1
|
Salústio P, Amaral M, Costa P. Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles. J Aerosol Med Pulm Drug Deliv 2024; 37:307-327. [PMID: 39120712 PMCID: PMC11669763 DOI: 10.1089/jamp.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation.
Collapse
Affiliation(s)
- P.J. Salústio
- Research Institute for Medicines (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - M.H. Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P.C. Costa
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024; 32:761-779. [PMID: 38861247 PMCID: PMC11555000 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
3
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
4
|
Zhang X, Lv D, Li B, Ding Y. Inhaled aerosolized algal polysaccharides: A novel and reliable strategy for treating pneumonia through inflammation and oxidative stress inhibition. Int Immunopharmacol 2024; 137:112532. [PMID: 38908087 DOI: 10.1016/j.intimp.2024.112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Sepsis-associated acute lung injury (ALI) poses a significant threat, characterized by inflammation and oxidative damage. Effective drugs targeting these aspects with reliable drug delivery systems are vital for ALI management. This study aimed to evaluate the influence of algal polysaccharides (APs) with aerosolized drug delivery in ALI mice and clarify the underlying mechanism. To induce the sepsis-associated acute lung injury (ALI) model, mice were administered intraperitoneal injections of 10 mg/kg LPS for 48 h in vivo. ALI mice received APs via atomization to arrive at different sites within the lungs. Lung tissue samples and bronchoalveolar lavage fluid (BALF) were collected to access lung injury parameters. Concurrently, western blotting, H&E staining, and immunofluorescence (IF) were applied to investigate the specific impact of APs on ALI. The results showed that APs protect lung tissue against ALI by inhibiting inflammation and mitigating oxidative stress-induced damage. This study highlights promising avenues for ALI intervention using natural compounds with anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- XingXing Zhang
- Department of Neurology, Changshu No. 2 People's Hospital (Affiliated Changshu Hospital of Nantong University), Changshu 215500, Jiangsu, China; School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Demin Lv
- Department of Traumatic Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Bingxia Li
- Department of Stomatology, The 359th Hospital of the People's Liberation Army of China, Zhenjiang 212001, Jiangsu, China
| | - Yuting Ding
- Department of Neurology, Changshu No. 2 People's Hospital (Affiliated Changshu Hospital of Nantong University), Changshu 215500, Jiangsu, China.
| |
Collapse
|
5
|
Pathak V, Chan HK, Zhou QT. Formulation of Bacteriophage for Inhalation to Treat Multidrug-Resistant Pulmonary Infections. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2024; 42:200-212. [PMID: 40114780 PMCID: PMC11925536 DOI: 10.14356/kona.2025016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Rapid development of antibiotic resistance in pathogenic bacteria and a decline in the pharmaceutical development of new antibiotics are pushing the research community to explore alternative antimicrobials that can replace or complement antibiotics. Bacteriophages (or, phages) are naturally occurring viruses that can kill bacteria with high specificity and can evolve to target resistant bacteria. Phages have been historically employed as antimicrobial agents, but they were overshadowed by the emergence of antibiotics. With a renewed focus on phages, it is important to study their clinical efficacy, safety, and formulation. Pulmonary infections have a large burden of global morbidity and frequently involve multidrug-resistant pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Therefore, this can be an important area of application of phages. Dry powder inhalers can be an effective strategy to deliver phages to the lungs because they are easy-to-use, portable, and capable of delivering a higher lung dose than oral or intravenous route. They also have longer shelf life and lower cold storage requirements than solutions. Therefore, the aim of the current review is to summarize recent findings on bacteriophage dry powder formulations, particularly focusing on the effect of various excipients and manufacturing factors on phage titer preservation.
Collapse
Affiliation(s)
- Vaibhav Pathak
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Qi Tony Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, USA
| |
Collapse
|
6
|
Gou D, Zhu Q, Chan HK, Kourmatzis A, Cheng S, Yang R. Effects of the deformation and size of the upper airway on the deposition of aerosols. Int J Pharm 2024; 657:124165. [PMID: 38663643 DOI: 10.1016/j.ijpharm.2024.124165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Aerosol drug delivery in the human airway is significantly affected by the morphology and size of the airway. This work developed a CFD-DEM model to simulate and analyze air flow and powder dynamics in combined inhaler-airway systems with different degrees of airway deformation (non-deformed, 50%, and 75% deformed) and sizes (adult, 0.80, and 0.62 scaled). The airways were generated based on a regular airway constructed from the MRI images through finite element method (for deformed airways) or scaling-down (for smaller airways). The airways were connected to Turbuhaler® through a connector. The results showed that under the same flow rate, the variation in the airway geometry and size had a minimum impact on the flow field and powder deposition in the device and the connector. However, deformation caused more particle deposition in the deformed region. Notably, the airway with 50% deformation had the most particles passing through the airway with the largest particle sizes due to its lower air velocity in the deformed area. Reducing airway size resulted in more powder deposition on the airway, particularly at the pharynx and mouth regions. This was because, with the same flow rate, the flow velocity in the smaller airway was higher, causing more particle-wall collisions in the mouth and pharynx regions. More importantly, the deposition efficiency in the 0.62-scaled airway was significantly higher than the other two airways, highlighting the importance of the different administration of aerosol drugs for young children.
