1
|
Torres-Cobos B, Bontempo L, Roncone A, Quintanilla-Casas B, Servili M, Guardiola F, Vichi S, Tres A. Ground-breaking comparison of target stable isotope ratios vs. emerging sesquiterpene fingerprinting for authenticating virgin olive oil origin. Food Chem 2025; 478:143655. [PMID: 40068262 DOI: 10.1016/j.foodchem.2025.143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
This study presents a pioneering comparison of target stable isotope ratios analysis and sesquiterpene (SH) fingerprinting for authenticating virgin olive oil (VOO) geographical origin. Both methods were selected for being among the most promising targeted and untargeted approaches, respectively. These methods were applied to the same sample set of nearly 400 VOO samples, covering diverse harvest years, cultivars and producers. PLS-DA classification models were developed to differentiate between Italian and non-Italian VOOs, as well as VOOs from three closely located Italian regions. Isotopic models based on bulk δ13C, δ18O and δ2H achieved over 75 % classification accuracy in distinguishing Italian from non-Italian VOOs, while SH fingerprinting outperformed with over 90 % accuracy and greater sensitivity to regional differences, as assessed in external validation. This systematic comparison provides insights into the strengths and weaknesses of each method, and the results will guide future research to enhance their reliability in VOO geographical authentication.
Collapse
Affiliation(s)
- Berta Torres-Cobos
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098, San Michele all'Adige, Trento, Italy
| | - Alberto Roncone
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098, San Michele all'Adige, Trento, Italy
| | - Beatriz Quintanilla-Casas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Via San Costanzo S.n.c., 06126 Perugia, Italy
| | - Francesc Guardiola
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain.
| | - Alba Tres
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
2
|
Hansen J, Kunert C, Raezke KP, Seifert S. Detection of Sugar Syrups in Honey Using Untargeted Liquid Chromatography-Mass Spectrometry and Chemometrics. Metabolites 2024; 14:633. [PMID: 39590869 PMCID: PMC11596609 DOI: 10.3390/metabo14110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Honey is one of the most adulterated foods worldwide, and several analytical methods have been developed over the last decade to detect syrup additions to honey. These include approaches based on stable isotopes and the specific detection of individual marker compounds or foreign enzymes. Proton nuclear magnetic resonance (1H-NMR) spectroscopy is applied as a rapid and comprehensive screening method, which also enables the detection of quality parameters and the analysis of the geographical and botanical origin. However, especially for the detection of foreign sugars, 1H-NMR has insufficient sensitivity. Methods: Since untargeted liquid chromatography-mass spectrometry (LC-MS) is more sensitive, we used this approach for the detection of positive and negative ions in combination with a recently developed data processing workflow for routine laboratories based on bucketing and random forest for the detection of rice, beet and high-fructose corn syrup in honey. Results: We show that the distinction between pure and adulterated honey is possible for all three syrups, with classification accuracies ranging from 98 to 100%, while the accuracy of the syrup content estimation depends on the respective syrup. For rice and beet syrup, the deviations from the true proportion were in the single-digit percentage range, while for high-fructose corn syrup they were much higher, in some cases exceeding 20%. Conclusions: The approach presented here is very promising for the robust and sensitive detection of syrup in honey applied in routine laboratories.
Collapse
Affiliation(s)
- Jule Hansen
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Christof Kunert
- Eurofins Food Integrity Control Services GmbH, Berliner Str. 2, 27721 Ritterhude, Germany
| | - Kurt-Peter Raezke
- Eurofins Food Integrity Control Services GmbH, Berliner Str. 2, 27721 Ritterhude, Germany
| | - Stephan Seifert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Garrido-Cuevas MDM, Garrido-Varo AM, Oliveri P, Sánchez MT, Pérez-Marín D. In-house validation of a visible and near infrared spectroscopy non-targeted method to support panel test of virgin olive oils. Food Res Int 2024; 192:114799. [PMID: 39147500 DOI: 10.1016/j.foodres.2024.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
In this study, an in-house validation of Visible and Near Infrared Spectroscopy was performed to distinguish between extra virgin olive oil (EVOO) and virgin olive oil (VOO). A total of 161 samples of olive oil of three different categories (EVOO, VOO and lampante (LOO)) were analysed by transflectance using a monochromator instrument. One-class models were initially developed using Partial Least Squares (PLS) Density Modelling to characterize EVOO and VOO category. Once the LOO samples were discriminated, linear and non-linear discriminant models were built to classify EVOO and VOO. Different data pre-treatments and variable selection algorithms were evaluated to establish the best models in terms of Correct Classification Rate (CCR). The best model, obtained after variable selection using PLS Discriminant Analysis, yielded CCR values of 82.35 % for EVOO and 66.67 % for VOO in external validation. These results confirmed that VIS + NIRS technology may be used to provide rapid, non-destructive preliminary screening of olive oil samples for categorization; suspect samples may then be analysed by official analytical methods.
Collapse
Affiliation(s)
- María-Del-Mar Garrido-Cuevas
- Faculty of Agriculture and Forestry Engineering (ETSIAM), University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Ana-María Garrido-Varo
- Faculty of Agriculture and Forestry Engineering (ETSIAM), University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Paolo Oliveri
- Department of Pharmacy (DIFAR), University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - María-Teresa Sánchez
- Faculty of Agriculture and Forestry Engineering (ETSIAM), University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Dolores Pérez-Marín
- Faculty of Agriculture and Forestry Engineering (ETSIAM), University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain.
| |
Collapse
|
4
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Torres-Cobos B, Quintanilla-Casas B, Rovira M, Romero A, Guardiola F, Vichi S, Tres A. Prospective exploration of hazelnut's unsaponifiable fraction for geographical and varietal authentication: A comparative study of advanced fingerprinting and untargeted profiling techniques. Food Chem 2024; 441:138294. [PMID: 38218156 DOI: 10.1016/j.foodchem.2023.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
This study compares two data processing techniques (fingerprinting and untargeted profiling) to authenticate hazelnut cultivar and provenance based on its unsaponifiable fraction by GC-MS. PLS-DA classification models were developed on a selected sample set (n = 176). As test cases, cultivar models were developed for "Tonda di Giffoni" vs other cultivars, whereas provenance models were developed for three origins (Chile, Italy or Spain). Both fingerprinting and untargeted profiling successfully classified hazelnuts by cultivar or provenance, revealing the potential of the unsaponifiable fraction. External validation provided over 90 % correct classification, with fingerprinting slightly outperforming. Analysing PLS-DA models' regression coefficients and tentatively identifying compounds corresponding to highly relevant variables showed consistent agreement in key discriminant compounds across both approaches. However, fingerprinting in selected ion mode extracted slightly more information from chromatographic data, including minor discriminant species. Conversely, untargeted profiling acquired in full scan mode, provided pure spectra, facilitating chemical interpretability.
