1
|
Li Y, Deng L, Hua X, Zhong Y, Chen P, Shen J, Ouyang L, Zheng L, Guo W. Design, synthesis and preliminary structure-activity relationship of 2-iminothiazolidine-4-one derivatives against Schistosoma japonicum in vitro and in vivo. Eur J Med Chem 2025; 290:117567. [PMID: 40157310 DOI: 10.1016/j.ejmech.2025.117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Schistosomiasis, ranking second only to malaria in prevalence, is considered as a significant infectious parasitic disease in tropical and subtropical regions. Current therapeutic and control paradigms remain predominantly dependent on praziquantel monotherapy, highlighting the urgent need for alternative chemotherapeutic agents. Herein, we demonstrate the discovery and preliminary structure-activity relationship of 2-iminothiazolidine-4-one derivatives targeting Schistosoma japonicum in vitro and in vivo. The screening identified several hit compounds in this series exhibiting micromolar-level activity against the adult stage of the parasite in vitro, with a distinct mechanism involving tegumental disintegration of the worms. Notably, compound 17 exhibited potent in vitro activity against adult S. japonicum, with an LC50 (72 h) value of 25.31 ± 1.40 μM. In murine models of schistosomiasis, intraperitoneal administration of compound 17 (25 mg/kg/day × 7) achieved significant worm burden reduction of 52 % and 26 % in adult and juvenile stages, respectively. Furthermore, in vivo therapeutic assessments revealed that the hit compounds not only alleviated liver lesions but also demonstrated safety profiles with low hepatotoxicity. Acute oral toxicity experiments showed that compound 17 also possesses low oral toxicity and maintains an acceptable hepatotoxicological profile. These findings establish the ethyl 4-oxo-2-iminothiazolidin-5-ylidene acetate pharmacophore as a privileged scaffold for schistosomicidal development, providing a robust foundation for subsequent lead optimization toward next-generation antischistosomal therapeutics.
Collapse
Affiliation(s)
- Yinyin Li
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Ling Deng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Xiaofeng Hua
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Yumei Zhong
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Peiyi Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Jiayi Shen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Lu Ouyang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Lvyin Zheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China.
| | - Wei Guo
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Wang Y, Hu Y, Zhang J, Zhou D, Zhang Y, Cao J. Eggs of Schistosoma japonicum deposited in the spleen induce apoptosis of splenic T cells in C57BL/6 mice. Parasitol Res 2025; 124:31. [PMID: 40059230 PMCID: PMC11891099 DOI: 10.1007/s00436-025-08474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025]
Abstract
To explore the relationship between Schistosoma japonicum egg deposition and the resultant structural damage to the spleen, mice were infected percutaneously with cercariae or eggs were surgically injected into their spleens. Terminal transferase dUTP nick-end-labeling (TUNEL) showed that cells around the S. japonicum eggs were apoptotic in vivo. Flow cytometry revealed a sharp reduction in splenic B and T cells at 8 weeks post-infection (p.i.) and a significant increase in Annexin V positive T cells. Immunochemistry showed that the remaining follicles in the spleen at 16 weeks p.i. comprised mainly B lymphocytes. Comparing T lymphocytes in the spleen and liver egg granulomas showed obvious CD3+ positive areas in the spleen, indicating that splenic egg granulomas have a different cellular composition to liver granulomas. S. japonicum eggs deposited in the spleen might induce apoptosis of splenic cells, especially T lymphocytes. When splenic lymphocytes were cultured in vitro with S. japonicum soluble egg antigen (SEA), more cells underwent apoptosis at an antigen concentration of 120 μg/ml compared to 60 μg/ml at all times p.i.. Cells from 8 weeks p.i. seemed more susceptible to SEA-induced apoptosis. Further research should be focus on the molecule(s) that induce T cells apoptosis, which might provide clues to the mechanisms of immunosuppression during S. japonicum infection and will promote vaccine research.
Collapse
Affiliation(s)
- Yanjuan Wang
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Yuan Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Jing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Danling Zhou
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Yanjun Zhang
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
3
|
Xinxin Z, Xianzhou L, Dandan P, Yan W, Zhenyu L. Immunization with the glutathione S-transferase Sj26GST with Chi-CpG NP against Schistosoma japonicum in mice. Microb Pathog 2024; 195:106847. [PMID: 39127365 DOI: 10.1016/j.micpath.2024.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Schistosomiasis caused by Schistosoma japonicum (S. japonicum) is a major public health problem in the Philippines, China and Indonesia. In this study, the immunopotentiator CpG-ODN was encapsulated within chitosan nanoparticles (Chi NPs) to create a combination adjuvant (Chi-CpG NP). This approach was employed to enhance the immunogenicity of 26 kDa glutathione S-transferase (Sj26GST) from S. japonicum through intranasal immunization. The results demonstrated higher levels of specific anti-Sj26GST antibodies and Sj26GST-specific splenocyte proliferation compared to mice that were immunized with Sj26GST + Chi-CpG NP. Cytokine analysis of splenocytes revealed that the Sj26GST + Chi-CpG NP induced a slight Th1-biased immune response, with increased production of IFN-γ by CD4+ T-cells in the spleen. Subsequently, mice were intradermally inoculated with 1 × 107 organisms in the Coeliac cavity. The bacterial organ burden detected in the liver of immunized mice suggested that Sj26GST + Chi-CpG NP enhances protective immunity to inhibit S. japonicum colonization. Therefore, Sj26GST + Chi-CpG NP vaccination enhances Sj26GST-specific immunogenicity and provides protection against S. japonicum.
Collapse
Affiliation(s)
- Zhou Xinxin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Lu Xianzhou
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China
| | - Pan Dandan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wang Yan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Li Zhenyu
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China; Hengnan People's Hospital, Hengyang, 421001, China.
| |
Collapse
|
4
|
de Luna Rocha TC, Dos Santos Lima MJ, Nunes do Nascimento JL, Ferreira de Oliveira J, de Oliveira Silva E, Barbosa Dos Santos VH, de Lima Aires A, de Albuquerque Wanderley Sales V, Atanazio Rosa T, Rolim Neto PJ, Camelo Pessôa de Azevedo Albuquerque M, Alves de Lima MDC, Ferreira da Silva RM. Development and evaluation of the in vitro schistosomicidal activity of solid dispersions based on 2-(-5-bromo-1-H-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide. Exp Parasitol 2024; 256:108626. [PMID: 37972848 DOI: 10.1016/j.exppara.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.
Collapse
Affiliation(s)
| | | | | | - Jamerson Ferreira de Oliveira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | | | | | - André de Lima Aires
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Talita Atanazio Rosa
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
5
|
Dos Santos M, de Faria MT, da Silva JO, Gandra IB, Ribeiro AJ, Silva KA, Nogueira LM, Machado JM, da Silveira Mariano RM, Gonçalves AAM, Ludolf F, Candia-Puma MA, Chávez-Fumagalli MA, Campos-da-Paz M, Giunchetti RC, Galdino AS. A Mini-Review on Elisa-Based Diagnosis of Schistosomiasis. Curr Mol Med 2024; 24:585-598. [PMID: 37143281 DOI: 10.2174/1566524023666230504140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical parasitic disease caused by trematode worms of the genus schistosoma, which affects approximately 240 million people worldwide. the diagnosis of the disease can be performed by parasitological, molecular, and/or immunological methods, however, the development of new diagnostic methods still essential to guide policy decisions, monitor disease trends and assess the effectiveness of interventions. OBJECTIVE in this sense, the current work summarizes the findings of a systematic review regarding antigens applied in the enzyme-linked immunosorbent assay test, which were patented and published over the last ten years. METHODS the literature search strategy used medical subject heading (mesh) terms to define as descriptors. "schistosoma mansoni" was used in arrangement with the descriptors "immunoassay", "enzyme-linked immunosorbent assay", "elisa", and "antigens", using the "and" connector. the patent search was done using keywords, including diagnosis and schistosoma or schistosomiasis or schistosome. several databases were employed for the patent search, such as intellectual property national institute; european patent office; the united states patent and trademark office; patent scope, and google patents. RESULTS forty-one articles were retrieved, of which only five met the eligibility criteria. seventeen patents were taken from the databases, and a brief description of the most relevant inventions is given here. CONCLUSION schistosomiasis is considered the most important helminthic disease in worldwide. therefore, it is important to of searching for and develops diagnostic methods based on serology to reduce morbidity and mortality caused by the disease.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Mariana Teixeira de Faria
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Anna Julia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Lais Moreira Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Fernanda Ludolf
- Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Mariana Campos-da-Paz
- Laboratório de Bioativos & NanoBiotecnologia, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| |
Collapse
|
6
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
7
|
Haapanen S, Angeli A, Tolvanen M, Emameh RZ, Supuran CT, Parkkila S. Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni. J Enzyme Inhib Med Chem 2023; 38:2184299. [PMID: 36856011 PMCID: PMC9980027 DOI: 10.1080/14756366.2023.2184299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Schistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Susanna Haapanen Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Won JY, Louis JM, Roh ES, Cha SH, Han JH. Functional characterization of Clonorchis sinensis choline transporter. PARASITES, HOSTS AND DISEASES 2023; 61:428-438. [PMID: 38043538 PMCID: PMC10693965 DOI: 10.3347/phd.23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 μM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.