Collapse
Affiliation(s)
- Dazhao Gou
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia
| | - Qixuan Zhu
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, The University of Sydney, NSW 2006, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, NSW 2109, Australia
| | - Runyu Yang
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Yousry C, Goyal M, Gupta V. Excipients for Novel Inhaled Dosage Forms: An Overview. AAPS PharmSciTech 2024; 25:36. [PMID: 38356031 DOI: 10.1208/s12249-024-02741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes. While promising, inhaled delivery of therapeutics is often complex owing to factors encompassing mechanical barriers, chemical barriers, selection of inhalation device, and limited choice of dosage form excipients. There are very few excipients that are approved by the FDA for use in developing inhaled drug products. Depending upon the dosage form, and inhalation devices such as pMDIs, DPIs, and nebulizers, different excipients can be used to provide physical and chemical stability and to deliver the dose efficiently to the lungs. This review article focuses on discussing a variety of excipients that have been used in novel inhaled dosage forms as well as inhalation devices.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
8
|
Arte KS, Tower CW, Mutukuri TT, Chen Y, Patel SM, Munson EJ, Tony Zhou Q. Understanding the impact of mannitol on physical stability and aerosolization of spray-dried protein powders for inhalation. Int J Pharm 2024; 650:123698. [PMID: 38081559 PMCID: PMC10907098 DOI: 10.1016/j.ijpharm.2023.123698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Pulmonary delivery of protein-based therapeutics, including antibodies, is a promising option for treating respiratory diseases. Spray drying is a widely used method for producing dry powder formulations with mannitol being a commonly used excipient for these inhalation formulations. There is limited research available concerning the utilization of mannitol as an excipient in the spray drying of proteins and its impact on aerosol performance. This study highlights the importance to understand mannitol's potential role and impact in this context. To investigate the impact of mannitol on physical stability and aerosolization of spray-dried protein formulations, bovine serum albumin (BSA) was employed as a model protein and formulated with different concentrations of mannitol via spray drying. The spray-dried solids were characterized for their particle size using Malvern mastersizer and aerodynamic particle size using next generation impactor (NGI). Additionally, the solids were characterized with solid-state Fourier-transform infrared spectroscopy (ssFTIR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance spectroscopy (ssNMR) to analyze the change in their secondary structure, crystallinity, particle morphology, and protein-excipient interaction, respectively. Size exclusion chromatography (SEC) was used to investigate changes in monomer content resulting from storage under stressed condition of 40 °C. Protein formulations containing more than 33 % mannitol by weight showed crystallization tendencies, causing an increase in monomer loss over time. ssNMR data also showed mixing heterogeneity of BSA and mannitol in the formulations with high mannitol contents. Futhermore, fine particle fraction (FPF) was found to decrease over time for the formulations containing BSA: Mannitol in the ratios of 2:1, 1:2, and 1:5, due to particle agglomeration induced by crystallization of mannitol. This study underscores the significant influence of excipients such as mannitol on the aerosol performance and storage stability of spray-dried protein formulations.
Collapse
Affiliation(s)
- Kinnari S Arte
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Cole W Tower
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Tarun T Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Injectable Drug Product Development, Alexion - AstraZeneca Rare Disease Unit, New Haven, CT 06510, USA(1)
| | - Yuan Chen
- Dosage Form Design & Development, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; Global Product Quality, Global Quality Operations, AstraZeneca, Gaithersburg, MD 20787, USA(1)
| | - Sajal M Patel
- Dosage Form Design & Development, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
10
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
11
|
Ye T, Jiao Z, Li X, He Z, Li Y, Yang F, Zhao X, Wang Y, Huang W, Qin M, Feng Y, Qiu Y, Yang W, Hu L, Hu Y, Zhai Y, Wang E, Yu D, Wang S, Yue H, Wang Y, Wang H, Zhu L, Ma G, Wei W. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 2023; 624:630-638. [PMID: 38093012 DOI: 10.1038/s41586-023-06809-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2023] [Indexed: 12/20/2023]
Abstract
The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.
Collapse
Affiliation(s)
- Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yanyan Li
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Fengmei Yang
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Xin Zhao
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Science, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaling Hu
- Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Yu Zhai
- Sinovac Life Sciences Co., Ltd., Beijing, China
| | | | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
13
|
Vu TH, Yadav S, Tran CD, Nguyen HQ, Nguyen TH, Nguyen T, Nguyen TK, Fastier-Wooller JW, Dinh T, Phan HP, Ta HT, Nguyen NT, Dao DV, Dau VT. Charge-Reduced Particles via Self-Propelled Electrohydrodynamic Atomization for Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318848 DOI: 10.1021/acsami.3c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles. Our approach uses a sharp electrode to produce ion wind, which reduces the cumulative charge in the particles and transports them to a target in front of the nozzle. We effectively controlled the morphologies of polymer products created from poly(vinylidene fluoride) (PVDF) at various concentrations. Our technique has also been proven safe for bioapplications, as evidenced by the delivery of PVDF particles onto breast cancer cells. The combination of simultaneous particle production and charge reduction, along with its direct delivery capability, makes the self-propelled EHDA a versatile technique for drug delivery applications.
Collapse
Affiliation(s)
- Trung-Hieu Vu
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Sharda Yadav
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Hong-Quan Nguyen
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Tuan-Hung Nguyen
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Thanh Nguyen
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Jarred W Fastier-Wooller
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
- School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4067, Australia
- School of Environment and Science, Griffith University, Brisbane, QLD 4211, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Dzung Viet Dao
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Van Thanh Dau
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
14
|
Ari A, Alhamad BR. Evaluating dry powder inhalers: From in vitro studies to mobile health technologies. Respir Med 2023:107281. [PMID: 37244487 DOI: 10.1016/j.rmed.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Dry powder inhalers (DPIs) are essential in treating patients with pulmonary diseases. Since DPIs were introduced in the 1960s, a remarkable improvement has been made in their technology, dose delivery, efficiency, reproducibility, stability, and performance based on safety and efficacy. While there are many DPIs on the market and several more under development, it is vital to evaluate the performance of DPIs for effective aerosol drug delivery to patients with respiratory disorders. Their performance evaluation includes particle size, metering system, device design, dose preparation, inhalation technique, and patient-device integration. The purpose of this paper is to review current literature evaluating DPIs through in vitro studies, computational fluid models, and in vivo/clinical studies. We will also explain how mobile health applications are used to monitor and evaluate patients' adherence to prescribed medications.
