1
|
Zhao G, Lai B. SC-VAR: a computational tool for interpreting polygenic disease risks using single-cell epigenomic data. Brief Bioinform 2025; 26:bbaf123. [PMID: 40127183 PMCID: PMC11932087 DOI: 10.1093/bib/bbaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/26/2025] Open
Abstract
MOTIVATION One major challenge of interpreting variants from genome-wide association studies (GWAS) of complex traits or diseases is how to efficiently annotate noncoding variants. These variants influence gene expression by disrupting cis-regulatory elements (CREs), whose spatial and cell-type specificity are not adequately captured by conventional tools like multi-marker analysis of genomic annotation. Current methods either rely on linear proximity to genes or quantitative trait locus (QTL) data yet fail to integrate single-cell epigenomic information for a comprehensive annotation. RESULTS We present SC-VAR, a novel computational tool designed to enhance the interpretation of disease-associated risks from GWAS using single-cell epigenomic data. SC-VAR leverages single-cell epigenomic data to predict functional outcomes including risk genes, pathways, and cell types for both coding and noncoding disease-associated variants. We demonstrate that SC-VAR outperforms state-of-the-art methods by predicting more validated disease-related genes and pathways for multiple diseases. Additionally, SC-VAR identifies cell types that are susceptible to disease, along with their specific CREs and target genes linked to risk. By capturing a broad range of disease risks across human tissues at distinct developmental stages, SC-VAR could enhance our understanding of disease mechanisms in complex tissues across different life stages.
Collapse
Affiliation(s)
- Gefei Zhao
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Rd, Hai Dian Qu, Beijing 100191, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing 100191, China
| | - Binbin Lai
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Rd, Hai Dian Qu, Beijing 100191, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing 100191, China
- Department of Dermatology and Venerology, Peking University First Hospital, 8 Xishiku Ave, Xicheng Distric, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, 5 Yiheyuan Rd, Haidian District, Beijing 100191, China
| |
Collapse
|
2
|
Jiang K, Yang LT, Xue M. Breaking the Synaptic Vesicle Cycle: Mechanistic Insights into Presynaptic Dysfunctions in Epilepsy. Epilepsy Curr 2025; 25:119-124. [PMID: 40190794 PMCID: PMC11969472 DOI: 10.1177/15357597251317898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Synaptic dysfunction is a hallmark of many neurological disorders including epilepsy. An increasing number of epilepsy-causing pathogenic variants are being identified in genes encoding presynaptic proteins that affect every step of the synaptic vesicle cycle, from vesicle loading, tethering, docking, priming, calcium sensing, fusing, to recycling. These different molecular dysfunctions result in converging impairment of presynaptic neurotransmitter release, yet lead to diverse epileptic disorders. This review focuses on representative monogenic epileptic disorders caused by pathogenic variants of key presynaptic proteins involved in different stages of the synaptic vesicle cycle: SYN1 (vesicle pool regulation), STXBP1 (vesicle docking, priming, and fusion), and DNM1 (vesicle recycling). We discuss the molecular, synaptic, and circuit mechanisms of these archetypal synaptic vesicle exocytosis and endocytosis-related epilepsies and highlight the diversity and commonality of their presynaptic dysfunctions. We further discuss future avenues of research to better connect distinct presynaptic alterations to epileptogenesis and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Lu-Tang Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Chen Y, Bajpai AK, Li N, Xiang J, Wang A, Gu Q, Ruan J, Zhang R, Chen G, Lu L. Discovery of Novel Pain Regulators Through Integration of Cross-Species High-Throughput Data. CNS Neurosci Ther 2025; 31:e70255. [PMID: 39924344 PMCID: PMC11807727 DOI: 10.1111/cns.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS Chronic pain is an impeding condition that affects day-to-day life and poses a substantial economic burden, surpassing many other health conditions. This study employs a cross-species integrated approach to uncover novel pain mediators/regulators. METHODS We used weighted gene coexpression network analysis to identify pain-enriched gene module. Functional analysis and protein-protein interaction (PPI) network analysis of the module genes were conducted. RNA sequencing compared pain model and control mice. PheWAS was performed to link genes to pain-related GWAS traits. Finally, candidates were prioritized based on node degree, differential expression, GWAS associations, and phenotype correlations. RESULTS A gene module significantly over-enriched with the pain reference set was identified (referred to as "pain module"). Analysis revealed 141 pain module genes interacting with 46 pain reference genes in the PPI network, which included 88 differentially expressed genes. PheWAS analysis linked 53 of these genes to pain-related GWAS traits. Expression correlation analysis identified Vdac1, Add2, Syt2, and Syt4 as significantly correlated with pain phenotypes across eight brain regions. NCAM1, VAMP2, SYT2, ADD2, and KCND3 were identified as top pain response/regulator genes. CONCLUSION The identified genes and molecular mechanisms may enhance understanding of pain pathways and contribute to better drug target identification.
