1
|
Ma WJ, Wang C, Kothandapani J, Luzentales-Simpson M, Menzies SC, Bescucci DM, Lange ME, Fraser ASC, Gusse JF, House KE, Moote PE, Xing X, Grondin JM, Hui BWQ, Clarke ST, Shelton TG, Haskey N, Gibson DL, Martens EC, Abbott DW, Inglis GD, Sly LM, Brumer H. Bespoke plant glycoconjugates for gut microbiota-mediated drug targeting. Science 2025:eadk7633. [PMID: 40310938 DOI: 10.1126/science.adk7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
The gut microbiota of mammals possess unique metabolic pathways with untapped therapeutic potential. Using molecular insights into dietary fiber metabolism by the human gut microbiota, we designed a targeted drug delivery system based on bespoke glycoconjugates of a complex plant oligosaccharide called GlycoCaging. GlycoCaging of exemplar anti-inflammatory drugs enabled release of active molecules triggered by unique glycosidases of autochthonous gut bacteria. GlycoCaging ensured drug efficacy was potentiated, and off-target effects were eliminated in murine models of inflammatory bowel disease. Biochemical and metagenomic analyses of gut microbiota of individual humans confirmed the broad applicability of this strategy.
Collapse
Affiliation(s)
- Wei Jen Ma
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Changqing Wang
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jagatheeswaran Kothandapani
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Luzentales-Simpson
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Susan C Menzies
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Danisa M Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Máximo E Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jenny F Gusse
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kathaleen E House
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Paul E Moote
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Julie M Grondin
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Wei-Qiang Hui
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Sandra T Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tara G Shelton
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Natasha Haskey
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Laura M Sly
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Ouyang J, den Mooter GV. Unraveling the role of pectin biodegradability and blend composition on the permeability of ethylcellulose-based blend films designed for colon targeting. Int J Pharm 2025; 675:125538. [PMID: 40187699 DOI: 10.1016/j.ijpharm.2025.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Polysaccharides have often been used as the biodegradable compound in coated colon specific drug delivery systems. The selection of a specific polysaccharide is critical, as they are degraded by gut bacteria, leading to the site specific release of drugs in the colon. However, it is still not completely understood how bacterial enzymes act on the polysaccharides when they are incorporated in a coating that is primarlily made up of a hydrophobic polymer. Here, we explored to what extent pectinase degrades pectin in isolated pectin-ethylcellulose blend films by studying the film permeability. Comparison of the permeability coefficient of caffeine and the amount of pectin leakage from the blend film in the presence and absence of pectinase revealed that pectinase can still degrade the pectin in the film, on the condition that the polysaccharide is not completely encapsulated by ethylcellulose. This is different from the degradation of inulin by inulinase in the blend film of inulin in Eudragit RS as shown in our previous study (Ouyang et al., 2023). Pectin can provide a transmembrane channel for drugs due to its dissolution in water and degradation by pectinase. Pectins from apples and citrus with similar esterification degrees applied in this work had basically the same effect on film permeability and can serve as interchangeable materials for colon targeting coatings. Compatibility studies revealed a phase-separated structure of pectin-ethylcellulose films. As the proportion of pectin in the film increased, the blend film changed from a discontinuous structure to a bicontinuous structure, and the film permeability increased. Combined with the film structural characterization, the results show that the proportion of the blended components and the degradation of pectin in the film by pectinase are the determining factors affecting the permeability and microstructure of pectin-ethylcellulose blend films.
Collapse
Affiliation(s)
- Jiabi Ouyang
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Wang Z, Zhang Z, He C, Wang Q. Advances in the application of hydrogel adhesives for wound closure and repair in abdominal digestive organs. Biomater Sci 2025. [PMID: 40208243 DOI: 10.1039/d5bm00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The abdominal cavity houses the majority of the digestive system organs, which frequently suffer from diseases with limited responsiveness to pharmacological treatments, such as bleeding, perforation, cancer, and mechanical obstruction. Invasive procedures, including endoscopy and surgery, are typically employed to manage these conditions. Currently, sutures and staplers remain the gold standard for internal wound closure. However, these methods inevitably cause secondary tissue damage. Unlike superficial organs such as the skin, the abdominal cavity presents a relatively confined environment where postoperative complications tend to be more severe. To achieve wound closure and repair, hydrogel adhesives have garnered attention due to their minimal invasiveness, robust sealing, and ease of application. Nonetheless, the application of hydrogel adhesives within the abdominal cavity faces several challenges, including adhesion in moist environments, selective adhesion, and resistance to acids and digestive enzymes. To date, there has been no comprehensive review focused on the use of hydrogel adhesives for wound closure in abdominal digestive organs. This review introduces the design principles of hydrogel adhesives tailored for abdominal organs and provides a detailed overview of recent advances in their applications for esophageal endoscopic submucosal dissection, gastric perforation, hepatic bleeding, pancreatic leakage, and intestinal anastomotic leakage. Additionally, the current challenges and future directions of hydrogel adhesives are discussed. This review aims to provide valuable insights for the development of next-generation hydrogel adhesives for wound closure and repair in abdominal digestive organs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Pan X, Xian P, Li Y, Zhao X, Zhang J, Song Y, Nan Y, Ni S, Hu K. Chemotaxis-driven hybrid liposomes recover intestinal homeostasis for targeted colitis therapy. J Control Release 2025; 380:829-845. [PMID: 39961435 DOI: 10.1016/j.jconrel.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from Stenotrophomonas maltophilia)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peng Xian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yushu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunrong Nan
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Aljabri A, Soliman GM, Ramadan YN, Medhat MA, Hetta HF. Biosimilars versus biological therapy in inflammatory bowel disease: challenges and targeting strategies using drug delivery systems. Clin Exp Med 2025; 25:107. [PMID: 40186719 PMCID: PMC11972199 DOI: 10.1007/s10238-025-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial illness with a climbing prevalence worldwide. While biologics are commonly prescribed especially for severe cases, they may worsen patients' outcomes due to financial burden. Consequently, there has been an increased focus on biosimilars to improve overall disease outcomes by maintaining similar efficacy and safety while minimizing the cost of therapy. Infliximab-dyyb was the first biosimilar approved by US-FDA for IBD. Since that, the US-FDA approved 14 biosimilars with different mechanisms of action and different routes of administration for IBD patients (four infliximab biosimilars, nine adalimumab biosimilars, and most recently one ustekinumab biosimilar). It should be noted that more biologics are in the pipeline as golimumab and natalizumab patents are set to expire in the near future, and biosimilars are now in pre-clinical to phase 3 trials. Different studies have evaluated biologics' effectiveness and safety and concluded that the majority of available biosimilars are efficacious and have similar adverse effect profiles compared to their reference biologics. It is worth mentioningthat post-marketing surveillance reports revealed some risks associated with biosimilars which should be taken into consideration in future research and clinical trials to avoid health hazards. Most biologics and biosimilars are administered parenterally which results in several drawbacks such as raised risk of infections, hypersensitivity, autoimmunity, development of malignancies, liver toxicity as well as worsening of heart failure. Several drug delivery systems based on passive and active targeting mechanisms are under active investigation to overcome these limitations. This review sheds light on the emergence of biologics and biosimilars as alternatives in IBD management, the differences between them, challenges and risks, and future perspectives in IBD therapy and new trends in drug delivery systems.