Collapse
Affiliation(s)
- B Torres-Cobos
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| | - B Quintanilla-Casas
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - M Rovira
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - A Romero
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - F Guardiola
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| | - S Vichi
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain.
| | - A Tres
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| |
Collapse
|
6
|
Vega-Castellote M, Sánchez MT, Torres-Rodríguez I, Entrenas JA, Pérez-Marín D. NIR Sensing Technologies for the Detection of Fraud in Nuts and Nut Products: A Review. Foods 2024; 13:1612. [PMID: 38890841 PMCID: PMC11172355 DOI: 10.3390/foods13111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Food fraud is a major threat to the integrity of the nut supply chain. Strategies using a wide range of analytical techniques have been developed over the past few years to detect fraud and to assure the quality, safety, and authenticity of nut products. However, most of these techniques present the limitations of being slow and destructive and entailing a high cost per analysis. Nevertheless, near-infrared (NIR) spectroscopy and NIR imaging techniques represent a suitable non-destructive alternative to prevent fraud in the nut industry with the advantages of a high throughput and low cost per analysis. This review collects and includes all major findings of all of the published studies focused on the application of NIR spectroscopy and NIR imaging technologies to detect fraud in the nut supply chain from 2018 onwards. The results suggest that NIR spectroscopy and NIR imaging are suitable technologies to detect the main types of fraud in nuts.
Collapse
Affiliation(s)
- Miguel Vega-Castellote
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - María-Teresa Sánchez
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - Irina Torres-Rodríguez
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - José-Antonio Entrenas
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - Dolores Pérez-Marín
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| |
Collapse
|
7
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
8
|
Egido C, Saurina J, Sentellas S, Núñez O. Honey fraud detection based on sugar syrup adulterations by HPLC-UV fingerprinting and chemometrics. Food Chem 2024; 436:137758. [PMID: 37857208 DOI: 10.1016/j.foodchem.2023.137758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
In recent years, honey-producing sector has faced the increasing presence of adulterated honeys, implying great economic losses and questioning the quality of this highly appreciated product by the society. Due to the high sugar content of honey, sugar syrups are among its most common adulterants, being also the most difficult to detect even with isotope ratio techniques depending on the origin of the sugar syrup plant source. In this work, a honey authentication method based on HPLC-UV fingerprinting was developed, exhibiting a 100% classification rate of honey samples against a great variety of sugar syrups (agave, corn, fiber, maple, rice, sugar cane and glucose) by partial least squares-discriminant analysis (PLS-DA). In addition, the detection and level quantitation of adulteration using syrups as adulterants (down to 15%) was accomplished by partial least squares (PLS) regression with low prediction errors by both internal and external validation (values below 12.8% and 19.7%, respectively).
Collapse
Affiliation(s)
- Carla Egido
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E08003 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E08003 Barcelona, Spain.
| |
Collapse
|
9
|
Cardin M, Mounier J, Coton E, Cardazzo B, Perini M, Bertoldi D, Pianezze S, Segato S, Di Camillo B, Cappellato M, Coton M, Carraro L, Currò S, Lucchini R, Mohammadpour H, Novelli E. Discriminative power of DNA-based, volatilome, near infrared spectroscopy, elements and stable isotopes methods for the origin authentication of typical Italian mountain cheese using sPLS-DA modeling. Food Res Int 2024; 178:113975. [PMID: 38309918 DOI: 10.1016/j.foodres.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
Origin authentication methods are pivotal in counteracting frauds and provide evidence for certification systems. For these reasons, geographical origin authentication methods are used to ensure product origin. This study focused on the origin authentication (i.e. at the producer level) of a typical mountain cheese origin using various approaches, including shotgun metagenomics, volatilome, near infrared spectroscopy, stable isotopes, and elemental analyses. DNA-based analysis revealed that viral communities achieved a higher classification accuracy rate (97.4 ± 2.6 %) than bacterial communities (96.1 ± 4.0 %). Non-starter lactic acid bacteria and phages specific to each origin were identified. Volatile organic compounds exhibited potential clusters according to cheese origin, with a classification accuracy rate of 90.0 ± 11.1 %. Near-infrared spectroscopy showed lower discriminative power for cheese authentication, yielding only a 76.0 ± 31.6 % classification accuracy rate. Model performances were influenced by specific regions of the infrared spectrum, possibly associated with fat content, lipid profile and protein characteristics. Furthermore, we analyzed the elemental composition of mountain Caciotta cheese and identified significant differences in elements related to dairy equipment, macronutrients, and rare earth elements among different origins. The combination of elements and isotopes showed a decrease in authentication performance (97.0 ± 3.1 %) compared to the original element models, which were found to achieve the best classification accuracy rate (99.0 ± 0.01 %). Overall, our findings emphasize the potential of multi-omics techniques in cheese origin authentication and highlight the complexity of factors influencing cheese composition and hence typicity.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy; Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy
| | - Matteo Perini
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele all'Adige, Italy
| | - Daniela Bertoldi
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele all'Adige, Italy
| | - Silvia Pianezze
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele all'Adige, Italy
| | - Severino Segato
- Department of Animal Medicine, Production and Health, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Barbara Di Camillo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy; Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy
| | - Marco Cappellato
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy
| | - Sarah Currò
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy
| | - Rosaria Lucchini
- Italian Health Authority and Research Organization for Animal Health and Food Safety (Istituto zooprofilattico sperimentale delle Venezie), Viale Università 10, 35020 Legnaro, PD, Italy
| | - Hooriyeh Mohammadpour
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
10
|
Dinis K, Tsamba L, Jamin E, Camel V. Untargeted metabolomics-based approach using UHPLC-HRMS to authenticate carrots (Daucus carota L.) based on geographical origin and production mode. Food Chem 2023; 423:136273. [PMID: 37209545 DOI: 10.1016/j.foodchem.2023.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Carrots produced in different agricultural regions with organic or conventional mode were analyzed by untargeted UHPLC-HRMS using reversed-phase and HILIC modes. Data were first treated separately, and further combined to possibly improve results. An in-house data processing workflow was applied to identify relevant features after peak detection. Based on these features, discrimination models were built using chemometrics. A tentative annotation of chemical markers was performed using online databases and UHPLC-HRMS/MS analyses. An independent set of samples was analyzed to assess the discrimination potential of these markers. Carrots produced in the New Aquitaine region could be successfully discriminated from carrots originating from the Normandy region by an OLPS-DA model. Arginine and 6-methoxymellein could be identified as potential markers with the C18-silica column. Additional markers (N-acetylputrescine, l-carnitine) could be identified thanks to the polar column. Discrimination based on production mode was more challenging: some trend was observed but model metrics remained unsatisfactory.