Collapse
Affiliation(s)
- Ying Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Nan Li
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Jiahui Xiang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Angelina Wang
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Qingqing Gu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of CardiologyAffiliated Hospital of Nantong UniversityJiangsuChina
| | - Junpu Ruan
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Ran Zhang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Gang Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityJiangsu ProvinceChina
| | - Lu Lu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
4
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
5
|
Bindu DS, Savage JT, Brose N, Bradley L, Dimond K, Tan CX, Eroglu C. GEARBOCS: An Adeno Associated Virus Tool for In Vivo Gene Editing in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.17.524433. [PMID: 36711516 PMCID: PMC9884502 DOI: 10.1101/2023.01.17.524433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CRISPR/Cas9-based genome engineering enables rapid and precise gene manipulations in the CNS. Here, we developed a non-invasive astrocyte-specific method utilizing a single AAV vector, which we named GEARBOCS (Gene Editing in AstRocytes Based On CRISPR/Cas9 System). We verified GEARBOCS' specificity to mouse cortical astrocytes and demonstrated its utility for three types of gene manipulations: knockout (KO); tagging (TagIn); and reporter knock-in (GeneTrap) strategies. Next, we deployed GEARBOCS in two test cases. First, we determined that astrocytes are a necessary source of the synaptogenic factor Sparcl1 for thalamocortical synapse maintenance in the mouse primary visual cortex. Second, we determined that cortical astrocytes express the synaptic vesicle associated Vamp2 protein and found that it is required for maintaining excitatory and inhibitory synapse numbers in the visual cortex. These results show that the GEARBOCS strategy provides a fast and efficient means to study astrocyte biology in vivo.
Collapse
Affiliation(s)
- Dhanesh Sivadasan Bindu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Justin T. Savage
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Brose
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Luke Bradley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Kylie Dimond
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Christabel Xin Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
6
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
7
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
8
|
Bhatia P, Mehmood S, Doyon-Reale N, Rosati R, Stemmer PM, Jamesdaniel S. Unraveling the molecular landscape of lead-induced cochlear synaptopathy: a quantitative proteomics analysis. Front Cell Neurosci 2024; 18:1408208. [PMID: 39104440 PMCID: PMC11298392 DOI: 10.3389/fncel.2024.1408208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Exposure to heavy metal lead can cause serious health effects such as developmental neurotoxicity in infants, cognitive impairment in children, and cardiovascular and nephrotoxic effects in adults. Hearing loss is one of the toxic effects induced by exposure to lead. Previous studies demonstrated that exposure to lead causes oxidative stress in the cochlea and disrupts ribbon synapses in the inner hair cells. Methods This study investigated the underlying mechanism by evaluating the changes in the abundance of cochlear synaptosomal proteins that accompany lead-induced cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. Results Lead exposure significantly increased the hearing thresholds, particularly at the higher frequencies in both male and female mice, but it did not affect the activity of outer hair cells or induce hair cell loss. However, lead exposure decreased wave-I amplitude, suggesting lead-induced cochlear synaptopathy. In agreement, colocalization of pre- and post-synaptic markers indicated that lead exposure decreased the number of paired synapses in the basal turn of the cochlea. Proteomics analysis indicated that lead exposure increased the abundance of 352 synaptic proteins and decreased the abundance of 394 synaptic proteins in the cochlea. Bioinformatics analysis indicated that proteins that change in abundance are highly enriched in the synaptic vesicle cycle pathway. Discussion Together, these results suggest that outer hair cells are not the primary target in lead-induced ototoxicity, that lead-induced cochlear synaptopathy is more pronounced in the basal turn of the cochlea, and that synaptic vesicle cycle signaling potentially plays a critical role in lead-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Pankaj Bhatia