Collapse
Affiliation(s)
- Ahmed Aljabri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Mohammed A Medhat
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
6
|
Ngew E, Kollipara R, Bessissow T, Karboune S, George S. Nanoencapsulation enhanced the performance of β-carotene for ameliorating inflammation in patient-derived organoids. Nanomedicine (Lond) 2025; 20:663-675. [PMID: 39943855 PMCID: PMC11970773 DOI: 10.1080/17435889.2025.2465247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
AIM This study aims to develop a nanocarrier system for the oral delivery of β-Carotene (BC) (as a model therapeutic agent) and to test its efficacy in ameliorating inflammation in an ulcerative colitis (UC) patient-derived organoid. MATERIALS & METHODS BC was encapsulated in a zein protein nano-cage surface-functionalized with pectin and polyethyleneglycol (PEG). The nanoencapsulated BC (nBC) was characterized for physicochemical properties (size, charge, surface chemistry) and functional properties (radical scavenging, mucoadhesion and penetration, release in simulated digestive fluids). Further, we evaluated the performance of nBC in ameliorating inflammation in Caco-2 and UC patient-derived organoid models. RESULTS nBC achieved 75% encapsulation efficiency with improved stability and functional properties when compared to free BC. The nanocarrier was non-cytotoxic and improved mucoadhesion, mucopenetration, and the anti-inflammatory potential of BC. In UC organoids, nBC suppressed dextran sulfate sodium (DSS)-induced TNF-α and IL-8 production by approximately 70% and 31%, respectively, which was significantly higher than free BC at comparable concentrations. CONCLUSIONS The protein-polymer nanoencapsulation strategy showed promise in protecting BC and overcoming intestinal mucus barriers for an improved anti-inflammatory effect in the organoid model. Further studies using animal models are warranted for establishing pharmacokinetics, tissue distribution, and therapeutic index of orally delivered nBC.
Collapse
Affiliation(s)
- Estee Ngew
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Revathi Kollipara
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Talat Bessissow
- Division of Gastroenterology, McGill University Health Centre, Quebec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| |
Collapse
|
7
|
Zhang T, Wang C, Du T, Sun H, Han Y, Shi S, Wang J, Zhang W. Polydopamine-mediated biointerfacial nanozyme as probiotic protective coating for IBD therapy. Int J Biol Macromol 2025; 308:142699. [PMID: 40169054 DOI: 10.1016/j.ijbiomac.2025.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Probiotics offer a promising strategy to address the dysfunction of the intestinal mucosal barrier and dysregulation of the gut microbiota in inflammatory bowel disease (IBD). However, the low viability and poor adhesion of probiotics in complex gastrointestinal environments pose significant challenges. To tackle these issues, we designed a specialized protective nano-coating (PDA@CeO2) using biointerfacial phenolic assembly combined with nanozymes for Bifidobacterium bifidum (B.B.). Characteristic peaks of CeO2 nanoparticles were detected on B.B. via XRD analysis, while SEM and TEM images confirmed the successful attachment of CeO2 nanoparticles to the probiotic surface. The nano-coating (PDA@CeO2) simultaneously provides B.B. with high adhesion in the intestine, strong tolerance in complex gastrointestinal environments, and the ability to scavenge excess reactive oxygen species (ROS) due to its excellent mucoadhesive ability and high nanozyme activity. Specifically, the protection provided by nano-coating against simulated gastric fluid (SGF, pH 1.2) resulted in cell survival rates approximately 9.4 times higher than those of unprotected B.B. after 1 h of exposure. In IBD mouse models, the combination of PDA@CeO2 and B.B. demonstrated excellent therapeutic effects, promoting gut barrier repair. Additionally, an increase in Muribaculaceae and Prevotellaceae_UCG-001 and a decrease in Desulfovibrionaceae reshaped the intestinal flora, reducing recurrence. This study highlights the potential of enhancing probiotic functionality through targeted design of protective nano-coatings for IBD therapy.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Chen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaru Han
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shuo Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
8
|
Zhao Y, Zhu M, Ling Y, Zhao Y, Lu X, Chu B, He Y, Wang H. A DNA Nanopatch-Bacteriophage System Targeting Streptococcus Gallolyticus for Inflammatory Bowel Disease Treatment and Colorectal Cancer Prevention. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417334. [PMID: 39924920 DOI: 10.1002/adma.202417334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Persistent inflammation in inflammatory bowel disease (IBD) increases Streptococcus gallolyticus (Sg) colonization, increasing the risk of colorectal cancer progression via the Sg-activated cyclooxygenase-2 (COX-2) pathway and β-catenin upregulation. This study presents Sg-specific bacteriophages modified with DNA nanopatches (DNPs@P) designed to treat IBD and prevent Sg-induced malignancy. The DNPs are composed of DNA origami nanosheets and phage capture strands. The DNPs scavenge reactive oxygen species, enhancing the therapeutic efficacy of the phages while targeting and lysing pathogenic bacteria. Coating with an enteric polymer, DNPs@P ensures effective delivery in the gastrointestinal tract. These findings demonstrate significant restoration of colonic length, reduced inflammation, and improved gut microbiota diversity compared with current clinical treatments. Additionally, DNPs@P effectively prevents colonic tumourigenesis in mouse models. This approach presents a promising strategy for treating gastrointestinal diseases by remodeling the gut microenvironment, addressing a critical gap in current therapies.