Collapse
Affiliation(s)
- Katy Dinis
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | - Lucie Tsamba
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France
| | - Eric Jamin
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France
| | - Valérie Camel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France.
| |
Collapse
|
11
|
Sudarsh S, Müller-Maatsch J. Evaluation of on-site testing methods with a novel 3-in-1 miniaturized spectroscopic device for cinnamon screening. Talanta 2023; 256:124195. [PMID: 36736268 DOI: 10.1016/j.talanta.2022.124195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
"True cinnamon" is often fraudulently replaced by other varieties for economic reasons. In the powdered form, it is not possible to distinguish the varieties visually, but they differ in their sensory profile, in particular in the aromatic compound coumarin content which has also been deemed hepatotoxic in animal models. Molecular and analytical techniques exist which can be used for authentication but are expensive, time-consuming, and destructive. As an alternative, we tested three different miniaturized spectroscopic techniques namely, ultraviolet-visible (UV-Vis), near-infrared (NIR) and fluorescence (FLUO) to authenticate cinnamon samples. Out of the three, UV-Vis and NIR were superior to FLUO. The separation with UV-Vis and FLUO could be visually identified after pre-processing the spectral data and subsequently submitting it to principal component analysis (PCA). When chemometrics were applied a correct classification rate by variety of 89%, 90% and 89% for UV-Vis, NIR, and fluorescence spectroscopy, respectively, was observed. The usage of miniaturized spectrophotometers combined with PCA and classification algorithms was found promising to authenticate cinnamon.
Collapse
Affiliation(s)
- Subrath Sudarsh
- Wageningen Food Safety Research (WFSR) Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Judith Müller-Maatsch
- Wageningen Food Safety Research (WFSR) Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| |
Collapse
|
12
|
Zanella D, Romagnoli M, Malcangi S, Beccaria M, Chenet T, De Luca C, Testoni F, Pasti L, Visentini U, Morini G, Cavazzini A, Franchina FA. The contribution of high-resolution GC separations in plastic recycling research. Anal Bioanal Chem 2023; 415:2343-2355. [PMID: 36650250 PMCID: PMC10149442 DOI: 10.1007/s00216-023-04519-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
One convenient strategy to reduce environmental impact and pollution involves the reuse and revalorization of waste produced by modern society. Nowadays, global plastic production has reached 367 million tons per year and because of their durable nature, their recycling is fundamental for the achievement of the circular economy objective. In closing the loop of plastics, advanced recycling, i.e., the breakdown of plastics into their building blocks and their transformation into valuable secondary raw materials, is a promising management option for post-consumer plastic waste. The most valuable product from advanced recycling is a fluid hydrocarbon stream (or pyrolysis oil) which represents the feedstock for further refinement and processing into new plastics. In this context, gas chromatography is currently playing an important role since it is being used to study the pyrolysis oils, as well as any organic contaminants, and it can be considered a high-resolution separation technique, able to provide the molecular composition of such complex samples. This information significantly helps to tailor the pyrolysis process to produce high-quality feedstocks. In addition, the detection of contaminants (i.e., heteroatom-containing compounds) is crucial to avoid catalytic deterioration and to implement and design further purification processes. The current review highlights the importance of molecular characterization of waste stream products, and particularly the pyrolysis oils obtained from waste plastics. An overview of relevant applications published recently will be provided, and the potential of comprehensive two-dimensional gas chromatography, which represents the natural evolution of gas chromatography into a higher-resolution technique, will be underlined.
Collapse
Affiliation(s)
- Delphine Zanella
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Monica Romagnoli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Sofia Malcangi
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Fabio Testoni
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Ugo Visentini
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Giampiero Morini
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Flavio A Franchina
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
13
|
Rubegeta E, Makolo F, Kamatou G, Enslin G, Chaudhary S, Sandasi M, Cunningham AB, Viljoen A. The African cherry: A review of the botany, traditional uses, phytochemistry, and biological activities of Prunus africana (Hook.f.) Kalkman. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116004. [PMID: 36535336 DOI: 10.1016/j.jep.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus africana (Hook.f.) Kalkman (Rosaceae), commonly known as "Pygeum" or "African cherry", occurs in mainland montane forests scattered across sub-Saharan Africa, Madagascar, and some surrounding islands. Traditionally, decoctions of the stem-bark are taken orally for the treatment of a wide variety of conditions, such as benign prostatic hyperplasia (BPH), stomach ache, chest pain, malaria, heart conditions, and gonorrhoea, as well as urinary and kidney diseases. The timber is used to make axe handles and for other household needs. The dense wood is also sawn for timber. AIM The fragmented information available on the ethnobotany, phytochemistry, and biological activities of the medicinally important P. africana was collated, organised, and analysed in this review, to highlight knowledge voids that can be addressed through future research. MATERIALS AND METHODS A bibliometric analysis of research output on P. africana was conducted on literature retrieved, using the Scopus® database. The trend in the publications over time was assessed and a network analysis of collaborations between countries and authors was carried out. Furthermore, a detailed review of the literature over the period 1971 to 2021, acquired through Scopus, ScienceDirect, SciFinder, Pubmed, Scirp, DOAJ and Google Scholar, was conducted. All relevant abstracts, full-text articles and various book chapters on the botanical and ethnopharmacological aspects of P. africana, written in English and German, were consulted. RESULTS A total of 455 documents published from 1971 to 2021, were retrieved using the Scopus search. Analysis of the data showed that the majority of these documents were original research articles, followed by reviews and lastly a miscellaneous group comprising conference papers, book chapters, short surveys, editorials and letters. Data were analysed for annual output and areas of intense research focus, and countries with high research output, productive institutions and authors, and collaborative networks were identified. Prunus africana is reported to exhibit anti-inflammatory, analgesic, antimicrobial, anti-oxidant, antiviral, antimutagenic, anti-asthmatic, anti-androgenic, antiproliferative and apoptotic activities amongst others. Phytosterols and other secondary metabolites such as phenols, triterpenes, fatty acids, and linear alcohols have been the focus of phytochemical investigations. The biological activity has largely been ascribed to the phytosterols (mainly 3-β-sitosterol, 3-β-sitostenone, and 3-β-sitosterol-glucoside), which inhibit the production of prostaglandins in the prostate, thereby suppressing the inflammatory symptoms associated with BPH and chronic prostatitis. CONCLUSIONS Many of the ethnobotanical assertions for the biological activity of P. africana have been confirmed through in vitro and in vivo studies. However, a disparity exists between the biological activity of the whole extract and that of single compounds isolated from the extract, which were reported to be less effective. This finding suggests that a different approach to biological activity studies should be encouraged that takes all secondary metabolites present into consideration. A robust technique, such as multivariate biochemometric data analysis, which allows for a holistic intervention to study the biological activity of a species is suggested. Furthermore, there is a need to develop rapid and efficient quality control methods for both raw materials and products to replace the time-consuming and laborious methods currently in use.
