also evaluated. STEC-positive for stx1 harbored Stx1c (79%), stx1a (21%), and stx a/c (4%). Those positive for Stx2 harbored stx2a (55%) and Stx2b (32%), while stx2a/stx2d and stx2a/stx2b were each 2%. Among the 343 STEC that were serogrouped, 46% (n = 158) belonged to O8, 20% (n = 67) to 076, 12% (n = 42) to O91, 5% (n = 17) to O5, and 5% (n = 18) to O26. Less than 5% belonged to O78, O87, O146, and O103. The hly and eae genes were detected in 48% and 14% of STEC, respectively. Most belonged to phylogroup B1 (73%), followed by D (10%), E (8%), A (4%), B2 (4%), and F (1%). M13RAPD genotyping revealed clonality of 091, O5, O87, O103, and O78 but higher diversity in the O8, O76, and O26 serogroups. These results indicate goat STEC belonged to important non-O157 STEC serogroups, were genomically diverse, and harbored Shiga toxin subtypes associated with severe human disease.
Collapse
|
32
|
Quorum Sensing Orchestrates Antibiotic Drug Resistance, Biofilm Formation, and Motility in Escherichia coli and Quorum Quenching Activities of Plant-derived Natural Products: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) is a type of cell-to-cell communication that is influenced by an increase in signaling molecules known as autoinducers, which is correlated to the increase in the density of microbial communities. In this review, we aim to discuss and provide updates on the different signaling molecules used by Escherichia coli, such as acyl-homoserine lactone (AHL), autoinducer-2 (AI-2), and indole to influence key phenotypes such as antibiotic drug resistance, biofilm formation, and motility during quorum sensing. Based on the literature, E. coli signaling molecules have different functions during cell-to-cell communication such that the increase in AHL and indole was found to cause the modulation of antibiotic resistance and inhibition of biofilm formation and motility. Meanwhile, AI-2 is known to modulate biofilm formation, antibiotic resistance, and motility. On the other hand, in the existing literature, we found that various plants possess phytochemicals that can be used to alter QS and its downstream key phenotypes such as biofilm formation, swimming and swarming motility, and genes related to motility, curli and AI-2 production. However, the exact physiological and molecular mechanisms of these natural compounds are still understudied. Understanding the mechanisms of those phytochemicals during QS are therefore highly recommended to conduct as a necessary step for future scholars to develop drugs that target the actions of QS-signaling molecules and receptors linked to antibiotic resistance, biofilm formation, and motility without putting bacteria under stress, thereby preventing the development of drug resistance.
Collapse
|
33
|
Zhang S, Bai Z, Wang Z, Wang X, Wang W, Li H, Dong Q. Molecular characterization and phylogeny of Shiga toxin-producing Escherichia coli derived from cattle farm. Front Microbiol 2022; 13:950065. [PMID: 35992646 PMCID: PMC9386476 DOI: 10.3389/fmicb.2022.950065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen, which can cause diseases such as diarrhea, hemorrhagic enteritis, and hemolytic uremic syndrome in humans. Twelve STEC isolates were collected from beeves and feces of commercial animals in China between 2019 and 2020 for this study. In addition to the determination of serotype and Shiga toxin subtype, whole-genome sequencing (WGS) was used for determining phylogenetic relationships, antimicrobial resistance (AMR), virulence genes, and sequence type (ST) of isolates. A total of 27 AMR genes were detected, and each STEC isolate carried more than 10 AMR genes. Eight STEC isolates from ground beef and four STEC isolated from feces were screened. A total of seven serotypes were identified, and one isolate ONT:H10 was undetermined by SeroTypeFinder. Three O157:H7 strains were confirmed and the remaining five serogroups were confirmed as O26:H11, O81:H31, O105:H8, O178:H19, and O136:H12. The phylogenetic analysis showed that STEC isolates of the same serotype or ST were clustered together based on cgMLST. The comparison of the genomes of 157 STEC reference isolates worldwide with our local STEC isolates showed that STEC isolates screened in China represented various collections and could not form a separate cluster but were interspersed among the STEC reference collection, which suggested that several STEC isolates shared a common ancestor irrespective of STEC serotype isolates. cgMLST revealed that isolates of the same O serotype clustered irrespective of their H type. Further investigation is required to determine the pathogenic potential of other serotypes of STEC, particularly in regard to these rare serotypes.