Collapse
Affiliation(s)
- Arzu Ari
- Department of Respiratory Care, Texas State University, 200 Bobcat Way, Suite 214, Round Rock, TX, 78665, USA.
| | - Bshayer Ramadan Alhamad
- Respiratory Therapy Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Science, Al Ahsa, Saudi Arabia; King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia.
| |
Collapse
|
15
|
Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15051457. [PMID: 37242697 DOI: 10.3390/pharmaceutics15051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sona Gandhi
- Department of Chemistry, School of Basic & Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
16
|
Jia-Xing W, Chao-Yi L, Wei-Ya C, Yi-Jun C, Chun-Yu L, Fei-Fei Y, Yong-Hong L. The pulmonary biopharmaceutics and anti-inflammatory effects after intratracheal and intravenous administration of Re-Du-Ning injection. Biomed Pharmacother 2023; 160:114335. [PMID: 36724641 DOI: 10.1016/j.biopha.2023.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Re-Du-Ning injection (RDN) is a renowned heat-clearing traditional Chinese medicine for the treatment of respiratory diseases owing to its anti-inflammatory effects. However, very little is known about the pulmonary distribution and lung exposure-efficacy relationships. This study aimed to investigate the pulmonary distribution and biopharmaceutics concerning lung penetrability and affinity and the local anti-inflammatory effects after intravenous and pulmonary administration of RDN. METHODS Two iridoids and seven phenolic acid components were selected as the chemical markers in RDN. The in vitro pulmonary distribution and biopharmaceutics were conducted by evaluating the binding and disassociation kinetics of chemical markers in lung tissue explants whereas the in vivo evaluation was performed by determining the time-dependent concentrations of chemical markers in plasma, lung epithelial lining fluid (ELF), lung tissues and immune cells in the ELF after intratracheal and intravenous administrations of RDN. The inhibitory effects on tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production were used to evaluate the anti-inflammatory effect of RDN on lung tissues in vitro and on mice with LPS-induced lung inflammation. RESULTS The chemical markers of RDN exhibited excellent lung penetrability but poor lung affinity in vitro and in vivo. After intravenous administration, the chemical markers appeared to rapidly penetrate through the lung tissue to reach the ELF, leading to markedly higher drug exposure to ELF and immune cells in the ELF than to lung tissues. Compared to intravenous injection, the intratracheal instillation of RDN increased drug exposure to lung tissue and immune cells in the ELF by up to > 80-fold, leading to improved anti-inflammatory potency and prolonged duration of action. CONCLUSION The drug exposure to immune cells in the ELF was correlated with the lung-targeted anti-inflammatory effects of RDN and pulmonary delivery has the potential to replace intravenous injection of RDN for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Wei Jia-Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Li Chao-Yi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chen Wei-Ya
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Cong Yi-Jun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Liu Chun-Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yang Fei-Fei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Liao Yong-Hong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
17
|
Standardized inhalation capability assessment: A key to optimal inhaler selection for inhalation therapy. J Transl Int Med 2023; 11:26-29. [DOI: 10.2478/jtim-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
18
|
Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022; 15:139. [PMID: 36678768 PMCID: PMC9861595 DOI: 10.3390/pharmaceutics15010139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer has been the leading cause of mortalities, with lung cancer contributing 18% to overall deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. The primary form of therapy used to treat lung cancer still includes oral and systemic administration of drugs, radiotherapy, or chemotherapy. Some patients have to go through a regime of combination therapy. Despite being the only available form of therapy, their use is limited due to the adverse effects, toxicity, and development of resistance over prolonged use. This led to a shift and progressive evolution into using pulmonary drug delivery systems. Being a non-invasive method of drug-administration and allowing localized delivery of drugs to cancer cells, inhalable drug delivery systems can lead to lower dosing and fewer systemic toxicities over other conventional routes. In this way, we can increase the actual local concentration of the drug in lungs, which will ultimately lead to better antitumor therapy. Nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening, and tracking. Regardless of the advantages, pulmonary delivery is still in the early stages of development and various factors such as pharmacology, immunology, and toxicology should be taken into consideration for the development of suitable inhalable nano-based chemotherapeutic drugs. They face numerous physiological barriers such as lung retention and efficacy, and could also lead to toxicity due to prolonged exposure. Nano-carriers with a sustained drug release mechanism could help in overcoming these challenges. This review article will focus on the various inhalable formulations for targeted drug delivery, including nano-based delivery systems such as lipids, liposome, polymeric and inorganic nanocarriers, micelles, microparticles and nanoaggregates for lung cancer treatment. Various devices used in pulmonary drug delivery loaded on various nano-carriers are also discussed in detail.
Collapse
Affiliation(s)
- Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aadya Jaipuria
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
20
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
21
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Jansen EM, Frijlink HW, Hinrichs WLJ, Ruigrok MJR. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv 2022; 19:1471-1485. [DOI: 10.1080/17425247.2022.2131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Evalyne M Jansen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter LJ Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Mitchel JR Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Groß R, Berkenfeld K, Schulte C, Ebert A, Sule S, Sule A, Lamprecht A. Effect of Texture and Surface Chemistry on Deagglomeration and Powder Retention in Capsule-Based Dry Powder Inhaler. AAPS PharmSciTech 2022; 23:281. [PMID: 36241775 DOI: 10.1208/s12249-022-02436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary delivery systems should administer a high dose of the required formulation with the designated dry powder inhaler (DPI) to achieve therapeutic success. While the effects of device geometry and individual components used on powder dispersion are described in literature, potential effects of DPI surface properties on powder retention within the device and deagglomeration have not been adequately studied, but could impact inhalation therapy by modifying the available dose. For this, inner parts of a model DPI were modified by plasma treatment using various processes. Since both the hydrophilic-hydrophobic and structural properties of the surface were altered, conclusions can be drawn for future optimization of devices. The results show that surface topography has a greater influence on powder deposition and deagglomeration than hydrophilic or hydrophobic surface modification. The most important modification was observed with an increased rough surface texture in the mouth piece, resulting in lower powder deposition in this part (from 5 to 1% quantified amount of powder), without any change in powder deagglomeration compared to an untreated device. In summary, increasing the surface roughness of DPI components in the size range of a few nanometers could be an approach for future optimization of DPIs to increase the delivered dose.
