1
|
Aguilera-Lizarraga J, Ritoux A, Bulmer DC, Smith ESJ. Intestinal barrier function in the naked mole-rat: an emergent model for gastrointestinal insights. Am J Physiol Gastrointest Liver Physiol 2024; 327:G188-G201. [PMID: 38915279 DOI: 10.1152/ajpgi.00080.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The intestinal barrier plays a crucial role in homeostasis by both facilitating the absorption of nutrients and fluids and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared with mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared with mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced prosecretory responses to the nonselective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.NEW & NOTEWORTHY This is the first study to characterize the intestinal function of naked mole-rats. We found that these animals show a robust gut tissue structure, displaying thicker intestinal layers, longer villi, and larger crypts. Naked mole-rats showed more and larger goblet cells, with increased mucus content. Intestinal permeability, especially in the ileum, was substantially lower than that of mice. Finally, naked mole-rats showed reduced intestinal anion secretion in response to serotonin, bradykinin, histamine, capsaicin, and forskolin.
Collapse
Affiliation(s)
| | - Anne Ritoux
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Hazime H, Ducasa GM, Santander AM, Brito N, González EE, Ban Y, Kaunitz J, Akiba Y, Fernández I, Burgueño JF, Abreu MT. Intestinal Epithelial Inactivity of Dual Oxidase 2 Results in Microbiome-Mediated Metabolic Syndrome. Cell Mol Gastroenterol Hepatol 2023; 16:557-572. [PMID: 37369278 PMCID: PMC10468370 DOI: 10.1016/j.jcmgh.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND & AIMS Metabolic syndrome (MetS) is characterized by obesity, glucose intolerance, and hepatic steatosis. Alterations in the gut microbiome play important roles in the development of MetS. However, the mechanisms by which this occurs are poorly understood. Dual oxidase 2 (DUOX2) is an antimicrobial reduced nicotinamide adenine dinucleotide phosphate oxidase expressed in the gut epithelium. Here, we posit that epithelial DUOX2 activity provides a mechanistic link between the gut microbiome and the development of MetS. METHODS Mice carrying an intestinal epithelial-specific deletion of dual oxidase maturation factor 1/2 (DA IEC-KO), and wild-type littermates were fed a standard diet and killed at 24 weeks. Metabolic alterations were determined by glucose tolerance, lipid tests, and body and organ weight measurements. DUOX2 activity was determined by Amplex Red. Intestinal permeability was determined by fluorescein isothiocyanate-dextran, microbial translocation assessments, and portal vein lipopolysaccharide measurements. Metagenomic analysis of the stool microbiome was performed. The role of the microbiome was assessed in antibiotic-treated mice. RESULTS DA IEC-KO males showed increased body and organ weights accompanied by glucose intolerance and increased plasma lipid and liver enzyme levels, and increased adiposity in the liver and adipose tissue. Expression of F4/80, CD68, uncoupling protein 1, carbohydrate response element binding protein, leptin, and adiponectin was altered in the liver and adipose tissue of DA IEC-KO males. DA IEC-KO males produced less epithelial H2O2, had altered relative abundance of Akkermansiaceae and Lachnospiraceae in stool, and showed increased portal vein lipopolysaccharides and intestinal permeability. Females were protected from barrier defects and MetS, despite producing less H2O2. Antibiotic depletion abrogated all MetS phenotypes observed. CONCLUSIONS Intestinal epithelial inactivity of DUOX2 promotes MetS in a microbiome-dependent manner.
Collapse
Affiliation(s)
- Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida
| | - G Michelle Ducasa
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Eddy E González
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jonathan Kaunitz
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yasutada Akiba
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida.
| |
Collapse
|
3
|
Unkovič A, Boštjančič E, Belič A, Perše M. Selection and Evaluation of mRNA and miRNA Reference Genes for Expression Studies (qPCR) in Archived Formalin-Fixed and Paraffin-Embedded (FFPE) Colon Samples of DSS-Induced Colitis Mouse Model. BIOLOGY 2023; 12:190. [PMID: 36829468 PMCID: PMC9952917 DOI: 10.3390/biology12020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
The choice of appropriate reference genes is essential for correctly interpreting qPCR data and results. However, the majority of animal studies use a single reference gene without any prior evaluation. Therefore, many qPCR results from rodent studies can be misleading, affecting not only reproducibility but also translatability. In this study, the expression stability of reference genes for mRNA and miRNA in archived FFPE samples of 117 C57BL/6JOlaHsd mice (males and females) from 9 colitis experiments (dextran sulfate sodium; DSS) were evaluated and their expression analysis was performed. In addition, we investigated whether normalization reduced/neutralized the influence of inter/intra-experimental factors which we systematically included in the study. Two statistical algorithms (NormFinder and Bestkeeper) were used to determine the stability of reference genes. Multivariate analysis was made to evaluate the influence of normalization with different reference genes on target gene expression in regard to inter/intra-experimental factors. Results show that archived FFPE samples are a reliable source of RNA and imply that the FFPE procedure does not change the ranking of stability of reference genes obtained in fresh tissues. Multivariate analysis showed that the histological picture is an important factor affecting the expression levels of target genes.
Collapse
Affiliation(s)
- Ana Unkovič
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Belič
- Statistics and Modelling, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., 1000 Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Knutson KR, Whiteman ST, Alcaino C, Mercado-Perez A, Finholm I, Serlin HK, Bellampalli SS, Linden DR, Farrugia G, Beyder A. Intestinal enteroendocrine cells rely on ryanodine and IP 3 calcium store receptors for mechanotransduction. J Physiol 2023; 601:287-305. [PMID: 36428286 PMCID: PMC9840706 DOI: 10.1113/jp283383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (∼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.
Collapse
Affiliation(s)
- Kaitlyn R. Knutson
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Sara T. Whiteman
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arnaldo Mercado-Perez
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - Isabelle Finholm
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Hannah K. Serlin
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Shreya S. Bellampalli
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
García-Martínez M, Cortez LM, Otero A, Betancor M, Serrano-Pérez B, Bolea R, Badiola JJ, Garza MC. Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. Int J Mol Sci 2022; 23:ijms23073579. [PMID: 35408945 PMCID: PMC8998348 DOI: 10.3390/ijms23073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.
Collapse
Affiliation(s)
- Mirta García-Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Leonardo M. Cortez
- Department of Medicine and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: (L.M.C.); (A.O.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
- Correspondence: (L.M.C.); (A.O.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Beatriz Serrano-Pérez
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Spain;
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - María Carmen Garza
- Departamento de Anatomía e Histología Humanas, IIS Aragón, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
6
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
7
|
France MM, Rio TD, Travers H, Raftery E, Langer R, Traverso G, Schoellhammer CM. Platform for the Delivery of Unformulated RNA In Vivo. J Pharm Sci 2021; 111:1770-1775. [PMID: 34906584 DOI: 10.1016/j.xphs.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
The successful delivery of RNA therapeutics is the gating hurdle to greater clinical translation and utility of this novel class of therapeutics. Delivery strategies today are limited and predominantly rely on lipid nanoparticles or conjugates, which can facilitate hepatic delivery but are poor for achieving uptake outside the liver. The ability to deliver RNA to other organs outside the liver in a formulation-agnostic approach could serve to unlock the broader potential of these therapies and enable their use in a broader set of disease. Here we demonstrate this formulation-agnostic delivery of two model siRNAs using low-frequency ultrasound to the gastrointestinal (GI) tract. Unformulated siRNAs targeting β-catenin (Ctnnb 1) and Sjögren syndrome antigen B (SSB) genes were successfully delivered to colonic mucosa in mice, achieving robust knockdown of the target mRNA from whole-colon tissue samples. Indeed, the capacity to target and successfully suppress expression from genes underscores the power of this platform to rapidly deliver unformulated and unoptimized sequences against a range of targets in the GI tract.
