1
|
Prame Kumar K, McKay LD, Nguyen H, Kaur J, Wilson JL, Suthya AR, McKeown SJ, Abud HE, Wong CHY. Sympathetic-Mediated Intestinal Cell Death Contributes to Gut Barrier Impairment After Stroke. Transl Stroke Res 2025; 16:280-298. [PMID: 38030854 PMCID: PMC11976816 DOI: 10.1007/s12975-023-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
Tissue injury induced by stroke is traditionally thought to be localised to the brain. However, there is an accumulating body of evidence to demonstrate that stroke promotes pathophysiological consequences in peripheral tissues including the gastrointestinal system. In this study, we investigated the mechanisms underlying gut permeability after stroke. We utilised the clinically relevant experimental model of stroke called permanent intraluminal middle cerebral artery occlusion (pMCAO) to examine the effect of cerebral ischaemia on the gut. We detected stroke-induced gut permeability at 5 h after pMCAO. At this timepoint, we observed significantly elevated intestinal epithelial cell death in post-stroke mice compared to their sham-operated counterparts. At 24 h after stroke onset when the gut barrier integrity is restored, our findings indicated that post-stroke intestinal epithelium had higher expression of genes associated with fructose metabolism, and hyperplasia of intestinal crypts and goblet cells, conceivably as a host compensatory mechanism to adapt to the impaired gut barrier. Furthermore, we discovered that stroke-induced gut permeability was mediated by the activation of the sympathetic nervous system as pharmacological denervation decreased the stroke-induced intestinal epithelial cell death, goblet cell and crypt hyperplasia, and gut permeability to baseline levels. Our study identifies a previously unknown mechanism in the brain-gut axis by which stroke triggers intestinal cell death and gut permeability.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Liam D McKay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Huynh Nguyen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Jasveena Kaur
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jenny L Wilson
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Althea R Suthya
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Sonja J McKeown
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhou C, Zou Y, Huang H, Zhao F, Fan X, Bai L, Zhang X, Ye K. Virulence expression difference to intestinal cells of different pathogenic Listeria monocytogenes contaminating sausages after simulated digestive tract. Int J Food Microbiol 2025; 430:111067. [PMID: 39813952 DOI: 10.1016/j.ijfoodmicro.2025.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
This study investigated the difference in survival among Listeria monocytogenes (LM) 10403S (highly pathogenic strain) and M7 (low pathogenic strain) in sausage under a simulated digestive environment, and established intestinal organoids and macrophages co-culture model to further explore the virulence expression difference to intestinal cells between LM 10403S and M7 after in vitro gastrointestinal digestion. Results showed that, compared with LM M7, LM 10403S exhibited a high survival rate during in vitro digestion, which may be due to the increased expression of stress response-related genes. In addition, the expression of virulence genes in LM 10403S was significantly higher than in LM M7 under the gastrointestinal environment. Furthermore, in the intestinal organoids and macrophages co-culture model infected by LM 10403S and M7 after in vitro gastrointestinal digestion, results showed that, compared with the LM M7 group, the LM 10403S group had significantly lower budding rate and significantly higher mortality of organoids. Also, the significantly increased LDH release and inflammatory factors (TNF-α and IL-1β) in the LM 10403S group were observed, and the main virulence genes (iap, inlA, inlB, actA, hly, plcA, and plcB) of 10403S were significantly highly expressed than LM M7 during the cell infection. These results reflected that the reason for the different pathogenicity between LM 10403S and M7 may be due to the high tolerance and the expression of virulence genes than LM M7 during gastrointestinal digestion and cell infection, which would be expected to provide a better understanding of the infection mechanisms among different pathogenic strains of L. monocytogenes in food.
Collapse
Affiliation(s)
- Cong Zhou
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Haorui Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xia Fan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Li Bai
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China
| | - Xinhao Zhang
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
de Souza BMS, Guerra LHA, Varallo GR, Taboga SR, Penna ALB. The Impact in Intestines and Microbiota in BALB/c Mice Through Consumption of Milk Fermented by Potentially Probiotic Lacticaseibacillus casei SJRP38 and Limosilactobacillus fermentum SJRP43. Probiotics Antimicrob Proteins 2025; 17:462-478. [PMID: 37796426 DOI: 10.1007/s12602-023-10158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
The present study aimed to evaluate the effect of consumption of milk fermented by Lacticaseibacillus (Lc.) casei SJRP38 and Limosilactobacillus (Lm.) fermentum SJRP43 on bacterial translocation, stool analysis, and intestinal morphology of healthy BALB/c mice. Potentially probiotic lactic acid bacteria, Lc. casei SJRP38, and Lm. fermentum SJRP43 were evaluated and analyzed for translocation, fecal analysis, and intestinal morphology of four groups of mice: water control (WC), milk control (MC), milk fermented by Lc. casei SJRP38 (FMLC), and milk fermented by Lm. fermentum SJRP43 (FMLF), in co-culture with Streptococcus thermophilus ST080. The results of the animal assay indicate that the population of Lactobacilli and Bidobacterium sp. in the gastrointestinal tract of BALB/c mice was greater than 6.0 log10 CFU/g, and there was no evidence of bacteremia due to the low incidence of bacterial translocation. Ingesting fermented milk containing Lc. casei SJRP38 and Lm. fermentum SJRP43 was found to promote a healthier microbiota, as it led to a reduction in Clostridium sp. and an increase in Lactobacilli and Bifidobacterium sp. in feces. Furthermore, the dairy treatments (MC, FMLC, and FMLF) resulted in taller intestinal villi and an increase in the frequency of goblet cells in the intestines. Overall, the consumption of fermented milk containing Lc. casei SJRP38 and Lm. fermentum SJRP43 strains was deemed safe and demonstrated beneficial effects on the intestines of BALB/c mice.
Collapse
Affiliation(s)
- Bruna Maria Salotti de Souza
- Department of Technology and Inspection of Products of Animal Origin, UFMG - Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana Lúcia Barretto Penna
- Department of Food Engineering and Technology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
5
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
6
|
Wu X, Yang J, Bao X, Wang Y. Toll-like receptor 4 damages the intestinal epithelial cells by activating endoplasmic reticulum stress in septic rats. PeerJ 2024; 12:e18185. [PMID: 39346059 PMCID: PMC11439388 DOI: 10.7717/peerj.18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Background The severity of acute gastrointestinal injury (AGI) is a critical determinant of survival in sepsis. However, there is no specifically interventional management for gastrointestinal dysfunction. Toll-like Receptor 4 (TLR4) is an important contributor to sepsis-induced multiple organ dysfunction syndrome. So, we investigated the effect of TLR4 on leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) + cells and goblet cells and its potential mechanism. Methods A cecal ligation and puncture (CLP) model reflecting the development of clinical sepsis was developed. Tak-242, a TLR4 inhibitor, was administered to septic rats at a dose of 3 mg/kg via intraperitoneal injection. Immunohistochemistry was performed to detect TLR4 and Lgr5+ cells. AB-PAS staining was performed to detect goblet cells. MUC1 and MUC2 secreted by goblet cells, biomarkers of endoplasmic reticulum (ER) stress and inflammatory cytokines in the intestine were detected by western blotting and real-time PCR. Results We found that the upregulation of the TLR4/NF-κB signaling pathway activated intestinal inflammatory response in sepsis. Meanwhile, the structure of intestinal mucosa was destroyed, Lgr5+ cells and goblet cells count were significantly reduced, and the secretory function of goblet cells also decreased. Further studies have found that TLR4 increased the levels of activating transcription factor-6 (ATF6), XBP1, ER chaperone (Bip) and CHOP, but did not activate the protein kinase RNA (PKR)-like ER kinase (P-PERK). Conclusion We concluded that the inhibition of TLR4/NF-κB signaling pathway can reduce intestinal inflammatory response, protect intestinal mucosa, protect Lgr5+ cells, goblet cells and relieve ER stress. Our findings suggest that Tak-242 protects Lgr5+ cells and goblet cells after sepsis, partly may be through the suppression of ER stress. Thus, inhibition of TLR4-mediated ER stress may be a promising therapy of septic AGI.