Collapse
Affiliation(s)
- Shiqin Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiye Bai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zichen Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Quality and Standard of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Hongmei Li
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Qingli Dong
| |
Collapse
|
34
|
Al Qabili DMA, Aboueisha AKM, Ibrahim GA, Youssef AI, El-Mahallawy HS. Virulence and antimicrobial-resistance of shiga toxin-producing E. coli (STEC) Isolated from edible shellfish and its public health significance. Arch Microbiol 2022; 204:510. [PMID: 35864384 PMCID: PMC9304054 DOI: 10.1007/s00203-022-03114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Shiga toxin-producing E. coli (STEC) are an important cause of foodborne illness in humans with infections ranging from mild non-bloody diarrhea to bloody diarrhea (BD) and hemolytic uremic syndrome (HUS). This study aimed to investigate the distribution of STEC in shellfish from coastal shores of Lake Timsah in Ismailia Governorate, Egypt and its probable hazard to seafood consumers. Samples from the external surface and tissues of shrimp (n = 45), crabs (n = 45), and oysters (n = 45) batches were examined bacteriologically for the presence of STEC and tested for their antibiotic sensitivity. Moreover, occurrence of virulence genes was determined via detection of stx1, stx2 and eaeA genes using PCR. Overall, E. coli and presumptive STEC isolates (from CHROMagar) were identified from the surface (55.6 and 5.9%) and tissues (42.2 and 8.9%) of the examined shellfish batches, respectively. Five STEC isolates had been confirmed and found belonging to O26:H11, O125:H6, O146:H21, and O159 serogroups, those were 4 isolates from tissues of the three shellfish species and one isolate from the crab surface. The STEC isolates were multi-drug resistant, showing complete resistance to; penicillins, amoxycillin/clavulanic acid, colistin, fosfomycin, ceftriaxone, ciprofloxacin, and tetracycline, however, they were sensitive to gentamycin except O159 serogroup. The current study revealed low level of contamination of shellfish from coastal shores of Lake Timsah with STEC, however, it also highlights the extreme level of antimicrobial resistance exhibited by the presumptive and confirmed STEC isolates which is very hazardous for seafood consumers in the study area.
Collapse
Affiliation(s)
- Dheyazan M Ali Al Qabili
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Karim M Aboueisha
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ghada A Ibrahim
- Bacteriology Department, AHRI, Ismailia branch, Ismailia, 41511, ARC, Egypt
| | - Ahmed I Youssef
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
35
|
McMahon TC, Kingombe CB, Mathews A, Seyer K, Wong A, Blais BW, Carrillo CD. Microbial Antagonism in Food-Enrichment Culture: Inhibition of Shiga Toxin-Producing Escherichia coli and Shigella Species. Front Microbiol 2022; 13:880043. [PMID: 35814680 PMCID: PMC9259949 DOI: 10.3389/fmicb.2022.880043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens, such as Shiga toxin-producing Escherichia coli (STEC) and Shigella spp., are important causes of foodborne illness internationally. Recovery of these organisms from foods is critical for food safety investigations to support attribution of illnesses to specific food commodities; however, isolation of bacterial cultures can be challenging. Methods for the isolation of STEC and Shigella spp. from foods typically require enrichment to amplify target organisms to detectable levels. Yet, during enrichment, target organisms can be outcompeted by other bacteria in food matrices due to faster growth rates, or through production of antimicrobial agents such as bacteriocins or bacteriophages. The purpose of this study was to evaluate the occurrence of Shigella and STEC inhibitors produced by food microbiota. The production of antimicrobial compounds in cell-free extracts from 200 bacterial strains and 332 food-enrichment broths was assessed. Cell-free extracts produced by 23 (11.5%) of the strains tested inhibited growth of at least one of the five Shigella and seven STEC indicator strains used in this study. Of the 332 enrichment broths tested, cell-free extracts from 25 (7.5%) samples inhibited growth of at least one of the indicator strains tested. Inhibition was most commonly associated with E. coli recovered from meat products. Most of the inhibiting compounds were determined to be proteinaceous (34 of the 48 positive samples, 71%; including 17 strains, 17 foods) based on inactivation by proteolytic enzymes, indicating presence of bacteriocins. The cell-free extracts from 13 samples (27%, eight strains, five foods) were determined to contain bacteriophages based on the observation of plaques in diluted extracts and/or resistance to proteolytic enzymes. These results indicate that the production of inhibitors by food microbiota may be an important challenge for the recovery of foodborne pathogens, particularly for Shigella sonnei. The performance of enrichment media for recovery of Shigella and STEC could be improved by mitigating the impact of inhibitors produced by food microbiota during the enrichment process.