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Shomaila Mehmood
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Nicole Doyon-Reale
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
9
|
Iacomino M, Houerbi N, Fortuna S, Howe J, Li S, Scorrano G, Riva A, Cheng KW, Steiman M, Peltekova I, Yusuf A, Baldassari S, Tamburro S, Scudieri P, Musante I, Di Ludovico A, Guerrisi S, Balagura G, Corsello A, Efthymiou S, Murphy D, Uva P, Verrotti A, Fiorillo C, Delvecchio M, Accogli A, Elsabbagh M, Houlden H, Scherer SW, Striano P, Zara F, Chou TF, Salpietro V. Allelic heterogeneity and abnormal vesicle recycling in PLAA-related neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1268013. [PMID: 38650658 PMCID: PMC11033462 DOI: 10.3389/fnmol.2024.1268013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Giovanna Scorrano
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Steiman
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
| | - Sara Guerrisi
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, United States
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Torene RI, Guillen Sacoto MJ, Millan F, Zhang Z, McGee S, Oetjens M, Heise E, Chong K, Sidlow R, O'Grady L, Sahai I, Martin CL, Ledbetter DH, Myers SM, Mitchell KJ, Retterer K. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases. Am J Hum Genet 2024; 111:70-81. [PMID: 38091987 PMCID: PMC10806863 DOI: 10.1016/j.ajhg.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew Oetjens
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | | | | | | | - Christa L Martin
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - David H Ledbetter
- University of Florida, College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Scott M Myers
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA; Geisinger, Danville, PA, USA.
| |
Collapse
|
11
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Boussetta A, Abida N, Jellouli M, Ziadi J, Gargah T. Delayed Graft Function in Pediatric Kidney Transplant: Risk Factors and Outcomes. EXP CLIN TRANSPLANT 2024; 22:110-117. [PMID: 38385384 DOI: 10.6002/ect.mesot2023.o20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to identify risk factors and outcomes of delayed graft function in pediatric kidney transplant. MATERIALS AND METHODS This retrospective study included all kidney transplant recipients ≤19 years old followed up in our department for a period of 34 years, from January 1989 to December 2022. RESULTS We included 113 kidney transplant recipients. Delayed graft function occurred in 17 cases (15%). Posttransplant red blood cell transfusion was strongly associated with delayed graft function (adjusted odds ratio = 23.91; 95% CI, 2.889-197.915). Use of allografts with multiple arteries and cold ischemia time >20 hours were risk factors for delayed graft function (adjusted odds ratio = 52.51 and 49.4; 95% CI, 2.576-1070.407 and 1.833-1334.204, respectively). Sex-matched transplants and living donors were protective factors for delayed graft function (adjusted odds ratio = 0.043 and 0.027; 95% CI, 0.005-0.344 and 0.003-0.247, respectively). Total HLA mismatches <3 played a protective role for delayed graft function (adjusted odds ratio = 0.114; 95% CI, 0.020-0.662), whereas transplant within compatible but different blood types increased the risk of delayed graft function (adjusted odds ratio = 20.54; 95% CI, 1.960- 215.263). No significant correlation was shown between delayed graft function and allograft survival (P = .190). Our study suggested delayed graft function as a key factor in allograft rejection-free survival (adjusted odds ratio = 3.832; 95% CI, 1.186-12.377). Delayed graft function was a negative factor for early graft function; patients with delayed graft function had a lower estimated glomerular filtration rate at discharge (P = .024) and at 3 (P = .034), 6 (P = .019), and 12 months (P = .011) posttransplant. CONCLUSIONS Delayed graft function is a major determinant of early graft function and allograft rejection-free survival. Further research is required to establish proper preventive measures.