Collapse
Affiliation(s)
- Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Mengna Zhu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yingying Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Zhao J, Chen R, Luo M, Zhu Q, Zhao Q. Genetic variation in targets of antihyperglycemic drugs and inflammatory bowel disease' risk: A mendelian randomization study. Diabetes Metab Syndr 2025; 19:103204. [PMID: 40023995 DOI: 10.1016/j.dsx.2025.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
AIM Antihyperglycemic drugs have potential therapeutic benefits for inflammatory bowel disease (IBD). We aimed to investigate the association between genetic variations in gene-targeted antihyperglycemic drugs and the risk of IBD. METHODS Summary statistics for HbA1c data were from the UK Biobank including 344,182 participants. Statistics of IBD were obtained from UK Inflammatory Bowel Disease Genetics. Two Mendelian randomization methods were employed to derive the main findings. RESULTS In the SMR analysis, increased expression of genetic variations in SGLT2 inhibitor targets (gene: SLC5A2) was linked to a higher risk of CD (OR: 1.97, P = 0.048). Genetic variation in brain cerebellum tissue of sulfonylurea targets (gene: ABCC8) expression was positively associated with IBD (OR = 1.11, P = 0.000). The genetic variation in the GLP-1RA targets (gene: GLP1R) expression was positively correlated with IBD (OR: 1.45, P = 0.039). The IVW-MR analysis suggested reduced IBD and CD risk with expression of increased genetic variation in the thiazolidinediones targets (gene: PPARG). CONCLUSION Genetic variations in SGLT2 inhibitor targets might be associated with an increased risk of CD. The ABCC8 gene might be linked to IBD, CD, and UC. There might be a positive correlation between genetic variation in the GLP-1RA targets expression and IBD occurrence.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward / International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengqi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanjing Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhao
- General Practice Ward / International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Peng YJ, Xu B, Rokita SE. Breaking the Myth of Enzymatic Azoreduction. ACS Chem Biol 2025; 20:229-237. [PMID: 39707960 DOI: 10.1021/acschembio.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown. We have now prepared a set of azobenzene derivatives and characterized their turnover and products after treatment with azoreductase from Escherichia coli to discover the structural basis regulating aryl amine formation. Without resonance donation by aryl substituents, reduction ceases at the hydrazo product. This indicates that azoreductases do not act on the hydrazo bond. Instead, aryl amine formation depends on a spontaneous hydrazo bond lysis that is promoted by resonance stabilization and subsequent reduction of the quinone-like intermediate by azoreductase. Experimental and computational approaches confirm the substituent dependence of this process. With knowledge of this requirement, full release of aryl amines from azo-conjugates can now be designed and applied with confidence.
Collapse
Affiliation(s)
- Yu-Ju Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
12
|
Zou ZP, Cai Z, Zhang XP, Zhang D, Xu CY, Zhou Y, Liu R, Ye BC. Delivery of Encapsulated Intelligent Engineered Probiotic for Inflammatory Bowel Disease Therapy. Adv Healthc Mater 2025; 14:e2403704. [PMID: 39629555 DOI: 10.1002/adhm.202403704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 01/29/2025]
Abstract
Engineered bacterial therapy holds enormous potential for treating intestinal diseases, employing synthetic biology techniques to achieve localized drug delivery within intestines. However, effective delivery of engineered bacteria to lesion sites and ensuring sustained colonization remain challenging. Here, a mucus encapsulated microsphere gel (MM) delivery system is developed to encapsulate genetically engineered bacteria capable of detecting and treating enteritis. The MM delivery system features an external mucosal coating composed of hyaluronic acid and epigallocatechin gallate, along with internal microspheres of highly biocompatible polyserine modified alginates encapsulating with the engineered probiotics. The MM delivery system effectively protects engineered bacteria harsh environment in stomach and significantly improves intestinal adhesion of the probiotics, extending colonization up to 24 h, and does not affect the entry of biomarker or release of Avcystatin. It exhibits notable diagnostic and therapeutic efficacy in inflammatory bowel disease models, thus facilitating the advancement of live biotherapeutic products toward clinical application.