Collapse
Affiliation(s)
- Emmanuel Rubegeta
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix Makolo
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Guy Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Sushil Chaudhary
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Anthony B Cunningham
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Pietermaritzburg, 3200, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
14
|
Fabrile MP, Ghidini S, Conter M, Varrà MO, Ianieri A, Zanardi E. Filling gaps in animal welfare assessment through metabolomics. Front Vet Sci 2023; 10:1129741. [PMID: 36925610 PMCID: PMC10011658 DOI: 10.3389/fvets.2023.1129741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Sustainability has become a central issue in Italian livestock systems driving food business operators to adopt high standards of production concerning animal husbandry conditions. Meat sector is largely involved in this ecological transition with the introduction of new label claims concerning the defense of animal welfare (AW). These new guarantees referred to AW provision require new tools for the purpose of authenticity and traceability to assure meat supply chain integrity. Over the years, European Union (EU) Regulations, national, and international initiatives proposed provisions and guidelines for assuring AW introducing requirements to be complied with and providing tools based on scoring systems for a proper animal status assessment. However, the comprehensive and objective assessment of the AW status remains challenging. In this regard, phenotypic insights at molecular level may be investigated by metabolomics, one of the most recent high-throughput omics techniques. Recent advances in analytical and bioinformatic technologies have led to the identification of relevant biomarkers involved in complex clinical phenotypes of diverse biological systems suggesting that metabolomics is a key tool for biomarker discovery. In the present review, the Five Domains model has been employed as a vademecum describing AW. Starting from the individual Domains-nutrition (I), environment (II), health (III), behavior (IV), and mental state (V)-applications and advances of metabolomics related to AW setting aimed at investigating phenotypic outcomes on molecular scale and elucidating the biological routes most perturbed from external solicitations, are reviewed. Strengths and weaknesses of the current state-of-art are highlighted, and new frontiers to be explored for AW assessment throughout the metabolomics approach are argued. Moreover, a detailed description of metabolomics workflow is provided to understand dos and don'ts at experimental level to pursue effective results. Combining the demand for new assessment tools and meat market trends, a new cross-strategy is proposed as the promising combo for the future of AW assessment.
Collapse
Affiliation(s)
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Adriana Ianieri
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
15
|
Ehlers M, Uttl L, Riedl J, Raeke J, Westkamp I, Hajslova J, Brockmeyer J, Fauhl-Hassek C. Instrument comparability of non-targeted UHPLC-HRMS for wine authentication. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Xia Q, Huang Z, Zhang P, Bu H, Bao L, Chen D. Nontargeted detection and recognition of adulterants in milk powder using Raman imaging and neural networks. Analyst 2023; 148:412-421. [PMID: 36541331 DOI: 10.1039/d2an01540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Raman imaging technology combined with targeted chemometrics can play a vital role in the rapid detection of milk powder adulteration, which threatens the lives of infants and other people. However, these methods always suffer from a narrow detection range. Nontargeted methods show a broader detection range but cannot recognize adulterants. Here, a novel nontargeted chemometric method, named as the adversarial discrimination neural network (ADNN), is proposed to detect and recognize adulterants simultaneously. The method comprises building a tight boundary in the feature space of Raman images to discriminate milk powder samples from the majority of adulterated cases. Then a first-order partial derivative of the ADNN is calculated to recognize different adulterants through a local approximation strategy. A validation set containing samples adulterated with various adulterants at concentrations ranging from 0.3% to 1.5% w/w was provided to challenge the proposed method. The validated detection accuracy of the proposed method for authentic and adulterated samples was 99.9% and 99.7% and the adulterants were recognized correctly. The ADNN-Raman represents a novel nontargeted and end-to-end tool for detecting and recognizing adulterants in milk powder simultaneously, providing new insights into nontargeted chemometric analysis.
Collapse
Affiliation(s)
- Qi Xia
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhixuan Huang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Pengfei Zhang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hanping Bu
- Nestlé Food Safety Institute of China, Nestlé R & D (China) Ltd, Beijing 100016, China
| | - Lei Bao
- Nestlé Food Safety Institute of China, Nestlé R & D (China) Ltd, Beijing 100016, China
| | - Da Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, Civil Aviation University of China, Tianjin, 300300, China.
| |
Collapse
|
17
|
From targeted methods to metabolomics based strategies to screen for growth promoters misuse in horseracing and livestock: A review. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Uttl L, Bechynska K, Ehlers M, Kadlec V, Navratilova K, Dzuman Z, Fauhl-Hassek C, Hajslova J. Critical assessment of chemometric models employed for varietal authentication of wine based on UHPLC-HRMS data. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
de Oliveira AN, Bolognini SRF, Navarro LC, Delafiori J, Sales GM, de Oliveira DN, Catharino RR. Tomato classification using mass spectrometry-machine learning technique: A food safety-enhancing platform. Food Chem 2023; 398:133870. [DOI: 10.1016/j.foodchem.2022.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
20
|
Nichani K, Uhlig S, Stoyke M, Kemmlein S, Ulberth F, Haase I, Döring M, Walch SG, Gowik P. Essential terminology and considerations for validation of non-targeted methods. Food Chem X 2022; 17:100538. [PMID: 36845497 PMCID: PMC9943841 DOI: 10.1016/j.fochx.2022.100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Through their suggestive name, non-targeted methods (NTMs) do not aim at a predefined "needle in the haystack." Instead, they exploit all the constituents of the haystack. This new type of analytical method is increasingly finding applications in food and feed testing. However, the concepts, terms, and considerations related to this burgeoning field of analytical testing need to be propagated for the benefit of those associated with academic research, commercial development, or official control. This paper addresses frequently asked questions regarding terminology in connection with NTMs. The widespread development and adoption of these methods also necessitate the need to develop innovative approaches for NTM validation, i.e., evaluating the performance characteristics of a method to determine if it is fit-for-purpose. This work aims to provide a roadmap for approaching NTM validation. In doing so, the paper deliberates on the different considerations that influence the approach to validation and provides suggestions therefor.