Collapse
Affiliation(s)
- Xue Wu
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jilin Yang
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Bao
- Department of Oncology, The Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yijie Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
8
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
10
|
He Y, DeBenedictis JN, Caiment F, van Breda SGJ, de Kok TMCM. Analysis of cell-specific transcriptional responses in human colon tissue using CIBERSORTx. Sci Rep 2023; 13:18281. [PMID: 37880448 PMCID: PMC10600214 DOI: 10.1038/s41598-023-45582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Diet is an important determinant of overall health, and has been linked to the risk of various cancers. To understand the mechanisms involved, transcriptomic responses from human intervention studies are very informative. However, gene expression analysis of human biopsy material only represents the average profile of a mixture of cell types that can mask more subtle, but relevant cell-specific changes. Here, we use the CIBERSORTx algorithm to generate single-cell gene expression from human multicellular colon tissue. We applied the CIBERSORTx to microarray data from the PHYTOME study, which investigated the effects of different types of meat on transcriptional and biomarker changes relevant to colorectal cancer (CRC) risk. First, we used single-cell mRNA sequencing data from healthy colon tissue to generate a novel signature matrix in CIBERSORTx, then we determined the proportions and gene expression of each separate cell type. After comparison, cell proportion analysis showed a continuous upward trend in the abundance of goblet cells and stem cells, and a continuous downward trend in transit amplifying cells after the addition of phytochemicals in red meat products. The dietary intervention influenced the expression of genes involved in the growth and division of stem cells, the metabolism and detoxification of enterocytes, the translation and glycosylation of goblet cells, and the inflammatory response of innate lymphoid cells. These results show that our approach offers novel insights into the heterogeneous gene expression responses of different cell types in colon tissue during a dietary intervention.
Collapse
Affiliation(s)
- Yueqin He
- Department of Toxicogenomics, GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Julia Nicole DeBenedictis
- Department of Toxicogenomics, GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Simone G J van Breda
- Department of Toxicogenomics, GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
11
|
Peng J, Huang W, Liang Y, Zhang W, Zhang Y, Yang M, Zheng S, Lv Y, Gou Z, Cheng C, Gao H, Wang W, Peng J, Huang Y. Optimal dietary energy and protein levels for breeding pigeons in the winter "2 + 3" lactation pattern. Poult Sci 2023; 102:102964. [PMID: 37573846 PMCID: PMC10428047 DOI: 10.1016/j.psj.2023.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
The nutritional requirements of breeding pigeons depend on their physiological period, breeding pattern, and environmental conditions. Despite works on reduced litter size in winter production to combat high mortality and the poor welfare of squabs, there are few studies on the related nutritional requirements of these pigeons. A total of 432 pairs of European Mimas pigeons were randomly divided into 9 groups in which 3 crude protein (CP) levels (15, 16.5, and 18%) and 3 metabolizable energy (ME) levels (12.2 MJ/kg, 12.4 MJ/kg, and 12.6 MJ/kg) were tested to determine the optimal energy and protein requirements of breeding pigeons in the winter "2 + 3" breeding pattern. The results showed that ME and CP levels had little effect on the body weight, feed intake, and egg quality of breeding pigeons during the lactation period. An 18% CP diet significantly increased the laying rate and hatchability (P < 0.05), but there was no difference in the laying rate with 18% CP and 16.5% CP during the whole reproductive cycle (P > 0.05). There was a significant interaction between ME and CP levels, and the laying interval of breeding pigeons in group 9 (18% CP; 12.6 MJ/kg) was significantly shortened (P < 0.05). For squabs, the ME level had no effect on growth performance, slaughter performance, or meat quality. The body weight of 21-day-old squabs in the 18% CP group increased by 3.16% compared with that of the 15% CP group, but there was no difference between the 18% CP and 16.5% CP groups. Compared with other experimental groups, group 7 (18% CP; 12.2 MJ/kg) had the fastest growth rate in squabs (P < 0.05), and the corresponding slaughter weight was also the heaviest (P < 0.05). We further found that the height of the squab intestinal epithelium was significantly increased in both the 16.5% CP and 18% CP groups of squabs (P < 0.01), but male breeding pigeons showed a certain degree of oxidative stress with an increase in CP level. In conclusion, the effects of 15 to 18% CP levels and 12.2 to 12.6 MJ/kg ME levels on the reproductive metabolism of breeding pigeons and the growth and development of squabs in the "2 + 3" breeding pattern during winter are small. For economic efficiency, we suggest that the CP level can be reduced to 16.5% while the ME level should not be less than 12.2 MJ/kg in practical production.
Collapse
Affiliation(s)
- Jie Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weiying Huang
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Wuchang, Wuhan 430000, China
| | - Yayan Liang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wei Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yanlin Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Menglin Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shiqi Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yantao Lv
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong 510640, China
| | - Chuanshang Cheng
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, WENS Research Institute (Technology center), Yunfu 527300, China
| | - Hongyan Gao
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jian Peng
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Wuchang, Wuhan 430000, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China.
| |
Collapse
|
12
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
13
|
Muszyński S, Hułas-Stasiak M, Dobrowolski P, Arciszewski MB, Hiżewska L, Donaldson J, Mozel S, Rycerz K, Kapica M, Puzio I, Tomaszewska E. Maternal acrylamide exposure changes intestinal epithelium, immunolocalization of leptin and ghrelin and their receptors, and gut barrier in weaned offspring. Sci Rep 2023; 13:10286. [PMID: 37355724 PMCID: PMC10290718 DOI: 10.1038/s41598-023-37590-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023] Open
Abstract
Acrylamide (ACR) is an amide formed as a byproduct in many heat-processed starchy-rich foods. In utero ACR exposure has been associated with restricted fetal growth, but its effects of postnatal functional development of small intestine is completely unknown. The current study investigated the time- and segment-dependent effects of prenatal ACR exposure on morphological and functional development of small intestine in weaned rat offspring. Four groups of pregnant female Wistar rats were exposed to ACR (3 mg/kg b.w./day) for 0, 5, 10 and 15 days during pregnancy. Basal intestinal morphology, immunolocalization of gut hormones responsible for food intake and proteins of intestinal barrier, activity of the intestinal brush border disaccharidases, apoptosis and proliferation in intestinal mucosa were analyzed in offspring at weaning (postnatal day 21). The results showed that in utero ACR exposure disturbs offspring gut structural and functional postnatal development in a time- and segment-depended manner and even a short prenatal exposure to ACR resulted in changes in intestinal morphology, immunolocalization of leptin and ghrelin and their receptors, barrier function, activity of gut enzymes and upregulation of apoptosis and proliferation. In conclusion, prenatal ACR exposure disturbed the proper postnatal development of small intestine.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950, Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Ligia Hiżewska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Małgorzata Kapica
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland.
