1
|
Sheridan J, Grata A, Dorr J, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. Dev Biol 2025; 524:152-161. [PMID: 40381709 DOI: 10.1016/j.ydbio.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (∼50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We find that both the AK domain and the DPY30 domain are required for proper centriole regulation. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Julia Dorr
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Eve E Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Linus R Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA; Northwestern University, Lurie Cancer Center, USA.
| |
Collapse
|
2
|
Bankolé A, Srivastava A, Shihavuddin A, Tighanimine K, Faucourt M, Koka V, Weill S, Nemazanyy I, Nelson AJ, Stokes MP, Delgehyr N, Genovesio A, Meunier A, Fumagalli S, Pende M, Spassky N. mTOR controls ependymal cell differentiation by targeting the alternative cell cycle and centrosomal proteins. EMBO Rep 2025:10.1038/s44319-025-00460-2. [PMID: 40307619 DOI: 10.1038/s44319-025-00460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
Collapse
Affiliation(s)
- Alexia Bankolé
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
- Department of EEE, Presidency University, Dhaka, Bangladesh
| | - Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Vonda Koka
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Solene Weill
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alissa J Nelson
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Mario Pende
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
| |
Collapse
|
3
|
Sarusie MVK, Rönnbäck C, Jespersgaard C, Baungaard S, Ali Y, Kessel L, Christensen ST, Brøndum-Nielsen K, Møllgård K, Rosenberg T, Larsen LA, Grønskov K. A novel GFAP frameshift variant identified in a family with optico-retinal dysplasia and vision impairment. Hum Mol Genet 2024; 33:2145-2158. [PMID: 39471354 DOI: 10.1093/hmg/ddae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
Gain-of-function variants in GFAP leads to protein aggregation and is the cause of the severe neurodegenerative disorder Alexander Disease (AxD), while loss of GFAP function has been considered benign. Here, we investigated a six-generation family, where multiple individuals presented with gliosis of the optic nerve head and visual impairment. Whole genome sequencing (WGS) revealed a frameshift variant in GFAP (c.928dup, p.(Met310Asnfs*113)) segregating with disease. Analysis of human embryonic tissues revealed strong expression of GFAP in retinal neural progenitors. A zebrafish model verified that c.928dup does not result in extensive GFAP protein aggregation and zebrafish gfap loss-of-function mutants showed vision impairment and retinal dysplasia, characterized by a significant loss of Müller glia cells and photoreceptor cells. Our findings show how different mutational mechanisms can cause diverging phenotypes and reveal a novel function of GFAP in vertebrate eye development.
Collapse
Affiliation(s)
- Menachem V K Sarusie
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Cecilia Rönnbäck
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Cathrine Jespersgaard
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Sif Baungaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yeasmeen Ali
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Karen Brøndum-Nielsen
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| |
Collapse
|
4
|
Fang C, Pan X, Li D, Chen W, Huang Y, Chen Y, Li L, Gao Q, Liang X, Li D, Zhu X, Yan X. Distinct roles of Kif6 and Kif9 in mammalian ciliary trafficking and motility. J Cell Biol 2024; 223:e202312060. [PMID: 39158699 PMCID: PMC11334332 DOI: 10.1083/jcb.202312060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.
Collapse
Affiliation(s)
- Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Sun L, Walls SA, Dang H, Quinney NL, Sears PR, Sadritabrizi T, Hasegawa K, Okuda K, Asakura T, Chang X, Zheng M, Mikami Y, Dizmond FU, Danilova D, Zhou L, Deshmukh A, Cholon DM, Radicioni G, Rogers TD, Kissner WJ, Markovetz MR, Guhr Lee TN, Gutay MI, Esther CR, Chua M, Grubb BR, Ehre C, Kesimer M, Hill DB, Ostrowski LE, Button B, Gentzsch M, Robinson C, Olivier KN, Freeman AF, Randell SH, O'Neal WK, Boucher RC, Chen G. Dysregulated Airway Host Defense in Hyper IgE Syndrome due to STAT3 Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607930. [PMID: 39211176 PMCID: PMC11361074 DOI: 10.1101/2024.08.14.607930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rationale Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, is a rare immunodeficiency disease typically caused by dominant-negative STAT3 mutations. STAT3-HIES syndrome is characterized by chronic pulmonary infection and inflammation, suggesting impairment of pulmonary innate host defense. Objectives To identify airway epithelial host defense defects consequent to STAT3 mutations that, in addition to reported mutant STAT3 immunologic abnormalities, produce pulmonary infection. Methods STAT3-HIES sputum was evaluated for biochemical/biophysical properties. STAT3-HIES excised lungs were harvested for histology; bronchial brush samples were collected for RNA sequencing and in vitro culture. A STAT3-HIES-specific mutation (R382W), expressed by lentiviruses, and a STAT3 knockout, generated by CRISPR/Cas9, were maintained in normal human bronchial epithelia under basal or inflammatory (IL1β) conditions. Effects of STAT3 deficiency on transcriptomics, and epithelial ion channel, secretory, antimicrobial, and ciliary functions were assessed. Measurements and Main Results Mucus concentrations and viscoelasticity were increased in STAT3-HIES sputum. STAT3-HIES excised lungs exhibited mucus obstruction and elevated IL1β expression. STAT3 deficiency impaired CFTR-dependent fluid and mucin secretion, inhibited expression of antimicrobial peptides, cytokines, and chemokines, and acidified airway surface liquid at baseline and post-IL1β exposure in vitro. Notably, mutant STAT3 suppressed IL1R1 expression. STAT3 mutations also inhibited ciliogenesis in vivo and impaired mucociliary transport in vitro, a process mediated via HES6 suppression. Administration of a γ-secretase inhibitor increased HES6 expression and improved ciliogenesis in STAT3 R382W mutant cells. Conclusions STAT3 dysfunction leads to multi-component defects in airway epithelial innate defense, which, in conjunction with STAT3-HIES immune deficiency, contributes to chronic pulmonary infection.
Collapse
|
6
|
Bizaki-Vallaskangas A, Rämö J, Sliz E, Kivekäs I, Willberg T, Saarentaus E, Toppila-Salmi S, Dietz A, Haapaniemi T, Hytönen VP, Toivola S, Palotie A, Mäkitie A, Kettunen J. Genome-wide association study indicates novel associations of annexin A13 to secretory and GAS2L2 with mucous otitis media. Sci Rep 2024; 14:18344. [PMID: 39112560 PMCID: PMC11306868 DOI: 10.1038/s41598-024-68781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
To evaluate the genetics of chronic nonsuppurative otitis media (OM). We performed a genome-wide association study of 429,599 individuals included in the FinnGen study using three different case definitions: combined chronic nonsuppurative OM (7034 cases) (included serous and mucous chronic OM), mucous chronic OM (5953 cases), and secretory chronic OM (1689 cases). Individuals without otitis media were used as controls (417,745 controls). We used immunohistochemistry (IHC) of the murine middle ear to evaluate the expression of annexin A13. Four loci were significantly associated (p < 1.7 × 10-8) with nonsuppurative OM. Three out of the four association signals included missense variants in genes that may play a role in otitis media pathobiology. According to our subtype-specific analyses, one novel locus, located near ANXA13, was associated with secretory OM. Three loci (near TNFRSF13B, GAS2L2, and TBX1) were associated with mucous OM. Immunohistochemistry of murine middle ear samples revealed annexin A13 expression at the apical pole of the Eustachian tube epithelium as well as variable intensity of the secretory cells of the glandular structure in proximity to the Eustachian tube. We demonstrated that secretory and mucous OM have distinct and shared genetic associations. The association of GAS2L2 with ciliary epithelium function and the pathogenesis of dysfunctional mucosa in mucous OM is suggested. The abundant expression of annexin A13 in the Eustachian tube epithelium, along with its role in apical transport for the binding and transfer of phospholipids, indicates the role of annexin A13 and phospholipids in Eustachian tube dysfunction.