Collapse
Affiliation(s)
- Tanis C. McMahon
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Amit Mathews
- Microbiology, Greater Toronto Area Laboratory, Ontario Laboratory Network, Canadian Food Inspection Agency, Toronto, ON, Canada
| | - Karine Seyer
- Microbiology (Food), St-Hyacinthe Laboratory, Eastern Laboratories Network, Canadian Food Inspection Agency, St-Hyacinthe, QC, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
- *Correspondence: Catherine D. Carrillo,
| |
Collapse
|
36
|
Comparative Genomics of Shiga Toxin-Producing Escherichia coli Strains Isolated from Pediatric Patients with and without Hemolytic Uremic Syndrome from 2000 to 2016 in Finland. Microbiol Spectr 2022; 10:e0066022. [PMID: 35730965 PMCID: PMC9430701 DOI: 10.1128/spectrum.00660-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infection can cause mild to severe illness, such as nonbloody or bloody diarrhea, and the fatal hemolytic uremic syndrome (HUS). The molecular mechanism underlying the variable pathogenicity of STEC infection is not fully defined so far. Here, we performed a comparative genomics study on a large collection of clinical STEC strains collected from STEC-infected pediatric patients with and without HUS in Finland over a 16-year period, aiming to identify the bacterial genetic factors that can predict the risk to cause HUS and poor renal outcome. Of 240 STEC strains included in this study, 52 (21.7%) were from pediatric patients with HUS. Serotype O157:H7 was the main cause of HUS, and Shiga toxin gene subtype stx2a was significantly associated with HUS. Comparative genomics and pangenome-wide association studies identified a number of virulence and accessory genes overrepresented in HUS-associated STEC compared to non-HUS STEC strains, including genes encoding cytolethal distending toxins, type III secretion system effectors, adherence factors, etc. No virulence or accessory gene was significantly associated with risk factors for poor renal outcome among HUS patients assessed in this study, including need for and duration of dialysis, presence and duration of anuria, and leukocyte counts. Whole-genome phylogeny and multiple-correspondence analysis of pangenomes could not separate HUS STEC from non-HUS STEC strains, suggesting that STEC strains with diverse genetic backgrounds may independently acquire genetic elements that determine their varied pathogenicity. Our findings indicate that nonbacterial factors, i.e., characteristics of the host immunity, might affect STEC virulence and clinical outcomes. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is a serious public health burden worldwide which causes outbreaks of gastrointestinal diseases and the fatal hemolytic uremic syndrome (HUS) characterized by the triad of mechanical hemolytic anemia, thrombocytopenia, and acute renal failure. Understanding the mechanism underlying the disease severity and patient outcome is of high importance. Using comparative genomics on a large collection of clinical STEC strains from STEC-infected patients with and without HUS, our study provides a reference of STEC genetic factors/variants that can be used as predictors of the development of HUS, which will aid risk assessment at the early stage of STEC infection. Additionally, our findings suggest that nonbacterial factors may play a primary role in the renal outcome in STEC-infected patients with HUS; further studies are needed to validate this.
Collapse
|
37
|
Genomic Characterization of Escherichia coli O8 Strains Producing Shiga Toxin 2l Subtype. Microorganisms 2022; 10:microorganisms10061245. [PMID: 35744763 PMCID: PMC9227347 DOI: 10.3390/microorganisms10061245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause diseases ranging from mild diarrhea to fatal extra-intestinal hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the key virulence factor in STEC, two Stx types (Stx1 and Stx2) and several subtypes varying in sequences, toxicity, and host specificity have been identified. Stx2l is a newly-designated subtype related to human disease but lacks thorough characterization. Here, we identified Stx2l from five STEC strains (Stx2l-STECs) recovered from raw mutton and beef in China. Whole-genome sequencing (WGS) was used to characterize the Stx2l-STECs in this study together with Stx2l-STECs retrieved from public databases. Our study revealed that all the analyzed Stx2l-STEC strains belonged to the same serogroup O8. Multilocus sequencing typing (MLST) showed two sequence types (ST88 and ST23) among these strains. Stx2l-converting prophages from different sources shared a highly similar structure and sequence. Single-nucleotide polymorphism (SNP)-based analysis revealed genetic relatedness between the human-derived and food-derived strains belonging to ST23. To conclude, our study supported the designation of Stx2l and demonstrated diverse host range and geographical distribution of Stx2l-STECs.Stx2l-STEC strains from different sources showed a high genetic similarity with an identical O8 serogroup. Further studies are needed to investigate the epidemiological trait and pathogenic potential of Stx2l-STEC strains.