Collapse
Affiliation(s)
- Marion M France
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA
| | - Tony Del Rio
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA
| | - Hannah Travers
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA; Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Erin Raftery
- Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, 65 Landsdowne St., Suite 252, Cambridge, MA 02139, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | |
Collapse
|
8
|
Pontifex MG, Mushtaq A, Le Gall G, Rodriguez-Ramiro I, Blokker BA, Hoogteijling MEM, Ricci M, Pellizzon M, Vauzour D, Müller M. Differential Influence of Soluble Dietary Fibres on Intestinal and Hepatic Carbohydrate Response. Nutrients 2021; 13:nu13124278. [PMID: 34959832 PMCID: PMC8706546 DOI: 10.3390/nu13124278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Refined foods are commonly depleted in certain bioactive components that are abundant in 'natural' (plant) foods. Identification and addition of these 'missing' bioactives in the diet is, therefore, necessary to counteract the deleterious impact of convenience food. In this study, multiomics approaches were employed to assess the addition of the popular supplementary soluble dietary fibers inulin and psyllium, both in isolation and in combination with a refined animal feed. A 16S rRNA sequencing and 1H NMR metabolomic investigation revealed that, whilst inulin mediated an increase in Bifidobacteria, psyllium elicited a broader microbial shift, with Parasutterella and Akkermansia being increased and Enterorhabdus and Odoribacter decreased. Interestingly, the combination diet benefited from both inulin and psyllium related microbial changes. Psyllium mediated microbial changes correlated with a reduction of glucose (R -0.67, -0.73, respectively, p < 0.05) and type 2 diabetes associated metabolites: 3-methyl-2-oxovaleric acid (R -0.72, -0.78, respectively, p < 0.05), and citrulline (R -0.77, -0.71, respectively, p < 0.05). This was in line with intestinal and hepatic carbohydrate response (e.g., Slc2a2, Slc2a5, Khk and Fbp1) and hepatic lipogenesis (e.g., Srebf1 and Fasn), which were significantly reduced under psyllium addition. Although established in the liver, the intestinal response associated with psyllium was absent in the combination diet, placing greater significance upon the established microbial, and subsequent metabolomic, shift. Our results therefore highlight the heterogeneity that exists between distinct dietary fibers in the context of carbohydrate uptake and metabolism, and supports psyllium containing combination diets, for their ability to negate the impact of a refined diet.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Aleena Mushtaq
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Gwenaëlle Le Gall
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Ildefonso Rodriguez-Ramiro
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Britt Anne Blokker
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Mara E. M. Hoogteijling
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Matthew Ricci
- Research Diets, Inc., New Brunswick, NJ 08901, USA; (M.R.); (M.P.)
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
- Correspondence: ; Tel.: +44-160-359-3047
| |
Collapse
|
9
|
Chang CS, Liao YC, Huang CT, Lin CM, Cheung CHY, Ruan JW, Yu WH, Tsai YT, Lin IJ, Huang CH, Liou JS, Chou YH, Chien HJ, Chuang HL, Juan HF, Huang HC, Chan HL, Liao YC, Tang SC, Su YW, Tan TH, Bäumler AJ, Kao CY. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep 2021; 37:110016. [PMID: 34818535 DOI: 10.1016/j.celrep.2021.110016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.
Collapse
Affiliation(s)
- Cherng-Shyang Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Chu Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chih-Ting Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | | | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Hsuan Yu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ting Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - I-Jung Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
10
|
Burgueño JF, Fritsch J, Gonzalez EE, Landau KS, Santander AM, Fernández I, Hazime H, Davies JM, Santaolalla R, Phillips MC, Diaz S, Dheer R, Brito N, Pignac-Kobinger J, Fernández E, Conner GE, Abreu MT. Epithelial TLR4 Signaling Activates DUOX2 to Induce Microbiota-Driven Tumorigenesis. Gastroenterology 2021; 160:797-808.e6. [PMID: 33127391 PMCID: PMC7879481 DOI: 10.1053/j.gastro.2020.10.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Chronic colonic inflammation leads to dysplasia and cancer in patients with inflammatory bowel disease. We have described the critical role of innate immune signaling via Toll-like receptor 4 (TLR4) in the pathogenesis of dysplasia and cancer. In the current study, we interrogate the intersection of TLR4 signaling, epithelial redox activity, and the microbiota in colitis-associated neoplasia. METHODS Inflammatory bowel disease and colorectal cancer data sets were analyzed for expression of TLR4, dual oxidase 2 (DUOX2), and NADPH oxidase 1 (NOX1). Epithelial production of hydrogen peroxide (H2O2) was analyzed in murine colonic epithelial cells and colonoid cultures. Colorectal cancer models were carried out in villin-TLR4 mice, carrying a constitutively active form of TLR4, their littermates, and villin-TLR4 mice backcrossed to DUOXA-knockout mice. The role of the TLR4-shaped microbiota in tumor development was tested in wild-type germ-free mice. RESULTS Activation of epithelial TLR4 was associated with up-regulation of DUOX2 and NOX1 in inflammatory bowel disease and colorectal cancer. DUOX2 was exquisitely dependent on TLR4 signaling and mediated the production of epithelial H2O2. Epithelial H2O2 was significantly increased in villin-TLR4 mice; TLR4-dependent tumorigenesis required the presence of DUOX2 and a microbiota. Mucosa-associated microbiota transferred from villin-TLR4 mice to wild-type germ-free mice caused increased H2O2 production and tumorigenesis. CONCLUSIONS Increased TLR4 signaling in colitis drives expression of DUOX2 and epithelial production of H2O2. The local milieu imprints the mucosal microbiota and imbues it with pathogenic properties demonstrated by enhanced epithelial reactive oxygen species and increased development of colitis-associated tumors. The inter-relationship between epithelial reactive oxygen species and tumor-promoting microbiota requires a 2-pronged strategy to reduce the risk of dysplasia in colitis patients.
Collapse
Affiliation(s)
- Juan F Burgueño
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Julia Fritsch
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA,Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Eddy E Gonzalez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Kevin S Landau
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Ana M Santander
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Irina Fernández
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Hajar Hazime
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Julie M Davies
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Rebeca Santaolalla
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Matthew C Phillips
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Sophia Diaz
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Rishu Dheer
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Nivis Brito
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Judith Pignac-Kobinger
- Department of Medicine, Division of Gastroenterology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Ester Fernández
- Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gregory E Conner
- Department of Cell Biology, University of Miami – Miller School of Medicine, Miami, FL, USA
| | - Maria T Abreu
- Department of Medicine, Division of Gastroenterology, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida.
| |
Collapse
|
11
|
Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1. Cell Mol Gastroenterol Hepatol 2020; 11:503-524. [PMID: 32896624 PMCID: PMC7797379 DOI: 10.1016/j.jcmgh.2020.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown. METHODS Mice modified genetically to amplify Nrf2 in the intestinal epithelium (Keap1f/f::VilCre) were generated as well as pharmacological activation of Nrf2 and subjected to phenotypic and cell lineage analyses. Cell lines were used for reporter gene assays together with Nrf2 overexpression to study transcriptional regulation of the Notch downstream effector. RESULTS Constitutive activation of Nrf2 signaling caused increased intestinal length along with expanded cell number and thickness of enterocytes without any alterations of secretory lineage, outcomes abrogated by concomitant disruption of Nrf2. The Nrf2 and Notch pathways in epithelium showed inverse spatial profiles, where Nrf2 activity in crypts was lower than villi. In progenitor cells of Keap1f/f::VilCre mice, Notch downstream effector Math1, which regulates a differentiation balance of cell lineage through lateral inhibition, showed suppressed expression. In vitro results demonstrated Nrf2 negatively regulated Math1, where 6 antioxidant response elements located in the regulatory regions contributed to this repression. CONCLUSIONS Activation of Nrf2 perturbed the dialog of the Notch cascade though negative regulation of Math1 in progenitor cells, leading to enhanced enterogenesis. The crosstalk between the Nrf2 and Notch pathways could be critical for fine-tuning intestinal homeostasis and point to new approaches for the pharmacological management of absorptive deficiencies.