Collapse
Affiliation(s)
- Abir Boussetta
- From the Pediatric Nephrology Department, Charles Nicolle Hospital and the University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
13
|
Baris RO, Sahin N, Bilgic AD, Ozdemir C, Edgunlu TG. Molecular and in silico analyses of SYN III gene variants in autism spectrum disorder. Ir J Med Sci 2023; 192:2887-2895. [PMID: 37166614 DOI: 10.1007/s11845-023-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Defects in neurotransmission and synaptogenesis are noteworthy in the pathogenesis of ASD. Synapsin III (SYN III) is defined as a synaptic vesicle protein that plays an important role in synaptogenesis and regulation of neurotransmitter release and neurite outgrowth. Therefore, SYN III may associate with many neurodevelopmental diseases, including ASD. AIM The aim of this study was to investigate whether the SYN III gene -631 C > G (rs133946) and -196 G > A (rs133945) polymorphisms are associated with susceptibility to ASD. METHODS SYN III variants and the risk of ASD were investigated in 26 healthy children and 24 ASD children. SYN III gene variants were genotyped by PCR-RFLP methods. The differences in genotype and allele frequencies between the ASD and control groups were calculated using the chi-square (χ2). We analysed the SYN III gene using web-based tools. RESULTS Our results suggest that the presence of the AA genotype of the SYN III -196 G > A (rs133945) polymorphism affects the characteristics and development of ASD in children (p = 0.012). SYN III -631 C > G (rs133946) polymorphism was not associated with ASD (p = 0.524). We have shown the prediction of gene-gene interaction that SYN III is co-expressed with 17 genes, physical interaction with 3 genes, and co-localization with 12 genes. The importance of different genes (SYN I, II, III, GABRD, NOS1AP, GNAO1) for ASD pathogenesis was revealed by GO analysis. CONCLUSION Considering the role of SYN III and related genes, especially in the synaptic vesicle pathway and neurotransmission, its effect on ASD can be further investigated.
Collapse
Affiliation(s)
- Remzi Oguz Baris
- Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nilfer Sahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Ayşegül Demirtas Bilgic
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey.
| | - Tuba Gokdogan Edgunlu
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Mugla, 48000, Turkey
| |
Collapse
|
14
|
Scorrano G, D'Onofrio G, Accogli A, Severino M, Buchert R, Kotzaeridou U, Iapadre G, Farello G, Iacomino M, Dono F, Di Francesco L, Fiorile MF, La Bella S, Corsello A, Calì E, Di Rosa G, Gitto E, Verrotti A, Fortuna S, Soler MA, Chiarelli F, Oehl-Jaschkowitz B, Haack TB, Zara F, Striano P, Salpietro V. A PAK1 Mutational Hotspot Within the Regulatory CRIPaK Domain is Associated With Severe Neurodevelopmental Disorders in Children. Pediatr Neurol 2023; 149:84-92. [PMID: 37820543 DOI: 10.1016/j.pediatrneurol.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Accogli
- Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Giulia Iapadre
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Farello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ludovica Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Corsello
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | | | - Sara Fortuna
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory (CONCEPT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Miguel A Soler
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | | | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
15
|
Guillemyn B, De Saffel H, Bek JW, Tapaneeyaphan P, De Clercq A, Jarayseh T, Debaenst S, Willaert A, De Rycke R, Byers PH, Rosseel T, Coucke P, Blaumeiser B, Syx D, Malfait F, Symoens S. Syntaxin 18 Defects in Human and Zebrafish Unravel Key Roles in Early Cartilage and Bone Development. J Bone Miner Res 2023; 38:1718-1730. [PMID: 37718532 DOI: 10.1002/jbmr.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