Collapse
Affiliation(s)
- Kapil Nichani
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany,Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany,Corresponding authors at: QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany (K. Nichani).
| | - Steffen Uhlig
- QuoData GmbH, Fabeckstr. 43, 14195 Berlin, Germany,Corresponding authors at: QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany (K. Nichani).
| | - Manfred Stoyke
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Sabine Kemmlein
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Franz Ulberth
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - Ilka Haase
- Max Rubner-Institut (MRI) - Bundesforschungsinstitut für Ernährung und Lebensmittel, Nationales Referenzzentrum für authentische Lebensmittel, E-C-Baumannstr. 20, 95236 Kulmbach, Germany
| | - Maik Döring
- Max Rubner-Institut (MRI) - Bundesforschungsinstitut für Ernährung und Lebensmittel, Nationales Referenzzentrum für authentische Lebensmittel, E-C-Baumannstr. 20, 95236 Kulmbach, Germany
| | - Stephan G Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany
| | - Petra Gowik
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
21
|
Authenticity analysis of oregano: development, validation and fitness for use of several food fingerprinting techniques. Food Res Int 2022; 162:111962. [DOI: 10.1016/j.foodres.2022.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022]
|
22
|
Riu J, Vega A, Boqué R, Giussani B. Exploring the Analytical Complexities in Insect Powder Analysis Using Miniaturized NIR Spectroscopy. Foods 2022; 11:foods11213524. [PMID: 36360137 PMCID: PMC9659064 DOI: 10.3390/foods11213524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Insects have been a food source for humans for millennia, and they are actively consumed in various parts of the world. This paper aims to ascertain the feasibility of portable near-infrared (NIR) spectroscopy as a reliable and fast candidate for the classification of insect powder samples and the prediction of their major components. Commercially-available insect powder samples were analyzed using two miniaturized NIR instruments. The samples were analyzed as they are and after grinding, to study the effect of the granulometry on the spectroscopic analyses. A homemade sample holder was designed and optimized for making reliable spectroscopic measurements. Classification was then performed using three classification strategies, and partial least squares (PLS) regression was used to predict the macronutrients. The results obtained confirmed that both spectroscopic sensors were able to classify insect powder samples and predict macronutrients with an adequate detection limit.
Collapse
Affiliation(s)
- Jordi Riu
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alba Vega
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Ricard Boqué
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Barbara Giussani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 9, 22100 Como, Italy
- Correspondence: ; Tel.: +39-031-238-6434
| |
Collapse
|
23
|
Alewijn M, Akridopoulou V, Venderink T, Müller-Maatsch J, Silletti E. Fusing one-class and two-class classification – A case study on the detection of pepper fraud. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Meng X, Yin C, Yuan L, Zhang Y, Ju Y, Xin K, Chen W, Lv K, Hu L. Rapid detection of adulteration olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible near-infrared and excitation-emission matrix fluorescence spectroscopy: A Comparative Study. Food Chem 2022; 405:134828. [DOI: 10.1016/j.foodchem.2022.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
25
|
Popping B, Buck N, Bánáti D, Brereton P, Gendel S, Hristozova N, Chaves SM, Saner S, Spink J, Willis C, Wunderlin D. Food inauthenticity: Authority activities, guidance for food operators, and mitigation tools. Compr Rev Food Sci Food Saf 2022; 21:4776-4811. [PMID: 36254736 DOI: 10.1111/1541-4337.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Historically, food fraud was a major public health concern which helped drive the development of early food regulations in many markets including the US and EU market. In the past 10 years, the integrity of food chains with respect to food fraud has again been questioned due to high profile food fraud cases. We provide an overview of the resulting numerous authoritative activities underway within different regions to counter food fraud, and we describe the guidance available to the industry to understand how to assess the vulnerability of their businesses and implement appropriate mitigation. We describe how such controls should be an extension of those already in place to manage wider aspects of food authenticity, and we provide an overview of relevant analytical tools available to food operators and authorities to protect supply chains. Practical Application: Practical Application of the provided information by the food industry in selecting resources (guidance document, analytical methods etc.).
Collapse
Affiliation(s)
- Bert Popping
- FOCOS - Food Consulting Strategically, Alzenau, Germany
| | - Neil Buck
- General Mills Inc., Nyon, Switzerland
| | - Diána Bánáti
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Paul Brereton
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Steven Gendel
- Gendel Food Safety LLC, Silver Spring, Maryland, USA
| | | | - Sandra Mourinha Chaves
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Samim Saner
- Mérieux NutriSciences, Tassin la Demi-Lune, France
| | - John Spink
- Department of Supply Chain Management, Michigan State University, East Lansing, Michigan, USA
| | | | - Daniel Wunderlin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Edificio Cs. II, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
26
|
Cervellieri S, Lippolis V, Mancini E, Pascale M, Logrieco AF, De Girolamo A. Mass spectrometry-based electronic nose to authenticate 100% Italian durum wheat pasta and characterization of volatile compounds. Food Chem 2022; 383:132548. [PMID: 35413754 DOI: 10.1016/j.foodchem.2022.132548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
Headspace solid-phase microextraction (HS-SPME) coupled with mass spectrometry-based electronic nose (MS-eNose), in combination with multivariate statistical analysis was used as untargeted method for the rapid authentication of 100% Italian durum wheat pasta. Among the tested classification models, i.e. PCA-LDA, PLS-DA and SVMc, SVMc provided the highest accuracy results in both calibration (90%) and validation (92%) processes. Potential markers discriminating pasta samples were identified by HS-SPME/GC-MS analysis. Specifically, the content of a pattern of 8 out of 59 volatile organic compounds (VOCs) was significantly different between samples of 100% Italian durum wheat pasta and pasta produced with durum wheat of different origins, most of which were related to different lipidic oxidation in the two classes of pasta. The proposed MS-eNose method is a rapid and reliable tool to be used for authenticating Italian pasta useful to promote its typicity and preserving consumers from fraudulent practices.
Collapse
Affiliation(s)
- Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Erminia Mancini
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Antonio Francesco Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
27
|
Approaches for assessing performance of high-resolution mass spectrometry-based non-targeted analysis methods. Anal Bioanal Chem 2022; 414:6455-6471. [PMID: 35796784 PMCID: PMC9411239 DOI: 10.1007/s00216-022-04203-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry has enabled the detection and identification of unknown and unexpected compounds of interest in a wide range of sample matrices. Despite these benefits of NTA methods, standardized procedures do not yet exist for assessing performance, limiting stakeholders’ abilities to suitably interpret and utilize NTA results. Herein, we first summarize existing performance assessment metrics for targeted analyses to provide context and clarify terminology that may be shared between targeted and NTA methods (e.g., terms such as accuracy, precision, sensitivity, and selectivity). We then discuss promising approaches for assessing NTA method performance, listing strengths and key caveats for each approach, and highlighting areas in need of further development. To structure the discussion, we define three types of NTA study objectives: sample classification, chemical identification, and chemical quantitation. Qualitative study performance (i.e., focusing on sample classification and/or chemical identification) can be assessed using the traditional confusion matrix, with some challenges and limitations. Quantitative study performance can be assessed using estimation procedures developed for targeted methods with consideration for additional sources of uncontrolled experimental error. This article is intended to stimulate discussion and further efforts to develop and improve procedures for assessing NTA method performance. Ultimately, improved performance assessments will enable accurate communication and effective utilization of NTA results by stakeholders.