Collapse
Affiliation(s)
- Roman Groß
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany
| | - Kai Berkenfeld
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany
| | - Christoph Schulte
- Presspart GmbH & Co. KG, Am Meilenstein 8-19, 34431, Marsberg, Germany
| | - Anselm Ebert
- Presspart GmbH & Co. KG, Am Meilenstein 8-19, 34431, Marsberg, Germany
| | - Sunita Sule
- Presspart Manufacturing Ltd., Whitebirk Industrial Estate, Blackburn, BB1 5RF, UK
| | - Ameet Sule
- Presspart Manufacturing Ltd., Whitebirk Industrial Estate, Blackburn, BB1 5RF, UK
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany.
| |
Collapse
|
24
|
Singh V, Son YJ, Dolovich M, Xing Z, Cranston ED, Thompson MR. Screening amino acid additives as aerosolization modifiers for spray dried inhalable viral-vectored vaccines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Kim J, Jozic A, Lin Y, Eygeris Y, Bloom E, Tan X, Acosta C, MacDonald KD, Welsher KD, Sahay G. Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation. ACS NANO 2022; 16:14792-14806. [PMID: 36038136 PMCID: PMC9939008 DOI: 10.1021/acsnano.2c05647] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite lipid nanoparticles' (LNPs) success in the effective and safe delivery of mRNA vaccines, an inhalation-based mRNA therapy for lung diseases remains challenging. LNPs tend to disintegrate due to shear stress during aerosolization, leading to ineffective delivery. Therefore, LNPs need to remain stable through the process of nebulization and mucus penetration, yet labile enough for endosomal escape. To meet these opposing needs, we utilized PEG lipid to enhance the surficial stability of LNPs with the inclusion of a cholesterol analog, β-sitosterol, to improve endosomal escape. Increased PEG concentrations in LNPs enhanced the shear resistance and mucus penetration, while β-sitosterol provided LNPs with a polyhedral shape, facilitating endosomal escape. The optimized LNPs exhibited a uniform particle distribution, a polyhedral morphology, and a rapid mucosal diffusion with enhanced gene transfection. Inhaled LNPs led to localized protein production in the mouse lung without pulmonary or systemic toxicity. Repeated administration of these LNPs led to sustained protein production in the lungs. Lastly, mRNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was delivered after nebulization to a CFTR-deficient animal model, resulting in the pulmonary expression of this therapeutic protein. This study demonstrated the rational design approach for clinical translation of inhalable LNP-based mRNA therapies.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Yuxin Lin
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Elissa Bloom
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Xiaochen Tan
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Christopher Acosta
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Kelvin D. MacDonald
- Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Kevin D. Welsher
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health Science University, Portland, OR, 97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
26
|
Guan J, Yuan H, Yu S, Mao S, Tony Zhou Q. Spray dried inhalable ivacaftor co-amorphous microparticle formulations with leucine achieved enhanced in vitro dissolution and superior aerosol performance. Int J Pharm 2022; 622:121859. [PMID: 35643348 PMCID: PMC10017267 DOI: 10.1016/j.ijpharm.2022.121859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
The present study aimed to develop inhalable powder formulations with both dissolution enhancement and superior aerodynamic properties for potential pulmonary delivery of a poorly water-soluble drug, ivacaftor (IVA). The IVA-leucine (LEU) microparticle formulations were produced by spray drying and the physicochemical, aerosolization and cytotoxicity properties were characterized. Co-amorphous microparticle formulation was formed at the IVA: LEU 3:1 M ratio with hydrogen bond interactions as indicated by Fourier transform infrared spectroscopy (FTIR) results. Dissolution rate of the co-spray dried formulations was significantly improved as compared with the IVA alone or physical mixtures. The co-spray dried formulations exhibited > 80% fine particle fraction (FPF) and > 95% emitted dose percentage (ED) values respectively, with superior physical and aerosolization stability under 40℃ at 75% RH for 30 days. The laser scanning confocal microscopy results demonstrated that more IVA was uptake by Calu-3 cell lines for the co-spray dried formulation. In summary, our results demonstrated that co-spray drying IVA with LEU could achieve enhanced in vitro release and superior aerodynamic properties for pulmonary delivery of IVA.
Collapse
Affiliation(s)
- Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
27
|
Zhu YG, Shi MM, Monsel A, Dai CX, Dong X, Shen H, Li SK, Chang J, Xu CL, Li P, Wang J, Shen MP, Ren CJ, Chen DC, Qu JM. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: a pilot study. Stem Cell Res Ther 2022; 13:220. [PMID: 35619189 PMCID: PMC9135389 DOI: 10.1186/s13287-022-02900-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Existing clinical studies supported the potential efficacy of mesenchymal stromal cells as well as derived exosomes in the treatment of COVID-19. We aimed to explore the safety and efficiency of aerosol inhalation of the exosomes derived from human adipose-derived MSCs (haMSC-Exos) in patients with COVID-19. METHODS The MEXCOVID trial is a phase 2a single-arm, open-labelled, interventional trial and patients were enrolled in Jinyintan Hospital, Wuhan, China. Eligible 7 patients were assigned to receive the daily dose of haMSCs-Exos (2.0 × 108 nano vesicles) for consecutively 5 days. The primary outcomes included the incidence of prespecified inhalation-associated events and serious adverse events. We also observed the demographic data, clinical characteristics, laboratory results including lymphocyte count, levels of D-dimer and IL-6 as well as chest imaging. RESULTS Seven severe COVID-19 related pneumonia patients (4 males and 3 females) were enrolled and received nebulized haMSC-Exos. The median age was 57 year (interquartile range (IQR), 43 year to 70 year). The median time from onset of symptoms to hospital admission and administration of nebulized haMSC-Exos was 30 days (IQR, 15 days to 40 days) and 54 d (IQR, 34 d to 69 d), respectively. All COVID-19 patients tolerated the haMSC-Exos nebulization well, with no evidence of prespecified adverse events or clinical instability during the nebulization or during the immediate post-nebulization period. All patients presented a slight increase of serum lymphocyte counts (median as 1.61 × 109/L vs. 1.78 × 109/L). Different degrees of resolution of pulmonary lesions after aerosol inhalation of haMSC-Exos were observed among all patients, more obviously in 4 of 7 patients. CONCLUSIONS Our trial shows that a consecutive 5 days inhalation dose of clinical grade haMSC-Exos up to a total amount of 2.0 × 109 nano vesicles was feasible and well tolerated in seven COVID-19 patients, with no evidence of prespecified adverse events, immediate clinical instability, or dose-relevant toxicity at any of the doses tested. This safety profile is seemingly followed by CT imaging improvement within 7 days. Further trials will have to confirm the long-term safety or efficacy in larger population. TRIAL REGISTRATION MEXCOVID, NCT04276987.