Collapse
Affiliation(s)
- Argyro Bizaki-Vallaskangas
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Joel Rämö
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Biocenter Oulu and the Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Ilkka Kivekäs
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tytti Willberg
- Department of Otolaryngology, Turku University Hospital, Turku, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sanna Toppila-Salmi
- Department of Otolaryngology, University of Eastern Finland, Kuopio, Finland
| | - Aarno Dietz
- Department of Otolaryngology, University of Eastern Finland, Kuopio, Finland
| | - Teppo Haapaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Sari Toivola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- Biocenter Oulu and the Research Unit of Population Health, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
James K, Oluwole OG. Leveraging human-mouse studies to advance the genetics of hearing impairment in Africa. J Gene Med 2024; 26:e3714. [PMID: 38949079 DOI: 10.1002/jgm.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/10/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, in this review, we investigate the potential of using genetic mouse models to identify genetic markers that can disrupt hearing thresholds in mice and then target the hearing-enriched orthologues and loci in humans. Currently, little is known about the real prevalence of genes that cause hearing impairment (HI) in Africa. Pre-screening mouse cell lines to identify orthologues of interest has the potential to improve the genetic diagnosis for HI in Africa to a significant percentage, for example, 10-20%. Furthermore, the functionality of a candidate gene derived from mouse screening with heterogeneous genetic backgrounds and multi-omic approaches can shed light on the molecular, genetic heterogeneity and plausible mode of inheritance of a gene in hearing-impaired individuals especially in the absence of large families to investigate.
Collapse
Affiliation(s)
- Kili James
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Oluwafemi G Oluwole
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biomedical Research Centre, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024; 13:974. [PMID: 38891105 PMCID: PMC11171568 DOI: 10.3390/cells13110974] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous, motile ciliopathy, characterized by neonatal respiratory distress, recurrent upper and lower respiratory tract infections, subfertility, and laterality defects. Diagnosis relies on a combination of tests for confirmation, including nasal nitric oxide (nNO) measurements, high-speed videomicroscopy analysis (HSVMA), immunofluorescent staining, axonemal ultrastructure analysis via transmission electron microscopy (TEM), and genetic testing. Notably, there is no single gold standard confirmatory or exclusionary test. Currently, 54 causative genes involved in cilia assembly, structure, and function have been linked to PCD; this rare disease has a spectrum of clinical manifestations and emerging genotype-phenotype relationships. In this review, we provide an overview of the structure and function of motile cilia, the emerging genetics and pathophysiology of this rare disease, as well as clinical features associated with motile ciliopathies, novel diagnostic tools, and updates on genotype-phenotype relationships in PCD.
Collapse
Affiliation(s)
- Katherine A. Despotes
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Takeuchi K, Abo M, Date H, Gotoh S, Kamijo A, Kaneko T, Keicho N, Kodama S, Koinuma G, Kondo M, Masuda S, Mori E, Morimoto K, Nagao M, Nakano A, Nakatani K, Nishida N, Nishikido T, Ohara H, Okinaka Y, Sakaida H, Shiraishi K, Suzaki I, Tojima I, Tsunemi Y, Kainuma K, Ota N, Takeno S, Fujieda S. Practical guide for the diagnosis and management of primary ciliary dyskinesia. Auris Nasus Larynx 2024; 51:553-568. [PMID: 38537559 DOI: 10.1016/j.anl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Primary ciliary dyskinesia (PCD) is a relatively rare genetic disorder that affects approximately 1 in 20,000 people. Approximately 50 genes are currently known to cause PCD. In light of differences in causative genes and the medical system in Japan compared with other countries, a practical guide was needed for the diagnosis and management of Japanese PCD patients. METHODS An ad hoc academic committee was organized under the Japanese Rhinologic Society to produce a practical guide, with participation by committee members from several academic societies in Japan. The practical guide including diagnostic criteria for PCD was approved by the Japanese Rhinologic Society, Japanese Society of Otolaryngology-Head and Neck Surgery, Japanese Respiratory Society, and Japanese Society of Pediatric Pulmonology. RESULTS The diagnostic criteria for PCD consist of six clinical features, six laboratory findings, differential diagnosis, and genetic testing. The diagnosis of PCD is categorized as definite, probable, or possible PCD based on a combination of the four items above. Diagnosis of definite PCD requires exclusion of cystic fibrosis and primary immunodeficiency, at least one of the six clinical features, and a positive result for at least one of the following: (1) Class 1 defect on electron microscopy of cilia, (2) pathogenic or likely pathogenic variants in a PCD-related gene, or (3) impairment of ciliary motility that can be repaired by correcting the causative gene variants in iPS cells established from the patient's peripheral blood cells. CONCLUSION This practical guide provides clinicians with useful information for the diagnosis and management of PCD in Japan.
Collapse
Affiliation(s)
- Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Miki Abo
- Kanazawa University Health Service Center Respiratory Medicine, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell, Research and Application, Kyoto University, Japan
| | | | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | | | - Goro Koinuma
- Department of Medical Subspecialties, Division of Pulmonology, National Center for Child Health and Development, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women's Medical University, Japan
| | - Sawako Masuda
- Department of Otorhinolaryngology, National Hospital Organization Mie National Hospital, Japan
| | - Eri Mori
- Department of Otorhinolaryngology, Jikei University, Japan
| | - Kozo Morimoto
- Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
| | - Mizuho Nagao
- National Hospital Organization Mie National Hospital, Japan
| | - Atsuko Nakano
- Department of Otorhinolaryngology, Chiba Children's Hospital, Japan
| | | | - Naoya Nishida
- Department of Otolaryngology, Ehime University, Japan
| | - Tomoki Nishikido
- Department of Pediatric Pulmonology and Allergy, Osaka Women's and Children's Hospital, Japan
| | - Hirotatsu Ohara
- Department of Otorhinolaryngology, Mito Kyodo General Hospital, Japan
| | - Yosuke Okinaka
- Department of Otorhinolaryngology, Yamaguchi University, Japan
| | - Hiroshi Sakaida
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | - Isao Suzaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Showa University, Japan
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Japan
| | - Yasuhiro Tsunemi
- Department of Otorhinolaryngology, Dokkyo Medical University, Japan
| | | | - Nobuo Ota
- Department of Otorhinolaryngology, Tohoku Medical and Pharmaceutical University, Japan
| | - Sachio Takeno
- Department of Otolaryngology, Head and Neck Surgery, Hiroshima University, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Japan
| |
Collapse
|
10
|
Lee JY, Moon J, Hu HJ, Ryu CS, Ko EJ, Ahn EH, Kim YR, Kim JH, Kim NK. Discovery of Pathogenic Variants Associated with Idiopathic Recurrent Pregnancy Loss Using Whole-Exome Sequencing. Int J Mol Sci 2024; 25:5447. [PMID: 38791485 PMCID: PMC11121708 DOI: 10.3390/ijms25105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Idiopathic recurrent pregnancy loss (RPL) is defined as at least two pregnancy losses before 20 weeks of gestation. Approximately 5% of pregnant couples experience idiopathic RPL, which is a heterogeneous disease with various causes including hormonal, chromosomal, and intrauterine abnormalities. Although how pregnancy loss occurs is still unknown, numerous biological factors are associated with the incidence of pregnancy loss, including genetic variants. Whole-exome sequencing (WES) was conducted on blood samples from 56 Korean patients with RPL and 40 healthy controls. The WES data were aligned by means of bioinformatic analysis, and the detected variants were annotated using machine learning tools to predict the pathogenicity of protein alterations. Each indicated variant was confirmed using Sanger sequencing. A replication study was also conducted in 112 patients and 114 controls. The Variant Effect Scoring Tool, Combined Annotation Dependent Depletion tool, Sorting Intolerant from Tolerant annotation tool, and various databases detected 10 potential variants previously associated with spontaneous abortion genes in patients by means of a bioinformatic analysis of WES data. Several variants were detected in more than one patient. Interestingly, several of the detected genes were functionally clustered, including some with a secretory function (mucin 4; MUC4; rs200737893 G>A and hyaluronan-binding protein 2; HABP2; rs542838125 G>T), in which growth arrest-specific 2 Like 2 (GAS2L2; rs140842796 C>T) and dynamin 2 (DNM2; rs763894364 G>A) are functionally associated with cell protrusion and the cytoskeleton. ATP Binding Cassette Subfamily C Member 6 (ABCC6) was the only gene with two variants. HABP2 (rs542838125 G>T), MUC4 (rs200737893 G>A), and GAS2L2 (rs140842796 C>T) were detected in only the patient group in the replication study. The combination of WES and machine learning tools is a useful method to detect potential variants associated with RPL. Using bioinformatic tools, we found 10 potential variants in 9 genes. WES data from patients are needed to better understand the causes of RPL.