| |
Collapse
|
14
|
Song R, McAlpine W, Fond AM, Nair-Gill E, Choi JH, Nyström EEL, Arike L, Field S, Li X, SoRelle JA, Moresco JJ, Moresco EMY, Yates JR, Azadi P, Ni J, Birchenough GMH, Beutler B, Turer EE. Trans-Golgi protein TVP23B regulates host-microbe interactions via Paneth cell homeostasis and Goblet cell glycosylation. Nat Commun 2023; 14:3652. [PMID: 37339972 PMCID: PMC10282085 DOI: 10.1038/s41467-023-39398-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
A key feature in intestinal immunity is the dynamic intestinal barrier, which separates the host from resident and pathogenic microbiota through a mucus gel impregnated with antimicrobial peptides. Using a forward genetic screen, we have found a mutation in Tvp23b, which conferred susceptibility to chemically induced and infectious colitis. Trans-Golgi apparatus membrane protein TVP23 homolog B (TVP23B) is a transmembrane protein conserved from yeast to humans. We found that TVP23B controls the homeostasis of Paneth cells and function of goblet cells, leading to a decrease in antimicrobial peptides and more penetrable mucus layer. TVP23B binds with another Golgi protein, YIPF6, which is similarly critical for intestinal homeostasis. The Golgi proteomes of YIPF6 and TVP23B-deficient colonocytes have a common deficiency of several critical glycosylation enzymes. TVP23B is necessary for the formation of the sterile mucin layer of the intestine and its absence disturbs the balance of host and microbe in vivo.
Collapse
Affiliation(s)
- Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Aaron M Fond
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Elisabeth E L Nyström
- Institute of Biochemistry, University of Kiel, 24118, Kiel, Schleswig-Holstein, Germany
| | - Liisa Arike
- The Wallenberg Centre for Molecular & Translational Medicine, Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sydney Field
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Josephine Ni
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - George M H Birchenough
- The Wallenberg Centre for Molecular & Translational Medicine, Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
15
|
Qin G, Zhao Y, Gan Y, Yu X, Zhao Y, Peng H, Fang S. Alterations in gene expressions of Caco-2 cell responses to LPS and ploy(I:C) stimulation. PeerJ 2023; 11:e15459. [PMID: 37304876 PMCID: PMC10257391 DOI: 10.7717/peerj.15459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
The intestinal epithelium barrier serves as a highly dynamic immunologic frontier in the defense against invading pathogenic bacteria and viruses. Hence, understanding of the complicated underlying relationship between enteric pathogens and the intestinal epithelium barrier is vital for developing strategies to improve the intestinal health of farm animals. To this end, Caco-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) for 24 h and 5 µg/ml polyinosinic-polycytidylic acid (ploy(I:C)) for 4 h to imitate bacterial and viral infection processes, respectively. The specific alterations in gene expression of Caco-2 cells after stimulation were characterized by transcriptome sequencing. Seventy differentially expressed genes (DEGs) were identified under LPS exposure, and 17 DEGs were observed under ploy(I:C) exposure. We found that most DEGs were specific, and only one common DEG SPAG7 was observed. Gene Ontology (GO) annotation analysis indicated that all DEGs identified in the different treatments were mainly derived from GO terms related to the maintenance of cellular homeostasis. Moreover, specific DEGs such as SLC39A10, MT2A, and MT1E regulated by LPS treatment, while IFIT2 and RUNX2 mediated by ploy(I:C) treatment, which are derived from immune function modulation related GO terms, were confirmed by both transcriptome sequencing and qRT-PCR. In addition, both transcriptome sequencing and qRT-PCR results verified that LPS specifically down-regulated the DEGs INHBE and ARF6, which are involved in inflammation responses related to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway including the TGF-beta signaling pathways and the Ras signaling pathway. Ploy(I:C) uniquely suppressed the DEGs GABARAP and LAMTOR3, which participated in viral replication-associated pathways including autophagy and mTOR signaling pathway.
Collapse
Affiliation(s)
- Ge Qin
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanjie Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yating Gan
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Yu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifan Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Peng
- Hainan University, Haikou, China
| | - Shaoming Fang
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Tomaszewska E, Rudyk H, Dobrowolski P, Arciszewski MB, Donaldson J, Kras K, Abramowicz B, Kuc D, Muszyński S. Basal Intestinal Morphology, Immunolocalization of Leptin and Ghrelin and Their Receptors in Newborn Wistar Rats after Prenatal Exposure to Fumonisins. Animals (Basel) 2023; 13:ani13091538. [PMID: 37174575 PMCID: PMC10177403 DOI: 10.3390/ani13091538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Animal feed is very frequently contaminated with different types of mold, the metabolites of which are toxic to living organisms. Mold-contaminated cereal is rich in heat-resistant and harmful metabolites such as fumonisins (FBs). The amount of FBs consumed as part of animal feed, including livestock feed, is unknown. Therefore, this study aimed to evaluate the effects of maternal oral FB intoxication on basal duodenum morphology and the immunolocalization of gut hormones responsible for food intake (leptin and ghrelin), as well as their receptors, in newborn rat offspring. Pregnant Wistar rats were randomly allocated to one of three groups: a control group or one of two FB-intoxicated groups (60 or 90 mg FB/kg b.w., respectively). Basal morphological duodenal parameters changed in a dose- and sex-dependent manner. The intensity of the ghrelin immunoreaction was unchanged in females, while in males it increased after FB exposure (60 mg/kg b.w.), with a simultaneous decrease in expression of the ghrelin receptor. Leptin and its receptor immunoreaction intensity was decreased in both sexes following FB exposure. The current study highlighted the potential involvement of intestinal ghrelin and leptin in the metabolic disturbances observed later in life in offspring that were prenatally exposed to fumonisins.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Halyna Rudyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Laboratory of Feed Additives and Premixtures Control, State Research Control Institute of Veterinary Drugs and Feed Additives, 79000 Lviv, Ukraine
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Beata Abramowicz
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Damian Kuc
- Chair and Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
17
|
He Y, Li Y, Pan Y, Li A, Huang Y, Mi Q, Zhao S, Zhang C, Ran J, Hu H, Pan H. Correlation analysis between jejunum metabolites and immune function in Saba and Landrace piglets. Front Vet Sci 2023; 10:1069809. [PMID: 37008364 PMCID: PMC10060822 DOI: 10.3389/fvets.2023.1069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The immune function of the intestinal mucosa plays a crucial role in the intestinal health of hosts. As signaling molecules and precursors of metabolic reactions, intestinal chyme metabolites are instrumental in maintaining host immune homeostasis. Saba (SB) pigs, a unique local pig species in central Yunnan Province, China. However, research on jejunal metabolites in this species is limited. Here, we used immunohistochemistry and untargeted metabolomics by liquid chromatography mass spectrometry (LC-MS/MS) to study differences in jejunal immunophenotypes and metabolites between six Landrace (LA) and six SB piglets (35 days old). The results showed that the levels of the anti-inflammatory factor interleukin 10 (IL-10) were markedly higher in SB piglets than in LA piglets (P < 0.01), while the levels of the proinflammatory factors IL-6, IL-1β, and Toll-like receptor 2 (TLR-2) were markedly lower (P < 0.01). Furthermore, the levels of mucin 2 (MUC2) and zona occludens (ZO-1), which are related to mucosal barrier function, were significantly higher in SB piglets than in LA piglets (P < 0.01), as were villus height, villus height/crypt depth ratio, and goblet cell number (P < 0.05). Differences in jejunal chyme metabolic patterns were observed between the two piglets. In the negative ion mode, cholic acid metabolites ranked in the top 20 and represented 25% of the total. Taurodeoxycholic acid (TDCA) content was significantly higher in SB piglets than in LA piglets (P < 0.01). TDCA positively correlated with ZO-1, villus height, villus height/crypt depth ratio, and goblet cell number. These results suggest that SB pigs have a strong jejunal immune function and that TDCA was positively regulates jejunal immunity and mucosal barrier function. Our findings provide a reference for understanding intestinal immune function in different pig breeds and for the discovery of potential biomarkers to help solve health issues related to pig production.