SNARE proteins comprise a conserved protein family responsible for catalyzing membrane fusion during vesicle traffic. Syntaxin18 (STX18) is a poorly characterized endoplasmic reticulum (ER)-resident t-SNARE. Recently, together with TANGO1 and SLY1, its involvement was shown in ER to Golgi transport of collagen II during chondrogenesis. We report a fetus with a severe osteochondrodysplasia in whom we identified a homozygous substitution of the highly conserved p.Arg10 to Pro of STX18. CRISPR/Cas9-mediated Stx18 deficiency in zebrafish reveals a crucial role for Stx18 in cartilage and bone development. Furthermore, increased expression of multiple components of the Stx18 SNARE complex and of COPI and COPII proteins suggests that Stx18 deficiency impairs antero- and retrograde vesicular transport in the crispant stx18 zebrafish. Taken together, our studies highlight a new candidate gene for a recessive form of osteochondrodysplasia, thereby possibly broadening the SNAREopathy phenotypic spectrum and opening new doors toward future research avenues. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Brecht Guillemyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Piyanoot Tapaneeyaphan
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tamara Jarayseh
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sophie Debaenst
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research and Bioimaging Core, Ghent, Belgium
| | - Peter H Byers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Paul Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bettina Blaumeiser
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
16
|
Afsar T, Huang X, Shah AA, Abbas S, Bano S, Mahmood A, Hu J, Razak S, Umair M. Truncated DNM1 variant underlines developmental delay and epileptic encephalopathy. Front Pediatr 2023; 11:1266376. [PMID: 37900685 PMCID: PMC10601988 DOI: 10.3389/fped.2023.1266376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
Background Developmental and epileptic encephalopathies (DEEs) signify a group of heterogeneous neurodevelopmental disorder associated with early-onset seizures accompanied by developmental delay, hypotonia, mild to severe intellectual disability, and developmental regression. Variants in the DNM1 gene have been associated with autosomal dominant DEE type 31A and autosomal recessive DEE type 31B. Methods In the current study, a consanguineous Pakistani family consisting of a proband (IV-2) was clinically evaluated and genetically analyzed manifesting in severe neurodevelopmental phenotypes. WES followed by Sanger sequencing was performed to identify the disease-causing variant. Furthermore, 3D protein modeling and dynamic simulation of wild-type and mutant proteins along with reverse transcriptase (RT)-based mRNA expression were checked using standard methods. Results Data analysis of WES revealed a novel homozygous non-sense variant (c.1402G>T; p. Glu468*) in exon 11 of the DNM1 gene that was predicted as pathogenic class I. Variants in the DNM1 gene have been associated with DEE types 31A and B. Different bioinformatics prediction tools and American College of Medical Genetics guidelines were used to verify the identified variant. Sanger sequencing was used to validate the disease-causing variant. Our approach validated the pathogenesis of the variant as a cause of heterogeneous neurodevelopmental disorders. In addition, 3D protein modeling showed that the mutant protein would lose most of the amino acids and might not perform the proper function if the surveillance non-sense-mediated decay mechanism was skipped. Molecular dynamics analysis showed varied trajectories of wild-type and mutant DNM1 proteins in terms of root mean square deviation, root mean square fluctuation and radius of gyration. Similarly, RT-qPCR revealed a substantial reduction of the DNM1 gene in the index patient. Conclusion Our finding further confirms the association of homozygous, loss-of-function variants in DNM1 associated with DEE type 31B. The study expands the genotypic and phenotypic spectrum of pathogenic DNM1 variants related to DNM1-associated pathogenesis.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Xiaoyun Huang
- Department of Neurology, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Shazia Bano
- Department of Optometry and Vision Sciences, University of Lahore, Lahore, Pakistan
| | - Arif Mahmood
- Department of Neurology, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Junjian Hu
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Muhammad Umair
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Kim SR, Eom Y, Lee SH. Comprehensive analysis of sex differences in the function and ultrastructure of hippocampal presynaptic terminals. Neurochem Int 2023; 169:105570. [PMID: 37451344 DOI: 10.1016/j.neuint.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.