Collapse
Affiliation(s)
- Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - JaeWoo Moon
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Hae-Jin Hu
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| |
Collapse
|
11
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
12
|
Ge H, Zhou W, He M, Zheng H, Zhao X, Zhang T, Zhang Y, Shao C, Cheng C, Liu Y, Tian X, Xu K, Zhang X. Mutations in CFAP47, a previously reported MMAF causative gene, also contribute to the respiratory defects in patients with PCD. Mol Genet Genomic Med 2024; 12:e2278. [PMID: 37723893 PMCID: PMC10767284 DOI: 10.1002/mgg3.2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic ciliopathy characterized by dysfunction of motile cilia. Currently, approximately 50 causative genes accounting for 60%-70% of all PCD cases have been identified in PCD-affected individuals, but the etiology in approximately 30%-40% of PCD cases remains unknown. METHODS We analyzed the clinical and genetic data of two PCD individuals who were suspected of having PCD. Whole-exome sequencing and Sanger sequencing were performed to identify and verify the variants in CFAP47. We also evaluated the expression of CFAP47 by real-time quantitative PCR and immunofluorescence. Transmission electron microscopy in respiratory epithelial cells was also conducted to analyze ciliary function. RESULTS Two hemizygous missense variants of X-linked CFAP47 in two unrelated PCD individuals were identified. The expression of CFAP47 in two PCD individuals was significantly reduced in vivo and in vitro assays. A reduction in the amount of epithelial ciliary cells and basal bodies from PCD individuals was also observed. CONCLUSIONS We describe two hemizygous missense variants of X-linked CFAP47 in two unrelated PCD individuals and prove CFAP47 variants are related to a reduced number of epithelial ciliary cells. Therefore, we suggest that CFAP47 should be known as a novel pathogenic gene of human PCD.
Collapse
Affiliation(s)
- Haijun Ge
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao He
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Haixia Zheng
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinyue Zhao
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ting Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ying Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chi Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yaping Liu
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kai‐Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Zhao X, Ge H, Xu W, Cheng C, Zhou W, Xu Y, Fan J, Liu Y, Tian X, Xu KF, Zhang X. Lack of CFAP54 causes primary ciliary dyskinesia in a mouse model and human patients. Front Med 2023; 17:1236-1249. [PMID: 37725231 DOI: 10.1007/s11684-023-0997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/06/2023] [Indexed: 09/21/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a highly heterogeneous recessive inherited disorder. FAP54, the homolog of CFAP54 in Chlamydomonas reinhardtii, was previously demonstrated as the C1d projection of the central microtubule apparatus of flagella. A Cfap54 knockout mouse model was then reported to have PCD-relevant phenotypes. Through whole-exome sequencing, compound heterozygous variants c.2649_2657delinC (p. E883Dfs*47) and c.7312_7313insCGCAGGCTGAATTCTTGG (p. T2438delinsTQAEFLA) in a new suspected PCD-relevant gene, CFAP54, were identified in an individual with PCD. Two missense variants, c.4112A>C (p. E1371A) and c.6559C>T (p. P2187S), in CFAP54 were detected in another unrelated patient. In this study, a minigene assay was conducted on the frameshift mutation showing a reduction in mRNA expression. In addition, a CFAP54 in-frame variant knock-in mouse model was established, which recapitulated the typical symptoms of PCD, including hydrocephalus, infertility, and mucus accumulation in nasal sinuses. Correspondingly, two missense variants were deleterious, with a dramatic reduction in mRNA abundance from bronchial tissue and sperm. The identification of PCD-causing variants of CFAP54 in two unrelated patients with PCD for the first time provides strong supportive evidence that CFAP54 is a new PCD-causing gene. This study further helps expand the disease-associated gene spectrum and improve genetic testing for PCD diagnosis in the future.
Collapse
Affiliation(s)
- Xinyue Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Haijun Ge
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wenshuai Xu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Junping Fan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
15
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Xia T, Umezu K, Scully DM, Wang S, Larina IV. In vivo volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography. OPTICA 2023; 10:1439-1451. [PMID: 38665775 PMCID: PMC11044847 DOI: 10.1364/optica.499927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Deirdre M. Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Sheridan J, Grata A, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Novel centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550535. [PMID: 37546962 PMCID: PMC10402086 DOI: 10.1101/2023.07.25.550535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (~50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn, significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Linus R. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Northwestern University, Lurie Cancer Center
| |
Collapse
|
18
|
Horani A, Gupta DK, Xu J, Xu H, del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennan SK, Pan J, Koenitzer JR, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. JCI Insight 2023; 8:e168836. [PMID: 37104040 PMCID: PMC10393236 DOI: 10.1172/jci.insight.168836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics
- Department of Cell Biology and Physiology
| | | | | | | | | | | | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pleasantine Mill
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Moe R. Mahjoub
- Department of Cell Biology and Physiology
- Department of Medicine
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
19
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
20
|
Barber AT, Shapiro AJ, Davis SD, Ferkol TW, Atkinson JJ, Sagel SD, Dell SD, Olivier KN, Milla CE, Rosenfeld M, Li L, Lin FC, Sullivan KM, Capps NA, Zariwala MA, Knowles MR, Leigh MW. Laterality Defects in Primary Ciliary Dyskinesia: Relationship to Ultrastructural Defect or Genotype. Ann Am Thorac Soc 2023; 20:397-405. [PMID: 36342963 PMCID: PMC9993158 DOI: 10.1513/annalsats.202206-487oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The association between organ laterality abnormalities and ciliary ultrastructural defect or genotype in primary ciliary dyskinesia is poorly understood. Objectives: To determine if there is an association between presence and/or type of laterality abnormality and ciliary ultrastructural defect or genotype. Methods: Participants with primary ciliary dyskinesia in a multicenter, prospective study were grouped based on ciliary ultrastructural defect or genotype. In a retrospective analysis of these data, the association of ciliary ultrastructural defect or genotype and likelihood of a laterality abnormality was evaluated by logistic regression adjusted for presence of two loss-of-function versus one or more not-loss-of-function variants. Results: Of 559 participants, 286 (51.2%), 215 (38.5%), and 58 (10.4%) were identified as having situs solitus, situs inversustotalis, and situs ambiguus, respectively; heterotaxy, defined as situs ambiguus with complex cardiovascular defects, was present in 14 (2.5%). Compared with the group with inner dynein arm defects with microtubular disorganization, laterality defects were more likely in the outer dynein arm defects group (odds ratio [OR], 2.07; 95% confidence interval [CI], 1.21-3.54; P < 0.01) and less likely in the normal/near normal ultrastructure group (OR, 0.04; 95% CI, 0.013-0.151; P < 0.01). Heterotaxy was present in 11 of 242 (4.5%) in the outer dynein arm defects group but 0 of 96 in the inner dynein arm defects with microtubular disorganization group (P = 0.038). Conclusion: In primary ciliary dyskinesia, risk of a laterality abnormality differs by ciliary ultrastructural defect. Pathophysiologic mechanisms underlying these differences require further exploration.