Collapse
Affiliation(s)
- Ying-Gang Zhu
- Department of Pulmonary and Critical Care Medicine, Hua-Dong Hospital, Fudan University, 221, West Yan'an Rd., Shanghai, 200040, China.
| | - Meng-Meng Shi
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197, Rui Jin Er Rd., Shanghai, 200025, China
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France.,INSERM, UMR S959, Immunology-Immunopathology- Immunotherapy (I3), Sorbonne Université, 75005, Paris, France.,Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, 75651, Paris, France
| | - Cheng-Xiang Dai
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China.,Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Xuan Dong
- Department of Pulmonary and Critical Care Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hong Shen
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197, Rui Jin Er Rd., Shanghai, 200025, China
| | - Su-Ke Li
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Jing Chang
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Cui-Li Xu
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Ping Li
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Jing Wang
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Mei-Ping Shen
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - Cheng-Jie Ren
- Cellular Biomedicine Group Inc. (CBMG), Shanghai, China
| | - De-Chang Chen
- Department of Intensive Care Unit, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie-Ming Qu
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197, Rui Jin Er Rd., Shanghai, 200025, China. .,Institute of Respiratory Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. .,Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
28
|
Xu Y, Harinck L, Lokras AG, Gerde P, Selg E, Sjöberg CO, Franzyk H, Thakur A, Foged C. Leucine improves the aerosol performance of dry powder inhaler formulations of siRNA-loaded nanoparticles. Int J Pharm 2022; 621:121758. [PMID: 35483619 DOI: 10.1016/j.ijpharm.2022.121758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Thermostable dry powder inhaler (DPI) formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of inflammatory lung diseases. We recently demonstrated that lipidoid-polymer hybrid nanoparticles (LPNs) loaded with small interfering RNA (siRNA) directed against tumor necrosis factor alpha (TNF-α) mediate efficient intracellular siRNA delivery and reduce inflammation in vivo. Here, we show that mixtures of the stabilizing excipients trehalose (Tre) and dextran (Dex), in combination with the shell-forming dispersion enhancer leucine (Leu), stabilize TNF-α siRNA-loaded LPNs during spray drying into nanocomposite microparticles (DPI formulations), and result in DPI formulations with high aerosol performance. At low Leu content (0 to 10%, w/w), the DPI formulations were amorphous, and exhibited poor aerosol performance. When the Leu content was increased from 20 to 60% (w/w), the surface content of Leu increased from 39.2 to 68.1 mol%, and the flowability was significantly improved. Microscopy analyses suggest that the improved powder dispersibility is the result of a wrinkled surface morphology, which reduces the surface area available for interparticle interactions. Increasing the Leu content further (above 10%, w/w) did not influence the aerosol performance, and the aerosol yield was maximal at 30-40% Leu (w/w). Formulations containing 40% Leu and a Tre:Dex ratio of 10:90 (w/w) displayed a high fine particle fraction and aerosol properties suitable for inhalation. The chemical integrity of TNF-α siRNA was preserved in the solid state, and biodistribution studies in mice showed that pulmonary administration of DPI formulations with high aerosol performance resulted in homogenous deep lung deposition. Our results demonstrate that at optimal ratios, ternary excipient mixtures of Leu, Tre and Dex protect TNF-α siRNA-loaded LPNs during spray drying. Hence, this study shows that microparticles with an amorphous Tre/Dex matrix and a crystalline Leu shell are required for stabilizing the nanocomposite LPNs in the solid state, and for ensuring aerosol properties suitable for inhalation.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Laure Harinck
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Abhijeet G Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Per Gerde
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, 171 77 Stockholm, Sweden
| | - Ewa Selg
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Carl-Olof Sjöberg
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
29
|
Anwar MM, Shalaby MA, Saeed H, Mostafa HM, Hamouda DG, Nounou H. Theophylline-encapsulated Nile Tilapia fish scale-based collagen nanoparticles effectively target the lungs of male Sprague-Dawley rats. Sci Rep 2022; 12:4871. [PMID: 35319009 PMCID: PMC8938969 DOI: 10.1038/s41598-022-08880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nile Tilapia fish scale collagen has high biodegradability, excellent biocompatibility, and low antigenicity. We assessed both the encapsulation efficiency of theophylline into Nile Tilapia fish scale-based collagen nanoparticles and their stability as a pulmonary drug delivery system in male Sprague-Dawley rats. The present study has demonstrated the successful encapsulation of theophylline into the synthesised nanoparticles as shown by spectrophotometric analysis, light microscope, scanning electron microscope, transmission electron microscope, and dynamic light scattering. The antibacterial activity of the nanoparticles improves with increasing their concentrations. Intratracheal treatment of rats using theophylline-encapsulated nanoparticles reduced the levels of creatinine, alanine transaminase, and aspartate transaminase, compared to the control group. Nevertheless, nanoparticles combined with theophylline exhibited no effects on cholesterol and triglycerides levels. Histopathological examination revealed typical uniform and diffuse thickening of the alveolar walls with capillary oedema in treated rats. We concluded that the synthesised collagen nanoparticles appropriately target the lungs of male Sprague-Dawley rats when delivered via a nebuliser, showing good tolerability to lung cells. However, dose ratio of collagen nanoparticles to theophylline needs further evaluation. The nanoprecipitation method may be optimised to involve poorly water-soluble inhaled drugs, and avoid the drawbacks of traditional drug delivery.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Manal Aly Shalaby
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt. .,Centre of Excellence for Drug Preclinical Studies (CE-DPS) Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Haitham Mohammed Mostafa