Collapse
Affiliation(s)
- Zhen-Ping Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhihao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chu-Ying Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
13
|
Desai N, Nayi S, Khunt D, Kapoor DU, Salave S, Prajapati B, Vora C, Malviya R, Maheshwari R, Patel R. Zein: Potential biopolymer in inflammatory bowel diseases. J Biomed Mater Res A 2025; 113:e37785. [PMID: 39210660 DOI: 10.1002/jbm.a.37785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Effectively managing inflammatory bowel disease (IBD) poses difficulties due to its persistent nature and unpredictable episodes of exacerbation. There is encouraging evidence that personalized medication delivery systems can improve therapy efficacy while reducing the negative effects of standard medicines. Zein, a protein produced from corn, has garnered interest as a possible means of delivering drugs for the treatment of IBD. This review delves into Zein-based drug delivery systems, showcasing its biodegradability, controlled release capabilities, and biocompatibility. Studies have shown that Zein-based nanoparticles, microcarriers, and core-shell microparticles have the capacity to increase medication stability, enhance targeting in the intestines, and decrease toxicity in animal models of IBD. The review highlights the promise of Zein in personalized therapy for IBD and urges more study to enhance its clinical use.
Collapse
Affiliation(s)
- Nimeet Desai
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Smit Nayi
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| | - Dignesh Khunt
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Bhupendra Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Chintan Vora
- WAYMADE India Pvt. Ltd., Vadodara, Gujarat, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Noida, Uttar Pradesh, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India
| | - Ravi Patel
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| |
Collapse
|
14
|
Luo Z, Qi Z, Luo J, Chen T. Potential applications of engineered bacteria in disease diagnosis and treatment. MICROBIOME RESEARCH REPORTS 2024; 4:10. [PMID: 40207274 PMCID: PMC11977365 DOI: 10.20517/mrr.2024.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in appropriate quantities. This beneficial effect has spurred extensive research in the medical and health fields. With rapid advancements in synthetic biology, the genetic and biological characteristics of a broad array of probiotics have been elucidated. Utilizing these insights, genetic editing technologies now enable the precise modification of probiotics, leading to the development of engineered bacteria. Emerging evidence underscores the significant potential of these engineered bacteria in disease management. This review explores the methodologies for creating engineered bacteria, their preliminary applications in healthcare, and the mechanisms underlying their functions. Engineered bacteria are being developed for roles such as in vivo drug delivery systems, biosensors, and mucosal vaccines, thereby contributing to the treatment, diagnosis, and prevention of conditions including inflammatory bowel disease (IBD), metabolic disorders, cancer, and neurodegenerative diseases. The review concludes by assessing the advantages and limitations of engineered bacteria in the context of disease management.
Collapse
Affiliation(s)
- Zhaowei Luo
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Zhanghua Qi
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jie Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
15
|
Jin X, Li H, Pan S, Song B, Jiang Y, Shi H, Zhang J, Chu B, Wang H, He Y. DNA Nanopatch-Specific Modification of Probiotics for Ultrasound-Triggered Inflammatory Bowel Disease Therapy. J Am Chem Soc 2024; 146:33817-33831. [PMID: 39508560 DOI: 10.1021/jacs.4c12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Probiotics offer promising results for treating inflammatory bowel disease, yet precision therapy remains challenging, particularly in manipulating probiotics spatially and temporally and shielding them from oxidative stress. To address these limitations, herein we synthesized bacteria-specific DNA nanopatches to modify ultrasound-triggered engineered Escherichia coli Nissle 1917. These probiotics produced the anti-inflammatory cytokine interleukin-10 when stimulated by ultrasound and were fortified with DNPs for oxidative stress resistance. The DNPs were composed of rectangular DNA origami nanosheets with reactive oxygen species' scavenging ability and bacterial targeting ligands of maltodextrin molecules. We systematically demonstrated that the DNPs could selectively attach to bacterial surface but not mammalian cell surface via the maltodextrin transporter pathway. To further enhance the bioavailability of engineered probiotics in the gastrointestinal tract, we employed a self-assembly strategy to encapsulate them using chitosan and sodium alginate. In a murine model of ulcerative colitis, this system significantly improved the gut barrier integrity and reduced inflammation. Our results indicate that this DNA nanopatch-bacteria system holds substantial promise for mitigating oxidative stress, correcting microbiota dysbiosis, and enhancing the intestinal barrier function in colitis.
Collapse
Affiliation(s)
- Xiangbowen Jin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Hongyang Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou 215000, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yanping Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Jiawei Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
16
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
17
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
19
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Yue Y, Ai J, Chi W, Zhao X, Huo F, Yin C. Biomedical-Optical-Window Tailored Cyanines for Steerable Inflammatory Bowel Disease Theranostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408450. [PMID: 39240024 DOI: 10.1002/adma.202408450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Tailored photophysical properties and chemical activity is the ultimate pursuit of functional dyes for in vivo biomedical theranostics. In this work, the independent regulation of the absorption and fluorescence emission wavelengths of heptamethine cyanines is reported. These dyes retain near-infrared fluorescence emission (except a nitro-modified dye) while feature variable absorption wavelengths ranging from 590 to 860 nm. This enables to obtain customized functional dyes that meet the excitation and fluorescence wavelength requirements defined by the optical properties of tissues for in vivo biomedical applications. Typically, a nitro-modified photothermal active derivative Cy-Mu-7-9 is used, which features strong absorption at 810 nm in PBS, a wavelength that balanced the tissue penetration depth and non-specific photothermal effect, to realize non-destructive inflammatory bowel disease (IBD) therapy via photothermal induced up-regulation of heat shock protein 70 in the intestinal epithelial cells. The corresponding amino-modified dye Cy-Mu-7-9-NH2, which can be formed in health enteric cavity by Cy-Mu-7-9 after oral administration, is a fluorescence compound with the emission of 800 nm in PBS. Based on the IBD sensitive transformation of Cy-Mu-7-9 and Cy-Mu-7-9-NH2, in vivo IBD theranostic and therapeutic effect evaluation is realized via the synergy of fluorescence imaging and photothermal therapy for the first time.