Collapse
Affiliation(s)
- Jeong Yeon Won
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Johnsy Mary Louis
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eui Sun Roh
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
9
|
Azevedo CM, Meira CS, da Silva JW, Moura DMN, de Oliveira SA, da Costa CJ, Santos EDS, Soares MBP. Therapeutic Potential of Natural Products in the Treatment of Schistosomiasis. Molecules 2023; 28:6807. [PMID: 37836650 PMCID: PMC10574020 DOI: 10.3390/molecules28196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Jaqueline Wang da Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Danielle Maria Nascimento Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Sheilla Andrade de Oliveira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Cícero Jádson da Costa
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| |
Collapse
|
10
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
11
|
Xie S, Zhang Y, Li J, Zhou J, Li J, Zhang P, Liu Y, Luo Y, Ming Y. IgG persistence showed weak clinical aspects in chronic schistosomiasis patients. Sci Rep 2023; 13:13222. [PMID: 37580417 PMCID: PMC10425409 DOI: 10.1038/s41598-023-40082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Schistosomiasis is a chronic parasitic disease, which affects the quality of daily life of patients and imposes a huge burden on society. Hepatic fibrosis in response to continuous insult of eggs to the liver is a significant cause of morbidity and mortality. However, the mechanisms of hepatic fibrosis in schistosomiasis are largely undefined. The purpose of our study is to detect the indicator to hepatic fibrosis in schistosomiasis. A total of 488 patients with chronic schistosomiasis japonica were enrolled in our study. The patients were divided into two groups according to liver ultrasound examination, which could indicate liver fibrosis of schistosomiasis with unique reticular changes. Logistic regression analysis showed that globulin, albumin/globulin, GGT levels and anti-Schistosoma IgG were independently associated with liver fibrosis in patients with schistosomiasis and IgG was the largest association of liver fibrosis (OR 2.039, 95% CI 1.293-3.213). We further compared IgG+ patients with IgG- patients. IgG+ patients (ALT 25 U/L, GGT 31 U/L) slightly higher than IgG- patients (ALT 22 U/L, GGT 26 U/L) in ALT and GGT. However, the fibrosis of liver in IgG+ patients (Grade II(19.7%), Grade III(7.3%)) were more severe than that in IgG- patients(Grade II(12.5%), Grade III(2.9%)) according to the grade of liver ultrasonography. Our results showed anti-Schistosoma IgG was independently associated with liver fibrosis in patients with chronic schistosomiasis japonica and patients with persistent anti-Schistosoma IgG might have more liver fibrosis than negative patients despite no obvious clinical signs or symptoms.
Collapse
Affiliation(s)
- Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Jie Zhou
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, People's Republic of China
| | - Jun Li
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, People's Republic of China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yang Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Machado FP, Folly D, Esteves R, Ruppelt BM, da Silva VM, Matos APDS, dos Santos JAA, Rangel LDS, Santos MG, von Ranke NL, Rodrigues CR, Ricci-Junior E, Rocha L, Faria RX. Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion. Molecules 2023; 28:5944. [PMID: 37630195 PMCID: PMC10458193 DOI: 10.3390/molecules28165944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 08/27/2023] Open
Abstract
Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk control using molluscicidal agents. This work evaluates the effects of a nanoemulsion containing essential oil from Myrciaria floribunda leaves as a molluscicidal and cercaricidal agent against Biomphalaria glabrata mollusks and Schistosoma mansoni cercariae. The Myrciaria floribunda essential oil from leaves showed nerolidol, β-selinene, 1,8 cineol, and zonarene as major constituents. The formulation study suggested the F3 formulation as the most promising nanoemulsion with polysorbate 20 and sorbitan monooleate 80 (4:1) with 5% (w/w) essential oil as it showed a smaller droplet size of approximately 100 nm with a PDI lower than 0.3 and prominent bluish reflection. Furthermore, this nanoemulsion showed stability after 200 days under refrigeration. The Myrciaria floribunda nanoemulsion showed LC50 values of 48.11 µg/mL, 29.66 µg/mL, and 47.02 µg/mL in Biomphalaria glabrata embryos, juveniles, and adult mollusks, respectively, after 48 h and 83.88 µg/mL for Schistosoma mansoni cercariae after 2 h. In addition, a survival of 80% was observed in Danio rerio, and the in silico toxicity assay showed lower overall human toxicity potential to the major compounds in the essential oil compared to the reference molluscicide niclosamide. These results suggest that the nanoemulsion of Myrciaria floribunda leaves may be a promising alternative for schistosomiasis control.
Collapse
Affiliation(s)
- Francisco Paiva Machado
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos (PBV), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Diogo Folly
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos (PBV), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Ricardo Esteves
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos (PBV), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Bettina Monika Ruppelt
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
| | - Victoria Marques da Silva
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
| | - Ana Paula dos Santos Matos
- Laboratório de Desenvolvimento Galênico (LADEG), Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | | | - Leonardo da Silva Rangel
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil
| | - Marcelo Guerra Santos
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Dr. Francisco Portela 1470, São Gonçalo 24435-000, RJ, Brazil
| | - Natalia Lidmar von Ranke
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico (LADEG), Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Leandro Rocha
- Laboratório de Tecnologia de Produtos Naturais (LTPN), Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
13
|
Fagundes Silva HAM, Andrade de Araújo HD, Pessoa de Azevedo Albuquerque MC, de Vasconcelos Lima M, Barroso Martins MC, Alves LC, Brayner FA, de Lima Aires A, Mendonça de Albuquerque Melo AM, da Silva NH. In Vitro Anthelminthic Activity and Ultrastructural Analysis of Barbatic Acid against Schistosomulae and Juvenile Worms of Schistosoma mansoni. Chem Biodivers 2023; 20:e202300154. [PMID: 37414744 DOI: 10.1002/cbdv.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Schistosomiasis affects about 260 million people worldwide and the search for new schistosomicidal compounds is urgent. In this study we evaluated the in vitro effect of barbatic acid against schistosomulae and young worms of Schistosoma mansoni. The barbatic acid was evaluated through the bioassay of motility and mortality, cellular viability and ultrastructural analysis of juvenile stages through Scanning Electron Microscopy. Barbatic acid showed a schistosomicidal effect against schistosomulae and young worms of S. mansoni after 3 h of exposure. At the end of 24 h, barbatic acid showed 100 %, 89.5 %, 52 % and 28.5 % of lethality for schistosomulae at the concentrations of 200, 100, 50 and 25 μM, respectively. For young worms, barbatic acid showed 100 % and 31.7 % of lethality at the concentrations of 200 and 100 μM, respectively. Motility changes were observed at all sublethal concentrations. There was a significant reduction in the viability of young worms after exposure to barbatic acid at 50, 100 and 200 μM. Extensive damage to the schistosomulae and young worm's tegument, was observed from 50 μM. This report provides data showing the schistosomicidal effect of barbatic acid on schistosomulae and young worms of S. mansoni, causing death, motility changes and ultrastructural damage to worms.