Collapse
Affiliation(s)
- Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
18
|
Bogue D, Ryan G, Wassmer E, Research Consortium GE, Naik S. VAMP2 Gene-Related Neurodevelopmental Disorder: A Differential Diagnosis for Rett/Angelman-Type Spectrum of Disorders. Mol Syndromol 2023; 14:449-456. [PMID: 37901860 PMCID: PMC10601795 DOI: 10.1159/000530150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/08/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction VAMP2 is an instrumental protein in neuronal synaptic transmission in the brain, facilitating neurotransmitter release. It is encoded by the VAMP2 gene, and pathogenic variants in this gene cause neurodevelopmental features including early onset axial hypotonia, intellectual disability, and features of autism spectrum disorder. To date, only three types of allelic variants (loss of function, in-frame deletions, and missense variants) in the VAMP2 gene have been previously reported in 11 patients with learning difficulties. Here, we describe a patient in whom a novel de novo pathogenic variant in the VAMP2 gene was identified. Case Presentation A 15-month-old girl presented with early onset hypotonia, global developmental delay, learning difficulties, microcephaly, nystagmus, strabismus, and stereotypies. Later, she developed a sleep disorder, challenging behaviour with self-injury, and scoliosis. Gene agnostic analysis of whole genome sequencing data identified a novel de novo heterozygous missense variant c.197G>C (p.Arg66Pro) in the VAMP2 gene SNARE motif region. Discussion This is the fourth report describing VAMP2 gene-related neurodevelopmental disorder. This report adds to the genotype-phenotype correlation and highlights this condition as an important differential diagnosis of Rett/Angelman-type spectrum of disorders. Patients presenting with features of either Rett syndrome or Angelman syndrome, in whom genetic testing is not suggestive, should be evaluated for variants in the VAMP2 gene, given the significant overlap in clinical presentation of these disorders.
Collapse
Affiliation(s)
- Danielle Bogue
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Evangeline Wassmer
- Department of Neurology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - Swati Naik
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
19
|
Hayashi T, Yano N, Kora K, Yokoyama A, Maizuru K, Kayaki T, Nishikawa K, Osawa M, Niwa A, Takenouchi T, Hijikata A, Shirai T, Suzuki H, Kosaki K, Saito MK, Takita J, Yoshida T. Involvement of mTOR pathway in neurodegeneration in NSF-related developmental and epileptic encephalopathy. Hum Mol Genet 2023; 32:1683-1697. [PMID: 36645181 PMCID: PMC10162430 DOI: 10.1093/hmg/ddad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoko Yano
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kengo Kora
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kanako Maizuru
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taisei Kayaki
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kinuko Nishikawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Mitsujiro Osawa
- Thyas Co. Ltd, Kyoto 606-8501, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
20
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency Slows Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Neurosci 2023; 43:2002-2020. [PMID: 36759195 PMCID: PMC10027047 DOI: 10.1523/jneurosci.1537-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.