Collapse
|
38
|
Droplet Digital PCR (ddPCR) Analysis for Detecting Shiga-Toxin-Producing Escherichia coli (STEC). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Verocytotoxin-producing Escherichia coli, also referred to as Shiga-toxin-producing Escherichia coli (STEC), can be transmitted to humans through person-to-person contact, consumption of contaminated food or water, or by direct contact with animals. Its clinical and economic consequences have prompted the development of alternative approaches to the official method of analysis “UNI CEN ISO/TS 13136: 2012”, which describes the identification of STEC through the detection of its main virulence genes. Recently, droplet digital PCR (ddPCR) has been proposed as a technique for the sequence-specific detection and direct quantification of nucleic acids. The present study aimed to investigate if ddPCR could be able to detect STEC in less time than that required by the official method. This study consisted of the ddPCR of slices of beef contaminated with STEC and of the sponges used for beef official control at the slaughter stage. The results showed the ability of ddPCR to detect STEC in slices of beef already after sample incubation for 7 h at 37 °C while, in the case of sponges used for official controls, 9 h at 37 °C was needed. In this way, the ddPCR could represent an efficient method for detecting STEC and providing results in less time than the official method.
Collapse
|
39
|
Long J, Geng J, Xu Y, Jin Y, Yang H, Xi Y, Chen S, Duan G. Large-Scale Phylogenetic Analysis Reveals a New Genetic Clade among Escherichia coli O26 Strains. Microbiol Spectr 2022; 10:e0252521. [PMID: 35107330 PMCID: PMC8809355 DOI: 10.1128/spectrum.02525-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26 is the predominant non-O157 serogroup causing hemolytic uremic syndrome worldwide. Moreover, the serogroup is highly dynamic and harbors several pathogenic clones. Here, we investigated the phylogenetic relationship of STEC O26 at a global level based on 1,367 strains from 20 countries deposited in NCBI and Enterobase databases. The whole-genome-based analysis identified a new genetic clade, called ST29C4. The new clade was unique in terms of multilocus sequence type (ST29), CRISPR (group Ia), and dominant plasmid gene profile (ehxA+/katP-/espP-/etpD-). Moreover, the combination of multiple typing methods (core genome single nucleotide polymorphism [SNP] typing, CRISPR typing, and virulence genes analysis) demonstrated that this new lineage ST29C4 was in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains. Besides, we observed that ST29C4 harbored extraintestinal pathogenic E. coli (ExPEC)-related virulence gene (VG), tsh, and STEC-associated VG, stx2a, suggesting the emergence of a hybrid pathogen. The ST29C4 strains also exhibited high similarity in stx2a-prophage and integrase with the O104:H4 strain, further demonstrating its potential risk to human health. Collectively, the large-scale phylogenetic analysis extends the understanding of the clonal structure of O26 strains and provides new insights for O26 strain microevolution. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) O26 is the second prevalent STEC serogroup only to O157, which can cause a series of diseases ranging from mild diarrhea to life-threatening hemolytic uremic syndrome (HUS). The serogroup is highly diverse and multiple clones are characterized, including ST29C1-C3 and ST21C1-C2. However, the phylogenetic relationship of these clones remains fully unclear. In this study, we revealed a new genetic clade among O26 strains, ST29C4, which was unique in terms of CRISPR, multilocus sequence type (MLST), and plasmid gene profile (PGP). Moreover, the combination of multiple typing methods demonstrated that this new clone was located in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains (i.e., ST29C1-C2 and ST21C1-C2). Overall, the large-scale phylogenetic analysis extends our current understanding of O26 microevolution.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Juna Geng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yake Xu
- Henan Province Centers for Disease Control and Prevention, Zhengzhou, Henan, People’s Republic of China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
40
|
Marquezini MG, da Costa LH, Bromberg R. Occurrence of the Seven Most Common Serotypes of Shiga Toxin-Producing Escherichia coli in Beef Cuts Produced in Meat Processing Plants in the State of São Paulo, Brazil. J Food Prot 2022; 85:261-265. [PMID: 34706050 DOI: 10.4315/jfp-21-214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Healthy cattle are considered the main reservoir of Shiga toxin-producing Escherichia coli (STEC) strains, so in some places in the world, products derived from beef are the most common source for disease outbreaks caused by these bacteria. Therefore, to guarantee that the beef produced by our slaughterhouses is safe, there is a need for continuous monitoring of these bacteria. In this study, 215 beef cuts were evaluated, including chilled vacuum-packed striploins (151 samples), rib eyes (30 samples), and knuckles (34 samples), from March to June 2018. These meat samples were collected from the slaughter of unconfined cattle, being arbitrarily collected from eight meat processing companies in São Paulo state, Brazil. Each sample was examined for the presence of STEC toxin type (stx1 and/or stx2 genes) and also the attaching and effacing E. coli (eae) gene, determined by a multiplex PCR assay. We show that the major seven STEC strains (O serogroups O26, O45, O103, O111, O121, O145, and O157) are not detected in any of the analyzed beef cut samples; however, three of them presented the virulence eae gene. Therefore, the absence of STEC strains in the beef samples may be an indication of the low prevalence of this pathogen in the cattle herd on the farm, associated with good hygiene and handling practices adopted by the meat industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Miriam Gonçalves Marquezini