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jiahong Ai
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Xiaoni Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
21
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
22
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
23
|
Dong F, Hao L, Wang L, Huang Y. Clickable nanozyme enhances precise colonization of probiotics for ameliorating inflammatory bowel disease. J Control Release 2024; 373:749-765. [PMID: 39084465 DOI: 10.1016/j.jconrel.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Convincing evidence suggests that aberrant gut microbiota changes play a critical role in the progression and pathogenesis of inflammatory bowel disease (IBD). Probiotic therapeutic interventions targeting the microbiota may provide alternative avenues to treat IBD, but currently available probiotics often suffer from low intestinal colonization and limited targeting capability. Here, we developed azido (N3)-modified Prussian blue nanozyme (PB@N3) spatio-temporal guidance enhances the targeted colonization of probiotics to alleviate intestinal inflammation. First, clickable PB@N3 targets intestinal inflammation, simultaneously, it scavenges reactive oxygen species (ROS). Subsequently, utilizing "click" chemistry to spatio-temporally guide targeted colonization of dibenzocyclooctyne (DBCO)-modified Lactobacillus reuteri DSM 17938 (LR@DBCO). The "click" reaction between PB@N3 and LR@DBCO has excellent specificity and efficacy both in vivo and in vitro. Despite the complex physiological environment of IBD, "click" reaction can prolong the retention time of probiotics in the intestine. Dextran sulfate sodium (DSS)-induced colitis mice model, demonstrates that the combination of PB@N3 and LR@DBCO effectively mitigates levels of ROS, enhances the colonization of probiotics, modulates intestinal flora composition and function, regulates immune profiles, restores intestinal barrier function, and alleviates intestinal inflammation. Hence, PB@N3 spatio-temporal guidance enhances targeted colonization of LR@DBCO provides a promising medical treatment strategy for IBD.
Collapse
Affiliation(s)
- Fang Dong
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Liangwen Hao
- The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Wang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
24
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
25
|
Gardey E, Eberhardt J, Hoeppener S, Sobotta FH, Brendel JC, Stallmach A. Anti-Inflammatory Potential of Beclometasone-Loaded Filomicelles on Activated Human Monocytes. Macromol Biosci 2024; 24:e2400179. [PMID: 38780274 DOI: 10.1002/mabi.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Polymeric micelles with a hydrophobic core represent versatile nanostructures for encapsulation and delivery of water-insoluble drugs. Here, water-insoluble beclometasone dipropionate (BDP) which is a potent anti-inflammatory therapeutic agent but limited to topical applications so far, is encapsulated. Therefore, this work used an amphiphilic block copolymer self-assembling into flexible polymeric filomicelles, which have recently proven to selectively target inflamed areas in patients with inflammatory bowel disease (IBD). The small diameter and flexibility of these filomicelles is considered beneficial for transepithelial passages, while their length minimizes the unspecific uptake into nontargeted cells. This work successfully establishes a protocol to load the water-insoluble BDP into the core of the filomicelles, while maintaining the particle stability to prevent any premature drug release. The anti-inflammatory efficacy of BDP-loaded filomicelles is further investigated on lipopolysaccharide (LPS) stimulated human monocytes. In these ex vivo assays, the BDP-loaded filomicelles significantly reduce TNF-α, IL-6, IL-1ß, IL-12p70, IL-17a, and IL-23 release after 24 h. Additional time course study of drug-loaded filomicelles and their comparison with a common water-soluble and unspecific corticosteroid demonstrate promising results with significant immune response suppression in stimulated monocytes after 2 and 6 h. These findings demonstrate the potential of polymeric filomicelles as a vehicle for potent water-insoluble corticosteroids.
Collapse
Affiliation(s)
- Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Juliane Eberhardt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Fabian H Sobotta
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Johannes C Brendel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
26
|
Han HS, Hwang S, Choi SY, Hitayezu E, Humphrey MA, Enkhbayar A, Song D, Kim M, Park J, Park Y, Park J, Cha KH, Choi KY. Roseburia intestinalis-derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses. J Extracell Vesicles 2024; 13:e12487. [PMID: 39166405 PMCID: PMC11336657 DOI: 10.1002/jev2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by recurrent gastrointestinal inflammation, lacking a precise aetiology and definitive cure. The gut microbiome is vital in preventing and treating IBD due to its various physiological functions. In the interplay between the gut microbiome and human health, extracellular vesicles secreted by gut bacteria (BEVs) are key mediators. Herein, we explore the role of Roseburia intestinalis (R)-derived EVs (R-EVs) as potent anti-inflammatory mediators in treating dextran sulfate sodium-induced colitis. R was selected as an optimal BEV producer for IBD treatment through ANCOM analysis. R-EVs with a 76 nm diameter were isolated from R using a tangential flow filtration system. Orally administered R-EVs effectively accumulated in inflamed colonic tissues and increased the abundance of Bifidobacterium on microbial changes, inhibiting colonic inflammation and prompting intestinal recovery. Due to the presence of Ile-Pro-Ile in the vesicular structure, R-EVs reduced the DPP4 activity in inflamed colonic tissue and increased the active GLP-1, thereby downregulating the NFκB and STAT3 via the PI3K pathway. Our results shed light on the impact of BEVs on intestinal recovery and gut microbiome alteration in treating IBD.