Collapse
Affiliation(s)
- Hianna Arely Milca Fagundes Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Centro de Ciências da Saúde, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Departamento de Energia Nuclear, Centro de Tecnologia e Geociências, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Mônica Cristina Barroso Martins
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Luiz Carlos Alves
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Fábio André Brayner
- Centro de Ciências da Saúde, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Centro de Ciências da Saúde, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
- Departamento de Energia Nuclear, Centro de Tecnologia e Geociências, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| | - Nicácio Henrique da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brazil
| |
Collapse
|
14
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
15
|
Oula JO, Mose JM, Waiganjo NN, Chepukosi KW, Mitalo NS, Isaac AO, Nyariki JN. Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitol Int 2023; 96:102775. [PMID: 37390918 DOI: 10.1016/j.parint.2023.102775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.
Collapse
Affiliation(s)
- James O Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Naomi N Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Kennedy W Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Nancy S Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya.
| |
Collapse
|
16
|
Pereira ED, da Silva Dutra L, Paiva TF, de Almeida Carvalho LL, Rocha HVA, Pinto JC. In Vitro Release and In Vivo Pharmacokinetics of Praziquantel Loaded in Different Polymer Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3382. [PMID: 37176262 PMCID: PMC10180028 DOI: 10.3390/ma16093382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Approximately 1 billion people are affected by neglected diseases around the world. Among these diseases, schistosomiasis constitutes one of the most important public health problems, being caused by Schistosoma mansoni and treated through the oral administration of praziquantel (PZQ). Despite being a common disease in children, the medication is delivered in the form of large, bitter-tasting tablets, which makes it difficult for patients to comply with the treatment. In order to mask the taste of the drug, allow more appropriate doses for children, and enhance the absorption by the body, different polymer matrices based on poly(methyl methacrylate) (PMMA) were developed and used to encapsulate PZQ. Polymer matrices included PMMA nano- and microparticles, PMMA-co-DEAEMA (2-(diethylamino)ethyl methacrylate), and PMMA-co-DMAEMA (2-(dimethylamino)ethyl methacrylate) microparticles. The performances of the drug-loaded particles were characterized in vitro through dissolution tests and in vivo through pharmacokinetic analyses in rats for the first time. The in vitro dissolution studies were carried out in accordance with the Brazilian Pharmacopeia and revealed a good PZQ release profile in an acidic medium for the PMMA-DEAEMA copolymer, reaching values close to 100 % in less than 3 h. The in vivo pharmacokinetic analyses were conducted using free PZQ as the control group that was compared with the investigated matrices. The drug was administered orally at doses of 60 mg/kg, and the PMMA-co-DEAEMA copolymer microparticles were found to be the most efficient release system among the investigated ones, reaching a Cmax value of 1007 ± 83 ng/mL, even higher than that observed for free PZQ, which displayed a Cmax value of 432 ± 98 ng/mL.
Collapse
Affiliation(s)
- Emiliane Daher Pereira
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
| | - Luciana da Silva Dutra
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
| | - Thamiris Franckini Paiva
- SENAI CETIQT, Instituto SENAI de Inovação em Biossintéticos e Fibras, Cidade Universitária, Rua Fernando de Souza Barros, Rio de Janeiro 21941-857, RJ, Brazil
| | - Larissa Leite de Almeida Carvalho
- Programa de Engenharia de Processos Químicos e Bioquímicos/EQ, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21949-900, RJ, Brazil
| | - Helvécio Vinícius Antunes Rocha
- Laboratório de Micro e Nanotecnologia, Instituto de Tecnologia de Fármacos—Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
- Programa de Engenharia de Processos Químicos e Bioquímicos/EQ, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21949-900, RJ, Brazil
| |
Collapse
|
17
|
Zheng Y, Schroeder S, Kanev GK, Botros SS, William S, Sabra ANA, Maes L, Caljon G, Gil C, Martinez A, Salado IG, Augustyns K, Edink E, Sijm M, de Heuvel E, de Esch IJP, van der Meer T, Siderius M, Sterk GJ, Brown D, Leurs R. To Target or Not to Target Schistosoma mansoni Cyclic Nucleotide Phosphodiesterase 4A? Int J Mol Sci 2023; 24:ijms24076817. [PMID: 37047792 PMCID: PMC10095301 DOI: 10.3390/ijms24076817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease with high morbidity. Recently, the Schistosoma mansoni phosphodiesterase SmPDE4A was suggested as a putative new drug target. To support SmPDE4A targeted drug discovery, we cloned, isolated, and biochemically characterized the full-length and catalytic domains of SmPDE4A. The enzymatically active catalytic domain was crystallized in the apo-form (PDB code: 6FG5) and in the cAMP- and AMP-bound states (PDB code: 6EZU). The SmPDE4A catalytic domain resembles human PDE4 more than parasite PDEs because it lacks the parasite PDE-specific P-pocket. Purified SmPDE4A proteins (full-length and catalytic domain) were used to profile an in-house library of PDE inhibitors (PDE4NPD toolbox). This screening identified tetrahydrophthalazinones and benzamides as potential hits. The PDE inhibitor NPD-0001 was the most active tetrahydrophthalazinone, whereas the approved human PDE4 inhibitors roflumilast and piclamilast were the most potent benzamides. As a follow-up, 83 benzamide analogs were prepared, but the inhibitory potency of the initial hits was not improved. Finally, NPD-0001 and roflumilast were evaluated in an in vitro anti-S. mansoni assay. Unfortunately, both SmPDE4A inhibitors were not effective in worm killing and only weakly affected the egg-laying at high micromolar concentrations. Consequently, the results with these SmPDE4A inhibitors strongly suggest that SmPDE4A is not a suitable target for anti-schistosomiasis therapy.
Collapse
Affiliation(s)
- Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | | | - Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Sanaa S Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Abdel-Nasser A Sabra
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carmen Gil
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Irene G Salado
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Maarten Sijm
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tiffany van der Meer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Soares RN, Ximenes ECPDA, Araújo SB, Silva RLD, Souza VMOD, Coelho LCBB, Neto JLDF, Neto PJR, Araújo HDAD, Aires ADL, Albuquerque MCPDA. Evaluation of β-lapachone-methyl-β-cyclodextrin inclusion complex prepared by spray drying and its application against different developmental stages of Schistosoma mansoni in murine model. Chem Biol Interact 2023; 373:110374. [PMID: 36736872 DOI: 10.1016/j.cbi.2023.110374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND β-lapachone (β-lap) is a naphthoquinone widely found in species of vegetables. However, its poor aqueous solubility limits its systemic administration and clinical applications in vivo. To overcome this limitation, several studies have been carried out in order to investigate techniques that can enhance the solubility and dissolution rate of β-lap, such as the use of inclusion complexes with cyclodextrin. PURPOSE To evaluate the in vivo effect of β-lap complexed in methyl-β-cyclodextrin (MβCD) on the evolutionary stages of Schistosoma mansoni in a murine model. METHODS The development and characterization of the physicochemical properties of the inclusion complex of β-lap in β-lap:MβCD was prepared by solubility and dissolution tests, FTIR, DSC, X-RD and SEM. The mice were infected and subsequently treated with β-lap:MβCD orally with 50 mg/kg/day and 100 mg/kg/day for 5 consecutive days, starting therapy on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms) and 45th (adult worms) days after infection. Control groups were also formed; one infected untreated, treated with MβCD, and the other treated with PZQ. RESULTS The loss of the crystalline form of β-lap in the β-lap:MβCD complex obtained by spray drying was proven through physical-chemical characterization analyses. β-lap:MβCD caused reduction in the number of worms of the 33.56%, 35.7%, 35.45% and 36.45%, when the dose was at 50 mg/kg, and 65.00%, 60.34%, 52.72% and 65.01%, in the dose 100 mg/kg; when treatment was started in the 1st, 14th, 28th and 45th days after infection, respectively. It was also possible to observe a significant reduction in the number of immature eggs and an increase in the number of ripe and dead eggs and, consequently, a reduction in the damage caused by the egg antigens to the host tissue, where we attributed the reduction in the average diameter of the granulomas to the β-lap. CONCLUSION The dissolved content of β-lap:MβCD by spray drying reached almost 100%, serving for future formulations and delineation of the mechanisms of action of β-lap against S. mansoni.