Collapse
|
12
|
Chen Y, Koike Y, Chi L, Ahmed A, Miyake H, Li B, Lee C, Delgado-Olguín P, Pierro A. Formula feeding and immature gut microcirculation promote intestinal hypoxia, leading to necrotizing enterocolitis. Dis Model Mech 2019; 12:dmm040998. [PMID: 31704804 PMCID: PMC6918740 DOI: 10.1242/dmm.040998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
Major risk factors for necrotizing enterocolitis (NEC) are formula feeding and prematurity; however, their pathogenic mechanisms are unknown. Here, we found that insufficient arginine/nitric oxide synthesis limits blood flow in the intestinal microvasculature, leading to hypoxia, mucosal damage and NEC in the premature intestine after formula feeding. Formula feeding led to increased intestinal hypoxia in pups at postnatal day (P)1 and P5, but not in more mature pups at P9. Accordingly, blood flow in the intestinal microvasculature increased after formula feeding in P9 pups only. mRNA profiling revealed that regulators of arginine/nitric oxide synthesis are at higher levels in endothelial cells of the intestine in P9 than in P1 pups. Importantly, arginine supplementation increased intestinal microvasculature blood flow and prevented NEC, whereas an arginine antagonist exacerbated NEC. Our results suggest that balancing intestinal oxygen demand and supply in the premature intestine by modulating arginine/nitric oxide could be used to prevent NEC.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yong Chen
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
- Department of Pediatric Surgery, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899 Singapore
| | - Yuhki Koike
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Hiromu Miyake
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Bo Li
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Carol Lee
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S3H2, Canada
| | - Agostino Pierro
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| |
Collapse
|
13
|
Jepsen SL, Grunddal KV, Wewer Albrechtsen NJ, Engelstoft MS, Gabe MBN, Jensen EP, Ørskov C, Poulsen SS, Rosenkilde MM, Pedersen J, Gribble FM, Reimann F, Deacon CF, Schwartz TW, Christ AD, Martin RE, Holst JJ. Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. Am J Physiol Endocrinol Metab 2019; 317:E1081-E1093. [PMID: 31503512 PMCID: PMC6962500 DOI: 10.1152/ajpendo.00239.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DPP-4 inhibitors, used for treatment of type 2 diabetes, act by increasing the concentrations of intact glucagon-like peptide-1 (GLP-1), but at the same time, they inhibit secretion of GLP-1, perhaps by a negative feedback mechanism. We hypothesized that GLP-1 secretion is feedback regulated by somatostatin (SS) from neighboring D-cells, and blocking this feedback circuit results in increased GLP-1 secretion. We used a wide range of experimental techniques, including gene expression analysis, immunohistochemical approaches, and the perfused mouse intestine to characterize the paracrine circuit controlling GLP-1 and SS. We show that 1) antagonizing the SS receptor (SSTr) 2 and SSTr5 led to increased GLP-1 and SS secretion in the mouse, 2) SS exhibits strong tonic inhibition of GLP-1 secretion preferentially through SSTr5, and 3) the secretion of S was GLP-1 receptor dependent. We conclude that SS is a tonic inhibitor of GLP-1 secretion, and interventions in the somatostain-GLP-1 paracrine loop lead to increased GLP-1 secretion.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Maja S Engelstoft
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria B N Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Christ
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wright Muelas M, Mughal F, O'Hagan S, Day PJ, Kell DB. The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data. Sci Rep 2019; 9:17960. [PMID: 31784565 PMCID: PMC6884504 DOI: 10.1038/s41598-019-54288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular gene in a dataset, as a means of selecting improved reference genes over the cohort ('housekeeping genes') typically used for normalisation in expression profiling studies. Those genes (transcripts) that we determined to be useable as reference genes differed greatly from previous suggestions based on hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was employed for both tissues and cell lines. We here extend this analysis to encompass seven other large datasets. Although their absolute values differ a little, the Gini values and median expression levels of the various genes are well correlated with each other between the various cell line datasets, implying that our original choice of the more ubiquitously expressed low-Gini-coefficient genes was indeed sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of expression stability we illustrate its utility to find tissue- and cell line-optimised housekeeping genes without any prior bias, that again include only a small number of previously reported housekeeping genes. We also independently confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel of 10 cell lines. These were termed the Gini Genes. In many cases, the variation in the expression levels of classical reference genes is really quite huge (e.g. 44 fold for GAPDH in one data set), suggesting that the cure (of using them as normalising genes) may in some cases be worse than the disease (of not doing so). We recommend the present data-driven approach for the selection of reference genes by using the easy-to-calculate and robust GC.
Collapse
Affiliation(s)
- Marina Wright Muelas
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Farah Mughal
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Steve O'Hagan
- School of Chemistry, Department of Chemistry, The Manchester Institute of Biotechnology 131, Princess Street, Manchester, M1 7DN, UK
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK
| | - Philip J Day
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK.
| | - Douglas B Kell
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, 10 Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Validation of Reference Genes for Gene Expression Normalization in RAW264.7 Cells under Different Conditions. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6131879. [PMID: 31223620 PMCID: PMC6541955 DOI: 10.1155/2019/6131879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
RAW264.7 is a macrophage strain derived from mice tumour and shows a significant ability in antigen uptake. Real-time quantitative PCR (RT-qPCR) is one of the most commonly used methods in gene studies and requires suitable reference genes to normalize and quantitate the expression of gene of interest with sensitivity and specificity. However, suitable reference genes in RAW264.7 cells have not yet been identified for accurate gene expression quantification. In the current study, we evaluated expression levels of ten candidate reference genes in RAW264.7 cells under different conditions. RT-qPCR results indicated significant differences in the expression levels among the ten reference genes. Statistical analyses were carried out using geNorm, NormFinder, and BestKeeper software to further investigate the stability of the reference genes. Integrating the results from the three analytical methods, cytochrome c-1 and hydroxymethylbilane synthase were found to be the most stable and therefore more suitable reference genes, while ribosomal protein L4 and cyclophilin A were the least stable. This study emphasises the importance of identifying and selecting the most stable reference genes for normalization and provides a basis for future gene expression studies using RAW264.7 cells.
Collapse
|
16
|
Wang H, Kwon YH, Dewan V, Vahedi F, Syed S, Fontes ME, Ashkar AA, Surette MG, Khan WI. TLR2 Plays a Pivotal Role in Mediating Mucosal Serotonin Production in the Gut. THE JOURNAL OF IMMUNOLOGY 2019; 202:3041-3052. [DOI: 10.4049/jimmunol.1801034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
|
17
|
Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. Br J Nutr 2018; 120:1131-1148. [DOI: 10.1017/s0007114518002507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractMalnutrition remains a leading contributor to the morbidity and mortality of children under the age of 5 years and can weaken the immune system and increase the severity of concurrent infections. Livestock milk with the protective properties of human milk is a potential therapeutic to modulate intestinal microbiota and improve outcomes. The aim of this study was to develop an infection model of childhood malnutrition in the pig to investigate the clinical, intestinal and microbiota changes associated with malnutrition and enterotoxigenic Escherichia coli (ETEC) infection and to test the ability of goat milk and milk from genetically engineered goats expressing the antimicrobial human lysozyme (hLZ) milk to mitigate these effects. Pigs were weaned onto a protein–energy-restricted diet and after 3 weeks were supplemented daily with goat, hLZ or no milk for a further 2 weeks and then challenged with ETEC. The restricted diet enriched faecal microbiota in Proteobacteria as seen in stunted children. Before infection, hLZ milk supplementation improved barrier function and villous height to a greater extent than goat milk. Both goat and hLZ milk enriched for taxa (Ruminococcaceae) associated with weight gain. Post-ETEC infection, pigs supplemented with hLZ milk weighed more, had improved Z-scores, longer villi and showed more stable bacterial populations during ETEC challenge than both the goat and no milk groups. This model of childhood disease was developed to test the confounding effects of malnutrition and infection and demonstrated the potential use of hLZ goat milk to mitigate the impacts of malnutrition and infection.
Collapse
|
18
|
Validation of Housekeeping Genes as Reference for Reverse-Transcription-qPCR Analysis in Busulfan-Injured Microvascular Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4953806. [PMID: 30386793 PMCID: PMC6189687 DOI: 10.1155/2018/4953806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Endothelial cells (ECs) could express some important cytokines and signal molecules which play a key role in normal hematopoiesis and repopulation. Busulfan-induced vascular endothelial injury is an important feature after hematopoietic stem cell transplantation (HSCT). But the molecular mechanism of how the injured ECs affect hematopoietic reconstruction is still unknown. It is possibly through modulation of the change of some gene expression. RT-qPCR is one of the most popular methods used to accurately determine gene expression levels, based on stable reference gene (RG) selection from housekeeping genes. So our aim is to select stable RGs for more accurate measures of mRNA levels during Busulfan-induced vascular endothelial injury. In this study, 14 RGs were selected to investigate their expression stability in ECs during 72 hours of EC injury treated with Busulfan. Our results revealed extreme variation in RG stability compared by five statistical algorithms. ywhaz and alas1 were recognized as the two idlest RGs on account of the final ranking, while the two most usually used RGs (gapdh and actb) were not the most stable RGs. Next, these data were verified by testing signalling pathway genes ctnnb1, robo4, and notch1 based on the above four genes ywha, alas1, gapdh, and actb. It shows that the normalization of mRNA expression data using unstable RGs greatly affects gene fold change, which means the reliability of the biological conclusions is questionable. Based on the best RGs used, we also found that robo4 is significantly overexpressed in Busulfan-impaired ECs. In conclusion, our data reaffirms the importance of RGs selection for the valid analysis of gene expression in Busulfan-impaired ECs. And it also provides very useful guidance and basis for more accurate differential expression gene screening and future expanding biomolecule study of different drugs such as cyclophosphamide and fludarabine-injured ECs.