Collapse
|
28
|
Faith Ndlovu P, Samukelo Magwaza L, Zeray Tesfay S, Ramaesele Mphahlele R. Destructive and rapid non-invasive methods used to detect adulteration of dried powdered horticultural products: A review. Food Res Int 2022; 157:111198. [DOI: 10.1016/j.foodres.2022.111198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 01/17/2023]
|
29
|
Detection and quantification of adulteration in turmeric by spectroscopy coupled with chemometrics. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Milman BL, Zhurkovich IK. Present-Day Practice of Non-Target Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
We review the main techniques, procedures, and information products used in non-target analysis (NTA) to reveal the composition of substances. Sampling and sample preparation methods are preferable that ensure the extraction of analytes from test samples in a wide range of analyte properties with the most negligible loss. The necessary techniques of analysis are versions of chromatography–high-resolution tandem mass spectrometry (HRMS), yielding individual characteristics of analytes (mass spectra, retention properties) to accurately identify them. The prioritization of the analytical strategy discards unnecessary measurements and thereby increases the performance of the NTA. Chemical databases, collections of reference mass spectra and retention characteristics, algorithms, and software for processing HRMS data are indispensable in NTA.
Collapse
|
31
|
Prandi B, Righetti L, Caligiani A, Tedeschi T, Cirlini M, Galaverna G, Sforza S. Assessing food authenticity through protein and metabolic markers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:233-274. [PMID: 36064294 DOI: 10.1016/bs.afnr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter aims to address an issue of ancient origins, but more and more topical in a globalized world in which consumers and stakeholders are increasingly aware: the authenticity of food. Foods are systems that can also be very complex, and verifying the correspondence between what is declared and the actual characteristics of the product is often a challenging issue. The complexity of the question we want to answer (is the food authentic?) means that the answer is equally articulated and makes use of many different analytical techniques. This chapter will consider the chemical analyses of foods aimed at guaranteeing their authenticity and will focus on frontier methods that have been developed in recent years to address the need to respond to ever-increasing guarantees of authenticity. Targeted and non-targeted approaches will be considered for verifying the authenticity of foods, through the study of different classes of constituents (proteins, metabolites, lipids, flavors). The numerous approaches available (proteomics, metabolomics, lipidomics) and the related analytical techniques (LC-MS, GC-MS, NMR) are first described from a more general point of view, after which their specific application for the purposes of authentication of food is addressed.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
32
|
Identification of Geographical Origin of Milk by Amino Acid Profile Coupled with Chemometric Analysis. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2001253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to establish a method to identify the geographical origin of milk based on its amino acid profile. High-performance liquid chromatography (HPLC) was carried out to measure amino acid contents. The significant differences of amino acid profiles of milk samples from four regions in China (Hebei, Ningxia, Heilongjiang, and Inner Mongolia) were analyzed by ANOVA. Furthermore, the principal component analysis (PCA) demonstrated the feasibility of geographical origin identification using an amino acid profile, which the first 2 principal components account for 65.62% of total variance. The predictive model for the geographical origin of milk samples was established by orthogonal partial least squares-discriminant analysis (OPLS-DA) with a classification accuracy of 100% and the performance parameters of R2X 0.98, R2Y 0.82, and Q2 0.75. The excellent predictive ability of the model was validated using the validation data set. The analysis of variable importance in projection (VIP) showed that seven amino acids played a key role in the geographical origin identification. This method is a reliable strategy to identify the geographical origin of milk for protecting consumers against mislabeling fraud.
Collapse
|
33
|
Navratilova K, Hurkova K, Hrbek V, Uttl L, Tomaniova M, Valli E, Hajslova J. Metabolic fingerprinting strategy: Investigation of markers for the detection of extra virgin olive oil adulteration with soft-deodorized olive oils. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods 2022; 11:foods11040599. [PMID: 35206075 PMCID: PMC8871520 DOI: 10.3390/foods11040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
The pan-European distributed Research Infrastructure for Promoting Metrology in Food and Nutrition (METROFOOD-RI) has evolved in the frame of the European Strategy Forum on Research Infrastructures (ESFRI) to promote high-quality metrology services across the food chain. The METROFOOD-RI comprises physical facilities and electronic facilities. The former includes Reference Material plants and analytical laboratories (the ‘Metro’ side) and also experimental fields/farms, processing/storage plants and kitchen-labs (the ‘Food’ side). The RI is currently prepared to apply for receiving the European Research Infrastructure Consortium (ERIC) legal status and is organised to fulfil the requirements for operation at the national, European Union (EU) and international level. In this view, the METROFOOD-RI partners have recently reviewed the scientific plan and elaborated strategic priorities on key thematic areas of research in the food and nutrition domain to which they have expertise to contribute to meet global societal challenges and face unexpected emergencies. The present review summarises the methodology and main outcomes of the research study that helped to identify the key thematic areas from a metrological standpoint, to articulate critical and emerging issues and demands and to structure how the integrated facilities of the RI can operate in the first five years of operation as ERIC.
Collapse
|
35
|
Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules 2022; 27:1198. [PMID: 35208988 PMCID: PMC8874729 DOI: 10.3390/molecules27041198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herbal medicines (HMs) are regarded as one of the traditional medicines in health care to prevent and treat some diseases. Some herbal components such as turmeric and ginger are used as HMs, therefore the identification and confirmation of herbal use are very necessary. In addition, the adulteration practice, mainly motivated to gain economical profits, may occur by substituting the high price of HMs with lower-priced ones or by addition of certain chemical constituents known as Bahan Kimia Obat (chemical drug ingredients) in Indonesia. Some analytical methods based on spectroscopic and chromatographic methods are developed for the authenticity and confirmation of the HMs used. Some approaches are explored during HMs authentication including single-component analysis, fingerprinting profiles, and metabolomics studies. The absence of reference standards for certain chemical markers has led to exploring the fingerprinting approach as a tool for the authentication of HMs. During fingerprinting-based spectroscopic and chromatographic methods, the data obtained were big, therefore the use of chemometrics is a must. This review highlights the application of fingerprinting profiles using variables of spectral and chromatogram data for authentication in HMs. Indeed, some chemometrics techniques, mainly pattern recognition either unsupervised or supervised, were applied for this purpose.