Collapse
Affiliation(s)
- Risoleta Nogueira Soares
- Health Sciences Center, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Valdênia Maria Oliveira de Souza
- Health Sciences Center, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - José Lourenço de Freitas Neto
- Health Sciences Center, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Health Sciences Center, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil; Biosciences Center, Department of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - André de Lima Aires
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil; Center for Medical Sciences, Academic Area of Tropical Medicine, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Health Sciences Center, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil; Center for Medical Sciences, Academic Area of Tropical Medicine, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
19
|
da Silva JV, Moreira CC, Montija EDA, Feitosa KA, Correia RDO, Domingues NLDC, Soares EG, Allegretti SM, Afonso A, Anibal FDF. Schiff bases complexed with iron and their relation with the life cycle and infection by Schistosoma mansoni. Front Immunol 2022; 13:1021768. [PMID: 36618401 PMCID: PMC9811594 DOI: 10.3389/fimmu.2022.1021768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The trematode Schistosoma mansoni causes schistosomiasis, and this parasite's life cycle depends on the mollusk Biomphalaria glabrata. The most effective treatment for infected people is administering a single dose of Praziquantel. However, there are naturally resistant to treatment. This work has developed, considering this parasite's complex life cycle. Methods The synthetics compound were evaluated: i) during the infection of B. glabrata, ii) during the infection of BALB/c mice, and iii) during the treatment of mice infected with S. mansoni. Results and Discussion For the first objective, snails infected with miracidia treated with compounds C1 and C3 at concentrations of 25% IC50 and 50% IC50, after 80 days of infection, released fewer cercariae than the infected group without treatment. For the second objective, compounds C1 and C3 did not show significant results in the infected group without treatment. For the third objective, the mice treated with C3 and C1 reduced the global and differential cell count. The results suggest that although the evaluated compounds do not present schistosomicidal properties when placed in cercariae suspension, they can stimulate an immune reaction in snails and decrease mice's inflammatory response. In general, we can conclude that compound C1 and C3 has an anti-schistosomicidal effect both in the larval phase (miracidia) and in the adult form of the parasite.
Collapse
Affiliation(s)
- Juliana Virginio da Silva
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil,*Correspondence: Juliana Virginio da Silva,
| | - Carla Cristina Moreira
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Elisandra de Almeida Montija
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Karina Alves Feitosa
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Ricardo de Oliveira Correia
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Nelson Luis de Campos Domingues
- Laboratório de catálise orgânica e biocatálise, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson Garcia Soares
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silmara Marques Allegretti
- Departamento De Biologia Animal, Instituto de BiologiaEstadual de Campinas, Universidade, Campinas, São Paulo, Brazil
| | - Ana Afonso
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil,Global Health and Tropical Medicine (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal,Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), São Paulo, Brazil,Instituto Nacional de Investigação Agrária e Veterinária, I.P., (INIAV), Laboratório de Parasitologia, Oeiras, Portugal,Laboratório de Parasitologia, Quantoom’s Bioscience, Nivelles, Bélgica, Belgium
| | - Fernanda de Freitas Anibal
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| |
Collapse
|
20
|
Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, Arbab S, Slama P, Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front Bioeng Biotechnol 2022; 10:1013354. [PMID: 36568300 PMCID: PMC9780462 DOI: 10.3389/fbioe.2022.1013354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
Collapse
Affiliation(s)
- Abdul Qadeer
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore, Pakistan
- Faculty of Medicine, Bioscience and Nursing MAHSA University, Selangor, Malaysia
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
21
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
22
|
Zhou L, Zhu Y, Mo L, Wang M, Lin J, Zhao Y, Feng Y, Xie A, Wei H, Qiu H, Huang J, Yang Q. TLR7 controls myeloid-derived suppressor cells expansion and function in the lung of C57BL6 mice infected with Schistosoma japonicum. PLoS Negl Trop Dis 2022; 16:e0010851. [PMID: 36279265 PMCID: PMC9591064 DOI: 10.1371/journal.pntd.0010851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune responses against Schistosoma japonicum (S. japonicum) infection. However, the role of Toll-like receptor 7 (TLR7) in the mouse lung during S. japonicum infection and the myeloid-derived suppressor cells (MDSCs) affected by the absence of TLR7 are not clearly understood. In this study, the results indicated that the MDSCs were accumulated and the proportion and activation of CD4+ and CD8+ T cells were decreased in the lung of mice at 6-7 weeks after S. japonicum infection. Then, the expression of TLR7 was detected in isolated pulmonary MDSCs and the results showed that the expression of TLR7 in MDSCs was increased after infection. Furthermore, TLR7 agonist R848 could down-regulate the induction effect of the soluble egg antigen (SEA) on pulmonary MDSCs in vitro. Meanwhile, TLR7 deficiency could promote the pulmonary MDSCs expansion and function by up-regulating the expression of PD-L1/2 and secreting of IL-10 in the mice infected with S. japonicum. Mechanistic studies revealed that S. japonicum infection and the antigen effects are mediated by NF-κB signaling. Moreover, TLR7 deficiency aggravates S. japonicum infection-induced damage in the lung, with more inflammatory cells infiltration, interstitial dilatation and granuloma in the tissue. In summary, this study indicated that TLR7 signaling inhibits the accumulation and function of MDSCs in S. japonicum infected mouse lung by down-regulating the expression of PD-L1/2 and secreting of IL-10, via NF-κB signaling.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - lengshan Mo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- * E-mail: (JH); (QY)
| | - Quan Yang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- * E-mail: (JH); (QY)
| |
Collapse
|
23
|
The prophylactic and anti-fibrotic activity of phthalimido-thiazole derivatives in schistosomiasis mansoni. Parasitol Res 2022; 121:2111-2120. [DOI: 10.1007/s00436-022-07533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
|
24
|
Pereira de Araújo M, Sato MO, Sato M, Bandara WM KM, Coelho LFL, Souza RLM, Kawai S, Marques MJ. Unbalanced relationships: insights into the interaction between gut microbiota, geohelminths, and schistosomiasis. PeerJ 2022; 10:e13401. [PMID: 35539016 PMCID: PMC9080432 DOI: 10.7717/peerj.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Hosts and their microbiota and parasites have co-evolved in an adaptative relationship since ancient times. The interaction between parasites and intestinal bacteria in terms of the hosts' health is currently a subject of great research interest. Therapeutic interventions can include manipulations of the structure of the intestinal microbiota, which have immunological interactions important for modulating the host's immune system and for reducing inflammation. Most helminths are intestinal parasites; the intestinal environment provides complex interactions with other microorganisms in which internal and external factors can influence the composition of the intestinal microbiota. Moreover, helminths and intestinal microorganisms can modulate the host's immune system either beneficially or harmfully. The immune response can be reduced due to co-infection, and bacteria from the intestinal microbiota can translocate to other organs. In this way, the treatment can be compromised, which, together with drug resistance by the parasites makes healing even more difficult. Thus, this work aimed to understand interactions between the microbiota and parasitic diseases caused by the most important geohelminths and schistosomiasis and the consequences of these associations.
Collapse
Affiliation(s)
- Matheus Pereira de Araújo
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil,Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcos José Marques
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
25
|
Qureshi IA, Saini M, Are S. Pyridoxal Kinase of Disease-causing Human Parasites: Structural and
Functional Insights to Understand its Role in Drug Discovery. Curr Protein Pept Sci 2022; 23:271-289. [DOI: 10.2174/1389203723666220519155025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Human parasites cause several diseased conditions with high morbidity and mortality in a
large section of the population residing in various geographical areas. Nearly three billion people suffer
from either one or many parasitic infections globally, with almost one million deaths annually. In spite
of extensive research and advancement in the medical field, no effective vaccine is available against
prominent human parasitic diseases that necessitate identification of novel targets for designing specific
inhibitors. Vitamin B6 is an important ubiquitous co-enzyme that participates in several biological processes
and plays an important role in scavenging ROS (reactive oxygen species) along with providing
resistance to oxidative stress. Moreover, the absence of the de novo vitamin B6 biosynthetic pathway in
human parasites makes this pathway indispensable for the survival of these pathogens. Pyridoxal kinase
(PdxK) is a crucial enzyme for vitamin B6 salvage pathway and participates in the process of vitamers
B6 phosphorylation. Since the parasites are dependent on pyridoxal kinase for their survival and infectivity
to the respective hosts, it is considered a promising candidate for drug discovery. The detailed
structural analysis of PdxK from disease-causing parasites has provided insights into the catalytic
mechanism of this enzyme as well as significant differences from their human counterpart. Simultaneously,
structure-based studies have identified small lead molecules that can be exploited for drug discovery
against protozoan parasites. The present review provides structural and functional highlights of
pyridoxal kinase for its implication in developing novel and potent therapeutics to combat fatal parasitic
diseases.