Collapse
|
19
|
Mukherjee P, Hough G, Chattopadhyay A, Grijalva V, O'Connor EI, Meriwether D, Wagner A, Ntambi JM, Navab M, Reddy ST, Fogelman AM. Role of enterocyte stearoyl-Co-A desaturase-1 in LDLR-null mice. J Lipid Res 2018; 59:1818-1840. [PMID: 30139760 DOI: 10.1194/jlr.m083527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
After crossing floxed stearoyl-CoA desaturase-1 (Scd1 fl/fl) mice with LDL receptor-null (ldlr -/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1 fl/fl/ldlr -/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1 fl/fl/ldlr -/- mice gained more weight than Scd1 fl/fl/ldlr -/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1 fl/fl/ldlr -/-/VilCre compared with Scd1 fl/fl/ldlr -/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1 fl/fl/ldlr -/-/VilCre mice compared with Scd1 fl/fl/ldlr -/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1 fl/fl/ldlr -/- mice similar to that seen in Scd1 fl/fl/ldlr -/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1 fl/fl/ldlr -/- mice, but not in Scd1 fl/fl/ldlr -/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr -/- mice.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Greg Hough
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Arnab Chattopadhyay
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Victor Grijalva
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Ellen Ines O'Connor
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - David Meriwether
- Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan Wagner
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mohamad Navab
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Srinivasa T Reddy
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095 .,Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095.,Departments of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
20
|
Paveljšek D, Juvan P, Košir R, Rozman D, Hacin B, Ivičak-Kocjan K, Rogelj I. Lactobacillus fermentum L930BB and Bifidobacterium animalis subsp. animalis IM386 initiate signalling pathways involved in intestinal epithelial barrier protection. Benef Microbes 2018; 9:515-525. [PMID: 29633647 DOI: 10.3920/bm2017.0107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The manipulation of intestinal microbiota with beneficial microbes represents a promising alternative or adjunct therapy in gastrointestinal disorders and inflammation. The current study aims to clarify the signalling pathways and evaluate the possible beneficial effects of the combination of two strains. We used a dextran sulphate sodium (DSS)-induced mouse model of colitis. RNA extracted from the middle part of the colon tissue was used for examination of the global gene expression with Affymetrix microarrays. An enrichment analysis of the KEGG pathways was performed, and a subset of genes associated with intestinal epithelial barrier function was verified with qPCR. A clinical condition assessment of the differently treated mice revealed that the combination of these two bacterial strains was safe for use as a dietary supplement. All animals treated with DSS had affected colons and suffered weight loss. There were very small differences between the diseased groups, although the depth of inflammation was lower when cyclosporine A or the strain mixture was used. We discovered that the prophylactic administration of the Lactobacillus fermentum L930BB (L930BB) and Bifidobacterium animalis subsp. animalis IM386 (IM386) strains led to an anti-apoptotic pathway through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt and to the activation of pathways involved in the regulation of actin cytoskeleton via protein kinase C and GTPases. Reorganisation of actin cytoskeleton and decreased apoptosis are both helpful in intestinal epithelial cell reconstitution. We confirm important previous observations, showing that these pathways are downstream targets of Toll-like receptor 2 and fibroblast growth factor initiated signalling. Taken together, these results suggest that the combination of L930BB and IM386 could aid in the regeneration of the intestinal epithelium during pathogenesis via pattern recognition receptors and the stimulation of growth factor synthesis.
Collapse
Affiliation(s)
- D Paveljšek
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - P Juvan
- 2 Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - R Košir
- 2 Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.,3 BIA Separations CRO, Labena d.o.o., Verovškova 64, 1000 Ljubljana, Slovenia
| | - D Rozman
- 2 Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - B Hacin
- 4 National Veterinary Institute, Veterinary Faculty, University of Ljubljana, Pri Hrastu 18, 5000 Nova Gorica, Slovenia
| | - K Ivičak-Kocjan
- 5 Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| | - I Rogelj
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
21
|
O'Hagan S, Wright Muelas M, Day PJ, Lundberg E, Kell DB. GeneGini: Assessment via the Gini Coefficient of Reference "Housekeeping" Genes and Diverse Human Transporter Expression Profiles. Cell Syst 2018; 6:230-244.e1. [PMID: 29428416 PMCID: PMC5840522 DOI: 10.1016/j.cels.2018.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 01/13/2023]
Abstract
The expression levels of SLC or ABC membrane transporter transcripts typically differ 100- to 10,000-fold between different tissues. The Gini coefficient characterizes such inequalities and here is used to describe the distribution of the expression of each transporter among different human tissues and cell lines. Many transporters exhibit extremely high Gini coefficients even for common substrates, indicating considerable specialization consistent with divergent evolution. The expression profiles of SLC transporters in different cell lines behave similarly, although Gini coefficients for ABC transporters tend to be larger in cell lines than in tissues, implying selection. Transporter genes are significantly more heterogeneously expressed than the members of most non-transporter gene classes. Transcripts with the stablest expression have a low Gini index and often differ significantly from the "housekeeping" genes commonly used for normalization in transcriptomics/qPCR studies. PCBP1 has a low Gini coefficient, is reasonably expressed, and is an excellent novel reference gene. The approach, referred to as GeneGini, provides rapid and simple characterization of expression-profile distributions and improved normalization of genome-wide expression-profiling data.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK
| | - Marina Wright Muelas
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK
| | - Philip J Day
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK; Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Emma Lundberg
- Science for Life Laboratory, Royal Institute of Technology (KTH), SE-17121 Solna, Sweden.
| | - Douglas B Kell
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
22
|
Neurotoxic Effects of Linalool and β-Pinene on Tribolium castaneum Herbst. Molecules 2017; 22:molecules22122052. [PMID: 29186788 PMCID: PMC6149882 DOI: 10.3390/molecules22122052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Effective, ethical pest control requires the use of chemicals that are highly specific, safe, and ecofriendly. Linalool and β-pinene occur naturally as major constituents of the essential oils of many plant species distributed throughout the world, and thus meet these requirements. These monoterpenes were tested as repellents against Tribolium castaneum, using the area preference method, after four hours of exposure and the effect transcriptional of genes associated with neurotransmission. Changes in gene expression of acetylcholinesterase (Ace1), GABA-gated anion channel splice variant 3a6a (Rdl), GABA-gated ion channel (Grd), glutamate-gated chloride channel (Glucl), and histamine-gated chloride channel 2 (Hiscl2) were assessed and the interaction with proteins important for the insect using in silico methods was also studied. For linalool and β-pinene, the repellent concentration 50 (RC50) values were 0.11 µL/cm2 and 0.03 µL/cm2, respectively. Both compounds induced overexpression of Hiscl2 gen in adult insects, and β-pinene also promoted the overexpression of Grd and the Ace1 gene. However, β-pinene and linalool had little potential to dock on computer-generated models for GABA-gated ion channel LCCH3, nicotinic acetylcholine receptor subunits alpha1 and alpha2, and putative octopamine/tyramine receptor proteins from T. castaneum as their respective binding affinities were marginal, and therefore the repellent action probably involved mechanisms other than direct interaction with these targets. Results indicated that β-pinene was more potent than linalool in inducing insect repellency, and also had a greater capacity to generate changes in the expression of genes involved in neuronal transmission.