Collapse
Affiliation(s)
- Hwa Seung Han
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Soonjae Hwang
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Emmanuel Hitayezu
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Mabwi A. Humphrey
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Altai Enkhbayar
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Myungsuk Kim
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Young‐Tae Park
- Natural Product Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Jin‐Soo Park
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Ki Young Choi
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
- NVience Inc.SeoulRepublic of Korea
| |
Collapse
|
27
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
28
|
Li Q, Zhang C, Zhu M, Shan J, Qian H, Ma Y, Wang X. W-GA nanodots restore intestinal barrier functions by regulating flora disturbance and relieving excessive oxidative stress to alleviate colitis. Acta Biomater 2024; 182:260-274. [PMID: 38777175 DOI: 10.1016/j.actbio.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) may arise due to disruption of mucosal barriers as a result of dysregulation of the intestinal flora and excessive oxidative stress. The creation of nanomaterials with only microbiota-regulating effects often leads to inadequate therapeutic outcomes caused by the disruption of a healthy microbial balance and the emergence of tissue harm caused by excessive oxidative stress. This report describes the multifunctional activity of ultrasmall W-GA nanodots, which can precisely regulate the intestinal microbiome by inhibiting the abnormal expansion of Enterobacteriaceae during colitis and alleviating the damage caused by oxidative stress to the reconstructive microflora, ultimately restoring intestinal barrier function. W-GA nanodots have been synthesized through a simple coordination reaction and can be dispersed in various solvents in vitro, demonstrating favorable safety profiles in cells, significant clearance of reactive oxygen and nitrogen species (RONS), and increased cell survival in models of oxidative stress induced by hydrogen peroxide (H2O2). Through oral or intravenous administration, the W-GA nanodots were shown to be highly safe when tested in vivo, and they effectively reduced colon damage in mice with DSS-induced colitis by restoring the integrity of the intestinal barrier. W-GA nanodots have enabled the integration of microflora reprogramming and RONS clearance, creating a potent therapeutic strategy for treating gut inflammation. Consequently, the development of W-GA nanodots represents a promising strategy for enhancing the formation and preservation of the intestinal barrier to treat IBD by suppressing the growth of Enterobacteriaceae, a type of facultative anaerobic bacterium, and facilitating the effective removal of RONS. Ultimately, this leads to the restoration of the intestinal barrier's functionality. STATEMENT OF SIGNIFICANCE: An increasing number of nanoparticles are under development for treating inflammatory bowel disease. Although they can alleviate inflammation symptoms by regulating reactive oxygen and nitrogen species (RONS) and microbiota, their understanding of the mechanism behind microbiota regulation is limited. This study synthesized W-GA nanodots using a straightforward one-pot synthesis method. Simple synthesis holds significant promise for clinical applications, as it encompasses multiple nanoenzyme functions and also exhibits Enterobacteriaceae inhibitory properties.Thus, it contributes to ameliorating the current medical landscape of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Cong Zhang
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengmei Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haisheng Qian
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
29
|
Xia J, Wang J, Liu F, Chen Z, Chen C, Cheng X, Chao Y, Wang Y, Deng T. Red/NIR-I-Fluorescence Carbon Dots Based on Rhein with Active Oxygen Scavenging and Colitis Targeting for UC Therapeutics. Adv Healthc Mater 2024; 13:e2304674. [PMID: 38501303 DOI: 10.1002/adhm.202304674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Indexed: 03/20/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with uncontrolled inflammation and demage to the intestinal barrier. Rhein, a bioactive compound in traditional Chinese medicine, has anti-inflammatory and intestinal repair effect. However, their clinical application is limited by their hydrophobicity and poor bioavailability. L-arginine, as a complement to NO, has synergistic and attenuating effects. In this paper, red/NIR-I fluorescent carbon dots based on rhein and doped with L-arginine (RA-CDs), which are synthesized by a hydrothermal process without any organic solvents, are reported. RA-CDs preserve a portion of the functional group of the active precursor, increase rhein solubility, and emit red/NIR-I light for biological imaging. In vitro experiments show that RA-CDs scavenge excessive reactive oxygen species (ROS), protect cells from oxidative stress, and enable the fluorescence imaging of inflamed colons. In a DSS-induced UC mouse model, both delayed and prophylactic treatment with RA-CDs via intraperitoneal and tail vein injections alleviate UC severity by reducing intestinal inflammation and restoring the intestinal barrier. This study highlights a novel strategy for treating and imaging UC with poorly soluble small-molecule drugs.
Collapse
Affiliation(s)
- Jiashan Xia
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jiayu Wang
- Department of Pharmacy, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Fengyuan Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Changmei Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiangshu Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yu Chao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, 400016, P. R. China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Tao Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, 400016, P. R. China
| |
Collapse
|
30
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
31
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
32
|
Grimm M, Großmann L, Senekowitsch S, Rump A, Polli JE, Dressman J, Weitschies W. Enteric-Coated Capsules Providing Reliable Site-Specific Drug Delivery to the Distal Ileum. Mol Pharm 2024; 21:2828-2837. [PMID: 38723178 DOI: 10.1021/acs.molpharmaceut.3c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.
Collapse
Affiliation(s)
- Michael Grimm
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - Linus Großmann
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | | | - Adrian Rump
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| |
Collapse
|
33
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
34
|
Foja C, Senekowitsch S, Winter F, Grimm M, Rosenbaum C, Koziolek M, Feldmüller M, Kromrey ML, Scheuch E, Tzvetkov MV, Weitschies W, Schick P. Prolongation of the gastric residence time of caffeine after administration in fed state: Comparison of effervescent granules with an extended release tablet. Eur J Pharm Biopharm 2024; 199:114313. [PMID: 38718842 DOI: 10.1016/j.ejpb.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
The aim of the present study was to investigate the gastroretentive capacity of different formulation principles. This was indirectly determined by the absorption behavior of caffeine from the dosage forms. A slow and continuous appearance of caffeine in the saliva of healthy volunteers was used as a parameter for a prolonged gastric retention time. For this purpose, a four-way study was conducted with twelve healthy volunteers using the following test procedures: (1) Effervescent granules with 240 mL of still water administered in fed state, (2) effervescent granules with 20 mL of still water in fed state, (3) extended release (ER) tablet with 240 mL of still water in fed state, and (4) effervescent granules with 240 mL of still water in fasted state. The initial rise of the caffeine concentrations was more pronounced after the intake of the effervescent granules in the fed state compared to that of the ER tablets. However, tmax tended to be shorter in the fed study arms following administration of the ER tablet compared to the granules. Overall, the application of active pharmaceutical ingredients formulated as effervescent granules seems to be a promising approach to increase their gastric residence time after intake in fed state.