Collapse
Affiliation(s)
| | - Adam J. Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | | | | | - Jeffrey J. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Sharon D. Dell
- Department of Pediatrics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kenneth N. Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Carlos E. Milla
- Department of Pediatrics, Stanford University, Palo Alto, California
| | - Margaret Rosenfeld
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, Washington; and
| | - Lang Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | - Margaret W. Leigh
- Marsico Lung Institute
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
22
|
Horani A, Gupta DK, Xu J, Xu H, Del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennen SK, Pan J, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523966. [PMID: 36712068 PMCID: PMC9882222 DOI: 10.1101/2023.01.13.523966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift null deletion in Dnaaf5 . Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partial preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. While transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. Together, these findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies. Brief Summary A mouse model of human DNAAF5 primary ciliary dyskinesia variants reveals gene dosage effects of mutant alleles and tissue-specific molecular requirements for cilia motor assembly.
Collapse
|
23
|
Analysis of motility and mucociliary function of tracheal epithelial cilia. Methods Cell Biol 2023; 176:159-180. [PMID: 37164536 DOI: 10.1016/bs.mcb.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The airway epithelium contains numerous multiciliated cells. The apical surface of multiciliated cells is covered with cilia that move at 15-25Hz. Ciliary movement is not a simple reciprocal movement and distinctly has forward and reverse movements called effective and recovery strokes, respectively. These "asymmetric" ciliary strokes push away the mucus covering the mucosa of the airway epithelium. Mucus flow created by ciliary stroke is important for capturing and expelling dust, pollen, PM2.5, pathogens, and other particles that enter the airways from outside the body. This mechanism for protecting the airways produced by ciliary movement is called mucociliary function. Defects in ciliary motility lead to impairment of mucociliary function, resulting in recurrent airway infections such as bronchitis and pneumonia, and consequently, bronchiectasis. While the analysis of ciliary beat frequency is relatively easy, the analyses of the amplitude, velocities of strokes, and the asymmetric level require specific techniques and tips. In this chapter, we present methods for the analysis of ciliary movements of a group of cilia on the luminal surface of the trachea ex vivo and individually isolated and ATP-reactivated cilia in vitro. In addition, a method for the analysis of mucociliary function is also presented.
Collapse
|
24
|
Zhang D, Wang W, Li Z, Wang L, Liu D. Deciphering the lncRNA and mRNA profiles of Min pig backfat after acute cold stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| |
Collapse
|
25
|
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM. Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis. Eur Respir J 2022; 60:13993003.00176-2022. [PMID: 35728977 DOI: 10.1183/13993003.00176-2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Collapse
Affiliation(s)
- Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claire Hogg
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Jenny Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Mary Carroll
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust and NHLI, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- These authors contributed equally to this manuscript
| | - Anthony De Soyza
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
- These authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vazquez SE, Mann SA, Bodansky A, Kung AF, Quandt Z, Ferré EMN, Landegren N, Eriksson D, Bastard P, Zhang SY, Liu J, Mitchell A, Proekt I, Yu D, Mandel-Brehm C, Wang CY, Miao B, Sowa G, Zorn K, Chan AY, Tagi VM, Shimizu C, Tremoulet A, Lynch K, Wilson MR, Kämpe O, Dobbs K, Delmonte OM, Bacchetta R, Notarangelo LD, Burns JC, Casanova JL, Lionakis MS, Torgerson TR, Anderson MS, DeRisi JL. Autoantibody discovery across monogenic, acquired, and COVID-19-associated autoimmunity with scalable PhIP-seq. eLife 2022; 11:e78550. [PMID: 36300623 PMCID: PMC9711525 DOI: 10.7554/elife.78550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
Collapse
Affiliation(s)
- Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Nils Landegren
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Science for life Laboratory, Department of Medical Sciences, Uppsala UniversityUppsalaSweden
| | - Daniel Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
- Centre for Molecular Medicine, Department of Medicine, Karolinska InstitutetStockholmSweden
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San FranciscoSan FranciscoUnited States
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Irina Proekt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - David Yu
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Chung-Yu Wang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Brenda Miao
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Gavin Sowa
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Bone and Marrow Transplantation, Division of Pediatric Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Veronica M Tagi
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Kara Lynch
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Zuckerberg San Francisco GeneralSan FranciscoUnited States
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Olle Kämpe
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of BergenBergenNorway
- Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University HospitalStockholmSweden
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Troy R Torgerson
- Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
27
|
Yang B, Lei C, Yang D, Lu C, Xu Y, Wang L, Guo T, Wang R, Luo H. Identification of a Novel OFD1 Variant in a Patient with Primary Ciliary Dyskinesia. Pharmgenomics Pers Med 2022; 15:697-704. [PMID: 35847568 PMCID: PMC9285985 DOI: 10.2147/pgpm.s365740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background OFD1 encodes a protein with 1012 amino acids, which is a component of basal bodies and centrioles, essential for cilia biogenesis. OFD1 was reported to be associated with X-chromosome linked dysmorphology syndrome in early studies and recent studies reported a few cases with primary ciliary dyskinesia (PCD) caused by OFD1 deficiency. Case Presentation We report a 31-year-old man who suffered from recurrent respiratory infections with typical manifestations of primary ciliary dyskinesia. In addition to respiratory manifestations, the patient also had situs inversus, obesity, gastroesophageal reflux, and hearing impairment. Clubbing fingers and mild streblomicrodactyly were also observed. Examination Result We performed whole-exome sequencing to identify a novel variant c.2795delA:p.(Lys932Argfs*3) in OFD1. The hemizygous variant was predicted to be likely pathogenic by bioinformatic analysis software and ACMG guideline. High-speed video microscopy (HSVM), transmission electron microscopy (TEM), and immunofluorescence were performed to analyze the respiratory cilia. A high beating frequency and a stiff beating pattern were observed under HSVM, while there were no significant abnormalities in TEM and immunofluorescence. The sperm flagella examinations were also generally normal. Conclusion Our study identified a novel frameshift variant in OFD1 causing PCD, enriched the genetic spectrum of OFD1 variants, and verified that OFD1 mutation can lead to only a PCD characteristic phenotype, while other OFD1-associated syndromic symptoms such as dysmorphic features and renal symptoms were not present.