Collapse
|
23
|
Garas LC, Cooper CA, Dawson MW, Wang JL, Murray JD, Maga EA. Young Pigs Consuming Lysozyme Transgenic Goat Milk Are Protected from Clinical Symptoms of Enterotoxigenic Escherichia coli Infection. J Nutr 2017; 147:2050-2059. [PMID: 28954839 DOI: 10.3945/jn.117.251322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Diarrheal diseases in infancy and childhood are responsible for substantial morbidity and mortality in developing nations. Lysozyme, an antimicrobial component of human milk, is thought to play a role in establishing a healthy intestinal microbiota and immune system. Consumption of breast milk has been shown to prevent intestinal infections and is a recommended treatment for infants with diarrhea.Objective: This study aimed to examine the ability of lysozyme-rich goat milk to prevent intestinal infection.Methods: Six-week-old Hampshire-Yorkshire pigs were assigned to treatment groups balanced for weight, sex, and litter and were fed milk from nontransgenic control goats (GM group) or human lysozyme transgenic goats (hLZM group) for 2 wk before they were challenged with porcine-specific enterotoxigenic Escherichia coli (ETEC). Fecal consistency, complete blood counts, intestinal histology, and microbial populations were evaluated.Results: Pigs in the hLZM group had less severe diarrhea than did GM pigs at 24 and 48 h after ETEC infection (P = 0.01 and 0.05, respectively), indicating a less severe clinical disease state. Relative to baseline, postmilk hLZM pigs had 19.9% and 137% enrichment in fecal Bacteroidetes (P = 0.028) and Paraprevotellaceae (P = 0.003), respectively, and a 93.8% reduction in Enterobacteriaceae (P = 0.007), whereas GM pigs had a 60.9% decrease in Lactobacillales (P = 0.003) and an 83.3% enrichment in Burkholderiales (P = 0.010). After ETEC infection, hLZM pigs tended to have lower amounts (68.7% less) of fecal Enterobacteriaceae than did GM pigs (P = 0.058). There were 83.1% fewer bacteria translocated into the mesenteric lymph nodes of hLZM pigs than into those of GM pigs (P = 0.039), and hLZM pigs had 34% lower mucin 1 and 61% higher tumor necrosis factor-α expression in the ileum than did GM pigs (P = 0.046 and 0.034, respectively).Conclusion: Results of this study indicate that human lysozyme milk consumption before and during ETEC infection has a positive effect on clinical disease, intestinal mucosa, and gut microbiota in young pigs.
Collapse
Affiliation(s)
| | | | | | | | - James D Murray
- Departments of Animal Science.,Population Health and Reproduction, University of California, Davis, Davis, CA
| | | |
Collapse
|
24
|
Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E667. [PMID: 28635673 PMCID: PMC5486353 DOI: 10.3390/ijerph14060667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022]
Abstract
Naphthalene and benzene are widely-used volatile organic compounds. The aim of this research was to examine the toxicological effects of naphthalene and benzene against Tribolium castaneum as an animal model. Adult insects were exposed to these aromatic compounds to assess mortality after 4-48 h of exposure. The lethal concentration 50 (LC50) for naphthalene, naphthalin, and benzene were 63.6 µL/L, 20.0 µL/L, and 115.9 µL/L in air, respectively. Real-time polymerase chain reaction (PCR) analysis revealed expression changes in genes related to oxidative stress and metabolism [Glutathione S-Transferase (Gst), and Cytochrome P450 6BQ8 (Cyp6bq8)]; reproduction and metamorphosis [Hormone receptor in 39-like protein (Hr39), Ecdysone receptor: (Ecr), and Chitin synthase 2 (Chs2)]; and neurotransmission [Histamine-gated chloride channel 2 (Hiscl2)] in insects exposed for 4 h to 70.2 µL/L naphthalene. Adults exposed to benzene (80 µL/L; 4 h) overexpressed genes related to neurotransmission [GABA-gated anion channel (Rdl), Hiscl2, and GABA-gated ion channel (Grd)]; reproduction and metamorphosis [Ultraspiracle nuclear receptor (USP), Ecr; and Hr39]; and development (Chs2). The data presented here provides evidence that naphthalene and benzene inhalation are able to induce alterations on reproduction, development, metamorphosis, oxidative stress, metabolism, neurotransmission, and death of the insect.
Collapse
Affiliation(s)
- Nerlis Pajaro-Castro
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
- Medical and Pharmaceutical Sciences Group, School of Health Sciences, Department of Medicine, University of Sucre, Sincelejo 700003, Colombia.
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
| |
Collapse
|
25
|
Nakao R, Okauchi H, Hashimoto C, Wada N, Oishi K. Determination of reference genes that are independent of feeding rhythms for circadian studies of mouse metabolic tissues. Mol Genet Metab 2017; 121:190-197. [PMID: 28410879 DOI: 10.1016/j.ymgme.2017.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis is a popular method for the measurement of mRNA expression level and is a critical tool for basic research. The identification of suitable reference genes that are stable and not affected by experimental conditions is a critical step in the accurate normalization of RT-PCR. On the other hand, the levels of numerous transcripts exhibit circadian oscillation in various peripheral tissues and it is thought to be regulated by feeding rhythms in addition to the molecular circadian clock. Here, we investigated the effects of feeding schedule on the temporal expression profiles of 13 common housekeeping genes in metabolic tissues of mice fed during either the sleep or the active phase. The expression of most of these genes fluctuated dependently on feeding rhythms in the liver and WAT, but not in skeletal muscle. Two-way analyses of variance (ANOVA) identified 18S ribosomal RNA (Rn18s) as the only gene that was stably expressed throughout the day independently of feeding schedules in the liver and WAT, although RefFinder software showed that peptidylprolyl isomerase A (Ppia) was the most stably expressed housekeeping gene. Both ANOVA and RefFinder software determined that Actb was the preferred reference gene for skeletal muscle. Furthermore, NormFinder proposed that the optimal pairs of reference genes were beta-2 microglobulin (B2m)-Ppia in the liver, Ppia-TATA box binding protein (Tbp) in WAT, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (Ywhaz)-glyceraldehyde-3-phosphate dehydrogenase (Gapdh) in skeletal muscle, and that their stability value was better than that of a single stable gene. The appropriate reference gene pairs for normalizing genes of interest in mouse circadian studies are B2m-Ppia in the liver, Ppia-Tbp in WAT, and Ywhaz-Gapdh in skeletal muscle.
Collapse
Affiliation(s)
- Reiko Nakao
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroki Okauchi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Chiaki Hashimoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Computational and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
26
|
Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomed Pharmacother 2017; 88:948-955. [DOI: 10.1016/j.biopha.2017.01.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 12/15/2022] Open
|
27
|
Eissa N, Kermarrec L, Hussein H, Bernstein CN, Ghia JE. Appropriateness of reference genes for normalizing messenger RNA in mouse 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR. Sci Rep 2017; 7:42427. [PMID: 28186172 PMCID: PMC5301225 DOI: 10.1038/srep42427] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
2,4-Dinitrobenzene sulfonic acid (DNBS)-induced colitis is an experimental model that mimics Crohn's disease. Appropriateness of reference genes is crucial for RT-qPCR. This is the first study to determine the stability of reference gene expression (RGE) in mice treated with DNBS. DNBS experimental Colitis was induced in male C57BL/6 mice. RNA was extracted from colon tissue and comprehensive analysis of 13 RGE was performed according to predefined criteria. Relative colonic TNF-α and IL-1β mRNA levels were calculated. Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), β-actin (Actb), or β2-microglobulin (β2m) showed the highest fluctuation within the inflamed and control groups. Conversely, ribosomal protein large P0 (Rplp0), non-POU domain containing (Nono), TATA-box-binding protein (Tbp) and eukaryotic translation elongation factor 2 (Eef2) were not affected by inflammation and were the most stable genes. TNF-α and IL-1β mRNA levels was dependent on the reference gene used and varied from significant when the most stable genes were used to non-significant when the least stable genes were used. The appropriate choice of RGE is critical to guarantee satisfactory normalization of RT-qPCR data when using DNBS-Model. We recommend using Rplp0, Nono, Tbp, Hprt and Eef2 instead of common reference genes.