Collapse
Affiliation(s)
- Yang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yangsu Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinming Ran
- College of Modern Agriculture, Dazhou Vocational and Technical College, Dazhou, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Hong Hu
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hongbin Pan
| |
Collapse
|
18
|
Bang YJ. Vitamin A: a key coordinator of host-microbe interactions in the intestine. BMB Rep 2023; 56:133-139. [PMID: 36751944 PMCID: PMC10068342 DOI: 10.5483/bmbrep.2023-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 09/29/2023] Open
Abstract
The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Bang YJ. Vitamin A: a key coordinator of host-microbe interactions in the intestine. BMB Rep 2023; 56:133-139. [PMID: 36751944 PMCID: PMC10068342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
20
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, Liu J, Hong J, Wu HG, Ma XP. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14:1089809. [PMID: 36776858 PMCID: PMC9911687 DOI: 10.3389/fimmu.2023.1089809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1β and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1β and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xue-jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-ting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-na Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Digrazia JR, Engevik MA, Engevik AC. Identification of Differentiated Intestinal Epithelial Cells Using Immunostaining and Fluorescence Microscopy. Methods Mol Biol 2023; 2650:17-34. [PMID: 37310620 DOI: 10.1007/978-1-0716-3076-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunofluorescence imaging enables visualization of a wide range of molecules in diverse cells and tissues. Determining the localization and endogenous protein levels in cells using immunostaining can be highly informative for researchers studying cell structure and function. The small intestinal epithelium is composed of numerous cell types including absorptive enterocytes, mucus-producing goblet cells, lysozyme positive Paneth cells, proliferative stem cells, chemosensing tuft cells, and hormone-producing enteroendocrine cells. Each cell type in the small intestine has unique functions and structures that are critical for maintaining intestinal homeostasis and identifiable by immunofluorescence labeling. In this chapter we provide a detailed protocol and representative images of immunostaining of paraffin-embedded mouse small intestinal tissue. The method highlights antibodies and micrographs that identify differentiated cell types. These details are important because quality immunofluorescence imaging can provide novel insights and a greater understanding of healthy and disease states.
Collapse
Affiliation(s)
- Jessica R Digrazia
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
22
|
Hou X, Sang Y, Dong L. The improved effect and its mechanism of phytic acid on DSS-induced UC mice. Life Sci 2022; 311:121139. [DOI: 10.1016/j.lfs.2022.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
23
|
Deka D, D'Incà R, Sturniolo GC, Das A, Pathak S, Banerjee A. Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:5392-5406. [PMID: 35318552 DOI: 10.1007/s10620-022-07467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023]
Abstract
Previous investigations have increased the knowledge about the pathological processes of inflammatory bowel diseases. Besides the complex organization of immune reactions, the mucosal epithelial lining has been recognized as a crucial regulator in the commencement and persistence of intestinal inflammation. As the intestinal epithelium is exposed to various environmental factors, the intestinal epithelial cells are confronted with diverse cellular stress conditions. In eukaryotic cells, an imbalance in the endoplasmic reticulum (ER) might cause aggregation of unfolded or misfolded proteins in the lumen of ER, a condition known as endoplasmic reticulum stress. This cellular mechanism stimulates the unfolded protein response (UPR), which elevates the potential of the endoplasmic reticulum protein folding, improves protein production and its maturation, and also stimulates ER-associated protein degradation. Current analyses reported that in the epithelium, the ER stress might cause the pathogenesis of inflammatory bowel disease that affects the synthesis of protein, inducing the apoptosis of the epithelial cell and stimulating the proinflammatory reactions in the gut. There have been significant efforts to develop small molecules or molecular chaperones that will be potent in ameliorating ER stress. The restoration of UPR balance in the endoplasmic reticulum via pharmacological intervention might be a novel therapeutic approach for the treatment of inflammatory bowel diseases (IBDs). This review provides novel insights into the role of chemical chaperone UPR modulators to modify ER stress levels. We further discuss the future directions/challenges in the development of therapeutic strategies for IBDs by targeting the ER stress. Figure depicting the role of endoplasmic reticulum stress-mediated inflammatory bowel disease and the therapeutic role of endoplasmic reticulum stress inhibitors in alleviating the diseased condition.
Collapse
Affiliation(s)
- Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Renata D'Incà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
24
|
Pan H, Jian Y, Wang F, Yu S, Guo J, Kan J, Guo W. NLRP3 and Gut Microbiota Homeostasis: Progress in Research. Cells 2022; 11:3758. [PMID: 36497018 PMCID: PMC9739202 DOI: 10.3390/cells11233758] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The inflammasome is a platform for inflammatory signaling, and the NLRP3 inflammasome recognizes stimuli in vitro and in vivo, and releases inflammatory cytokines that trigger inflammation and pyroptosis. In the gut, the NLRP3 inflammasome is a key sensor for protecting the body from damage and exogenous pathogens. It plays a fundamental role in maintaining the stability of the gut's immune system. We focus on the role of NLRP3 as a key node in maintaining the homeostasis of gut microbiota which has not been fully highlighted in the past; gut microbiota and innate immunity, as well as the NLRP3 inflammasome, are discussed in this article.