Collapse
Affiliation(s)
- Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Rongchun Wang; Hong Luo, Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China, Email ;
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
28
|
Scopulovic L, Francis D, Pandzic E, Francis R. Quantifying cilia beat frequency using high-speed video microscopy: Assessing frame rate requirements when imaging different ciliated tissues. Physiol Rep 2022; 10:e15349. [PMID: 35678028 PMCID: PMC9178357 DOI: 10.14814/phy2.15349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Motile cilia are found in numerous locations throughout our body and play a critical role in various physiological processes. The most commonly used method to assess cilia motility is to quantify cilia beat frequency (CBF) via video microscopy. However, a large heterogeneity exists within published literature regarding the framerate used to image cilia motility for calculating CBF. The aim of this study was to determine the optimal frame rate required to image cilia motility for CBF assessment, and if the Nyquist theorem may be used to set this rate. One‐second movies of cilia were collected at >600 fps from mouse airways and ependyma at room‐temperature or 37°C. Movies were then down‐sampled to 30–300 fps. CBF was quantified for identical cilia at different framerates by either manual counting or automated MATLAB script. Airway CBF was significantly impaired in 30 fps movies, while ependymal CBF was significantly impaired in both 60 and 30 fps movies. Pairwise comparison showed that video framerate should be at least 150 fps to accurately measure CBF, with minimal improvement in CBF accuracy in movies >150 fps. The automated script was also found to be less accurate for measuring CBF in lower fps movies than manual counting, however, this difference disappeared in higher framerate movies (>150 fps). In conclusion, our data suggest the Nyquist theorem is unreliable for setting sampling rate for CBF measurement. Instead, sampling rate should be 3–4 times faster than CBF for accurate CBF assessment. Especially if CBF calculation is to be automated.
Collapse
Affiliation(s)
- Luke Scopulovic
- Cilia Research Laboratory, College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Deanne Francis
- Cilia Research Laboratory, College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard Francis
- Cilia Research Laboratory, College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
29
|
High Nasal Nitric Oxide, Cilia Analyses and Genotypes in a Retrospective Cohort of Children with Primary Ciliary Dyskinesia. Ann Am Thorac Soc 2022; 19:1704-1712. [PMID: 35622418 DOI: 10.1513/annalsats.202110-1175oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE While children with primary ciliary dyskinesia (PCD) typically have low nasal nitric oxide (nNO), some children with indisputable PCD may have unexplained high nNO levels. OBJECTIVES To look for relationships between nNO measures and genetic findings (and cilia motility or ultrastructure when available) in PCD children with a known genotype. METHODS We studied retrospectively 73 PCD children (median (range) age 9.5 (2.1 to 18.2) years). nNO was the mean value of a plateau reached while velum was closed (nNO-VC, threshold 77 nL.min-1), or calculated as the average of 5 peaks obtained during tidal breathing (nNO-TB, threshold 40 nL.min-1). Cilia beat was classified either as motile (including dyskinetic pattern) or immotile depending on whether motility was present or absent in all cilia, or as a mixture of motile and immotile cilia. Genotypes were classified as: pathogenic mutations in a gene known to be associated with high nNO (mild genotype); bi-allelic truncating mutations in other genes (severe mutations); putative hypomorphic pathogenic mutation (missense, single amino-acid deletion or moderate splicing mutations) in at least one allele thought to be possibly associated with a residual production of a functional protein. RESULTS nNO was above the discriminant threshold in 16/73 (21.9%) children (11 nNO-VC and 5 nNO-TB). High nNO was less frequent in children with severe mutations (2/42) than in those with mild genotypes (7/10) or at least one hypomorphic mutation (7/21)(P < 0.0001). Median [IQR] nNO-VC values (n=60) were significantly different in the three genotypic groups: severe mutations 18 [10;26] nL.min-1 (n=36), possible residual functional protein production (putative hypomorphic mutations) 23 [16;68] nL.min-1 (n=17), and mild genotypes 139 [57;216] nL.min-1 (n=7); P=0.0002. The higher the cilia motility the higher the nNO-VC (16 [10;23], 23 [17;56], and 78 [45;93] nL.min-1 in patients with respectively immotile, dyskinetic motile/immotile, and dyskinetic motile cilia; P<0.0001), while nNO values were scattered across different ultrastructure defects (P = 0.07). CONCLUSIONS In PCD children, high nNO values were linked not only to specific genes and but also to potentially hypomorphic mutations in other genes (with possible functional protein production). nNO values increased with the proportion of motile cilia.
Collapse
|
30
|
Lin A, Piehowski PD, Tsai CF, Makushok T, Yi L, Diaz U, Yan C, Summers D, Sood P, Smith RD, Liu T, Marshall WF. Determining protein polarization proteome-wide using physical dissection of individual Stentor coeruleus cells. Curr Biol 2022; 32:2300-2308.e4. [PMID: 35447087 PMCID: PMC9133221 DOI: 10.1016/j.cub.2022.03.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
Cellular components are non-randomly arranged with respect to the shape and polarity of the whole cell.1-4 Patterning within cells can extend down to the level of individual proteins and mRNA.5,6 But how much of the proteome is actually localized with respect to cell polarity axes? Proteomics combined with cellular fractionation7-11 has shown that most proteins localize to one or more organelles but does not tell us how many proteins have a polarized localization with respect to the large-scale polarity axes of the intact cell. Genome-wide localization studies in yeast12-15 found that only a few percent of proteins have a localized position relative to the cell polarity axis defined by sites of polarized cell growth. Here, we describe an approach for analyzing protein distribution within a cell with a visibly obvious global patterning-the giant ciliate Stentor coeruleus.16,17 Ciliates, including Stentor, have highly polarized cell shapes with visible surface patterning.1,18 A Stentor cell is roughly 2 mm long, allowing a "proteomic dissection" in which microsurgery is used to separate cellular fragments along the anterior-posterior axis, followed by comparative proteomic analysis. In our analysis, 25% of the proteome, including signaling proteins, centrin/SFI proteins, and GAS2 orthologs, shows a polarized location along the cell's anterior-posterior axis. We conclude that a large proportion of all proteins are polarized with respect to global cell polarity axes and that proteomic dissection provides a simple and effective approach for spatial proteomics.
Collapse
Affiliation(s)
- Athena Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Piehowski
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Chia-Feng Tsai
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tatyana Makushok
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lian Yi
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ulises Diaz
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Connie Yan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diana Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pranidhi Sood
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard D Smith
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tao Liu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, United States of America.
| |
Collapse
|
31
|
Vazquez SE, Mann SA, Bodansky A, Kung AF, Quandt Z, Ferré EMN, Landegren N, Eriksson D, Bastard P, Zhang SY, Liu J, Mitchell A, Mandel-Brehm C, Miao B, Sowa G, Zorn K, Chan AY, Shimizu C, Tremoulet A, Lynch K, Wilson MR, Kampe O, Dobbs K, Delmonte OM, Notarangelo LD, Burns JC, Casanova JL, Lionakis MS, Torgerson TR, Anderson MS, DeRisi JL. Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.23.485509. [PMID: 35350199 PMCID: PMC8963698 DOI: 10.1101/2022.03.23.485509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
Collapse
Affiliation(s)
- Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Diabetes Center, University of California, San Francisco, San Francisco, United States
- School of Medicine, University of California, San Francisc, San Francisco, CA, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San Francisco, San Francisco, United State
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Zoe Quandt
- Department of Medicine, University of California, San Francisc, San Francisco, United States
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Elise M N Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
- Science for life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala 75237, Sweden
| | - Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University of Paris, Imagine Institute, Paris, France, EU
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, San Francisco, United States
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Brenda Miao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Gavin Sowa
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Alice Y Chan
- Department of Pediatrics, Division of Pediatric allergy, immunology, bone and marrow transplantation, Division of Pediatric Rheumatology, University of California, San Francisco, San Francisco, United States
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Kara Lynch
- Zuckerberg San Francisco General, San Francisco, CA 94110, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Olle Kampe
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University of Paris, Imagine Institute, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Troy R Torgerson
- Seattle Children's Research Institute, Seattle, United States
- Department of Pediatrics, University of Washington, Seattle, United States
- Current address: Allen Institute for Immunology, Seattle, United States
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
32
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
34
|
Ostrowski LE, Yin W, Smith AJ, Sears PR, Bustamante-Marin XM, Dang H, Hildebrandt F, Daniels LA, Capps NA, Sullivan KM, Leigh MW, Zariwala MA, Knowles MR. Expression of a Truncated Form of ODAD1 Associated with an Unusually Mild Primary Ciliary Dyskinesia Phenotype. Int J Mol Sci 2022; 23:ijms23031753. [PMID: 35163670 PMCID: PMC8835943 DOI: 10.3390/ijms23031753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.