Collapse
Affiliation(s)
- Constantin Foja
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Fabian Winter
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Maximilian Feldmüller
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Marie-Luise Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Eberhard Scheuch
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany.
| |
Collapse
|
35
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
36
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
37
|
Riemann B, Antoine T, Béduneau A, Pellequer Y, Lamprecht A, Moulari B. Active nanoparticle targeting of MUC5AC ameliorates therapeutic outcome in experimental colitis. NANOSCALE 2024; 16:5715-5728. [PMID: 38407269 DOI: 10.1039/d3nr05681c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the gastrointestinal tract and are characterized by chronic recurrent ulceration of the bowels. Colon-targeted drug delivery systems (DDS) have received significant attention for their potential to treat IBD by improving the inflamed tissue selectivity. Herein, antiMUC5AC-decorated drug loaded nanoparticles (NP) are suggested for active epithelial targeting and selective adhesion to the inflamed tissue in experimental colitis. NPs conjugated with antiMUC5AC (anti-MUC5) were tested for their degree of bioadhesion with HT29-MTX cells by comparison with non-targeted BSA-NP conjugates. In vivo, the selectivity of bioadhesion and the influence of ligand density in bioadhesion efficiency as well as the therapeutic benefit for glucocorticoid loaded anti-MUC5-NP were studied in a murine colitis model. Quantitative adhesion analyses showed that anti-MUC5-conjugated NP exhibited a much higher binding and selectivity to inflamed tissue compared to PNA-, IgG1- and BSA-NP conjugates used as controls. This bioadhesion efficiency was found to be dependent on the ligand density, present at the NP surface. The binding specificity between anti-MUC5 ligand and inflamed tissues was confirmed by fluorescence imaging. Both anti-MUC5-NP and all other glucocorticoid containing formulations led to a significant mitigation of the experimental colitis, as became evident from the substantial reduction of myeloperoxidase activity and pro-inflammatory cytokine concentrations (TNF-α, IL-1β). Targeted NP by using anti-MUC5 appears to be a very promising tool in future treatment of various types of local disorders affecting the gastro-intestinal tract but not limited to colitis.
Collapse
Affiliation(s)
- Bernadette Riemann
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Alf Lamprecht
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| |
Collapse
|
38
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Wang Y, Ji X, Wang X, Sun M, Li C, Wu D. The injectable hydrogel loading cannabidiol to regulate macrophage polarization in vitro for the treatment of chronic enteritis. J Appl Biomater Funct Mater 2024; 22:22808000241289022. [PMID: 39385453 DOI: 10.1177/22808000241289022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVE Chronic bowel disease has the characteristics of high recurrence rate, prolonged and non-healing, and the incidence has increased year by year in recent years. Cannabidiol (CBD) has significant anti-inflammatory and antioxidant activities, but it is limited by its characteristics of fat solubility and low bioavailability. This study aims to treat chronic inflammatory bowel disease by preparing a CBD-loaded hydrogel system (GelMA + CBD) that can deliver CBD in situ and improve its bioavailability through slow release. METHOD The study designed and constructed GelMA + CBD, and its surface morphology was observed by scanning electron microscopy, and its pore size, swelling rate and release rate were evaluated to evaluate its bioactivity and biosafety. The expression of various inflammatory factors was detected by ELISA, and the expression of protein and reactive oxygen species were observed by laser confocal microscopy to evaluate their anti-inflammatory and antioxidant properties. RESULTS Our study found that GelMA + CBD with biosafety, could make CBD be slowly released, and effectively inhibit the M1-type polarization of macrophages in vitro, and promote the M2-type polarization. In addition, GelMA + CBD can also reduce the expression of pro-inflammatory factors (such as iNOS) in macrophages, and increase the expression of anti-inflammatory factors (such as Arg-1), clear intracellular reactive oxygen species (ROS), and relieve oxidative stress. CONCLUSION The vitro experiments have confirmed that the CBD-loaded hydrogel system has good biosafety, and can alleviate inflammation by regulating the polarization direction of macrophages, and then inhibiting the secretion of pro-inflammatory factors, laying a strong foundation for the treatment of chronic enteritis.