Collapse
Affiliation(s)
- Hongming Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Yuting Jian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Shaokun Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiannan Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai 201203, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Cao YG, Bae S, Villarreal J, Moy M, Chun E, Michaud M, Lang JK, Glickman JN, Lobel L, Garrett WS. Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host Microbe 2022; 30:1295-1310.e8. [PMID: 35985335 PMCID: PMC9481734 DOI: 10.1016/j.chom.2022.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium plays critical roles in sensing and integrating dietary and microbial signals. How microbiota and intestinal epithelial cell (IEC) interactions regulate host physiology in the proximal small intestine, particularly the duodenum, is unclear. Using single-cell RNA sequencing of duodenal IECs under germ-free (GF) and different conventional microbiota compositions, we show that specific microbiota members alter epithelial homeostasis by increasing epithelial turnover rate, crypt proliferation, and major histocompatibility complex class II (MHCII) expression. Microbiome profiling identified Faecalibaculum rodentium as a key species involved in this regulation. F. rodentium decreases enterocyte expression of retinoic-acid-producing enzymes Adh1, Aldh1a1, and Rdh7, reducing retinoic acid signaling required to maintain certain intestinal eosinophil populations. Eosinophils suppress intraepithelial-lymphocyte-mediated production of interferon-γ that regulates epithelial cell function. Thus, we identify a retinoic acid-eosinophil-interferon-γ-dependent circuit by which the microbiota modulates duodenal epithelial homeostasis.
Collapse
Affiliation(s)
- Y Grace Cao
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Sena Bae
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jannely Villarreal
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Madelyn Moy
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Eunyoung Chun
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Monia Michaud
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jessica K Lang
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Lior Lobel
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Wendy S Garrett
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
27
|
Chen X, Huang L, Cheng L, Hu B, Liu H, Hu J, Hu S, Han C, He H, Kang B, Xu H, Wang J, Li L. Effects of floor- and net-rearing systems on intestinal growth and microbial diversity in the ceca of ducks. BMC Microbiol 2022; 22:76. [PMID: 35296244 PMCID: PMC8925166 DOI: 10.1186/s12866-022-02478-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.
Collapse
Affiliation(s)
- Xuefei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Liansi Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
28
|
Maeda K, Zachos NC, Orzalli MH, Schmieder SS, Chang D, Bugda Gwilt K, Doucet M, Baetz NW, Lee S, Crawford SE, Estes MK, Kagan JC, Turner JR, Lencer WI. Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host Microbe 2022; 30:216-231.e5. [PMID: 35143768 PMCID: PMC8852832 DOI: 10.1016/j.chom.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.
Collapse
Affiliation(s)
- Keiko Maeda
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie S Schmieder
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Denis Chang
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michele Doucet
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas W Baetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sun Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jerrold R Turner
- Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Epithelial NELF guards intestinal barrier function to ameliorate colitis by maintaining junctional integrity. Mucosal Immunol 2022; 15:279-288. [PMID: 34697434 PMCID: PMC8881342 DOI: 10.1038/s41385-021-00465-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 02/04/2023]
Abstract
Well-orchestrated transcriptional programs in intestinal epithelial cells (IECs) are essential for maintenance of optimal mucosal barrier functions, whereas the contribution of elongation-related mechanisms to barrier function remains unknown. Here, a combination of genetic and genomic approaches defined a critical role of IEC-intrinsic negative elongation factor (NELF) complex in maintenance of epithelial homeostasis. By direct occupancy at endogenous gene loci, NELF sustained expression of a subset of genes related to junctional integrity. As a result, epithelial NELF deficiency results in subdued levels of these junction-related genes and excessive IEC necroptosis in vivo secondary to commensal microbial invasion. In a colitis model, NELF-deficient mice exhibited severely impaired barrier integrity characterized by increased intestinal permeability and significantly exacerbated intestinal inflammation with lethal consequences. Our findings reveal the protective function of the NELF complex against intestinal damage and inflammation and suggest that elongation represents a biologically important step in defining IEC transcriptome.
Collapse
|
30
|
Rusu I, Mennillo E, Bain JL, Li Z, Sun X, Ly KM, Rosli YY, Naser M, Wang Z, Advincula R, Achacoso P, Shao L, Razani B, Klein OD, Marson A, Turnbaugh JA, Turnbaugh PJ, Malynn BA, Ma A, Kattah MG. Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage. J Clin Invest 2022; 132:154993. [PMID: 35077396 PMCID: PMC8884902 DOI: 10.1172/jci154993] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Anti-TNF antibodies are effective for treating patients with inflammatory bowel disease (IBD), but many patients fail to respond to anti-TNF therapy, highlighting the importance of TNF-independent disease. We previously demonstrated that acute deletion of 2 IBD susceptibility genes, A20 (Tnfaip3) and Abin-1 (Tnip1), in intestinal epithelial cells (IECs) sensitized mice to both TNF-dependent and TNF-independent death. Here we show that TNF-independent IEC death after A20 and Abin-1 deletion was rescued by germ-free derivation or deletion of MyD88, while deletion of Trif provided only partial protection. Combined deletion of Ripk3 and Casp8, which inhibits both apoptotic and necroptotic death, completely protected against death after acute deletion of A20 and Abin-1 in IECs. A20- and Abin-1–deficient IECs were sensitized to TNF-independent, TNFR1-mediated death in response to lymphotoxin α (LTα) homotrimers. Blockade of LTα in vivo reduced weight loss and improved survival when combined with partial deletion of MyD88. Biopsies of inflamed colon mucosa from patients with IBD exhibited increased LTA and IL1B expression, including a subset of patients with active colitis on anti-TNF therapy. These data show that microbial signals, MyD88, and LTα all contribute to TNF-independent intestinal injury.
Collapse
Affiliation(s)
- Iulia Rusu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Elvira Mennillo
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Jared L. Bain
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Zhongmei Li
- Department of Medicine, UCSF, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Xiaofei Sun
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Yenny Y. Rosli
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mohammad Naser
- Biological Imaging Development CoLab, UCSF, San Francisco, California, USA
| | - Zunqiu Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Philip Achacoso
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Ling Shao
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Ophir D. Klein
- Departments of Orofacial Sciences and Pediatrics, Program in Craniofacial Biology, and
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology and
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | | | | | | - Averil Ma
- Department of Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
31
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
32
|
Udoumoh AF, Nwaogu IC, Igwebuike UM, Obidike IR. Light and transmission electron microscopic evaluation of the lamina epithelialis mucosae in the ileum of pre- and post-hatch broiler chicken. Anat Histol Embryol 2021; 51:136-142. [PMID: 34877705 DOI: 10.1111/ahe.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Morphological development of the lamina epithelialis mucosae (LEM) of the ileum of broiler chicken was evaluated using light and transmission electron microscopic techniques. Ileal sections were collected on embryonic days (ED) 14, 17 and 19, as well as post-hatch days (PD) 1, 3, 5, 7, 14, 21, 28, 35, 42 and 56. The result showed that the ileal LEM, which were poorly defined at embryonic days 14 and 17, consisted of enterocytes and some atypically shaped goblet cells. Apico-lateral tight junctions and irregularly shaped microvilli were associated with the enterocytes at ED 14 and 17. The enterocyte microvilli were more uniform in shape and distribution at ED 19. The embryonic goblet cells were varied in shape and possessed basally displaced, star-shaped nuclei and small apical cytoplasmic vacuoles. During the post-hatch ages, the LEM was a typical epithelium with a single layer of columnar-shaped enterocytes that became highly elongated at post-hatch day (PD) 7. The goblet cells were characteristically 'wine-glass' shaped. Follicle-associated epithelium (FAE) showing numerous lymphocytes among the enterocytes occurred in the post-hatch LEM. The intra-epithelial lymphocytes (IEL) were first encountered at PD 1, but increased several folds within the first two weeks post-hatch. Entero-endocrine cells were observed in the epithelium from PD 21. Finally, from this study, it is obvious that enterocytes and small atypically shaped goblet cells occur in the ileal LEM during the pre-hatch period, but these cells assume adult morphological characteristics after hatch. Thus, the cells of the ileal LEM play strategic absorptive, secretory and protective roles in the gut.