Collapse
Affiliation(s)
- Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| | - Mayank Saini
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| | - Sayanna Are
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| |
Collapse
|
26
|
Sanches RCO, Mambelli F, Oliveira SC. Neutrophils and schistosomiasis: a missing piece in pathology. Parasite Immunol 2022; 44:e12916. [PMID: 35332932 DOI: 10.1111/pim.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a chronic human parasitic disease that causes serious health problems worldwide. The disease-associated liver pathology is one of the hallmarks of infections by S. mansoni and S. japonicum, and is accountable for the debilitating condition found in infected patients. In the past few years, investigative studies have highlighted the key role played by neutrophils and the influence of inflammasome signaling pathway in different pathological conditions. However, it is noteworthy that the study of inflammasome activation in neutrophils has been overlooked by reports concerning macrophages and monocytes. This interplay between neutrophils and inflammasomes is much more poorly investigated during schistosomiasis. Herein we reviewed the role of neutrophils during schistosomiasis and addressed the potential connection between these cells and inflammasome activation in this context.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Mambelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
27
|
Pereira Moreira B, Weber MHW, Haeberlein S, Mokosch AS, Spengler B, Grevelding CG, Falcone FH. Drug Repurposing and De Novo Drug Discovery of Protein Kinase Inhibitors as New Drugs against Schistosomiasis. Molecules 2022; 27:molecules27041414. [PMID: 35209202 PMCID: PMC8879451 DOI: 10.3390/molecules27041414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease affecting more than 200 million people worldwide. Chemotherapy relies on one single drug, praziquantel, which is safe but ineffective at killing larval stages of this parasite. Furthermore, concerns have been expressed about the rise in resistance against this drug. In the absence of an antischistosomal vaccine, it is, therefore, necessary to develop new drugs against the different species of schistosomes. Protein kinases are important molecules involved in key cellular processes such as signaling, growth, and differentiation. The kinome of schistosomes has been studied and the suitability of schistosomal protein kinases as targets demonstrated by RNA interference studies. Although protein kinase inhibitors are mostly used in cancer therapy, e.g., for the treatment of chronic myeloid leukemia or melanoma, they are now being increasingly explored for the treatment of non-oncological conditions, including schistosomiasis. Here, we discuss the various approaches including screening of natural and synthetic compounds, de novo drug development, and drug repurposing in the context of the search for protein kinase inhibitors against schistosomiasis. We discuss the status quo of the development of kinase inhibitors against schistosomal serine/threonine kinases such as polo-like kinases (PLKs) and mitogen-activated protein kinases (MAP kinases), as well as protein tyrosine kinases (PTKs).
Collapse
Affiliation(s)
- Bernardo Pereira Moreira
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.P.M.); (M.H.W.W.); (S.H.); (C.G.G.)
| | - Michael H. W. Weber
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.P.M.); (M.H.W.W.); (S.H.); (C.G.G.)
| | - Simone Haeberlein
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.P.M.); (M.H.W.W.); (S.H.); (C.G.G.)
| | - Annika S. Mokosch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.S.M.); (B.S.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.S.M.); (B.S.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.P.M.); (M.H.W.W.); (S.H.); (C.G.G.)
| | - Franco H. Falcone
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.P.M.); (M.H.W.W.); (S.H.); (C.G.G.)
- Correspondence:
| |
Collapse
|
28
|
Ferraroni M, Angeli A, Carradori S, Supuran CT. Inhibition of Schistosoma mansoni carbonic anhydrase by the antiparasitic drug clorsulon: X-ray crystallographic and in vitro studies. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:321-327. [PMID: 35234146 PMCID: PMC8900822 DOI: 10.1107/s2059798322000079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
The inhibitory activity of clorsulon and X-ray studies of its complexes with human carbonic anhydrase I and Schistosoma mansoni carbonic anhydrase revealed different modes of binding of this antiparasitic drug, explaining its inhibitory potency against the two enzymes. Clorsulon is an anthelmintic drug that is clinically used against Fasciola hepatica. Due to the presence of two sulfonamide moieties in its core nucleus, which are well recognized as zinc-binding groups, it was proposed that it may be efficacious in the inhibition of parasite carbonic anhydrases (CAs). Proteomic analyses revealed the presence of CA in the tegument of Schistosoma mansoni, and recently the druggability of this target was explored by testing the inhibitory activities of several sulfonamide-based derivatives. According to the principles of drug repurposing, the aim was to demonstrate a putative new mechanism of action of clorsulon and thus widen its antiparasitic spectrum. For this purpose, the inhibitory activity and isoform selectivity of clorsulon was studied using human CA I and S. mansoni CA, revealing different modes of binding of clorsulon that explain its inhibitory potency against the two enzymes. The information obtained in this study could be crucial in the design of more active and selective derivatives.
Collapse
|
29
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
30
|
Lamolle G, Iriarte A, Musto H. Codon usage in the flatworm Schistosoma mansoni is shaped by the mutational bias towards A+T and translational selection, which increases GC-ending codons in highly expressed genes. Mol Biochem Parasitol 2021; 247:111445. [PMID: 34942292 DOI: 10.1016/j.molbiopara.2021.111445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Schistosoma mansoni is a trematode flatworm that parasitizes humans and produces a disease called bilharzia. At the genomic level, it is characterized by a low genomic GC content and an "isochore-like" structure, where GC-richest regions, mainly placed at the extremes of the chromosomes, are interspersed with low GC-regions. Furthermore, the GC-richest regions are at the same time the gene-richest, and where the most heavily expressed genes are placed. Taking these features into account, we decided to reanalyze the codon usage of this flatworm. Our results show that a) when all genes are considered together, the strong mutational bias towards A + T leads to a predominance of A/T-ending codons, b) a multivariate analysis discriminates between highly and lowly expressed genes, c) the sequences expressed at highest levels display a significant increase in G/C-ending codons, d) when comparing the molecular distances with a closely related species the synonymous distance in highly expressed genes is significantly lower than in lowly expressed sequences. Therefore, we conclude that despite previous results, which were performed with a small sample of genes, codon usage in S. mansoni is the result of two forces that operate in opposite directions: while mutational bias leads to a predominance of A/T codons, translational selection, working at the level of speed, increment G/C ending triplets.
Collapse
Affiliation(s)
- Guillermo Lamolle
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Héctor Musto
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
31
|
Ustyantsev KV, Vavilova VY, Blinov AG, Berezikov EV. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:108-116. [PMID: 34901708 PMCID: PMC8629357 DOI: 10.18699/vj21.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Hundreds of millions of people worldwide are infected by various species of parasitic flatworms. Without
treatment, acute and chronical infections frequently lead to the development of severe pathologies and even death.
Emerging data on a decreasing efficiency of some important anthelmintic compounds and the emergence of resistance to them force the search for alternative drugs. Parasitic flatworms have complex life cycles, are laborious and
expensive in culturing, and have a range of anatomic and physiological adaptations that complicate the application
of standard molecular-biological methods. On the other hand, free-living flatworm species, evolutionarily close to
parasitic flatworms, do not have the abovementioned difficulties, which makes them potential alternative models
to search for and study homologous genes. In this review, we describe the use of the basal free-living flatworm
Macrostomum lignano as such a model. M. lignano has a number of convenient biological and experimental properties, such as fast reproduction, easy and non-expensive laboratory culturing, optical body transparency, obligatory
sexual reproduction, annotated genome and transcriptome assemblies, and the availability of modern molecular
methods, including transgenesis, gene knockdown by RNA interference, and in situ hybridization. All this makes
M. lignano amenable to the most modern approaches of forward and reverse genetics, such as transposon insertional mutagenesis and methods of targeted genome editing by the CRISPR/Cas9 system. Due to the availability of
an increasing number of genome and transcriptome assemblies of different parasitic flatworm species, new knowledge generated by studying M. lignano can be easily translated to parasitic flatworms with the help of modern
bioinformatic methods of comparative genomics and transcriptomics. In support of this, we provide the results of
our bioinformatics search and analysis of genes homologous between M. lignano and parasitic flatworms, which
predicts a list of promising gene targets for subsequent research.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V Yu Vavilova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Blinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
32
|
Pagliazzo L, Caby S, Lancelot J, Salomé-Desnoulez S, Saliou JM, Heimburg T, Chassat T, Cailliau K, Sippl W, Vicogne J, Pierce RJ. Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0009503. [PMID: 34843489 PMCID: PMC8670706 DOI: 10.1371/journal.pntd.0009503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. Methodology/principal findings We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. Conclusions/significance Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton. Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis. Currently one drug, praziquantel, is the treatment of choice but its use in mass treatment programs means that the development of resistance is likely and renders imperative the development of new therapeutic agents. As new potential targets we have focused on lysine deacetylases, and in particular S. mansoni histone deacetylase 8 (SmHDAC8). Previous studies showed that reduction in the level of transcripts of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice. The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to develop novel potential anti-schistosomal drugs. The biological roles of SmHDAC8 are unknown. For this reason, we previously characterized its protein binding partners and identified the schistosome orthologue of the human RhoA GTPase, suggesting the involvement of SmHDAC8 in the modulation of cytoskeleton organization. Here we investigated the interaction between SmHDAC8 and SmRho1 and identified two SmRho1 isoforms (SmRho1.1 and SmRho1.2). Our study showed that SmHDAC8 is involved in schistosome cytoskeleton organization.