- Meat Technology Center - CTC, Institute of Food Technology, Avenida Brasil 2880, CEP 13070-178, Campinas, São Paulo, Brazil
| | - Luis Henrique da Costa
- Merck S. A. Brazil, Alameda Xingu 350, 7° andar, CEP 06455-030, Barueri, São Paulo, Brazil
| | - Renata Bromberg
- Meat Technology Center - CTC, Institute of Food Technology, Avenida Brasil 2880, CEP 13070-178, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Zhang X, Payne M, Kaur S, Lan R. Improved Genomic Identification, Clustering, and Serotyping of Shiga Toxin-Producing Escherichia coli Using Cluster/Serotype-Specific Gene Markers. Front Cell Infect Microbiol 2022; 11:772574. [PMID: 35083165 PMCID: PMC8785982 DOI: 10.3389/fcimb.2021.772574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have more than 470 serotypes. The well-known STEC O157:H7 serotype is a leading cause of STEC infections in humans. However, the incidence of non-O157:H7 STEC serotypes associated with foodborne outbreaks and human infections has increased in recent years. Current detection and serotyping assays are focusing on O157 and top six (“Big six”) non-O157 STEC serogroups. In this study, we performed phylogenetic analysis of nearly 41,000 publicly available STEC genomes representing 460 different STEC serotypes and identified 19 major and 229 minor STEC clusters. STEC cluster-specific gene markers were then identified through comparative genomic analysis. We further identified serotype-specific gene markers for the top 10 most frequent non-O157:H7 STEC serotypes. The cluster or serotype specific gene markers had 99.54% accuracy and more than 97.25% specificity when tested using 38,534 STEC and 14,216 non-STEC E. coli genomes, respectively. In addition, we developed a freely available in silico serotyping pipeline named STECFinder that combined these robust gene markers with established E. coli serotype specific O and H antigen genes and stx genes for accurate identification, cluster determination and serotyping of STEC. STECFinder can assign 99.85% and 99.83% of 38,534 STEC isolates to STEC clusters using assembled genomes and Illumina reads respectively and can simultaneously predict stx subtypes and STEC serotypes. Using shotgun metagenomic sequencing reads of STEC spiked food samples from a published study, we demonstrated that STECFinder can detect the spiked STEC serotypes, accurately. The cluster/serotype-specific gene markers could also be adapted for culture independent typing, facilitating rapid STEC typing. STECFinder is available as an installable package (https://github.com/LanLab/STECFinder) and will be useful for in silico STEC cluster identification and serotyping using genome data.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Hu B, Yang X, Liu Q, Zhang Y, Jiang D, Jiao H, Yang Y, Xiong Y, Bai X, Hou P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr Res Food Sci 2022; 5:1596-1602. [PMID: 36161222 PMCID: PMC9493282 DOI: 10.1016/j.crfs.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause severe human diseases such as hemolytic uremic syndrome (HUS). Human STEC infections are frequently caused through consumption of contaminated foods, especially raw meats. This study aimed to investigate the prevalence of STEC in raw meats and to characterize the meat-derived STEC strains using whole genome sequencing. Our study showed that 26.6% of raw mutton, and 7.5% of raw beef samples were culture-positive for STEC. Thirteen serotypes were identified in 22 meat-derived isolates in this study, including the virulent serotypes O157:H7 and O26:H11. Seven Shiga toxin (Stx) subtypes were found in 22 isolates, of these, stx1c and stx1c + stx2b were predominant. The recently-reported stx2k subtype was found in three mutton-sourced isolates. A number of other virulence genes such as genes encoding intimin (eae), enterohemorrhagic E. coli (EHEC) hemolysin (ehxA), EHEC factor for adherence (efa1), heat-stable enterotoxin 1 (astA), type III secretion system effectors, were detected in meat-derived STEC strains. One mutton-sourced isolate was resistant to three antibiotics, i.e., tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Whole-genome phylogeny indicated the genomic diversity of meat-derived strains in this study. O157:H7 and O26:H11 isolates in this study were phylogenetically grouped together with strains from HUS patients, suggesting their pathogenic potential. To conclude, our study reported high STEC contaminations in retail raw meats, particularly raw mutton, genomic characterization indicated pathogenic potential of meat-derived STEC strains. These findings highlight the critical need for increased monitoring of STEC in retail raw meats in China. High prevalence of Shiga toxin-producing E. coli (STEC) was detected in raw mutton, compared to beef. Virulent serotypes O157:H7 and O26:H11 were found in meat-sourced STEC isolates. Meat-sourced STEC isolates in the same region exhibited genetic diversity.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanqing Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Deshui Jiang