Collapse
Affiliation(s)
- Anietie Francis Udoumoh
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Innocent Chima Nwaogu
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | | | - Ikechukwu Reginald Obidike
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
33
|
High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett’s Esophagus. Microorganisms 2021; 9:microorganisms9122432. [PMID: 34946037 PMCID: PMC8708753 DOI: 10.3390/microorganisms9122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett’s esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
Collapse
|
34
|
Yang J, Wang J, Huang K, Liu Q, GuofangLiu, Xu X, Zhang H, Zhu M. Selenium-enriched Bacillus subtilis yb-114246 improved growth and immunity of broiler chickens through modified ileal bacterial composition. Sci Rep 2021; 11:21690. [PMID: 34737359 PMCID: PMC8568892 DOI: 10.1038/s41598-021-00699-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Here, a Selenium-enriched Bacillus subtilis (SEBS) strain was generated and supplemented to broiler chickens' diet, and the impact in ileum bacterial microbiome, immunity and body weight were assessed. In a nutshell, five hundred 1-old old chicken were randomly divided into five groups: control, inorganic Se, Bacillus subtilis (B. subtilis), SEBS, and antibiotic, and colonization with B. subtilis and SEBS in the gastrointestinal tract (GIT) were measured by fluorescence in situ hybridization (FISH) assay and quantitative real-time polymerase chain reaction (qPCR). In summary, Chicks fed SEBS or B. subtilis had higher body weight than the control chicks or those given inorganic Se. SEBS colonized in distal segments of the ileum improved bacterial diversity, reduced the endogenous pathogen burden and increased the number of Lactobacillus sp. in the ileal mucous membrane. Species of unclassified Lachnospiraceae, uncultured Anaerosporobacter, Peptococcus, Lactobacillus salivarius, and Ruminococcaceae_UCG-014, and unclassified Butyricicoccus in the ileal mucous membrane played a key role in promoting immunity. Inorganic Se supplementation also improved bacterial composition of ileal mucous membranes, but to a less extent. In conclusion, SEBS improved performance and immunity of broiler chickens through colonization and modulation of the ileal mucous membrane microbiome.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - GuofangLiu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Xiaozhou Xu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China.
| |
Collapse
|
35
|
Abstract
Organoids have complex three-dimensional structures that exhibit functionalities and feature architectures similar to those of in vivo organs and are developed from adult stem cells, embryonic stem cells, and pluripotent stem cells through a self-organization process. Organoids derived from adult epithelial stem cells are the most mature and extensive. In recent years, using organoid culture techniques, researchers have established various adult human tissue-derived epithelial organoids, including intestinal, colon, lung, liver, stomach, breast, and oral mucosal organoids, all of which exhibit strong research and application prospects. Studies have shown that epithelial organoids are mainly applied in drug discovery, personalized drug response testing, disease mechanism research, and regenerative medicine. In this review, we mainly discuss current organoid culture systems and potential applications of this technique with human epithelial tissue.
Collapse
Affiliation(s)
- Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
36
|
Effect of Bifidobacterium longum subsp. longum on the proliferative and tight-junction activities of Human Fetal Colon Epithelial Cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
38
|
Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis 2021; 12:563. [PMID: 34059646 PMCID: PMC8166876 DOI: 10.1038/s41419-021-03843-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Intestinal barrier function defects and dysregulation of intestinal immune responses are two key contributory factors in the pathogenesis of ulcerative colitis (UC). Phenazine biosynthesis-like domain-containing protein (PBLD) was recently identified as a tumor suppressor in gastric cancer, hepatocellular carcinoma, and breast cancer; however, its role in UC remains unclear. Therefore, we analyzed colonic tissue samples from patients with UC and constructed specific intestinal epithelial PBLD-deficient (PBLDIEC-/-) mice to investigate the role of this protein in UC pathogenesis. We found that epithelial PBLD was decreased in patients with UC and was correlated with levels of tight junction (TJ) and inflammatory proteins. PBLDIEC-/- mice were more susceptible to dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis compared with wild-type (WT) mice. In DSS-induced colitis, PBLDIEC-/- mice had impaired intestinal barrier function and greater immune cell infiltration in colonic tissue than WT mice. Furthermore, TJ proteins were markedly reduced in PBLDIEC-/- mice compared with WT mice with colitis. Nuclear factor (NF)-κB activation was markedly elevated and resulted in higher expression levels of downstream effectors (C-C motif chemokine ligand 20, interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in colonic epithelial cells isolated from PBLDIEC-/- mice than WT mice with colitis. PBLD overexpression in intestinal epithelial cells (IECs) consistently inhibited TNF-α/interferon-γ-induced intestinal barrier disruption and TNF-α-induced inflammatory responses via the suppression of NF-κB. In addition, IKK inhibition (IKK-16) rescued excessive inflammatory responses induced by TNF-α in PBLD knockdown FHC cells. Co-immunoprecipitation assays showed that PBLD may interact with IKKα and IKKβ, thus inhibiting NF-κB signaling, decreasing inflammatory mediator production, attenuating colonic inflammation, and improving intestinal barrier function. Modulating PBLD expression may provide a novel approach for treatment in patients with UC.