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Dalia Galal Hamouda
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Howaida Nounou
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. Eur J Pharm Sci 2022; 172:106158. [DOI: 10.1016/j.ejps.2022.106158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
31
|
Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: Present status and future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
33
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
34
|
Xiroudaki S, Schoubben A, Giovagnoli S, Rekkas DM. Dry Powder Inhalers in the Digitalization Era: Current Status and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091455. [PMID: 34575530 PMCID: PMC8467565 DOI: 10.3390/pharmaceutics13091455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
During the last decades, the term "drug delivery systems" (DDSs) has almost fully replaced previously used terms, such as "dosage forms", in an attempt to emphasize the importance of the drug carrier in ensuring the claimed safety and effectiveness of the product. However, particularly in the case of delivery devices, the term "system", which by definition implies a profound knowledge of each single part and their interactions, is not always fully justified when using the DDS term. Within this context, dry powder inhalers (DPIs), as systems to deliver drugs via inhalation to the lungs, require a deep understanding of the complex formulation-device-patient interplay. As of now and despite the progress made in particle engineering and devices design, DPIs' clinical performance is limited by variable patients' breathing patterns. To circumvent this pitfall, next-generation DPIs should ideally adapt to the different respiratory capacity of individuals across age, health conditions, and other related factors. In this context, the recent wave of digitalization in the health care and industrial sectors may drive DPI technology towards addressing a personalized device-formulation-patient liaison. In this review, evolving technologies are explored and analyzed to outline the progress made as well as the gaps to fill to align novel DPIs technologies with the systems theory approach.
Collapse
Affiliation(s)
- Styliani Xiroudaki
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
- Correspondence: (S.G.); (D.M.R.); Tel.: +39-075-5855162 (S.G.); +30-210-7274023 (D.M.R.)
| | - Dimitrios M. Rekkas
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (S.G.); (D.M.R.); Tel.: +39-075-5855162 (S.G.); +30-210-7274023 (D.M.R.)
| |
Collapse
|
35
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
36
|
Guo Y, Bera H, Shi C, Zhang L, Cun D, Yang M. Pharmaceutical strategies to extend pulmonary exposure of inhaled medicines. Acta Pharm Sin B 2021; 11:2565-2584. [PMID: 34522598 PMCID: PMC8424368 DOI: 10.1016/j.apsb.2021.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary administration route has been extensively exploited for the treatment of local lung diseases such as asthma, chronic obstructive pulmonary diseases and respiratory infections, and systemic diseases such as diabetes. Most inhaled medicines could be cleared rapidly from the lungs and their therapeutic effects are transit. The inhaled medicines with extended pulmonary exposure may not only improve the patient compliance by reducing the frequency of drug administration, but also enhance the clinical benefits to the patients with improved therapeutic outcomes. This article systematically reviews the physical and chemical strategies to extend the pulmonary exposure of the inhaled medicines. It starts with an introduction of various physiological and pathophysiological barriers for designing inhaled medicines with extended lung exposure, which is followed by recent advances in various strategies to overcome these barriers. Finally, the applications of the inhaled medicines with extended lung exposure for the treatment of various diseases and the safety concerns associated to various strategies to extend the pulmonary exposure of the inhaled medicines are summarized.
Collapse
Key Words
- ALIS, amikacin liposomal inhalation suspension
- API, active pharmaceutical ingredient
- BALF, bronchoalveolar lavage fluid
- COPD, chronic obstructive pulmonary diseases
- CS, chitosan
- DPIs, dry powder inhalers
- DPPC, dipalmitoylphosphatidylcholine
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- Da, aerodynamic diameters
- ELF, epithelial lining fluid
- FDA, US food and drug administration
- FDKP, fumaryl diketopiperazine
- HA, hyaluronic acid
- IL-4, interleukin-4
- IL-5, interleukin-5
- Inhaled sustained release formulations
- LABA, long-acting β2-adrenoceptor agonist
- LPPs, large porous particles
- Local lung diseases
- MCE, mucociliary escalator
- MDIs, metered dose inhalers
- MP, mucoadhesive particles
- MPP, mucus-penetrating particles
- MW, molecular weight
- Mn, number-average molecular weight
- NLCs, nanostructured lipid carriers
- PCL, poly-ε-caprolactone
- PDD, pulmonary drug delivery
- PEG, polyethylene glycol
- PK, pharmacokinetics
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PVA, polyvinyl alcohol
- Pharmaceutical strategies
- Pulmonary clearance pathways
- Pulmonary drug delivery
- Pulmonary exposure
- Pulmonary safety
- SLNs, solid lipid nanoparticles
- Systemic diseases
- Tmax, time of maximum concentration
Collapse
Affiliation(s)
- Yi Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Changzhi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding author. Tel./fax: +86 24 23986165.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
37
|
|
38
|
Shi M, Yang Q, Monsel A, Yan J, Dai C, Zhao J, Shi G, Zhou M, Zhu X, Li S, Li P, Wang J, Li M, Lei J, Xu D, Zhu Y, Qu J. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12134. [PMID: 34429860 PMCID: PMC8363910 DOI: 10.1002/jev2.12134] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) turn out to be a promising source of cell-free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose-derived MSC-EVs (haMSC-EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC-EVs in healthy volunteers. DiR-labelled haMSC-EVs were used to explore the distribution of nebulized haMSC-EVs in the murine model. Pseudomonas aeruginosa-induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL-6, TNF-α and IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC-EVs through the nebulized route. Twenty-four healthy volunteers were involved and received the haMSC-EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC-EVs improved survival rate to 80% at 96 h in P. aeruginosa-induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC-EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC-EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC-EVs in lung injury diseases.