Collapse
Affiliation(s)
- Nour Eissa
- Immunology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | | | - Hayam Hussein
- Large Animal Medicine, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California Davis, CA, USA
| | - Charles N. Bernstein
- Internal Medicine section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Internal Medicine section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Gupta V, Kapopara PR, Khan AA, Arige V, Subramanian L, Sonawane PJ, Sasi BK, Mahapatra NR. Functional promoter polymorphisms direct the expression of cystathionine gamma-lyase gene in mouse models of essential hypertension. J Mol Cell Cardiol 2016; 102:61-73. [PMID: 27865915 DOI: 10.1016/j.yjmcc.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/21/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Despite the well-known role of cystathionine γ-lyase (Cth) in cardiovascular pathophysiology, transcriptional regulation of Cth remains incompletely understood. Sequencing of the Cth promoter region in mouse models of genetic/essential hypertension (viz. Blood Pressure High [BPH], Blood Pressure Low [BPL] and Blood Pressure Normal [BPN] mice) identified several genetic variations. Transient transfections of BPH/BPL-Cth promoter-reporter plasmids into various cell types revealed higher promoter activity of BPL-Cth than that of BPH-Cth. Corroboratively, endogenous Cth mRNA levels in kidney and liver tissues were also elevated in BPL mice. Computational analysis of the polymorphic Cth promoter region predicted differential binding affinity of c-Rel, HOXA3 and IRF1 with BPL/BPH-Cth promoter domains. Over-expression of c-Rel/HOXA3/IRF1 modulated BPL/BPH-Cth promoter activities in a consistent manner. Gel shift assays using BPH/BPL-Cth-promoter oligonucleotides with/without binding sites for c-Rel/HOXA3/IRF1 displayed formation of specific complexes with c-Rel/HOXA3/IRF1; addition of antibodies to reaction mixtures resulted in supershifts/inhibition of Cth promoter-transcription factor complexes. Furthermore, chromatin immunoprecipitation (ChIP) assays proved differential binding of c-Rel, HOXA3 and IRF1 with the polymorphic promoter region of BPL/BPH-Cth. Tumor necrosis factor-α (TNF-α) reduced the activities of BPL/BPH-Cth promoters to different extents that were further declined by ectopic expression of IRF1; on the other hand, siRNA-mediated down-regulation of IRF1 rescued the TNF-α-mediated suppression of the BPL/BPH-Cth promoter activities. In corroboration, ChIP analysis revealed enhanced binding of IRF1 with BPH/BPL-Cth promoter following TNF-α treatment. BPL/BPH-Cth promoter activity was diminished upon exposure of hepatocytes and cardiomyoblasts to ischemia-like pathological condition due to reduced binding of c-Rel with BPL/BPH-Cth-promoter. Taken together, this study reveals the molecular basis for the differential expression of Cth in mouse models of essential hypertension under basal and pathophysiological conditions.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Piyushkumar R Kapopara
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi Subramanian
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Parshuram J Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
29
|
The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model. PLoS One 2016; 11:e0163219. [PMID: 27668434 PMCID: PMC5036817 DOI: 10.1371/journal.pone.0163219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected “housekeeping” roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using “traditional” vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most stable reference genes in each particular experimental model.
Collapse
|
30
|
Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus. Sci Rep 2016; 6:30171. [PMID: 27439689 PMCID: PMC4954977 DOI: 10.1038/srep30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 11/15/2022] Open
Abstract
A variable fragment of a heavy chain antibody (VHH) directed against rotavirus, also referred to as anti-rotavirus protein 1 (ARP1), was shown to confer protection against rotavirus induced diarrhea in infant mouse model of rotavirus induced diarrhea. In this study, we have fused the mouse IgG1 Fc to ARP1 to improve the protective capacity of ARP1 by inducing an Fc-mediated effector function. We have shown that the Fc-ARP1 fusion protein confers significantly increased protection against rotavirus in a neonatal mouse model of rotavirus-induced diarrhea by reducing the prevalence, duration and severity of diarrhea and the viral load in the small intestines, suggesting that the Fc part of immunoglobulins may be engaged in Fc-mediated neutralization of rotavirus. Engineered conventional-like antibodies, by fusion of the Fc part of immunoglobulins to antigen-specific heavy-chain only VHH fragments, might be applied to novel antibody-based therapeutic approaches to enhance elimination of pathogens by activation of distinct effector signaling pathways.
Collapse
|
31
|
Eissa N, Hussein H, Wang H, Rabbi MF, Bernstein CN, Ghia JE. Stability of Reference Genes for Messenger RNA Quantification by Real-Time PCR in Mouse Dextran Sodium Sulfate Experimental Colitis. PLoS One 2016; 11:e0156289. [PMID: 27244258 PMCID: PMC4886971 DOI: 10.1371/journal.pone.0156289] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Many animal models have been developed to characterize the complexity of colonic inflammation. In dextran sodium sulfate (DSS) experimental colitis in mice the choice of reference genes is critical for accurate quantification of target genes using quantitative real time PCR (RT-qPCR). No studies have addressed the performance of reference genes in mice DSS-experimental colitis. This study aimed to determine the stability of reference genes expression (RGE) in DSS-experimental murine colitis. Methods Colitis was induced in male C57BL/6 mice using DSS5% for 5 days, control group received water. RNA was extracted from inflamed and non-inflamed colon. Using RT-qPCR, comparative analysis of 13 RGE was performed according to predefined criteria and relative colonic TNF-α and IL-1β gene expression was determined by calculating the difference in the threshold cycle. Results Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), β-actin (Actb), or β2-microglobulin (β2m) showed the highest variability within the inflamed and control groups. Conversely, TATA-box-binding protein (Tbp) and eukaryotic translation elongation factor 2 (Eef2) were not affected by inflammation and were the most stable genes. Normalization of colonic TNF-α and IL-1β mRNA levels was dependent on the reference gene used. Depending on the genes used to normalize the data, statistical significance varied from significant when TBP / Eef2 were used to non-significant when Gapdh, Actb or β2m were used. Conclusions This study highlights the appropriate choice of RGE to ensure adequate normalization of RT-qPCR data when using this model. Suboptimal RGE may explain controversial results from published studies. We recommend using Tbp and Eef2 instead of Gapdh, Actb or β2m as reference genes.
Collapse
Affiliation(s)
- Nour Eissa
- Immunology, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Hongxing Wang
- Immunology, University of Manitoba, Winnipeg, MB, Canada
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Charles N. Bernstein
- Internal Medicine section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Internal Medicine section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- * E-mail:
| |
Collapse
|
32
|
Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model. Sci Rep 2016; 6:26476. [PMID: 27210246 PMCID: PMC4876477 DOI: 10.1038/srep26476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.
Collapse
Affiliation(s)
| | - Anushi E Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Regina Oakley
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Patchen B, Koppe T, Cheng A, Seo YA, Wessling-Resnick M, Fraenkel PG. Dietary supplementation with ipriflavone decreases hepatic iron stores in wild type mice. Blood Cells Mol Dis 2016; 60:36-43. [PMID: 27519943 DOI: 10.1016/j.bcmd.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/19/2023]
Abstract
Hepcidin, a peptide produced in the liver, decreases intestinal iron absorption and macrophage iron release by causing degradation of the iron exporter, ferroportin. Because its levels are inappropriately low in patients with iron overload syndromes, hepcidin is a potential drug target. We previously conducted a chemical screen that revealed ipriflavone, an orally available small molecule, as a potent inducer of hepcidin expression. To evaluate ipriflavone's effect on iron homeostasis, we placed groups of 5-week old wild type or thalassemia intermedia (Hbb(Th3+/-)) mice on a soy-free, iron-sufficient diet, AIN-93G containing 220mg iron and 0-750mgipriflavone/kg of food for 50days. Ipriflavone 500mg/kg significantly reduced liver iron stores and intestinal ferroportin expression in WT mice, while increasing the ratio of hepcidin transcript levels to liver iron stores. Ipriflavone supplementation in Hbb(Th3+/-) mice failed to alleviate iron overload and was associated with a milder reduction in intestinal ferroportin and a failure to alter the ratio of hepcidin transcript levels to liver iron stores or splenic expression of the hepcidin-regulatory hormone, erythroferrone. These data suggest that dietary supplementation with ipriflavone alone would not be sufficient to treat iron overload in thalassemia intermedia.