Collapse
|
39
|
Liu H, Zhang M, Ma Q, Tian B, Nie C, Chen Z, Li J. Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: a review. Food Funct 2021; 11:5749-5767. [PMID: 32602874 DOI: 10.1039/d0fo00855a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant starch (RS) is well known to prevent type 2 diabetes mellitus (T2DM) and obesity. Recently, attention has been paid to gut microbiota which mediates the RS's impact on T2DM and obesity, while a mechanistic understanding of how RS prevents T2DM and obesity through gut microbiota is not clear yet. Therefore, this review aims at exploring the underlying mechanisms of it. RS prevents T2DM and obesity through gut microbiota by modifying selective microbial composition to produce starch-degrading enzymes, promoting the production of intestinal metabolites, and improving gut barrier function. Therefore, RS possessing good functional features can be used to increase the fiber content of healthier food. Furthermore, achieving highly selective effects on gut microbiota based on the slight differences of RS's chemical structure and focusing on the effects of RS on strain-levels are essential to manipulate the microbiota for human health.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| |
Collapse
|
40
|
Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proc Natl Acad Sci U S A 2021; 118:2013963118. [PMID: 33846244 PMCID: PMC8072224 DOI: 10.1073/pnas.2013963118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gut epithelium serves to maximize the surface for nutrient and fluid uptake, but at the same time must provide a tight barrier to pathogens and remove damaged intestinal epithelial cells (IECs) without jeopardizing barrier integrity. How the epithelium coordinates these tasks remains a question of significant interest. We used imaging and an optical flow analysis pipeline to study the dynamicity of untransformed murine and human intestinal epithelia, cultured atop flexible hydrogel supports. Infection with the pathogen Salmonella Typhimurium (STm) within minutes elicited focal contractions with inward movements of up to ∼1,000 IECs. Genetics approaches and chimeric epithelial monolayers revealed contractions to be triggered by the NAIP/NLRC4 inflammasome, which sensed type-III secretion system and flagellar ligands upon bacterial invasion, converting the local tissue into a contraction epicenter. Execution of the response required swift sublytic Gasdermin D pore formation, ion fluxes, and the propagation of a myosin contraction pulse across the tissue. Importantly, focal contractions preceded, and could be uncoupled from, the death and expulsion of infected IECs. In both two-dimensional monolayers and three-dimensional enteroids, multiple infection-elicited contractions coalesced to produce shrinkage of the epithelium as a whole. Monolayers deficient for Caspase-1(-11) or Gasdermin D failed to elicit focal contractions but were still capable of infected IEC death and expulsion. Strikingly, these monolayers lost their integrity to a markedly higher extent than wild-type counterparts. We propose that prompt NAIP/NLRC4/Caspase-1/Gasdermin D/myosin-dependent contractions allow the epithelium to densify its cell packing in infected regions, thereby preventing tissue disintegration due to the subsequent IEC death and expulsion process.
Collapse
|
41
|
Involvement of Smad7 in Inflammatory Diseases of the Gut and Colon Cancer. Int J Mol Sci 2021; 22:ijms22083922. [PMID: 33920230 PMCID: PMC8069188 DOI: 10.3390/ijms22083922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
In physiological conditions, the human intestinal mucosa is massively infiltrated with various subsets of immune cells, the activity of which is tightly regulated by several counter-regulatory factors. One of these factors is transforming growth factor-β1 (TGF-β1), a cytokine produced by multiple cell types and targeting virtually all the intestinal mucosal cells. Binding of TGF-β1 to its receptors triggers Smad2/3 signaling, thus culminating in the attenuation/suppression of immune–inflammatory responses. In patients with Crohn’s disease and patients with ulcerative colitis, the major human inflammatory bowel diseases (IBD), and in mice with IBD-like colitis, there is defective TGF-β1/Smad signaling due to high levels of the intracellular inhibitor Smad7. Pharmacological inhibition of Smad7 restores TGF-β1 function, thereby reducing inflammatory pathways in patients with IBD and colitic mice. On the other hand, transgenic over-expression of Smad7 in T cells exacerbates colitis in various mouse models of IBD. Smad7 is also over-expressed in other inflammatory disorders of the gut, such as refractory celiac disease, necrotizing enterocolitis and cytomegalovirus-induced colitis, even though evidence is still scarce and mainly descriptive. Furthermore, Smad7 has been involved in colon carcinogenesis through complex and heterogeneous mechanisms, and Smad7 polymorphisms could influence cancer prognosis. In this article, we review the data about the expression and role of Smad7 in intestinal inflammation and cancer.
Collapse
|
42
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
43
|
Gut health: The results of microbial and mucosal immune interactions in pigs. ACTA ACUST UNITED AC 2021; 7:282-294. [PMID: 34258416 PMCID: PMC8245825 DOI: 10.1016/j.aninu.2021.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
There are a large number of microorganisms in the porcine intestinal tract. These microorganisms and their metabolites contribute to intestinal mucosal immunity, which is of great importance to the health of the host. The host immune system can regulate the distribution and composition of intestinal microorganisms and regulate the homeostasis of intestinal flora by secreting a variety of immune effector factors, such as mucin, secretory immunoglobulin A (sIgA), regenerating islet-derived III (RegIII)γ, and defensin. Conversely, intestinal microorganisms can also promote the differentiation of immune cells including regulatory T cells (Treg) and Th17 cells through their specific components or metabolites. Studies have shown that imbalances in the intestinal flora can lead to bacterial translocation and compromised intestinal barrier function, affecting the health of the body. This review focuses on the composition of the pig intestinal flora and the characteristics of intestinal mucosal immunity, discusses the interaction mechanism between the flora and intestinal mucosal immunity, as well as the regulation through fecal microbiota transplantation (FMT), dietary nutritional composition, probiotics and prebiotics of pig intestinal microecology. Finally, this review provides insights into the relationship between intestinal microorganisms and the mucosal immune system.
Collapse
|
44
|
Inoue C, Negoro R, Takayama K, Mizuguchi H, Sakurai F. Asymmetric profiles of infection and innate immunological responses in human iPS cell-derived small intestinal epithelial-like cell monolayers following infection with mammalian reovirus. Virus Res 2021; 296:198334. [PMID: 33581186 DOI: 10.1016/j.virusres.2021.198334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
The intestinal mucosa plays an important role as an immune barrier due to its continual exposure to invading pathogens, including viruses. It is thus highly important to evaluate virus infection profiles in the intestinal mucosa for prevention of virus infection and development of antivirus medicines; however, only a few enterocyte lines are available as in vitro intestinal models for the evaluation of virus infection. In this study, we evaluated profiles of infection and innate immune responses following infection with a mammalian orthoreovirus (hereafter reovirus), which has often been used as a tractable model for studies of viral pathogenesis, in human iPS cell-derived small intestinal epithelial-like cell (hiPS-SIEC) monolayers and cells of a human colon adenocarcinoma cell line, Caco-2. The levels of reovirus infection were similar between hiPS-SIEC and Caco-2 cell monolayers, which are often used as an intestinal model, after apical and basolateral infection. In hiPS-SIEC monolayers, more efficient replication of the virus genome was observed following basolateral infection than apical infection, while apical infection resulted in higher levels of virus protein expression and progeny virus production than basolateral infection. Reovirus significantly induced innate immune responses, including expression of type I and III interferons (IFNs), in hiPS-SIEC monolayers more efficiently than Caco-2 cells. Higher levels of type I and III interferon (IFN) expression were found in hiPS-SIEC monolayers following apical infection than basolateral infection. These results suggested that hiPS-SIECs are a promising in vitro model for the evaluation of virus infection.