Collapse
Affiliation(s)
- Meng‐meng Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Qing‐yuan Yang
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Antoine Monsel
- Multidisciplinary Intensive Care UnitDepartment of Anaesthesiology and Critical CareLa Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityFrance
- INSERMSorbonne UniversitéUMR S 959, Immunology‐Immunopathology‐ Immunotherapy (I3); F‐75005ParisFrance
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (DHU i2B)Hôpital Pitié‐SalpêtrièreAP‐HP, F‐75651ParisFrance
| | - Jia‐yang Yan
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Cheng‐xiang Dai
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
- Daxing Research InstituteUniversity of Science and Technology BeijingBeijingChina
| | - Jing‐ya Zhao
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Guo‐chao Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Min Zhou
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Xue‐mei Zhu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Su‐ke Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ping Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Jing Wang
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Meng Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ji‐gang Lei
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Dong Xu
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ying‐gang Zhu
- Department of Pulmonary and Critical Care MedicineHua‐dong HospitalFudan UniversityShanghaiChina
| | - Jie‐ming Qu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| |
Collapse
|
39
|
The Influence of Formulation Components and Environmental Humidity on Spray-Dried Phage Powders for Treatment of Respiratory Infections Caused by Acinetobacter baumannii. Pharmaceutics 2021; 13:pharmaceutics13081162. [PMID: 34452123 PMCID: PMC8401170 DOI: 10.3390/pharmaceutics13081162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The feasibility of using respirable bacteriophage (phage) powder to treat lung infections has been demonstrated in animal models and clinical studies. This work investigated the influence of formulation compositions and excipient concentrations on the aerosol performance and storage stability of phage powder. An anti-Acinetobacter baumannii phage vB_AbaM-IME-AB406 was incorporated into dry powders consisting of trehalose, mannitol and L-leucine for the first time. The phage stability upon the spray-drying process, room temperature storage and powder dispersion under different humidity conditions were assessed. In general, powders prepared with higher mannitol content (40% of the total solids) showed a lower degree of particle merging and no sense of stickiness during sample handling. These formulations also provided better storage stability of phage with no further titer loss after 1 month and <1 log titer loss in 6 months at high excipient concentration. Mannitol improved the dispersibility of phage powders, but the in vitro lung dose dropped sharply after exposure to high-humidity condition (65% RH) for formulations with 20% mannitol. While previously collected knowledge on phage powder preparation could be largely extended to formulate A. baumannii phage into inhalable dry powders, the environmental humidity may have great impacts on the stability and dispersion of phage; therefore, specific attention is required when optimizing phage powder formulations for global distribution.
Collapse
|
40
|
Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021; 14:725. [PMID: 34451824 PMCID: PMC8400724 DOI: 10.3390/ph14080725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
Collapse
Affiliation(s)
- Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark;
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Fadi G. Saqallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| |
Collapse
|
41
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
42
|
Dau VT, Bui TT, Tran CD, Nguyen TV, Nguyen TK, Dinh T, Phan HP, Wibowo D, Rehm BHA, Ta HT, Nguyen NT, Dao DV. In-air particle generation by on-chip electrohydrodynamics. LAB ON A CHIP 2021; 21:1779-1787. [PMID: 33730135 DOI: 10.1039/d0lc01247e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles. The concept can be beneficial to pulmonary nano-medicine delivery since the mist of nanoparticles is migrated without any restriction of either the collector or the assistance of external flow, but is pretty simple in designing and manufacturing devices.
Collapse
Affiliation(s)
- Van T Dau
- School of Engineering and Built Environment, Griffith University, Australia. and Centre of Catalysis and Clean Energy, Griffith University, Australia
| | - Tung T Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Thanh Viet Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia and School of Environment and Science, Griffith University, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Dzung V Dao
- School of Engineering and Built Environment, Griffith University, Australia. and Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| |
Collapse
|
43
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
44
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
45
|
Chen J, Ahmed MU, Zhu C, Yu S, Pan W, Velkov T, Li J, Tony Zhou Q. In vitro evaluation of drug delivery behavior for inhalable amorphous nanoparticle formulations in a human lung epithelial cell model. Int J Pharm 2021; 596:120211. [PMID: 33486036 DOI: 10.1016/j.ijpharm.2021.120211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Respiratory tract infections caused by multidrug-resistant (MDR) Gram-negative bacteria such as Pseudomonas aeruginosa are serious burdens to public health, especially in cystic fibrosis patients. The combination of colistin, a cationic polypeptide antibiotic, and ivacaftor, a cystic fibrosis transmembrane regulator (CFTR) protein modulator, displays a synergistic antibacterial effect against P. aeruginosa. The primary aim of the present study is to investigate the transport, accumulation and toxicity of a novel nanoparticle formulation containing colistin and ivacaftor in lung epithelial Calu-3 cells. The cell viability results demonstrated that ivacaftor alone or in combination with colistin in the physical mixture showed significant toxicity at an ivacaftor concentration of 10 μg/mL or higher. However, the cellular toxicity was significantly reduced in the nanoparticle formulation. Ivacaftor transport into the cells reached a plateau rapidly as compared to colistin. Colistin transport across the Calu-3 cell monolayer was less than ivacaftor. A substantial amount (46-83%) of ivacaftor, independent of dose, was accumulated in the cell monolayer following transport from the apical into the basal chamber, whereas the intracellular accumulation of colistin was relatively low (2-15%). The nanoparticle formulation significantly reduced the toxicity of colistin and ivacaftor to Calu-3 cells by reducing the accumulation of both drugs in the cell and potential protective effects by bovine serum albumin (BSA), which could be a promising safer option for the treatment of respiratory infections caused by MDR P. aeruginosa.