Collapse
Affiliation(s)
- Ye Wang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, China
- Tianjin First Central Hospital, Tianjin, China
| | - Xingming Ji
- Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinyi Wang
- Tianjin First Central Hospital, Tianjin, China
| | - Mengyu Sun
- Tianjin First Central Hospital, Tianjin, China
| | - Cheng Li
- Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dongmei Wu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
40
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
41
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023; 30:2183821. [PMID: 36861451 PMCID: PMC9987780 DOI: 10.1080/10717544.2023.2183821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
Affiliation(s)
- Shiyun Xian
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| | - Jiabin Zhu
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Yuchen Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| |
Collapse
|
42
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
43
|
Sguizzato M, Ferrara F, Baraldo N, Bondi A, Guarino A, Drechsler M, Valacchi G, Cortesi R. Bilosomes and Biloparticles for the Delivery of Lipophilic Drugs: A Preliminary Study. Antioxidants (Basel) 2023; 12:2025. [PMID: 38136145 PMCID: PMC10741235 DOI: 10.3390/antiox12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, bile acid-based vesicles and nanoparticles (i.e., bilosomes and biloparticles) are studied to improve the water solubility of lipophilic drugs. Ursodeoxycholic acid, sodium cholate, sodium taurocholate and budesonide were used as bile acids and model drugs, respectively. Bilosomes and biloparticles were prepared following standard protocols with minor changes, after a preformulation study. The obtained systems showed good encapsulation efficiency and dimensional stability. Particularly, for biloparticles, the increase in encapsulation efficiency followed the order ursodeoxycholic acid < sodium cholate < sodium taurocholate. The in vitro release of budesonide from both bilosytems was performed by means of dialysis using either a nylon membrane or a portion of Wistar rat small intestine and two receiving solutions (i.e., simulated gastric and intestinal fluids). Both in gastric and intestinal fluid, budesonide was released from bilosystems more slowly than the reference solution, while biloparticles showed a significant improvement in the passage of budesonide into aqueous solution. Immunofluorescence experiments indicated that ursodeoxycholic acid bilosomes containing budesonide are effective in reducing the inflammatory response induced by glucose oxidase stimuli and counteract ox-inflammatory damage within intestinal cells.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Annunziata Guarino
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul S02447, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
44
|
Wang J, Yao M, Zou J, Ding W, Sun M, Zhuge Y, Gao F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2797. [PMID: 37887947 PMCID: PMC10610125 DOI: 10.3390/nano13202797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Junshan Wang
- Department of Gastroenterology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 202157, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Mingyue Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
45
|
Tan X, Xu Y, Zhou S, Pan M, Cao Y, Cai X, Zhao Q, Zhao K. Advances in the Study of Plant-Derived Vesicle-Like Nanoparticles in Inflammatory Diseases. J Inflamm Res 2023; 16:4363-4372. [PMID: 37795493 PMCID: PMC10547002 DOI: 10.2147/jir.s421124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
All humans are universally affected by inflammatory diseases, and there is an urgent need to identify new anti-inflammatory drugs with good therapeutic benefits and minimal side effects to the organism. Recently, it has been found that plant-derived vesicle-like nanoparticles (PDVLNs) have good biocompatibility, with their active ingredients exhibiting good therapeutic effects on inflammation. They can also be used as drug carriers for targeted delivery of anti-inflammatory drugs. Therefore, PDVLNs represent a popular research area for novel anti-inflammatory drugs. This paper details the origin, biological functions, isolation and purification, and identification of PDVLNs, as well as the therapeutic effects of their intrinsic bioactive components on inflammatory diseases. It also introduces their targets as drug carriers to facilitate the development and application of PDVLNs anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuejun Tan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yukun Xu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Sirui Zhou
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Mingyue Pan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiuping Cai
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qing Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
46
|
Mathews HF, Pieper MI, Jung SH, Pich A. Compartmentalized Polyampholyte Microgels by Depletion Flocculation and Coacervation of Nanogels in Emulsion Droplets. Angew Chem Int Ed Engl 2023; 62:e202304908. [PMID: 37387670 DOI: 10.1002/anie.202304908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM-C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM-C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core-shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maria I Pieper
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
47
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
48
|
Li D, Li J, Chen T, Qin X, Pan L, Lin X, Liang W, Wang Q. Injectable Bioadhesive Hydrogels Scavenging ROS and Restoring Mucosal Barrier for Enhanced Ulcerative Colitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38273-38284. [PMID: 37530040 DOI: 10.1021/acsami.3c06693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Despite the progress in the therapy of ulcerative colitis (UC), long-lasting UC remission can hardly be achieved in the majority of UC patients. The key pathological characteristics of UC include an impaired mucosal barrier and local inflammatory infiltration. Thus, a two-pronged approach aiming at repairing damaged mucosal barrier and scavenging inflammatory mediators simultaneously might hold great potential for long-term remission of UC. A rectal formulation can directly offer preferential and effective drug delivery to inflamed colon. However, regular intestinal peristalsis and frequent diarrhea in UC might cause transient drug retention. Therefore, a bioadhesive hydrogel with strong interaction with intestinal mucosa might be preferable for rectal administration to prolong drug retention. Here, we designed a bioadhesive hydrogel formed by the cross-linking of sulfhydryl chondroitin sulfate and polydopamine (CS-PDA). The presence of PDA would ensure the mucosa-adhesive behavior, and the addition of CS in the hydrogel network was expected to achieve the restoration of the intestinal epithelial barrier. To scavenge the key player (excessive reactive oxygen species, ROS) in inflamed colon, sodium ferulic (SF), a potent ROS inhibitor, was incorporated into the CS-PDA hydrogel. After rectal administration, the SF-loaded CS-PDA hydrogel could adhere to the colonic mucosa to allow prolonged drug retention. Subsequently, sustained SF release could be achieved to persistently scavenge ROS in inflammatory areas. Meanwhile, the presence of CS would promote the restoration of the mucosal barrier. Ultimately, scavenging ROS and restoring the mucosal barrier could be simultaneously achieved via this SF-loaded bioadhesive hydrogel scaffold. Our two-pronged approach might provide new insight for effective UC treatment.
Collapse
Affiliation(s)
- Daming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
49
|
Guazelli CFS, Fattori V, Colombo BB, Ludwig IS, Vicente LG, Martinez RM, Georgetti SR, Urbano A, Casagrande R, Baracat MM, Verri WA. Development of trans-Chalcone loaded pectin/casein biodegradable microcapsules: Efficacy improvement in the management of experimental colitis. Int J Pharm 2023; 642:123206. [PMID: 37419432 DOI: 10.1016/j.ijpharm.2023.123206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Barbara B Colombo
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Isabela S Ludwig
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Laisa G Vicente
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Alexandre Urbano
- Departamento de Física, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
50
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|