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Hongbo Jiao
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52, Stockholm, Sweden
- Corresponding author. State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
- Corresponding author. Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| |
Collapse
|
43
|
Bai X, Scheutz F, Dahlgren HM, Hedenström I, Jernberg C. Characterization of Clinical Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype in Sweden and Denmark. Microorganisms 2021; 9:microorganisms9112374. [PMID: 34835499 PMCID: PMC8625421 DOI: 10.3390/microorganisms9112374] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin (Stx) is the key virulence factor in the Shiga Toxin-Producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with potential life-threatening complications. There are two major types of Stx: Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, varying in sequences, toxicity and host specificity. Here, we report a novel Stx2 subtype (designated Stx2m) from three clinical E. coli strains isolated from diarrheal patients and asymptomatic carriers in Sweden and Denmark. The Stx2m toxin was functional and exhibited cytotoxicity in vitro. The two Swedish Stx2m-producing strains belonged to the same serotype O148:H39 and Multilocus Sequencing Typing (MLST) Sequence Type (ST) 5825, while the Danish strain belonged to the O96:H19 serotype and ST99 type. Whole-genome sequencing (WGS) data analysis revealed that the three Stx2m-producing strains harbored additional virulence genes and the macrolide resistance gene mdf (A). Our findings expand the pool of Stx2 subtypes and highlight the clinical significance of emerging STEC variants. Given the clinical relevance of the Stx2m-producing strains, we propose to include Stx2m in epidemiological surveillance of STEC infections and clinical diagnosis.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 52 Stockholm, Sweden;
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Flemming Scheutz
- The International Escherichia and Klebsiella Centre, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Henrik Mellström Dahlgren
- County Council Department of Communicable Disease Control and Prevention, Region Västra Götaland, 411 18 Gothenburg, Sweden;
| | | | - Cecilia Jernberg
- Public Health Agency of Sweden, 171 82 Solna, Sweden;
- Correspondence:
| |
Collapse
|
44
|
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021; 22:9922. [PMID: 34576083 PMCID: PMC8468683 DOI: 10.3390/ijms22189922] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
45
|
Nong F, Zhang P, Meng J, Xie Q, Li Y, Pan Y, Zhao Y, Liu H. Characterization of Shiga-toxin producing Escherichia coli (STEC) isolated from retail raw meats in Southeast China. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Hua Y, Chromek M, Frykman A, Jernberg C, Georgieva V, Hansson S, Zhang J, Marits AK, Wan C, Matussek A, Bai X. Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 2021; 12:1296-1305. [PMID: 33939581 PMCID: PMC8096335 DOI: 10.1080/21505594.2021.1922010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli, a foodborne bacterial pathogen, has been linked to a broad spectrum of clinical outcomes ranging from asymptomatic carriage to fatal hemolytic uremic syndrome (HUS). Here, we collected clinical data and STEC strains from HUS patients from 1994 through 2018, whole-genome sequencing was performed to molecularly characterize HUS-associated STEC strains, statistical analysis was conducted to identify bacterial genetic factors associated with severe outcomes in HUS patients. O157:H7 was the most predominant serotype (57%) among 54 HUS-associated STEC strains, followed by O121:H19 (19%) and O26:H11 (7%). Notably, some non-predominant serotypes such as O59:H17 (2%) and O109:H21 (2%) also caused HUS. All O157:H7 strains with one exception belonged to clade 8. During follow-up at a median of 4 years, 41% of the patients had renal sequelae. Fifty-nine virulence genes were found to be statistically associated with severe renal sequelae, these genes encoded type II and type III secretion system effectors, chaperones, and other factors. Notably, virulence genes associated with severe clinical outcomes were significantly more prevalent in O157:H7 strains. In contrast, genes related to mild symptoms were evenly distributed across all serotypes. The whole-genome phylogeny indicated high genomic diversity among HUS-STEC strains. No distinct cluster was found between HUS and non-HUS STEC strains. The current study showed that O157:H7 remains the main cause of STEC-associated HUS, despite the rising importance of other non-O157 serotypes. Besides, O157:H7 is associated with severe renal sequelae in the follow-up, which could be a risk factor for long-term prognosis in HUS patients.
