1
|
Elia AC, Magara G, Pastorino P, Zaccaroni A, Caldaroni B, Andreini R, Righetti M, Silvi M, Dörr AJM, Prearo M. Ecotoxicity in Hyriopsis bialatus of copper and zinc biocides used in metal-based antifouling paints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18245-18258. [PMID: 34689271 DOI: 10.1007/s11356-021-17069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Biofouling is a costly burden for the shipping industry. Metal-based antifouling paints are widely used to protect submerged surfaces, but the release of metals from coatings and the recoating of hulls can leach large amounts of copper and zinc into aquatic environments, posing a risk for aquatic ecosystems and biodiversity. With this study, we studied the time-course metal accumulation and oxidative stress in the digestive gland and the gills of Hyriopsis bialatus, an Asian freshwater mussel, exposed to sublethal concentrations of cuprous chloride (50 and 5 µg/L) and zinc sulfate (1000 and 100 µg/L). Time-dependent accumulation was observed after exposure to copper, but zinc uptake was negligible. Integrated biomarker response (IBRv2) and statistical analysis of individual biomarker levels showed a greater biomarker response in the digestive gland and the gills after exposure to the higher concentration of CuCl and ZnSO4. Both compounds elicited a biochemical response, especially in the digestive gland. Glutathione peroxidase activity was increased after exposure to both metals at both concentrations, suggesting a powerful defense against lipid peroxidation. The biological impact of zinc was less than that of copper, suggesting mitigated ecological pressure.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy.
| | - Annalisa Zaccaroni
- Department of Veterinary Medical Sciences, University of Bologna, Cesenatico, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Rebecca Andreini
- Department of Veterinary Medical Sciences, University of Bologna, Cesenatico, Italy
| | - Marzia Righetti
- The Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Marina Silvi
- Department of Veterinary Medical Sciences, University of Bologna, Cesenatico, Italy
| | | | - Marino Prearo
- The Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| |
Collapse
|
2
|
Marine Neurotoxins' Effects on Environmental and Human Health: An OMICS Overview. Mar Drugs 2021; 20:md20010018. [PMID: 35049872 PMCID: PMC8778346 DOI: 10.3390/md20010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed.
Collapse
|
3
|
Hlaing SMM, Lou J, Cheng J, Xun X, Li M, Lu W, Hu X, Bao Z. Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase ( GPx) Genes in Scallops Exposed to Toxic Dinoflagellates. Toxins (Basel) 2020; 13:toxins13010021. [PMID: 33396547 PMCID: PMC7824116 DOI: 10.3390/toxins13010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Marine bivalves could accumulate paralytic shellfish toxins (PSTs) produced by toxic microalgae, which might induce oxidative stress. Glutathione peroxidases (GPxs) are key enzymes functioning in the antioxidant defense, whereas our understanding of their roles in PST challenge in bivalves is limited. Herein, through genome-wide screening, we identified nine (CfGPx) and eight (PyGPx) GPx genes in Zhikong scallop (Chlamys farreri) and Yesso scallop (Patinopecten yessoensis), respectively, and revealed the expansion of GPx3 sub-family in both species. RNA-Seq analysis revealed high expression of scallop GPx3s after D stage larva during early development, and in adult hepatopancreas. However, in scallops exposed to PST-producing dinoflagellates, no GPx was significantly induced in the hepatopancreas. In scallop kidneys where PSTs were transformed to higher toxic analogs, most CfGPxs were up-regulated, with CfGPx3s being acutely and chronically induced by Alexandrium minutum and A. catenella exposure, respectively, but only one PyGPx from GPx3 subfamily was up-regulated by A. catenella exposure. Our results suggest the function of scallop GPxs in protecting kidneys against the oxidative stresses by PST accumulation or transformation. The tissue-, species-, and toxin-dependent expression pattern of scallop GPxs also implied their functional diversity in response to toxin exposure.
Collapse
Affiliation(s)
- Sein Moh Moh Hlaing
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Moli Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Correspondence: (W.L.); (X.H.); Tel.: +86-532-82031802 (W.L.); +86-532-82031970 (X.H.)
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (W.L.); (X.H.); Tel.: +86-532-82031802 (W.L.); +86-532-82031970 (X.H.)
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Qu C, Liu S, Tang Z, Li J, Liao Z, Qi P. Response of a novel selenium-dependent glutathione peroxidase from thick shell mussel Mytilus coruscus exposed to lipopolysaccharide, copper and benzo[α]pyrene. FISH & SHELLFISH IMMUNOLOGY 2019; 89:595-602. [PMID: 30991153 DOI: 10.1016/j.fsi.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Glutathione peroxidase (GPx) plays an important antioxidant role in cellular defense against environmental stress. In the present study, a novel selenium-dependent glutathione peroxidase termed McSeGPx firstly identified in thick shell mussel Mytilus coruscus. McSeGPx consists of 197 amino acid residues, characterized with one selenocysteine residue encoded by an opal stop codon TGA, one selenocysteine insertion sequence (SECIS) in the 3' untranslated region (UTR), two active site motifs and one signature sequence motif. McSeGPx transcripts were constitutively expressed in all examined tissues, and were significantly induced in gills and digestive glands with the stimulations of lipopolysaccharide (LPS), copper (Cu) and benzo[α]pyrene (B[α]P). Additionally, rough increases in McSeGPx activity were detected in both tissues under the challenge of LPS, Cu and B[α]P. Collectively, these results suggested that McSeGPx affiliate to selenocysteine dependent GPx (SeGPx) family and might play an important role in mediating the environmental stressors and antioxidant response in M. coruscus.
Collapse
Affiliation(s)
- Chengkai Qu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Shuobo Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China.
| |
Collapse
|
5
|
Fang Y, Pan X, Zhao E, Shi Y, Shen X, Wu J, Pei F, Hu Q, Qiu W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem 2019; 275:696-702. [DOI: 10.1016/j.foodchem.2018.09.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
|