Collapse
Affiliation(s)
- Lucile Pagliazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stéphanie Caby
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | | | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Thierry Chassat
- Institut Pasteur de Lille - PLEHTA (Plateforme d’expérimentation et de Haute Technologie Animale), Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| | - Raymond J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| |
Collapse
|
33
|
Silva HAMF, Aires AL, Soares CLR, Siqueira WN, Lima MV, Martins MCB, Albuquerque MCPA, Silva TG, Brayner FA, Alves LC, Melo AMMA, Silva NH. Schistosomicidal effect of divaricatic acid from Canoparmelia texana (Lichen): In vitro evaluation and ultrastructural analysis against adult worms of Schistosoma mansoni. Acta Trop 2021; 222:106044. [PMID: 34273313 DOI: 10.1016/j.actatropica.2021.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
In this study we evaluated the in vitro effect of divaricatic acid against coupled worms of Schistosoma mansoni. The schistosomicidal effect was evaluated through the bioassay of motility and mortality, cellular viability of the worms and ultrastructural analysis through Scanning Electron Microscopy. To evaluate the cytotoxicity of divaricatic acid, a cell viability assay was performed with human peripheral blood mononuclear cells. Divaricatic acid proved effect against S. mansoni after 3 hours of exposure. At the end of 24 h the concentrations of 100 - 200 μM presented lethality to the worms. Motility changes were observed at sublethal concentrations. The IC50 obtained by the cell viability assay for S. mansoni was 100.6 μM (96.24 - 105.2 μM). Extensive damage to the worm's tegument was observed such as peeling, erosion, bubbles, edema, damage and loss of tubercles and spines, fissures and tissue ruptures. No cytotoxicity was observed in human peripheral blood mononuclear cells. This report provides data showing the schistosomicidal effect of divaricatic acid on S. mansoni, causing death, motile changes and ultrastructural damage to worms. In addition, divaricatic acid was shown to be non-toxic to human peripheral blood mononuclear cells at concentrations effective on S. mansoni.
Collapse
Affiliation(s)
- Hianna A M F Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil.
| | - André L Aires
- Departamento de Medicina Tropical, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Caroline L R Soares
- Departamento de Antibióticos, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil
| | - Williams N Siqueira
- Departamento de Biofísica e Radiobiologia, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil; Departamento de Energia Nuclear, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Maíra V Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil; Departamento de Energia Nuclear, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Mônica C B Martins
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Mônica C P A Albuquerque
- Departamento de Medicina Tropical, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Teresinha G Silva
- Departamento de Antibióticos, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil
| | - Fábio A Brayner
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil; Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Luiz C Alves
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil; Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Ana M M A Melo
- Departamento de Biofísica e Radiobiologia, Centro de Biociência, Universidade Federal de Pernambuco, Avenida Prof. Artur de Sá, s/n, Cidade Universitária. CEP 54740-520, Recife, PE, Brazil; Departamento de Energia Nuclear, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| | - Nicácio H Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50.670-901, Recife, PE, Brazil
| |
Collapse
|
34
|
Metabolomics reveal alterations in arachidonic acid metabolism in Schistosoma mekongi after exposure to praziquantel. PLoS Negl Trop Dis 2021; 15:e0009706. [PMID: 34473691 PMCID: PMC8412319 DOI: 10.1371/journal.pntd.0009706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS Adult stage S. mekongi were treated with 0, 20, 40, or 100 μg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.
Collapse
|
35
|
Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol Divers 2021; 26:1597-1607. [PMID: 34351547 DOI: 10.1007/s11030-021-10288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by helminths of the Schistosoma genus. Despite its high morbidity and socio-economic burden, therapeutics are just a handful with praziquantel being the main drug. Praziquantel is an old drug registered for human use in 1982 and has since been administered en masse for chemotherapy, risking the development of resistance, thus the need for new drugs with different mechanisms of action. This review examines the use of machine learning (ML) in this era of big data to aid in the prediction of novel antischistosomal molecules. It first discusses the challenges of drug discovery in schistosomiasis. Explanations are then offered for big data, its characteristics and then, some open databases where large biochemical data on schistosomiasis can be obtained for ML model development are examined. The concepts of artificial intelligence, ML, and deep learning and their drug applications are explored in schistosomiasis. The use of binary classification in predicting antischistosomal compounds and some algorithms that have been applied including random forest and naive Bayesian are discussed. For this review, some deep learning algorithms (deep neural networks) are proposed as novel algorithms for predicting antischistosomal molecules via binary classification. Databases specifically designed for housing bioactivity data on antischistosomal molecules enriched with functional genomic datasets and ontologies are thus urgently needed for developing predictive ML models. This shows the application of machine learning techniques for the discovery of novel antischistosomal small molecules via binary classification in the era of big data.
Collapse
|
36
|
Silva LM, Marconato DG, Nascimento da Silva MP, Barbosa Raposo NR, Faria Silva Facchini GD, Macedo GC, Teixeira FDS, Barbosa da Silveira Salvadori MC, Faria Pinto PD, Moraes JD, Pittella F, Da Silva Filho AA. Licochalcone A-loaded solid lipid nanoparticles improve antischistosomal activity in vitro and in vivo. Nanomedicine (Lond) 2021; 16:1641-1655. [PMID: 34256609 DOI: 10.2217/nnm-2021-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To isolate licochalcone A (LicoA) from licorice, prepare LicoA-loaded solid lipid nanoparticles (L-SLNs) and evaluate the L-SLNs in vitro and in vivo against Schistosoma mansoni. Materials & methods: LicoA was obtained by chromatographic fractionation and encapsulated in SLNs by a modified high shear homogenization method. Results: L-SLNs showed high encapsulation efficiency, with satisfactory particle size, polydispersity index and Zeta potential. Transmission electron microscopy revealed that L-SLNs were rounded and homogenously distributed. Toxicity studies revealed that SLNs decreased the hemolytic and cytotoxic properties of LicoA. Treatment with L-SLNs showed in vivo efficacy against S. mansoni. Conclusion: L-SLNs are efficient in reducing worm burden and SLNs may be a promising delivery system for LicoA to treat S. mansoni infections.