Collapse
Affiliation(s)
- Bonnie Patchen
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tiago Koppe
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Aaron Cheng
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Young Ah Seo
- Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, MA
| | - Marianne Wessling-Resnick
- Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, MA
| | - Paula G Fraenkel
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Andreassen M, Bøhn T, Wikmark OG, Bodin J, Traavik T, Løvik M, Nygaard UC. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice. BMC Immunol 2016; 17:10. [PMID: 27141950 PMCID: PMC4855866 DOI: 10.1186/s12865-016-0148-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 04/28/2016] [Indexed: 11/29/2022] Open
Abstract
Background In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Method Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. Results In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. Conclusion The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Andreassen
- GenØk - Centre for biosafety, Tromsø, Norway. .,Norwegian Institute of Public Health, Oslo, Norway. .,Present address: Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, PO Box 4404, 0403, Oslo, Norway.
| | - Thomas Bøhn
- GenØk - Centre for biosafety, Tromsø, Norway.,UiT The Arctic University of Norway, Tromsø, Norway
| | - Odd-Gunnar Wikmark
- GenØk - Centre for biosafety, Tromsø, Norway.,North West University, Potchefstroom, South Africa
| | | | - Terje Traavik
- GenØk - Centre for biosafety, Tromsø, Norway.,UiT The Arctic University of Norway, Tromsø, Norway
| | - Martinus Løvik
- Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
35
|
Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health. Toxicol Appl Pharmacol 2016; 294:11-20. [DOI: 10.1016/j.taap.2016.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
36
|
Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci Rep 2016; 6:18602. [PMID: 26813606 PMCID: PMC4728690 DOI: 10.1038/srep18602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1(+/Δex41)mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes.
Collapse
|
37
|
Liu X, Xie J, Liu Z, Gong Q, Tian R, Su G. Identification and validation of reference genes for quantitative RT-PCR analysis of retinal pigment epithelium cells under hypoxia and/or hyperglycemia. Gene 2016; 580:41-6. [PMID: 26772907 DOI: 10.1016/j.gene.2016.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/30/2015] [Accepted: 01/01/2016] [Indexed: 01/11/2023]
Abstract
Retinal pigment epithelium (RPE) cell-based gene expression studies performed under hypoxia and/or hyperglycemia show huge potential for modeling cell responses in diabetic retinopathy, retinopathy of prematurity and other retinal diseases. However, normalization of gene expression on RPE cells under those conditions has commonly been done using either GAPDH or β-actin as reference genes without any validation of their expression stability. Therefore, we aimed to establish a suitable set of reference genes for studies on RPE cells cultured under both normal culturing glucose and atmospheric oxygen tension (normoxia, 21%), under a low oxygen tension (hypoxia, 1%), under a high glucose growth medium (25 mmol/l) and under the combination of the two changed conditions above for distinct time points taking together from 24h to 7 days. Quantitative real-time PCR (qRT-PCR) was applied on RNA obtained from a cell line, ARPE-19. Stability of 14 commonly used reference genes was assessed and ranked according to their stability values using the geNorm and NormFinder softwares with the aim to find the most stable expressed gene under all conditions. Our findings confirm that HPRT1, GUSB and PPIA are the most suitable reference genes for RPE cell gene expression experiments subjected to hypoxia and/or hyperglycemia. To emphasize the importance of selecting the most stably expressed reference genes for obtaining reliable results, mRNA expression levels of hypoxia induced factor-1α were analyzed vs the best reference genes, the worst ones and the most commonly used ones. These reference genes gave the most reliable normalization for comparative analyses of gene transcription under those conditions.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| | - Zaoxia Liu
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| | - Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| | - Rui Tian
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin 130021, China.
| |
Collapse
|
38
|
Roostaee A, Guezguez A, Beauséjour M, Simoneau A, Vachon PH, Levy E, Beaulieu J. Histone deacetylase inhibition impairs normal intestinal cell proliferation and promotes specific gene expression. J Cell Biochem 2015; 116:2695-2708. [PMID: 26129821 PMCID: PMC5014201 DOI: 10.1002/jcb.25274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
Mechanisms that maintain proliferation and delay cell differentiation in the intestinal crypt are not yet fully understood. We have previously shown the implication of histone methylation in the regulation of enterocytic differentiation. In this study, we investigated the role of histone deacetylation as an important epigenetic mechanism that controls proliferation and differentiation of intestinal cells using the histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) on the proliferation and differentiation of human and mouse intestinal cells. Treatment of newly confluent Caco-2/15 cells with SAHA resulted in growth arrest, increased histone acetylation and up-regulation of the expression of intestine-specific genes such as those encoding sucrase-isomaltase, villin and the ion exchanger SLC26A3. Although SAHA has been recently used in clinical trials for cancer treatment, its effect on normal intestinal cells has not been documented. Analyses of small and large intestines of mice treated with SAHA revealed a repression of crypt cell proliferation and a higher expression of sucrase-isomaltase in both segments compared to control mice. Expression of SLC26A3 was also significantly up-regulated in the colons of mice after SAHA administration. Finally, SAHA was also found to strongly inhibit normal human intestinal crypt cell proliferation in vitro. These results demonstrate the important implication of epigenetic mechanisms such as histone acetylation/deacetylation in the regulation of normal intestinal cell fate and proliferation.
Collapse
Affiliation(s)
- Alireza Roostaee
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Amel Guezguez
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Marco Beauséjour
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Aline Simoneau
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Pierre H. Vachon
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Emile Levy
- Department of NutritionUniversité de Montréal, and Research CenterSainte‐Justine UHCMontréalQuébecCanadaH3T 1C5
| | - Jean‐François Beaulieu
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| |
Collapse
|
39
|
Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation. Int Immunopharmacol 2015; 29:110-4. [DOI: 10.1016/j.intimp.2015.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
|
40
|
Nakao R, Yamamoto S, Yasumoto Y, Kadota K, Oishi K. Impact of denervation-induced muscle atrophy on housekeeping gene expression in mice. Muscle Nerve 2014; 51:276-81. [DOI: 10.1002/mus.24310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Reiko Nakao
- Biological Clock Research Group, Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Yuki Yasumoto
- Biological Clock Research Group, Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
- Department of Applied Biological Science, Graduate School of Science and Technology; Tokyo University of Science; Chiba Japan
| | - Koji Kadota
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences; University of Tokyo; Tokyo Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
- Department of Applied Biological Science, Graduate School of Science and Technology; Tokyo University of Science; Chiba Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences; University of Tokyo; Kashiwa Chiba Japan
| |
Collapse
|
41
|
Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports 2014; 3:876-91. [PMID: 25418730 PMCID: PMC4235148 DOI: 10.1016/j.stemcr.2014.09.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/17/2023] Open
Abstract
The recent development of targeted murine reporter alleles as proxies for intestinal stem cell activity has led to significant advances in our understanding of somatic stem cell hierarchies and dynamics. Analysis of these reporters has led to a model in which an indispensable reserve stem cell at the top of the hierarchy (marked by Bmi1 and Hopx reporters) gives rise to active intestinal stem cells (marked by an Lgr5 reporter). Despite these advances, controversy exists regarding the specificity and fidelity with which these alleles distinguish intestinal stem cell populations. Here, we undertake a comprehensive comparison of widely used proxy reporters including both CreERT2 and EGFP cassettes targeted to the Lgr5, Bmi1, and Hopx loci. Single-cell transcriptional profiling of these populations and their progeny reveals that reserve and active intestinal stem cells are molecularly and functionally distinct, supporting a two-stem-cell model for intestinal self-renewal. Proxy intestinal stem cell reporter alleles often mark heterogeneous populations Discrepancies exist between proxy reporter activity and endogenous transcripts Reserve and active intestinal stem cells are molecularly distinct Reserve intestinal stem cells give rise to active stem cells during homeostasis
Collapse
|
42
|
Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm Bowel Dis 2014; 20:1147-56. [PMID: 24859296 DOI: 10.1097/mib.0000000000000067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability of housekeeping genes (HKG), supposedly unregulated and hence used as normalizers, may dramatically change conclusions of quantitative PCR experiments. The effect of bowel inflammation on HKG remains unknown. Expression stability of 15 HKG (ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ) in 166 bowel specimens (91 normal, 35 cancerous, and 40 inflamed) was ranked by coefficients of variation (CV%) or using dedicated software: geNorm and NormFinder. The RPS23, PPIA, and RPLP0 were top-ranked, whereas IPO8, UBC and TBP were the lowest-ranked HKG across inflamed/cancerous/normal colonic tissues. The pairs RPS23/RPLP0, PGK1/MRPL19, or PPIA/RPLP0 were optimal reference by CV%, NormFinder, and geNorm, respectively. Colon inflammation affected HKG more pronouncedly than cancer with ACTB significantly down- and B2M upregulated. In inflammatory bowel disease (IBD), different genes were top-ranked in a large and small bowel, whereas TBP, UBC, and IPO8 were lowest-ranked in both. For patients with IBD at large, RPS23/PPIA, PGK1/MRPL19, and PPIA/RPLP0 were found optimal by CV%, NormFinder, and geNorm, respectively. ACTB and B2M expression was related to CRC stage and positively correlated with clinical activity of IBD. Although GAPDH was upregulated neither in CRC nor IBD, it tended to positively correlate with tumor depth and Crohn's disease activity index. Normalizing against GAPDH affected experimental conclusions in a small but not large bowel. Bowel inflammation significantly affects several classic HKG. The pair PPIA/RPLP0 is a common optimal reference for studies encompassing tissues sampled from colorectal cancer and IBD patients. Using ACTB or B2M is not recommended.