Collapse
Affiliation(s)
- Florentinus Dika Octa Riswanto
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Maguwoharjo, Sleman, Yogyakarta 55282, Indonesia
| | - Anjar Windarsih
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Research Division for Natural Product Technology, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Endang Lukitaningsih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, IPB University, Bogor 16680, Indonesia;
| | - Nurrulhidayah A. Fadzilah
- International Institute for Halal Research and Training (INHART), International Islamic University of Malaysia (IIUM), Gombak 53100, Malaysia;
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| |
Collapse
|
36
|
Ehlers M, Horn B, Raeke J, Fauhl-Hassek C, Hermann A, Brockmeyer J, Riedl J. Towards harmonization of non-targeted 1H NMR spectroscopy-based wine authentication: Instrument comparison. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Yong CH, Muhammad SA, Aziz FA, Ng JS, Nasir FI, Adenan M, Moosa S, Othman Z, Abdullah S, Sharif Z, Ismail F, Kelly SD, Cannavan A, Seow EK. Detection of adulteration activities in edible bird's nest using untargeted 1H-NMR metabolomics with chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Yong CH, Muhammad SA, Aziz FA, Nasir FI, Mustafa MZ, Ibrahim B, Kelly SD, Cannavan A, Seow EK. Detecting adulteration of stingless bee honey using untargeted 1H NMR metabolomics with chemometrics. Food Chem 2022; 368:130808. [PMID: 34419793 DOI: 10.1016/j.foodchem.2021.130808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
As stingless bee honey (SBH) is gaining in popularity in the Malaysian market, it is now prone to adulteration. The higher price of SBH compared to floral honey has led to the use of unusual adulterants such as vinegar and even floral honey to mimic the unique taste and appearance of SBH. Since the current AOAC 998.12 method fails to detect these adulterants as their δ13C values are in the range for C3 plants, untargeted 1H NMR metabolomics was proposed. Principal component analysis of SBH 1H NMR fingerprints was able to distinguish authentic SBHs from adulterated ones down to 1% adulteration level for selected adulterants. Discriminant analysis showed promising results in distinguishing the preliminary datasets of authentic SBHs from the adulterated ones, including discriminating SBHs adulterated with different adulterants derived from C3 and C4 plants. Hence, to assure any emerging adulterant can be detected, all 1H NMR regions should be considered.
Collapse
Affiliation(s)
- Chin-Hong Yong
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Fatimatuzzahra' Abd Aziz
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Fatin Ilyani Nasir
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Baharudin Ibrahim
- Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Simon D Kelly
- Food and Environmental Protection Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Andrew Cannavan
- Food and Environmental Protection Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Eng-Keng Seow
- Department of Food Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
39
|
Selamat J, Rozani NAA, Murugesu S. Application of the Metabolomics Approach in Food Authentication. Molecules 2021; 26:molecules26247565. [PMID: 34946647 PMCID: PMC8706891 DOI: 10.3390/molecules26247565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
The authentication of food products is essential for food quality and safety. Authenticity assessments are important to ensure that the ingredients or contents of food products are legitimate and safe to consume. The metabolomics approach is an essential technique that can be utilized for authentication purposes. This study aimed to summarize food authentication through the metabolomics approach, to study the existing analytical methods, instruments, and statistical methods applied in food authentication, and to review some selected food commodities authenticated using metabolomics-based methods. Various databases, including Google Scholar, PubMed, Scopus, etc., were used to obtain previous research works relevant to the objectives. The review highlights the role of the metabolomics approach in food authenticity. The approach is technically implemented to ensure consumer protection through the strict inspection and enforcement of food labeling. Studies have shown that the study of metabolomics can ultimately detect adulterant(s) or ingredients that are added deliberately, thus compromising the authenticity or quality of food products. Overall, this review will provide information on the usefulness of metabolomics and the techniques associated with it in successful food authentication processes, which is currently a gap in research that can be further explored and improved.
Collapse
Affiliation(s)
- Jinap Selamat
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or ; Tel.: +603-97691146
| | | | - Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
40
|
Place BJ, Ulrich EM, Challis JK, Chao A, Du B, Favela K, Feng YL, Fisher CM, Gardinali P, Hood A, Knolhoff AM, McEachran AD, Nason SL, Newton SR, Ng B, Nuñez J, Peter KT, Phillips AL, Quinete N, Renslow R, Sobus JR, Sussman EM, Warth B, Wickramasekara S, Williams AJ. An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Anal Chem 2021; 93:16289-16296. [PMID: 34842413 PMCID: PMC8848292 DOI: 10.1021/acs.analchem.1c02660] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.
Collapse
Affiliation(s)
- Benjamin J. Place
- National Institute of Standards and Technology, Gaithersburg, MD, USA 20899,Corresponding author,
| | - Elin M. Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | | | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA 92626
| | - Kristin Favela
- Southwest Research Institute, San Antonio, TX, USA 78238
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Christine M. Fisher
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | - Piero Gardinali
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Alan Hood
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Ann M. Knolhoff
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | | | - Sara L. Nason
- Connecticut Agricultural Experiment Station, New Haven, CT, USA 06511
| | - Seth R. Newton
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Brian Ng
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Jamie Nuñez
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Katherine T. Peter
- National Institute of Standards and Technology, Charleston, SC, USA 29412
| | - Allison L. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA 27711
| | - Natalia Quinete
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Ryan Renslow
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Eric M. Sussman
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Samanthi Wickramasekara
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| |
Collapse
|
41
|
Cuadros-Rodríguez L, Ortega-Gavilán F, Martín-Torres S, Arroyo-Cerezo A, Jiménez-Carvelo AM. Chromatographic Fingerprinting and Food Identity/Quality: Potentials and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14428-14434. [PMID: 34813301 PMCID: PMC8896688 DOI: 10.1021/acs.jafc.1c05584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chromatograms are a valuable source of information about the chemical composition of the food being analyzed. Sometimes, this information is not explicit and appears in a hidden or not obvious way. Thus, the use of chemometric tools and data-mining methods to extract it is required. The fingerprint provided by a chromatogram offers the possibility to perform both identity and quality testing of foodstuffs. This perspective is aimed at providing an updated opinion of chromatographic fingerprinting methodology in the field of food authentication. Furthermore, the limitations, its absence in official analytical methods, and the future directions of this methodology are discussed.