Collapse
Affiliation(s)
- Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Danielle Gomes Marconato
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | - Nádia Rezende Barbosa Raposo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gabriela de Faria Silva Facchini
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | | | - Priscila de Faria Pinto
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07025-000, SP, Brazil
| | - Frederico Pittella
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| |
Collapse
|
37
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
38
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
39
|
Abstract
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
Collapse
|
40
|
Roucher C, Brosius I, Mbow M, Faye BT, De Hondt A, Smekens B, Arango D, Burm C, Tsoumanis A, Paredis L, van Herrewege Y, Potters I, Cisse B, Mboup S, Polman K, Bottieau E. Evaluation of Artesunate-mefloquine as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM): protocol of a proof-of-concept, open-label, two-arm, individually-randomised controlled trial. BMJ Open 2021; 11:e047147. [PMID: 34168029 PMCID: PMC8231067 DOI: 10.1136/bmjopen-2020-047147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Alternative drugs and diagnostics are needed for the treatment and control of schistosomiasis. The exclusive use of praziquantel (PZQ) in mass drug administration programmes may result in the emergence of drug resistance. PZQ has little activity against Schistosoma larvae, thus reinfection remains a problem in high-risk communities. Furthermore, the insufficient sensitivity of conventional microscopy hinders therapeutic response assessment. Evaluation of artesunate-mefloquine (AM) as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM) aims to evaluate the safety and efficacy of the antimalarial combination artesunate-mefloquine, re-purposed for the treatment of schistosomiasis, and to assess the performance of highly sensitive novel antigen-based and DNA-based assays as tools for monitoring treatment response. METHODS AND ANALYSIS The SchistoSAM study is an open-label, two-arm, individually randomised controlled non-inferiority trial, with a follow-up of 48 weeks. Primary school-aged children from the Richard Toll district in northern Senegal, an area endemic for Schistosoma mansoni and Schistosoma haematobium, are allocated to the AM intervention arm (3-day courses at 6-week intervals) or the PZQ control arm (single dose of 40 mg/kg). The trial's primary endpoints are the efficacy (cure rate (CR), assessed by microscopy) and safety (frequency and pattern of drug-related adverse events) of one AM course versus PZQ at 4 weeks after treatment. Secondary endpoints include (1) cumulative CR, egg reduction rate and safety after each additional course of AM, and at weeks 24 and 48, (2) prevalence and severity of schistosomiasis-related morbidity and (3) malaria prevalence, incidence and morbidity, both after 24 and 48 weeks. CRs and intensity reduction rates are also assessed by antigen-based and DNA-based diagnostic assays, for which performance for treatment monitoring is evaluated. ETHICS AND DISSEMINATION Ethics approval was obtained both in Belgium and Senegal. Oral assent from the children and signed informed consent from their legal representatives was obtained, prior to enrolment. The results will be disseminated in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER NCT03893097; pre-results.
Collapse
Affiliation(s)
- Clémentine Roucher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Moustapha Mbow
- Department of Immunology, Cheikh Anta Diop University, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | | | - Annelies De Hondt
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Bart Smekens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Diana Arango
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Christophe Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Idzi Potters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Badara Cisse
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
41
|
Braseth AL, Elliott DE, Ince MN. Parasitic Infections of the Gastrointestinal Track and Liver. Gastroenterol Clin North Am 2021; 50:361-381. [PMID: 34024446 PMCID: PMC11095845 DOI: 10.1016/j.gtc.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Parasites have coevolved with humans. Several of them colonize the human body and establish a symbiotic relationship. Other parasites cause severe and lethal diseases. Prevalence of parasitic infections is decreased in highly industrialized countries, largely due to enforced hygienic practices. In contrast, parasites cause significant morbidity and mortality in parts of the world with barriers to effective public hygiene. Some parasites have emerged as potent pathogens in specific patient populations, such as immune suppressed individuals, regardless of sanitation. This article reviews common parasites encountered in clinical practice and, in the setting of host-parasite symbiosis, discusses their immune regulatory role.
Collapse
Affiliation(s)
- Annie L Braseth
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - David E Elliott
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - M Nedim Ince
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
42
|
Binding Free Energy (BFE) Calculations and Quantitative Structure-Activity Relationship (QSAR) Analysis of Schistosoma mansoni Histone Deacetylase 8 ( smHDAC8) Inhibitors. Molecules 2021; 26:molecules26092584. [PMID: 33925246 PMCID: PMC8125515 DOI: 10.3390/molecules26092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/02/2023] Open
Abstract
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.
Collapse
|
43
|
Cardoso FJB, Xavier LP, Santos AV, Pereira HD, Santos LDS, Molfetta FAD. Identification of potential inhibitors of Schistosoma mansoni purine nucleoside phosphorylase from neolignan compounds using molecular modelling approaches. J Biomol Struct Dyn 2021; 40:8248-8260. [PMID: 33830889 DOI: 10.1080/07391102.2021.1910073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Schistosomiasis is a parasitic disease that is part of the neglected tropical diseases (NTDs), which cause significant levels of morbidity and mortality in millions of people throughout the world. The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) represents a potential target for discovering new agents, and neolignans stand out as an important class of compounds. In this work, molecular modeling studies and biological assays of a set of neolignans were conducted against the PNP enzymes of the parasite and the human homologue (HssPNP). The results of the molecular docking described that the neolignans showed good complementarity by the active site of SmPNP. Molecular dynamics (MD) studies revealed that both complexes (Sm/HssPNP - neolignan compounds) were stable by analyzing the root mean square deviation (RMSD) values, and the binding free energy values suggest that the selected structures can interact and inhibit the catalytic activity of the SmPNP. Finally, the biological assay indicated that the selected neolignans presented a better molecular profile of inhibition compared to the human enzyme, as these ligands did not have the capacity to inhibit enzymatic activity, indicating that these compounds are promising candidates and that they can be used in future research in chemotherapy for schistosomiasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fábio José Bonfim Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luciana Pereira Xavier
- Laboratório de Biotecnologia de Enzimas e Biotransformação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Agenor Valadares Santos
- Laboratório de Biotecnologia de Enzimas e Biotransformação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP, Brazil
| | - Lourivaldo da Silva Santos
- Laboratório de Síntese e Produtos Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém-PA, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
44
|
Bezerra DVF, Queiroz JW, Câmara VAV, Maciel BLL, Nascimento ELT, Jerônimo SMB. Factors Associated with Schistosoma mansoni Infestation in Northeast Brazil: A Need to Revisit Individual and Community Risk Factors. Am J Trop Med Hyg 2021; 104:1404-1411. [PMID: 33591939 DOI: 10.4269/ajtmh.19-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/20/2020] [Indexed: 11/07/2022] Open
Abstract
In Brazil, schistosomiasis continues to be an important health issue. The aim of this study was to identify factors associated with Schistosoma mansoni infestation. A cross-sectional study was performed to assess factors associated with S. mansoni endemicity in a municipality in Northeast Brazil with a history of reporting schistosomiasis. Participants were divided into four groups: 1) new S. mansoni cases (n = 44), 2) past history of S. mansoni treatment (n = 78), 3) immediate neighbors (n = 158), and 4) nearby controls (n = 35). Multiple comparisons analysis was performed. Subjects had a mean of 6.6 ± 3.9 years of education, and no difference was observed regarding family income (one-way ANOVA, P = 0.215). A total of 95.9% of the individuals had rudimentary cesspit as sanitary wastewater. The mean body mass index was 28.3 ± 5.1, with 41.0% and 24.1% overweight and obesity, respectively. Of note, 28.9% of adults had hypertension. Hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin were higher in the recent S. mansoni treated group (Wilks' lambda, P < 0.001). Male gender was more prevalent in new S. mansoni cases (likelihood ratio, P < 0.001), close proximity to water collections was a risk for S. mansoni infestation (likelihood ratio, P < 0.001), and a better hematological status was observed in individuals recently treated with praziquantel. This study indicates the need to maintain surveillance for S. mansoni in low-transmission areas and the need to establish community-based interventions to control transmission.
Collapse
Affiliation(s)
- Danielle V F Bezerra
- 1Institute of Tropical Medicine of Rio Grande do Norte, Natal, Brazil.,2Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - José W Queiroz
- 1Institute of Tropical Medicine of Rio Grande do Norte, Natal, Brazil.,3Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Victor A V Câmara
- 1Institute of Tropical Medicine of Rio Grande do Norte, Natal, Brazil
| | - Bruna L L Maciel
- 2Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.,4Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eliana L T Nascimento
- 1Institute of Tropical Medicine of Rio Grande do Norte, Natal, Brazil.,5Department of Infectious Diseases, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Selma M B Jerônimo
- 1Institute of Tropical Medicine of Rio Grande do Norte, Natal, Brazil.,2Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.,3Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.,6Institute of Science and Technology of Tropical Diseases, INCT-DT, Salvador, Brazil
| |
Collapse
|
45
|
Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop 2021; 213:105741. [PMID: 33159900 DOI: 10.1016/j.actatropica.2020.105741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Schistosomiasis is a neglected disease caused by helminth flatworms of the genus Schistosoma, affecting over 240 million people in more than 70 countries. The treatment relies on a single drug, praziquantel, making urgent the discovery of new compounds. Aurones are a natural type of flavonoids that display interesting pharmacological activities, particularly as chemotherapeutic agents against parasites. In pursuit of treatment alternatives, the present work conducted an in vitro and in vivo antischistosomal investigation with aurone derivatives against Schistosoma mansoni. After preparation of aurone derivatives and their in vitro evaluation on adult schistosomes, the three most active aurones were evaluated in cytotoxicity and haemolytic assays, as well as in confocal laser-scanning microscope studies, showing tegumental damage in parasites in a concentration-dependent manner with no haemolytic or cytotoxic potential toward mammalian cells. In a mouse model of schistosomiasis, at a single oral dose of 400 mg/kg, the selected aurones showed worm burden reductions of 35% to 65.0% and egg reductions of 25% to 70.0%. The most active thiophenyl aurone derivative 18, unlike PZQ, had efficacy in mice harboring juvenile S. mansoni, also showing significant inhibition of oviposition by parasites, giving support for the antiparasitic potential of aurones as lead compounds for novel antischistosomal drugs.