Collapse
Affiliation(s)
- Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.E.O.); (M.R.K.)
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02113, USA;
| | - Leigh Anne Daniels
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Nicole A. Capps
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Kelli M. Sullivan
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.E.O.); (M.R.K.)
| |
Collapse
|
35
|
Nommick A, Boutin C, Rosnet O, Schirmer C, Bazellières E, Thomé V, Loiseau E, Viallat A, Kodjabachian L. Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function. J Cell Sci 2022; 135:274401. [DOI: 10.1242/jcs.258960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliated epithelia perform essential functions across animal evolution, ranging from locomotion of marine organisms to mucociliary clearance of airways in mammals. These epithelia are composed of multiciliated cells (MCCs) harbouring myriads of motile cilia, which rest on modified centrioles called basal bodies (BBs), and beat coordinately to generate directed fluid flows. Thus, BB biogenesis and organization is central to MCC function. In basal eukaryotes, the coiled-coil domain proteins Lrrcc1 and Ccdc61 were shown to be required for proper BB construction and function. Here, we used the Xenopus embryonic ciliated epidermis to characterize Lrrcc1 and Ccdc61 in vertebrate MCCs. We found that they both encode BB components, localized proximally at the junction with striated rootlets. Knocking down either gene caused defects in BB docking, spacing, and polarization. Moreover, their depletion impaired the apical cytoskeleton, and altered ciliary beating. Consequently, cilia-powered fluid flow was greatly reduced in morphant tadpoles, which displayed enhanced mortality when exposed to pathogenic bacteria. This work illustrates how integration across organizational scales make elementary BB components essential for the emergence of the physiological function of ciliated epithelia.
Collapse
Affiliation(s)
- Aude Nommick
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Camille Boutin
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Olivier Rosnet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Claire Schirmer
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Elsa Bazellières
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Etienne Loiseau
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
36
|
Feng G, Xu Y, Saso S, Sasano H, Kondoh S, Itani H, Gotoh S, Nagao M, Ikejiri M, Tanabe M, Takeuchi K. A Novel Homozygous Variant in GAS2L2 in Two Sisters with Primary Ciliary Dyskinesia. Intern Med 2022; 61:2765-2769. [PMID: 36104176 PMCID: PMC9556235 DOI: 10.2169/internalmedicine.8884-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare hereditary disease. We herein report two sisters in their 20s with suspected PCD. They were both born at full term and did not have situs inversus. Chest computed tomography showed similar signs of bronchiectasis in both siblings. Genetic examinations of the family confirmed that the sisters both harbored a homozygous variant in the growth-arrest-specific 2-like 2 (GAS2L2) gene. This is the third report of a family with PCD caused by a GAS2L2 variant.
Collapse
Affiliation(s)
- Guofei Feng
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University Graduate School of Medicine, Japan
| | - Yifei Xu
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University Graduate School of Medicine, Japan
| | - Shun Saso
- Faculty of Medicine, Mie University, Japan
| | - Hajime Sasano
- Department of Respiratory Medicine, Japan Red Cross Ise Hospital, Japan
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Japan
| | - Shigeto Kondoh
- Department of Respiratory Medicine, Japan Red Cross Ise Hospital, Japan
| | - Hidetoshi Itani
- Department of Respiratory Medicine, Japan Red Cross Ise Hospital, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Japan
| | - Mizuho Nagao
- Institute for Clinical Research, National Hospital Organization Mie National Hospital, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Mie University Hospital, Japan
| | - Masaki Tanabe
- Department of Clinical Laboratory, Mie University Hospital, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University Graduate School of Medicine, Japan
| |
Collapse
|
37
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
38
|
Amselem S, Gueguen S, Weinbach J, Clement A, Landais P, for the RaDiCo Program. RaDiCo, the French national research program on rare disease cohorts. Orphanet J Rare Dis 2021; 16:454. [PMID: 34715889 PMCID: PMC8555205 DOI: 10.1186/s13023-021-02089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect nearly 3 million people in France and at least 26-30 million people in Europe. These diseases, which represent a major medical concern, are mainly of genetic origin, often chronic, progressive, degenerative, life threatening and disabling, accounting for more than one third of all deaths occurring during infancy. In this context, there are needs for coordinated information on RDs at national/international levels, based on high quality, interoperable and sharable data. The main objective of the RaDiCo (Rare Disease Cohorts) program, coordinated by Inserm, was the development of RD e-cohorts via a national platform. The cohort projects were selected through a national call in 2014. The e-cohorts are supported by an interoperable platform, equivalent to an infrastructure, constructed on the "cloud computing" principle and in compliance with the European General Data Protection Regulation. It is dedicated to allow a continuous monitoring of data quality and consistency, in line with the French Health Data Hub. RESULTS Depending on cohorts, the objectives are to describe the natural history of the studied RD(s), identify the underlying disease genes, establish phenotype-genotype correlations, decipher their pathophysiology, assess their societal and medico-economic impact, and/or identify patients eligible for new therapeutic approaches. Inclusion of prevalent and incident cases started at the end of 2016. As of April 2021, 5558 patients have been included within 13 RD e-cohorts covering 67 diseases integrated in 10 European Reference Networks and contributing to the European Joint Program on RDs. Several original results have been obtained in relation with the secondary objectives of the RaDiCo cohorts. They deal with discovery of new disease genes, assessment of treatment management, deciphering the underlying pathophysiological mechanisms, diagnostic approaches, genotype-phenotype relationships, development and validation of questionnaires relative to disease burden, or methodological aspects. CONCLUSION RaDiCo currently hosts 13 RD e-cohorts on a sharable and interoperable platform constructed on the "cloud computing" principle. New RD e-cohorts at the European and international levels are targeted.