Collapse
|
42
|
Alternative method’s results for the non targeted determination of xenobiotics in food by means of high resolution and accuracy mass spectrometry. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2021. [DOI: 10.1186/s40550-021-00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe application of a high resolution and accurate mass spectrometry (HRAMS) approach to detect xenobiotics in different food matrices by means of non targeted determination by UHPLC-Orbitrap followed by data processing analysis was described. Three case studies were reported to demonstrate the possibility to identify unexpected substances in different food commodities overcomes targeted method. This innovative approach could lay the foundation for its applicability to routine analysis in the near future giving the possibility to open new horizons to the research of a wide range of xenobiotics.
Collapse
|
43
|
Zhang T, Chen C, Xie K, Wang J, Pan Z. Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods 2021; 10:2388. [PMID: 34681437 PMCID: PMC8535928 DOI: 10.3390/foods10102388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
In the past decades, as an emerging omic, metabolomics has been widely used in meat science research, showing promise in meat quality analysis and meat authentication. This review first provides a brief overview of the concept, analytical techniques, and analysis workflow of metabolomics. Additionally, the metabolomics research in quality analysis and authentication of meat is comprehensively described. Finally, the limitations, challenges, and future trends of metabolomics application in meat quality analysis and meat authentication are critically discussed. We hope to provide valuable insights for further research in meat quality.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Zhiming Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
44
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
45
|
Mandrone M, Marincich L, Chiocchio I, Petroli A, Gođevac D, Maresca I, Poli F. NMR-based metabolomics for frauds detection and quality control of oregano samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Lowe CN, Phillips KA, Favela KA, Yau AY, Wambaugh JF, Sobus JR, Williams AJ, Pfirrman AJ, Isaacs KK. Chemical Characterization of Recycled Consumer Products Using Suspect Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11375-11387. [PMID: 34347456 PMCID: PMC8475772 DOI: 10.1021/acs.est.1c01907] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recycled materials are found in many consumer products as part of a circular economy; however, the chemical content of recycled products is generally uncharacterized. A suspect screening analysis using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) was applied to 210 products (154 recycled, 56 virgin) across seven categories. Chemicals in products were tentatively identified using a standard spectral library or confirmed using chemical standards. A total of 918 probable chemical structures identified (112 of which were confirmed) in recycled materials versus 587 (110 confirmed) in virgin materials. Identified chemicals were characterized in terms of their functional use and structural class. Recycled paper products and construction materials contained greater numbers of chemicals than virgin products; 733 identified chemicals had greater occurrence in recycled compared to virgin materials. Products made from recycled materials contained greater numbers of fragrances, flame retardants, solvents, biocides, and dyes. The results were clustered to identify groups of chemicals potentially associated with unique chemical sources, and identified chemicals were prioritized for further study using high-throughput hazard and exposure information. While occurrence is not necessarily indicative of risk, these results can be used to inform the expansion of existing models or identify exposure pathways currently neglected in exposure assessments.
Collapse
Affiliation(s)
- Charles N. Lowe
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, 37831, United States
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| | - Katherine A. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| | - Kristin A. Favela
- Southwest Research Institute, San Antonio, Texas, 78759, United States
| | - Alice Y. Yau
- Southwest Research Institute, San Antonio, Texas, 78759, United States
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| | - Ashley J. Pfirrman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, 37831, United States
| | - Kristin K. Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina, 27709, United States
| |
Collapse
|
47
|
Potential of FTIR- ATR diamond in discriminating geographical and botanical origins of honeys from France and Romania. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Cozzolino D. From consumers' science to food functionality-Challenges and opportunities for vibrational spectroscopy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:119-146. [PMID: 34311898 DOI: 10.1016/bs.afnr.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current available methods used to measure or estimate the composition, functionality, and sensory properties of foods and food ingredients are destructive and time consuming. Therefore, new approaches are required by both the food industry and R&D organizations. Recent years have witnessed a steady growth on the applications and utilization of vibrational spectroscopy techniques [near (NIR), mid infrared (MIR), Raman] to analyse or estimate several properties in a wide range of foods and food ingredients. This chapter will provide with an overview of vibrational spectroscopy techniques, the combination of these techniques with multivariate data analysis, and examples on the use of these techniques to measure composition, and functional properties in a wide range of foods.
Collapse
Affiliation(s)
- Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
49
|
Ouzia S, Royer AL, Pezzolato M, Benedetto A, Biasibetti E, Guitton Y, Le Bizec B, Bozetta E, Dervilly G. Nandrolone and estradiol biomarkers identification in bovine urine applying a liquid chromatography high-resolution mass spectrometry metabolomics approach. Drug Test Anal 2021; 14:879-886. [PMID: 34242491 DOI: 10.1002/dta.3126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022]
Abstract
With the aim of specifically investigating patterns associated with three steroid treatments (17β-nandrolone, 17β-estradiol, and 17β-nandrolone + 17β-estradiol) in bovine, an reversed phase liquid chromatography (RPLC)-electrospray ionization (ESI)(+/-)-high-resolution mass spectrometry (HRMS) study was conducted to characterize the urinary profiles of involved animals. Although specific fingerprints with strong differences could be highlighted between urinary metabolite profiles within urine samples collected on control and treated animals, it appeared further that significant discriminations could also be observed between steroid treatments, evidencing thus specific patterns and candidate biomarkers associated to each treatment. An MS-2 structural elucidation step enabled level-1 identification of two biomarkers mainly involved in energy pathways, in relation to skeletal muscle functioning. These results make it possible to envisage a global strategy for the detection of anabolic practices involving steroids, while at the same time providing clues as to the compounds used, which would facilitate the confirmation stage to follow.
Collapse
Affiliation(s)
| | | | - Marzia Pezzolato
- Centro di Referenza Nazionale Indagini Biologiche Anabolizzanti Animali - CIBA, Experimental Zooprophylactic Institute of Piedmont, Liguria and Valle d'Aosta, Torino, Italy
| | - Alessandro Benedetto
- Centro di Referenza Nazionale Indagini Biologiche Anabolizzanti Animali - CIBA, Experimental Zooprophylactic Institute of Piedmont, Liguria and Valle d'Aosta, Torino, Italy
| | - Elena Biasibetti
- Centro di Referenza Nazionale Indagini Biologiche Anabolizzanti Animali - CIBA, Experimental Zooprophylactic Institute of Piedmont, Liguria and Valle d'Aosta, Torino, Italy
| | | | | | - Elena Bozetta
- Centro di Referenza Nazionale Indagini Biologiche Anabolizzanti Animali - CIBA, Experimental Zooprophylactic Institute of Piedmont, Liguria and Valle d'Aosta, Torino, Italy
| | | |
Collapse
|
50
|
Kang X, Zhao Y, Liu W, Ding H, Zhai Y, Ning J, Sheng X. Geographical traceability of sea cucumbers in China via chemometric analysis of stable isotopes and multi-elements. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|