Collapse
|
46
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
47
|
Gaggero A, Jurišić Dukovski B, Radić I, Šagud I, Škorić I, Cinčić D, Jug M. Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel. J Pharm Biomed Anal 2020; 189:113494. [PMID: 32745904 DOI: 10.1016/j.jpba.2020.113494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
This paper evaluates the process of co-grinding with a surfactant as a new approach to enhance physicochemical and biopharmaceutical properties of praziquantel (PZQ), a poorly soluble drug that is essential for the treatment of schistosomiasis, a neglected tropical disease. Surfactants used in this study were poloxamer F-127 and sucrose stearate (C-1816), selected based on their well-documented biocompatibility and solubilizing activity. A series of products were prepared by mechanochemical activation using vibrational ball-mill at different drug to surfactant ratio and milling times. The obtained products were characterised in terms of drug recovery, solubility and in vitro dissolution rates. The obtained results were correlated to solid-state properties of the products analysed by differential scanning calorimetry, powder X-ray diffraction and particle size analysis. Results of UPLC-MS analysis and 1H-NMR spectroscopy showed that the used surfactants and applied grinding procedures caused no chemical degradation of the PZQ. The physicochemical properties, solubility and the in vitro dissolution enhancement of the co-ground products were related to the drug to surfactant ratio and the grinding protocol applied. The highest enhancement of the in vitro dissolution rate was achieved at the drug to surfactant ratio of 10:3 and 10:2 for F-127 and C-1816, respectively with the milling time of 30 min. The MTT assay on Caco-2 cell line demonstrated the biocompatibility of both co-ground products. Furthermore, the surfactants used did not change intrinsically high intestinal permeability of PZQ (Papp ∼ 4.00 × 10-5 cm s-1). The presented results confirmed that the co-grinding with surfactant is a promising new approach in enhancing in vitro dissolution of poorly soluble drugs like PZQ.
Collapse
Affiliation(s)
- Alessio Gaggero
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Irena Radić
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Ivana Šagud
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
48
|
Budiono NG, Murtini S, Satrija F, Ridwan Y, Handharyani E. Humoral responses to Schistosoma japonicum soluble egg antigens in domestic animals in Lindu Subdistrict, Central Sulawesi Province, Indonesia. INTERNATIONAL JOURNAL OF ONE HEALTH 2020. [DOI: 10.14202/ijoh.2020.99-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Schistosomiasis japonica, a disease caused by Schistosoma japonicum, is a public health problem in the Philippines, the Republic of Indonesia, and the People's Republic of China. The disease is known as zoonotic, meaning other than humans, animals are involved as the reservoirs. In Indonesia, schistosomiasis surveillance in animals is not continuous. Thus, the study to determine the prevalence of the disease in animals is needed. The study was aimed to determine the seroprevalence of S. japonicum infection among four species of domestic animals in the Lindu Sub-district, Central Sulawesi Province of Indonesia.
Materials and Methods: Blood samples of domestic animals were collected and analyzed for the presence of anti-S. japonicum immunoglobulin G antibodies against S. japonicum soluble egg antigens using the indirect hemagglutination assay. Animal stool samples were collected, and the miracidia-hatching assay was used for the detection of S. japonicum infection. Additional data concerning the animal identity and the management practices were obtained through a questionnaire used in surveys and interviews.
Results: A total of 146 sera from 13 cattle, 24 buffaloes, 54 pigs, and 55 dogs were collected. The overall schistosomiasis seroprevalence was 64.4%. The serology prevalence in cattle, buffalo, pig, and dog was 100.0%, 41.7%, 74.1%, and 56.4%, respectively. Domestic animals in all of five villages have previous exposure with S. japonicum as seropositive animals detected in every village. A total of 104 animal stool samples from 146 animals sampled were obtained. The overall schistosomiasis prevalence determined by the miracidia hatching assay was 16.35%. The sensitivity and specificity of indirect hemagglutination assay (IHA) in the current study were 88.24% and 41.37%, respectively, with miracidia hatching assay as the gold-standard method.
Conclusion: This study has shown a high seroprevalence of schistosomiasis japonica among domestic animals in the Lindu Subdistrict. IHA can be used as the screening method for the detection of S. japonicum infection in domestic animals. Chemotherapy and animal livestock grazing management programs to reduce the parasite burden and Schistosoma egg contamination in the environment must be implemented as part of one health approaches, in addition to other control measures.
Collapse
Affiliation(s)
- Novericko Ginger Budiono
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia
| | - Sri Murtini
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Fadjar Satrija
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Yusuf Ridwan
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinics, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
49
|
Rugel AR, Guzman MA, Taylor AB, Chevalier FD, Tarpley RS, McHardy SF, Cao X, Holloway SP, Anderson TJC, Hart PJ, LoVerde PT. Why does oxamniquine kill Schistosoma mansoni and not S. haematobium and S. japonicum? Int J Parasitol Drugs Drug Resist 2020; 13:8-15. [PMID: 32315953 PMCID: PMC7167500 DOI: 10.1016/j.ijpddr.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/03/2022]
Abstract
Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.
Collapse
Affiliation(s)
- Anastasia R Rugel
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Meghan A Guzman
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; X-ray Crystallography Core Laboratory, Institutional Research Cores, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Frédéric D Chevalier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Reid S Tarpley
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xiaohang Cao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - P John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; X-ray Crystallography Core Laboratory, Institutional Research Cores, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Philip T LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
50
|
de Mori RM, Aleixo MAA, Zapata LCC, Calil FA, Emery FS, Nonato MC. Structural basis for the function and inhibition of dihydroorotate dehydrogenase from Schistosoma mansoni. FEBS J 2020; 288:930-944. [PMID: 32428996 DOI: 10.1111/febs.15367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is a serious public health problem, prevalent in tropical and subtropical areas, especially in poor communities without access to safe drinking water and adequate sanitation. Transmission has been reported in 78 countries, and its control depends on a single drug, praziquantel, which has been used over the past 30 years. Our work is focused on exploiting target-based drug discovery strategies to develop new therapeutics to treat schistosomiasis. In particular, we are interested in evaluating the enzyme dihydroorotate dehydrogenase (DHODH) as a drug target. DHODH is a flavoenzyme that catalyzes the stereospecific oxidation of (S)-dihydroorotate (DHO) to orotate during the fourth and only redox step of the de novo pyrimidine nucleotide biosynthetic pathway. Previously, we identified atovaquone, used in the treatment of malaria, and its analogues, as potent and selective inhibitors against Schistosoma mansoni DHODH (SmDHODH). In the present article, we report the first crystal structure of SmDHODH in complex with the atovaquone analogue inhibitor 2-((4-fluorophenyl)amino)-3-hydroxynaphthalene-1,4-dione (QLA). We discuss three major findings: (a) the open conformation of the active site loop and the unveiling of a novel transient druggable pocket for class 2 DHODHs; (b) the presence of a protuberant domain, only present in Schistosoma spp DHODHs, that was found to control and modulate the dynamics of the inhibitor binding site; (c) a detailed description of an unexpected binding mode for the atovaquone analogue to SmDHODH. Our findings contribute to the understanding of the catalytic mechanism performed by class 2 DHODHs and provide the molecular basis for structure-guided design of SmDHODH inhibitors. DATABASE: The structural data are available in Protein Data Bank (PDB) database under the accession code number 6UY4.
Collapse
Affiliation(s)
- Renan M de Mori
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mariana A A Aleixo
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luana C C Zapata
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe A Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Flávio S Emery
- Laboratório de Química Heterocíclica e Medicinal, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|