Collapse
Affiliation(s)
- Chieko Inoue
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
45
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Krawiec P, Pac-Kożuchowska E. Cathelicidin - A Novel Potential Marker of Pediatric Inflammatory Bowel Disease. J Inflamm Res 2021; 14:163-174. [PMID: 33519224 PMCID: PMC7837565 DOI: 10.2147/jir.s288742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Cathelicidin is a multifunctional host defense peptide which may also exert pro-inflammatory signals and contribute to the development of autoimmune disorders. We aimed to assess serum concentration of cathelicidin in children with inflammatory bowel disease (IBD) compared to healthy controls and to evaluate its relationship with disease activity and phenotype. PATIENTS AND METHODS The study group included 68 children with IBD. The control group comprised 20 children with functional abdominal pain. All patients and controls were tested for complete blood count, C-reactive protein, erythrocyte sedimentation rate and cathelicidin. Stool samples were collected to assess calprotectin. RESULTS Cathelicidin was significantly increased in patients with ulcerative colitis (1073.39±214.52 ng/mL) and Crohn's disease (1057.63±176.03 ng/mL) patients compared to controls (890.56±129.37 ng/mL) (H=16.28; p=0.0003). Cathelicidin was significantly elevated in children with active IBD (1044.90±176.17 ng/mL) and IBD remission (1098.10±227.87 ng/mL) compared to controls (Z=3.21; p=0.001; Z=-4.12; p<0.0001, respectively). Negative correlation between cathelicidin and calprotectin in children with ulcerative colitis was found (R=-0.39; p=0.02). Cathelicidin exhibited AUC of 0.815 for differentiation children with ulcerative colitis from the control group. CONCLUSION Serum cathelicidin is increased in children with Crohn's disease and ulcerative colitis regardless of clinical activity of the disease suggesting that it may be a potential biomarker of IBD. Inverse correlation between cathelicidin and fecal calprotectin may imply a disparate role of these molecules in the pathophysiology of pediatric ulcerative colitis.
Collapse
Affiliation(s)
- Paulina Krawiec
- Department of Pediatrics and Gastroenterology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
47
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
48
|
Yang Y, Cui X, Li J, Wang H, Li Y, Chen Y, Zhang H. Clinical evaluation of vitamin D status and its relationship with disease activity and changes of intestinal immune function in patients with Crohn's disease in the Chinese population. Scand J Gastroenterol 2021; 56:20-29. [PMID: 33205696 DOI: 10.1080/00365521.2020.1844793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND High prevalence of vitamin D deficiency has been found among Crohn's disease (CD) patients. Vitamin D probably participates in the pathogenesis of CD, but this idea remains controversial. This study was to investigate the levels of vitamin D in CD patients and analyze the relationship between vitamin D and intestinal inflammation. METHODS Vitamin D levels were measured by chemiluminescence immunoassay in 198 CD patients (96 in active, 102 in remission) and 100 healthy controls. The correlation between vitamin D levels and clinical parameters was analysed. The expression of intestinal tight junction (TJ) proteins in CD patients was measured by immunofluorescence staining. Treg and Th17 percentages in the peripheral blood were determined by flow cytometry. RESULTS CD patients exhibited significantly lower 25(OH)D levels than healthy controls, especially in active CD patients. Serum 25(OH)D levels in CD patients were negatively correlated with the CD activity index (CDAI), the simple endoscopic score for CD (SES-CD), and inflammatory markers, including erythrocyte sedimentation rate (ESR), platelet (PLT) count and faecal calprotectin (FC) levels. Moreover, in patients with vitamin D deficiency, the expression of TJ proteins (Occludin, claudin-1, ZO-1 and JAM-1) in the intestinal mucosa was reduced, and Treg cells in the peripheral blood were decreased, while Th17 cells were increased compared to those with vitamin D sufficiency and controls. CONCLUSIONS Vitamin D deficiency in CD patients is common. Vitamin D is associated with disease activity and intestinal inflammation, which may affect the Treg/Th17 balance and the expression of gut TJ proteins.
Collapse
Affiliation(s)
- Yan Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, First Affliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiufang Cui
- Department of Gastroenterology, First Affliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiajia Li
- Department of Gastroenterology, First Affliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Haiyang Wang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yunzi Chen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Hongjie Zhang
- Department of Gastroenterology, First Affliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
49
|
Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients. Acta Physiol (Oxf) 2021; 231:e13492. [PMID: 32419327 DOI: 10.1111/apha.13492] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and Ulcerative colitis (UC) have a complex and multifactorial pathogenesis which is incompletely understood. A typical feature closely associated with clinical symptoms is impaired intestinal epithelial barrier function. Mounting evidence suggests that desmosomes, which together with tight junctions (TJ) and adherens junctions (AJ) form the intestinal epithelial barrier, play a distinct role in IBD pathogenesis. This is based on the finding that desmoglein (Dsg) 2, a cadherin-type adhesion molecule of desmosomes, is required for maintenance of intestinal barrier properties both in vitro and in vivo, presumably via Dsg2-mediated regulation of TJ. Mice deficient for intestinal Dsg2 show increased basal permeability and are highly susceptible to experimental colitis. In several cohorts of IBD patients, intestinal protein levels of Dsg2 are reduced and desmosome ultrastructure is altered suggesting that Dsg2 is involved in IBD pathogenesis. In addition to its adhesive function, Dsg2 contributes to enterocyte cohesion and intestinal barrier function. Dsg2 is also involved in enterocyte proliferation, barrier differentiation and induction of apoptosis, in part by regulation of p38MAPK and EGFR signalling. In IBD, the function of Dsg2 appears to be compromised via p38MAPK activation, which is a critical pathway for regulation of desmosomes and is associated with keratin phosphorylation in IBD patients. In this review, the current findings on the role of Dsg2 as a novel promising target to prevent loss of intestinal barrier function in IBD patients are discussed.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Kevin Boerner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Faculty of Medicine Ludwig Maximilians University Munich Munich Germany
| |
Collapse
|
50
|
Yang J, Wang J, Huang K, Zhu M, Liu Q, Liu G, Chen F, Zhang H, Qin S. Selenium enriched Bacillus subtilis yb-1114246 activated the TLR2-NF-κB1 signaling pathway to regulate chicken intestinal β-defensin 1 expression. Food Funct 2021; 12:5913-5926. [PMID: 34028482 DOI: 10.1039/d1fo01158h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects and potential signaling pathway of selenium-enriched Bacillus subtilis (SEBS) on beta defensin 1 (BD1) expression in chicken intestine. Chinese Huainan Partridge chickens (500 individuals) were randomly allocated into five groups, including control, inorganic Se, B. subtilis, SEBS, and a mixture of Se and B. subtilis (Se-BS). After 56 d of feeding, chicken ileal mucous membranes were harvested to detect differences in expression of BD1. The results indicated that BD1 was produced in intestinal crypt cells and secreted into the lumen through the villi brush border. BD1 was up-regulated in distal ileum segments colonized by SEBS and B. subtilis. Chicken primary intestinal crypt cells were cultured and grouped into control, inorganic Se, B. subtilis, SEBS, and Se-BS treatments to identify the receptor of B. subtilis. Results indicated that B. subtilis and SEBS were recognized by toll-like receptor 2 (TLR2), stimulating the NF-κB1 signaling pathway to increase expression of BD-1, which was further enhanced when combined with Se. Pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were up-regulated with B. subtilis supplementation, and inhibited under the action of Se. In conclusion, B. subtilis and SEBS were recognized by the TLR2 receptor in the ileal mucous membrane, which activated the TLR2-MyD88-NF-κB1 signaling pathway to upregulate BD1 expression. In addition, Se enhanced recognition of B. subtilis and reduced levels of pro-inflammatory factors caused by estrogenic B. subtilis supplementation.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Jing Wang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Mengling Zhu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Qinxing Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Guofang Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Fu Chen
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Shunyi Qin
- Key Laboratory of Agricultural Animal Breeding and Healthy Breeding of Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China300384.
| |
Collapse
|