Collapse
Affiliation(s)
- Serge Amselem
- RaDiCo, Inserm, Trousseau Hospital, Paris, France
- Sorbonne Université, Inserm U933, Childhood Genetic Disorders, Trousseau Hospital, 26 rue du Dr. Arnold Netter, 75012 Paris, France
| | | | - Jérôme Weinbach
- Present Address: Direction Générale de La Santé, Ministry of Health, Paris, France
| | - Annick Clement
- RaDiCo, Inserm, Trousseau Hospital, Paris, France
- Department of Paediatric Respiratory Medicine, Trousseau Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Paul Landais
- RaDiCo, Inserm, Trousseau Hospital, Paris, France
- EA2415, University Clinical Research Institute, Montpellier University, Montpellier, France
| | - for the RaDiCo Program
- RaDiCo, Inserm, Trousseau Hospital, Paris, France
- Sorbonne Université, Inserm U933, Childhood Genetic Disorders, Trousseau Hospital, 26 rue du Dr. Arnold Netter, 75012 Paris, France
- Department of Paediatric Respiratory Medicine, Trousseau Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- EA2415, University Clinical Research Institute, Montpellier University, Montpellier, France
- Present Address: Direction Générale de La Santé, Ministry of Health, Paris, France
| |
Collapse
|
39
|
A 'tad' of hope in the fight against airway disease. Biochem Soc Trans 2021; 48:2347-2357. [PMID: 33079166 PMCID: PMC7614538 DOI: 10.1042/bst20200745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Xenopus tadpoles have emerged as a powerful in vivo model system to study mucociliary epithelia such as those found in the human airways. The tadpole skin has mucin-secreting cells, motile multi-ciliated cells, ionocytes (control local ionic homeostasis) and basal stem cells. This cellular architecture is very similar to the large airways of the human lungs and represents an easily accessible and experimentally tractable model system to explore the molecular details of mucociliary epithelia. Each of the cell types in the tadpole skin has a human equivalent and a conserved network of genes and signalling pathways for their differentiation has been discovered. Great insight into the function of each of the cell types has been achieved using the Xenopus model and this has enhanced our understanding of airway disease. This simple model has already had a profound impact on the field but, as molecular technologies (e.g. gene editing and live imaging) continue to develop apace, its use for understanding individual cell types and their interactions will likely increase. For example, its small size and genetic tractability make it an ideal model for live imaging of a mucociliary surface especially during environmental challenges such as infection. Further potential exists for the mimicking of human genetic mutations that directly cause airway disease and for the pre-screening of drugs against novel therapeutic targets.
Collapse
|
40
|
Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22158272. [PMID: 34361034 PMCID: PMC8348038 DOI: 10.3390/ijms22158272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.
Collapse
Affiliation(s)
- Steven K Brennan
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
- Correspondence:
| | - Thomas W Ferkol
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
| | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC 27514, USA;
| |
Collapse
|
41
|
Progress in Diagnosing Primary Ciliary Dyskinesia: The North American Perspective. Diagnostics (Basel) 2021; 11:diagnostics11071278. [PMID: 34359360 PMCID: PMC8304305 DOI: 10.3390/diagnostics11071278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.
Collapse
|
42
|
Liu Z, Nguyen QPH, Guan Q, Albulescu A, Erdman L, Mahdaviyeh Y, Kang J, Ouyang H, Hegele RG, Moraes T, Goldenberg A, Dell SD, Mennella V. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci Transl Med 2021; 12:12/535/eaay0071. [PMID: 32188719 DOI: 10.1126/scitranslmed.aay0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Airway clearance of pathogens and particulates relies on motile cilia. Impaired cilia motility can lead to reduction in lung function, lung transplant, or death in some cases. More than 50 proteins regulating cilia motility are linked to primary ciliary dyskinesia (PCD), a heterogeneous, mainly recessive genetic lung disease. Accurate PCD molecular diagnosis is essential for identifying therapeutic targets and for initiating therapies that can stabilize lung function, thereby reducing socioeconomic impact of the disease. To date, PCD diagnosis has mainly relied on nonquantitative methods that have limited sensitivity or require a priori knowledge of the genes involved. Here, we developed a quantitative super-resolution microscopy workflow: (i) to increase sensitivity and throughput, (ii) to detect structural defects in PCD patients' cells, and (iii) to quantify motility defects caused by yet to be found PCD genes. Toward these goals, we built a localization map of PCD proteins by three-dimensional structured illumination microscopy and implemented quantitative image analysis and machine learning to detect protein mislocalization, we analyzed axonemal structure by stochastic optical reconstruction microscopy, and we developed a high-throughput method for detecting motile cilia uncoordination by rotational polarity. Together, our data show that super-resolution methods are powerful tools for improving diagnosis of motile ciliopathies.
Collapse
Affiliation(s)
- Zhen Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Quynh P H Nguyen
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Qingxu Guan
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Alexandra Albulescu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Lauren Erdman
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Yasaman Mahdaviyeh
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Jasmine Kang
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Hong Ouyang
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Richard G Hegele
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theo Moraes
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada.,Vector Institute, Toronto, ON M5G 1M1, Canada.,Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| | - Sharon D Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON M5G1X8, Canada. .,Department of Pediatrics, University of Toronto,Toronto, ON M5S1A8 , Canada
| | - Vito Mennella
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada. .,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Clinical and Experimental Sciences, Faculty of Medicine, National Health Research Institute, Biomedical Research Center, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
43
|
Dunsky K, Menezes M, Ferkol TW. Advances in the Diagnosis and Treatment of Primary Ciliary Dyskinesia: A Review. JAMA Otolaryngol Head Neck Surg 2021; 147:2781298. [PMID: 34137802 DOI: 10.1001/jamaoto.2021.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Primary ciliary dyskinesia (PCD) is a rare, inherited condition involving motile cilia that line the upper and lower respiratory tracts, leading to chronic infections of the paranasal sinuses, middle ear, and bronchi that begin during infancy. Unfortunately, despite its early presentation, PCD is often recognized late. OBSERVATIONS People with PCD have diverse clinical manifestations, including chronic upper and lower respiratory tract disease, laterality defects, and subfertility. Through efforts of multinational clinical collaboratives, 4 cardinal features have been described that identify people who likely have PCD: unexplained neonatal respiratory distress, left-right laterality defects, daily wet cough, and nonseasonal rhinosinusitis beginning before 6 months of age. Recent advances in the understanding of the genetics and pathogenesis of the disease have led to a revolution in the approach to screening and diagnostic testing. Moreover, PCD has a broad clinical spectrum, and genotype-phenotype associations are beginning to be recognized. CONCLUSIONS AND RELEVANCE A high index of suspicion remains critical in diagnosing PCD. Children who have at least 2 of the major clinical features should be considered for further evaluation. Nevertheless, while newer tools have improved diagnostic capabilities, there is no single test that will diagnose every person with the disease. In people suspected of having PCD, nasal nitric oxide measurement is a useful screen, followed by diagnostic genetic testing and if negative, ciliary ultrastructural analysis. Despite otolaryngologic manifestations being common in infancy and persisting into adulthood, they have been understudied. Indeed, there are few randomized clinical trials examining the medicosurgical approaches to respiratory disease.