Collapse
Affiliation(s)
- Jianting Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Maizbha U Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
46
|
Douafer H, Andrieu V, Wafo E, Sergent M, Brunel JM. Feasibility of an inhaled antibiotic/adjuvant dry powder combination using an experimental design approach. Int J Pharm 2021; 599:120414. [PMID: 33647405 DOI: 10.1016/j.ijpharm.2021.120414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
The global increase of multidrug resistant bacteria and the lack of new classes of antibiotic especially those targeting Gram-negative pathogens are leaving the clinicians disarmed to treat numerous bacterial infections. Recently, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising investigated solutions to circumvent this problem. In this context, we have recently identified a new polyamino-isoprenyl derivative NV716 able to potentiate, at a very low concentration the activity of doxycycline against resistant P. aeruginosa bacterial strains by increasing its intracellular concentration. In this study we will report an experimental protocol to optimize a dry powder for inhalation ensuring the simultaneous delivery of an antibiotic (doxycycline) and an adjuvant (the polyaminoisoprenyl derivative NV716 since aerosol therapy could allow a rapid drug administration and target the respiratory system by avoiding the first pass effect and minimizing undesirable systemic effects. Thus, an experimental design was carried out permitting to identify the influence of several factors on the aerosolization efficiency of our combination and allowing us to find the right composition and manufacture leading to the best optimization of the simultaneous delivery of the two compounds in the form of an inhalable powder. More precisely, the powders of the two active ingredients were prepared by freeze drying and their aerosolization was improved by the addition of carrier particles of lactose inhalation grade. Under these conditions, the best formulation was defined by combining the optimal factors leading to the best aerodynamic properties' values (the lowest MMAD (Mass Median Aerodynamic Diameter) and the highest FPF (Fraction of Fine Particles)) without even using sophisticated engineering techniques. Finally, our results suggest that these molecules could be successfully delivered at the requested concentration in the lungs and then able to decrease drug consumption as well as increase treatment efficacy.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | - Emmanuel Wafo
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Michelle Sergent
- Aix Marseille Univ, IMBE, UMR CNRS IRD Avignon Université, Site de l'Etoile, Marseille, France
| | | |
Collapse
|
47
|
Zheng Z, Leung SSY, Gupta R. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications. Pharmaceutics 2021; 13:189. [PMID: 33535512 PMCID: PMC7912775 DOI: 10.3390/pharmaceutics13020189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients' inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.
Collapse
Affiliation(s)
- Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
48
|
Chaurasiya B, Zhao YY. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020; 13:pharmaceutics13010031. [PMID: 33379136 PMCID: PMC7824629 DOI: 10.3390/pharmaceutics13010031] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The pulmonary route has long been used for drug administration for both local and systemic treatment. It possesses several advantages, which can be categorized into physiological, i.e., large surface area, thin epithelial membrane, highly vascularized, limited enzymatic activity, and patient convenience, i.e., non-invasive, self-administration over oral and systemic routes of drug administration. However, the formulation of dry powder for pulmonary delivery is often challenging due to restrictions on aerodynamic size and the lung’s lower tolerance capacity in comparison with an oral route of drug administration. Various physicochemical properties of dry powder play a major role in the aerosolization, deposition, and clearance along the respiratory tract. To prepare suitable particles with optimal physicochemical properties for inhalation, various manufacturing methods have been established. The most frequently used industrial methods are milling and spray-drying, while several other alternative methods such as spray-freeze-drying, supercritical fluid, non-wetting templates, inkjet-printing, thin-film freezing, and hot-melt extrusion methods are also utilized. The aim of this review is to provide an overview of the respiratory tract structure, particle deposition patterns, and possible drug-clearance mechanisms from the lungs. This review also includes the physicochemical properties of dry powder, various techniques used for the preparation of dry powders, and factors affecting the clinical efficacy, as well as various challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Birendra Chaurasiya
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, and Department of Medicine (Division of Pulmonary and Critical Care Division), Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-(312)-503-7593
| |
Collapse
|
49
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Merckx P, Lammens J, Nuytten G, Bogaert B, Guagliardo R, Maes T, Vervaet C, De Beer T, De Smedt SC, Raemdonck K. Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy. Eur J Pharm Biopharm 2020; 157:191-199. [PMID: 33022391 DOI: 10.1016/j.ejpb.2020.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) enables highly specific silencing of potential target genes for treatment of pulmonary pathologies. The intracellular RNAi pathway can be activated by cytosolic delivery of small interfering RNA (siRNA), inducing sequence-specific gene knockdown on the post-transcriptional level. Although siRNA drugs hold many advantages over currently applied therapies, their clinical translation is hampered by inefficient delivery across cellular membranes. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). The latter enhances both particle stability as well as intracellular siRNA delivery, which was shown to be governed by the PS-associated surfactant protein B (SP-B). Despite having a proven in vitro and in vivo siRNA delivery potential when prepared ex novo, clinical translation of this liquid nanoparticle suspension requires the identification of a long-term preservation strategy that maintains nanoparticle stability and potency. In addition, to achieve optimal pulmonary deposition of the nanocomposite, its compatibility with state-of-the-art pulmonary administration techniques should be evaluated. Here, we demonstrate that PS-coated nanogels can be lyophilized, reconstituted and subsequently nebulized via a vibrating mesh nebulizer. The particles retain their physicochemical integrity and their ability to deliver siRNA in a human lung epithelial cell line. The latter result suggests that the functional integrity of SP-B in the PS coat towards siRNA delivery might be preserved as well. Of note, successful lyophilization was achieved without the need for stabilizing lyo- or cryoprotectants. Our results demonstrate that PS-coated siRNA-loaded nanogels can be lyophilized, which offers the prospect of long-term storage. In addition, the formulation was demonstrated to be suitable for local administration with a state-of-the-art nebulizer for human use upon reconstitution. Hence, the data presented in this study represent an important step towards clinical application of such nanocomposites for treatment of pulmonary disease.
Collapse
Affiliation(s)
- Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Gust Nuytten
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|