Collapse
Affiliation(s)
- Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anne Frykman
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Valya Georgieva
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sverker Hansson
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ji Zhang
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Ann Katrine Marits
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden.,Oslo University Hospital, Oslo, Norway.,Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
47
|
Identification, Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle feces. Sci Rep 2021; 11:8601. [PMID: 33883564 PMCID: PMC8060326 DOI: 10.1038/s41598-021-87544-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/23/2021] [Indexed: 01/12/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause illnesses in humans ranging from mild to hemorrhagic enteritis with complications of hemolytic uremic syndrome and even death. Cattle are a major reservoir of STEC, which reside in the hindgut and are shed in the feces, a major source of food and water contaminations. Seven serogroups, O26, O45, O103, O111, O121, O145 and O157, called ‘top-7’, are responsible for the majority of human STEC infections in North America. Additionally, 151 serogroups of E. coli are known to carry Shiga toxin genes (stx). Not much is known about fecal shedding and prevalence and virulence potential of STEC other than the top-7. Our primary objectives were to identify serogroups of STEC strains, other than the top-7, isolated from cattle feces and subtype stx genes to assess their virulence potential. Additional objective was to develop and validate a novel multiplex PCR assay to detect and determine prevalence of six serogroups, O2, O74, O109, O131, O168, and O171, in cattle feces. A total of 351 strains, positive for stx gene and negative for the top-7 serogroups, isolated from feedlot cattle feces were used in the study. Of the 351 strains, 291 belonged to 16 serogroups and 60 could not be serogrouped. Among the 351 strains, 63 (17.9%) carried stx1 gene and 300 (82.1%) carried stx2, including 12 strains positive for both. The majority of the stx1 and stx2 were of stx1a (47/63; 74.6%) and stx2a subtypes (234/300; 78%), respectively, which are often associated with human infections. A novel multiplex PCR assay developed and validated to detect six serogroups, O2, O74, O109, O131, O168, and O171, which accounted for 86.9% of the STEC strains identified, was utilized to determine their prevalence in fecal samples (n = 576) collected from a commercial feedlot. Four serogroups, O2, O109, O168, and O171 were identified as the dominant serogroups prevalent in cattle feces. In conclusion, cattle shed in the feces a number of STEC serogroups, other than the top-7, and the majority of the strains isolated possessed stx2, particularly of the subtype 2a, suggesting their potential risk to cause human infections.
Collapse
|
48
|
Projahn M, Lamparter MC, Ganas P, Goehler A, Lorenz-Wright SC, Maede D, Fruth A, Lang C, Schuh E. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour. Int J Food Microbiol 2021; 347:109197. [PMID: 33895597 DOI: 10.1016/j.ijfoodmicro.2021.109197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour. In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs). We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1. Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.
Collapse
Affiliation(s)
- Michaela Projahn
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Marina C Lamparter
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Petra Ganas
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - André Goehler
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Sandra C Lorenz-Wright
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Dietrich Maede
- Institute for Consumer Protection Saxony-Anhalt, Halle, Germany
| | - Angelika Fruth
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Christina Lang
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Elisabeth Schuh
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany.