Collapse
Affiliation(s)
- Katherine Dunsky
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Maithilee Menezes
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| |
Collapse
|
44
|
Hou Y, Zhao L, Kubo T, Cheng X, McNeill N, Oda T, Witman GB. Chlamydomonas FAP70 is a component of the previously uncharacterized ciliary central apparatus projection C2a. J Cell Sci 2021; 134:jcs258540. [PMID: 33988244 PMCID: PMC8272932 DOI: 10.1242/jcs.258540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cilia are essential organelles required for cell signaling and motility. Nearly all motile cilia have a '9+2' axoneme composed of nine outer doublet microtubules plus two central microtubules; the central microtubules together with their projections are termed the central apparatus (CA). In Chlamydomonas reinhardtii, a model organism for studying cilia, 30 proteins are known CA components, and ∼36 more are predicted to be CA proteins. Among the candidate CA proteins is the highly conserved FAP70 (CFAP70 in humans), which also has been reported to be associated with the doublet microtubules. Here, we determined by super-resolution structured illumination microscopy that FAP70 is located exclusively in the CA, and show by cryo-electron microscopy that its N-terminus is located at the base of the C2a projection of the CA. We also found that fap70-1 mutant axonemes lack most of the C2a projection. Mass spectrometry revealed that fap70-1 axonemes lack not only FAP70 but two other conserved candidate CA proteins, FAP65 (CFAP65 in humans) and FAP147 (MYCBPAP in humans). Finally, FAP65 and FAP147 co-immunoprecipitated with HA-tagged FAP70. Taken together, these data identify FAP70, FAP65 and FAP147 as the first defining components of the C2a projection.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Nathan McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
45
|
Yiallouros PK, Kouis P, Kyriacou K, Evriviadou A, Anagnostopoulou P, Matthaiou A, Tsiolakis I, Pirpa P, Michailidou K, Potamiti L, Loizidou MA, Hadjisavvas A. Implementation of multigene panel NGS diagnosis in the national primary ciliary dyskinesia cohort of Cyprus: An island with a high disease prevalence. Hum Mutat 2021; 42:e62-e77. [PMID: 33715250 DOI: 10.1002/humu.24196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
We aimed to determine a genetic diagnosis in the national primary ciliary dyskinesia (PCD) cohort of Cyprus, an island with a high disease prevalence. We used targeted next-generation sequencing (NGS) of 39 PCD genes in 48 patients of Greek-Cypriot and other ancestries. We achieved a molecular diagnosis in 74% of the unrelated families tested. We identified 24 different mutations in 11 genes, 12 of which are novel. Homozygosity was more common in Greek-Cypriot than non-Greek-Cypriot patients (88% vs. 46.2%, p = .016). Four mutations (DNAH11:c.5095-2A>G, CFAP300:c.95_103delGCCGGCTCC, TTC25:c.716G>A, RSPH9:c.670+2T>C) were found in 74% of the diagnosed Greek-Cypriot families. Patients with RSPH9 mutations demonstrated higher nasal nitric oxide (57 vs. 15 nl/min, p <.001), higher forced expiratory volume in 1 s (-0.89 vs. -2.37, p = .018) and forced vital capacity (-1.00 vs. -2.16, p = .029) z scores than the rest of the cohort. Targeted multigene-panel NGS is an efficient tool for early diagnosis of PCD, providing insight into genetic disease epidemiology and improved patient stratification.
Collapse
Affiliation(s)
- Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Aigli Evriviadou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Pinelopi Anagnostopoulou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Andreas Matthaiou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Tsiolakis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Pirpa
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
46
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
47
|
Zhao C, Zhang N, Cui X, Zhang X, Ren Y, Su C, He J, Zhang W, Sun X, Yang J, Gao X. Integrative analysis regarding the correlation between GAS2 family genes and human glioma prognosis. Cancer Med 2021; 10:2826-2839. [PMID: 33713047 PMCID: PMC8026934 DOI: 10.1002/cam4.3829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Emerging oncogenes were reportedly linked to the complicated subtypes and pathogenesis of clinical gliomas. Herein, we first comprehensively explored the potential correlation between growth‐arrest‐specific two family genes (GAS2, GAS2L1, GAS2L2, GAS2L3) and gliomas by bioinformatics analysis and cellular experiments. Methods Based on the available datasets of TCGA (The Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas), and Oncomine databases, we performed a series of analyses, such as gene expression, survival prognosis, DNA methylation, immune infiltration, and partner enrichment. We also utilized two glioma cell lines to conduct the colony formation and wound‐healing assay. Results GAS2L3 gene was highly expressed in glioma tissues compared to normal brain tissues (p < 0.05). We further observed the relationship between the high expressed GAS2L3 and poor clinical prognosis of brain low‐grade glioma (LGG) cases in our Cox proportional hazard model (hazard ratio [HR] = 0.1715, p < 0.001). Moreover, DNA hypomethylation status of GAS2L3 was correlated with the high expression of GAS2L3 in LGG tissues and the poor clinical prognosis of primary glioma cases (p < 0.05). We also found that the high expression of GAS2L3 was associated with the infiltration level of immune cells, especially the T cells (p < 0.0001). Functional enrichment analysis of GAS2L3‐correlated genes and interaction partners further indicated that GAS2L3 might take part in the occurrence of glioma by influencing a series of biological behaviors, such as cell division, cytoskeleton binding, and cell adhesion. Additionally, our cellular experiment data suggested that a highly expressed GAS2L3 gene contributes to the enhanced proliferation and migration of glioma cells. Conclusion This study first analyzed the potential role of GAS2 family genes, especially GAS2L3, in the clinical prognosis and possible functional mechanisms of glioma, which gives a novel insight into the relationship between GAS2L3 and LGG.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Xinxin Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Sears PR, Bustamante-Marin XM, Gong H, Markovetz MR, Superfine R, Hill DB, Ostrowski LE. Induction of ciliary orientation by matrix patterning and characterization of mucociliary transport. Biophys J 2021; 120:1387-1395. [PMID: 33705757 PMCID: PMC8105732 DOI: 10.1016/j.bpj.2021.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.
Collapse
Affiliation(s)
- Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - Henry Gong
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
49
|
Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021; 230:15-22.e1. [PMID: 33242470 PMCID: PMC8690631 DOI: 10.1016/j.jpeds.2020.11.040] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Ciliopathies are a collection of disorders related to cilia dysfunction. Cilia are specialized organelles that project from the surface of most cells. Motile and primary (sensory) cilia are essential structures and have wide ranging functions. Our understanding of the genetics, pathophysiology, and clinical manifestations of motile ciliopathies, including primary ciliary dyskinesia (PCD), has rapidly advanced since the disease was linked to ciliary ultrastructural defects nearly five decades ago. We will provide an overview of different types of cilia, their role in child health and disease, focusing on motile ciliopathies, and describe recent advances that have led to improved diagnostics and may yield therapeutic targets to restore ciliary structure and function.
Collapse
|
50
|
Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. Hum Genet 2021; 140:761-773. [PMID: 33389130 DOI: 10.1007/s00439-020-02241-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Genetics-associated asthenoteratozoospermia is often seen in patients with multiple morphological abnormalities of the sperm flagella (MMAF). Although 24 causative genes have been identified, these explain only approximately half of patients with MMAF. Since sperm flagella and motile cilia (especially respiratory cilia) have similar axonemal structures, many patients with MMAF also exhibit respiratory symptoms, such as recurrent airway infection, chronic sinusitis, and bronchiectasis, which are frequently associated with primary ciliary dyskinesia (PCD), another recessive disorder. Here, exome sequencing was conducted to evaluate the genetic cause in 53 patients with MMAF and classic PCD/PCD-like symptoms. Two homozygous missense variants and a compound-heterozygous variant in the BRWD1 gene were identified in three unrelated individuals. BRWD1 staining was detected in the whole flagella and respiratory cilia of normal controls but was absent in BRWD1-mutated individuals. Transmission electron microscopy and immunostaining demonstrated that BRWD1 deficiency in human affected respiratory cilia and sperm flagella differently, as the absence of outer and inner dynein arms in sperm flagellum and respiratory cilia, while with a decreased number and outer doublet microtubule defects of respiratory cilia. To our knowledge, this is the first report of a BRWD1-variant-related disease in humans, manifesting as an autosomal recessive form of MMAF and PCD/PCD-like symptoms. Our data provide a basis for further exploring the molecular mechanism of BRWD1 gene during spermatogenesis and ciliogenesis.
Collapse
|