Collapse
|
43
|
Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha. Infect Immun 2014; 82:3333-40. [PMID: 24866800 DOI: 10.1128/iai.01536-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The protozoan parasite Giardia duodenalis (Giardia lamblia) is one of the most commonly found intestinal pathogens in mammals, including humans. In the current study, a Giardia muris-mouse model was used to analyze cytokine transcription patterns and histological changes in intestinal tissue at different time points during infection in C57BL/6 mice. Since earlier work revealed the upregulation of peroxisome proliferator-activated receptors (PPARs) in Giardia-infected calves, a second aim was to investigate the potential activation of PPARs in the intestines of infected mice. The most important observation in all mice was a strong upregulation of il17a starting around 1 week postinfection. The significance of interleukin 17A (IL-17A) in orchestrating a protective immune response was further demonstrated in an infection trial or experiment using IL-17 receptor A (IL-17RA) knockout (KO) mice: whereas in wild-type (WT) mice, cyst secretion dropped significantly after 3 weeks of infection, the IL-17RA KO mice were unable to clear the infection. Analysis of the intestinal response further indicated peroxisome proliferator-activated receptor alpha (PPARα) induction soon after the initial contact with the parasite, as characterized by the transcriptional upregulation of ppara itself and several downstream target genes such as pltp and cpt1. Overall, PPARα did not seem to have any influence on the immune response against G. muris, since PPARα KO animals expressed il-17a and could clear the infection similar to WT controls. In conclusion, this study shows for the first time the importance of IL-17 production in the clearance of a G. muris infection together with an early induction of PPARα. The effect of the latter, however, is still unclear.
Collapse
|
44
|
Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 762:24-9. [DOI: 10.1016/j.mrgentox.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/31/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
45
|
Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One 2014; 9:e86033. [PMID: 24465854 PMCID: PMC3895018 DOI: 10.1371/journal.pone.0086033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of NAD(P)H:quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.
Collapse
Affiliation(s)
- Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- * E-mail:
| | - Hana Bártíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| |
Collapse
|
46
|
Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine 2013; 32:470-7. [PMID: 24291196 DOI: 10.1016/j.vaccine.2013.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 01/25/2023]
Abstract
Rotavirus-induced diarrhea causes more than 500,000 deaths annually in the world, and although vaccines are being made available, new effective treatment strategies should still be considered. Purified antibodies derived from hyperimmune bovine colostrum (HBC), from cows immunized with rotavirus, were previously used for treatment of rotavirus diarrhea in children. A combination of HBC antibodies and a probiotic strain of Lactobacillus (L. rhamnosus GG) was also found to be more effective than HBC alone in reducing diarrhea in a mouse model of rotavirus infection. In order to further improve this form of treatment, L. rhamnosus GG was engineered to display surface expressed IgG-binding domains of protein G (GB1, GB2, and GB3) which capture HBC-derived IgG antibodies (HBC-IgG) and thus target rotavirus. The expression of IgG-binding domains on the surface of the bacteria as well as their binding to HBC-IgG and to rotavirus (simian strain RRV) was demonstrated by Western blot, flow cytometry, and electron microscopy. The prophylactic effect of engineered L. rhamnosus GG and anti-rotaviral activity of HBC antibodies was evaluated in a mouse pup model of RRV infection. The combination therapy with engineered L. rhamnosus GG (PG3) and HBC was significantly more effective in reducing the prevalence, severity, and duration of diarrhea in comparison to HBC alone or a combination of wild-type L. rhamnosus GG and HBC. The new therapy reduces the effective dose of HBC between 10 to 100-fold and may thus decrease treatment costs. This antibody capturing platform, tested here for the first time in vivo, could potentially be used to target additional gastrointestinal pathogens.
Collapse
|
47
|
Sirakov M, Borra M, Cambuli FM, Plateroti M. Defining suitable reference genes for RT-qPCR analysis on intestinal epithelial cells. Mol Biotechnol 2013; 54:930-8. [PMID: 23292893 DOI: 10.1007/s12033-012-9643-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study of the mammalian intestinal epithelium concerns several aspects of cellular and molecular biology. In fact, most of these studies aim to define molecular components or mechanisms related with the control of stemness and the balance between cell proliferation and differentiation in physiopathological conditions. It is worth mentioning that real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) approaches are commonly used, but only a few studies are available regarding suitable reference genes to normalize gene expression data. The present study was designed to validate potential reference genes in freshly isolated proliferating or differentiated epithelial cells from the mouse intestine. We also extended our analysis to the IEC6 intestinal epithelial cells, as a promising model to study intestinal physiopathology in vitro. The stability of six potential reference genes (Hprt1, Ppia, Gapdh, Rplp0, Ppib, and Vil1) has been tested both in epithelial cells isolated from the mouse intestine and in the IEC6 cell line. The software programs-geNorm and Normfinder-were used to obtain an estimation of the expression stability of each gene and, by comparing the results, to identify the most suitable genes for RT-qPCR data normalization. These multiple approaches allowed us to select different suitable reference genes for the correct quantification of mRNAs depending on the differentiated or proliferative nature of the cells.
Collapse
Affiliation(s)
- Maria Sirakov
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | | | | | | |
Collapse
|
48
|
Wang F, Scoville D, He XC, Mahe MM, Box A, Perry JM, Smith NR, Lei NY, Davies PS, Fuller MK, Haug JS, McClain M, Gracz AD, Ding S, Stelzner M, Dunn JCY, Magness ST, Wong MH, Martin MG, Helmrath M, Li L. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 2013; 145:383-95.e1-21. [PMID: 23644405 PMCID: PMC3781924 DOI: 10.1053/j.gastro.2013.04.050] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5-green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS CD44(+)CD24(lo)CD166(+) cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell-associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44(+)CD24(lo)CD166(+) GRP78(lo/-) putative stem cells from mouse small intestine included Lgr5-GFP(hi) and Lgr5-GFP(med/lo) cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44(+)CD24(lo)CD166(+), GRP78(lo/-), and c-Kit(-) facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44(+)CD24(-/lo)CD166(+) also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.
Collapse
Affiliation(s)
- Fengchao Wang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wessler I, Michel-Schmidt R, Schmidt H, Kaltwasser S, Unger R, Kirkpatrick CJ. Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8. Neurosci Lett 2013; 547:32-6. [DOI: 10.1016/j.neulet.2013.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/04/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|
50
|
Gurzeler U, Rabachini T, Dahinden CA, Salmanidis M, Brumatti G, Ekert PG, Echeverry N, Bachmann D, Simon HU, Kaufmann T. In vitro differentiation of near-unlimited numbers of functional mouse basophils using conditional Hoxb8. Allergy 2013; 68:604-13. [PMID: 23590216 DOI: 10.1111/all.12140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. METHODS A method is described to massively expand bone marrow-derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. RESULTS IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). CONCLUSION A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.
Collapse
Affiliation(s)
- U. Gurzeler
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - T. Rabachini
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - C. A. Dahinden
- Institute of Immunology; University of Bern; Bern; Switzerland
| | - M. Salmanidis
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - G. Brumatti
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - P. G. Ekert
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - N. Echeverry
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - D. Bachmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - H. U. Simon
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - T. Kaufmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| |
Collapse
|