| |
Collapse
|
49
|
Jafari E, Oloomi M, Bouzari S. Characterization of antimicrobial susceptibility, extended-spectrum β-lactamase genes and phylogenetic groups of Shigatoxin producing Escherichia coli isolated from patients with diarrhea in Iran. Ann Clin Microbiol Antimicrob 2021; 20:24. [PMID: 33858427 PMCID: PMC8051076 DOI: 10.1186/s12941-021-00430-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/10/2021] [Indexed: 11/15/2022] Open
Abstract
Background Shiga toxin‐producing Escherichia coli (STEC) are among common foodborne bacterial pathogens and healthy livestock are the main source of this bacterium. Severe diseases attribute to two types of cytotoxin Stx1 and Stx2, which are also called Shiga toxin (Stx). Infection of humans with STEC may result in Acute diarrhea with or without bleeding, hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS). As antibiotic resistance is increasingly being reported among STEC isolates obtained from livestock and patients worldwide, in this study the pattern of antibiotic resistance in clinical isolates was determined. Methods Stool samples were collected from patients with diarrhea. All samples were cultured and identified by biochemical and molecular tests. Antimicrobial susceptibility test and assessment of extended-spectrum β-lactamase (ESBL)-related genes were conducted. Moreover, phylogenetic groups were analyzed using quadruplex PCR, and DNA analysis assessed multi-locus sequence types (MLST). Results Out of 340 E. coli samples, 174 were identified as STEC by PCR. Antimicrobial susceptibility test results showed that, 99.4%, 96% and 93.1% of isolates were susceptible to imipenem/ertapenem, piperacillin–tazobactam and amikacin, respectively. The highest resistance was towards ampicillin (68.4%), followed by trimethoprim–sulfamethoxazole (59.8%), and tetracycline (57.5%). A total of 106 (60.9%) isolates were multidrug resistance (MDR) and 40.8% of isolates were determined to be extended spectrum β-lactamase producers. In 94.4% of isolates, genes responsible for ESBL production could be detected, and blaTEM was the most prevalent, followed by blaCTX-M9. Furthermore, phylogenetic grouping revealed that majority of STEC strains belonged to Group C, followed by Groups E, B2 and A. MLST unveiled diverse ST types. Conclusion A periodical surveillance studies and thorough understanding of antibiotic resistant profiles in STEC isolates could help select effective antibiotic treatment for patients and develop strategies to effectively manage food contamination and human infections.
Collapse
Affiliation(s)
- Erfaneh Jafari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran.,National Escherichia Coli Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran. .,National Escherichia Coli Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
50
|
Fayemi OE, Akanni GB, Elegbeleye JA, Aboaba OO, Njage PM. Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. Int J Food Microbiol 2021; 347:109191. [PMID: 33838477 DOI: 10.1016/j.ijfoodmicro.2021.109191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Fresh beef and meat products have been implicated in outbreaks of Shiga toxin-producing Escherichia coli (STEC) worldwide. This study investigated the prevalence of E. coli O157: H7 and non-O157 STEC serogroups in fresh beef in the open market and street vended meat products (n = 180) in Lagos metropolis, Nigeria. A combination of culture media and immunomagnetic separation followed by typing for associated virulence factors and serotypes was performed. Antimicrobial susceptibility testing was performed on the isolated STEC serotypes using the disk diffusion method. A total of 72 STEC serogroup isolates were detected from 61 out of 180 samples. The O157 STEC serotypes were detected in fresh beef, suya, minced meat and tsire with prevalence of 20.8% while non-O157 STEC serogroups were detected in all the samples. Molecular typing revealed 25% (n = 18) of the STEC serogroups showed presence of all the stx1, stx2, eaeA, fliCH7 and rfbEO157 virulence factors while 54.2% (n = 39) possessed a combination of two virulence genes. Multidrug resistance was discovered in 23.6% (n = 17) of the total STEC serogroups. Locally processed ready-to-eat meat products in Lagos metropolis, Nigeria harbour potentially pathogenic multi-drug resistant STEC serogroups that can constitute public health hazard.
Collapse
Affiliation(s)
- Olanrewaju E Fayemi
- Department of Biological Sciences, College of Basic and Applied Science, Mountain Top University, Kilometre 12, Lagos-Ibadan Expressway, Prayer City, Ogun State, Nigeria.
| | - Gabriel B Akanni
- Department of Biological Sciences, College of Basic and Applied Science, Mountain Top University, Kilometre 12, Lagos-Ibadan Expressway, Prayer City, Ogun State, Nigeria; Department of Food Science, University of Pretoria, Private Bag X 20, Hatfield, 0028 Pretoria, South Africa
| | - James A Elegbeleye
- Department of Food Science, University of Pretoria, Private Bag X 20, Hatfield, 0028 Pretoria, South Africa; Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Olusimbo O Aboaba
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Patrick M Njage
- Centre for Genomic Epidemiology, Technical University of Demark, Denmark
| |
Collapse
|