Collapse
Affiliation(s)
- Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
22
|
FUS Alters circRNA Metabolism in Human Motor Neurons Carrying the ALS-Linked P525L Mutation. Int J Mol Sci 2023; 24:ijms24043181. [PMID: 36834591 PMCID: PMC9968238 DOI: 10.3390/ijms24043181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Deregulation of RNA metabolism has emerged as one of the key events leading to the degeneration of motor neurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) disease. Indeed, mutations on RNA-binding proteins (RBPs) or on proteins involved in aspects of RNA metabolism account for the majority of familiar forms of ALS. In particular, the impact of the ALS-linked mutations of the RBP FUS on many aspects of RNA-related processes has been vastly investigated. FUS plays a pivotal role in splicing regulation and its mutations severely alter the exon composition of transcripts coding for proteins involved in neurogenesis, axon guidance, and synaptic activity. In this study, by using in vitro-derived human MNs, we investigate the effect of the P525L FUS mutation on non-canonical splicing events that leads to the formation of circular RNAs (circRNAs). We observed altered levels of circRNAs in FUSP525L MNs and a preferential binding of the mutant protein to introns flanking downregulated circRNAs and containing inverted Alu repeats. For a subset of circRNAs, FUSP525L also impacts their nuclear/cytoplasmic partitioning, confirming its involvement in different processes of RNA metabolism. Finally, we assess the potential of cytoplasmic circRNAs to act as miRNA sponges, with possible implications in ALS pathogenesis.
Collapse
|
23
|
Cuppari C, Ceravolo I, Mancuso A, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo MD. Joubert Syndrome: Diagnostic Evaluation and Follow-up. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:053-057. [DOI: 10.1055/s-0042-1759532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe follow-up of a child with genetic syndrome is necessarily multidisciplinary because of the multiplicity of problems and calls for close collaboration between different specialists. The primary objective is the total care of the child and his family, regardless of the rarity and complexity of the disease, to obtain the highest possible degree of mental and physical health and autonomy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
24
|
Mancuso A, Ceravolo I, Cuppari C, Sallemi A, Fusco M, Ceravolo A, Farello G, Iapadre G, Zagaroli L, Nanni G, Conti G. The Function and Role of the Cilium in the Development of Ciliopathies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:078-084. [DOI: 10.1055/s-0042-1759533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract“Ciliopathies” are a group of genetic disorders described by the malformation or dysfunction of cilia. The disorders of ciliary proteins lead to a range of phenotype from organ-specific (e.g., cystic disease of the kidney, liver, and pancreas, neural tube defects, postaxial polydactyly, situs inversus, and retinal degeneration) to sketchily pleiotropic (e.g., Bardet-Biedl syndrome and Joubert syndrome). The mechanism below the disfunction of cilia to reach new therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Mancuso
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Alessia Sallemi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Monica Fusco
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | | | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giovanni Conti
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Scuderi A, Prato A, Dicanio D, Spoto G, Salpietro V, Ceravolo G, Granata F, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo I, Pironti E, Amore G, Rosa GD. Age-Related Neurodevelopmental Features in Children with Joubert Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:008-014. [DOI: 10.1055/s-0042-1759539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare inherited disorder of central nervous system with neonatal/infantile onset, mainly affecting cerebellum and brainstem, and clinically characterized by agenesis or dysgenesis of the cerebellar vermis with accompanying brainstem malformations. More than 20 disease-causing genes have been associated with JS but a clear genotype–phenotype correlation has not been assessed yet. Diagnosis is usually confirmed by detection of the JS neuroradiological hallmark, the molar tooth sign. Patients with JS typically present with neurological manifestations, moreover, a heterogeneous spectrum of multisystemic anomalies may be observed. Signs and symptoms onset varies according to the age range and clinical diagnosis might become complicated. Moreover, specific neurodevelopmental disorders can be associated with JS such as autism spectrum disorders, attention deficit with hyperactivity, and a wide range of behavioral disturbances. Here, we examined the main neurological and neurodevelopmental features of JS according to an age-dependent mode of presentation. Furthermore, differential diagnosis with other neurological syndromes was closely reviewed.
Collapse
Affiliation(s)
- Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giorgia Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Sciences and Morphological and Functional, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
26
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
27
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
28
|
Parthasarathy S, Ruggiero SM, Gelot A, Soardi FC, Ribeiro BFR, Pires DEV, Ascher DB, Schmitt A, Rambaud C, Represa A, Xie HM, Lusk L, Wilmarth O, McDonnell PP, Juarez OA, Grace AN, Buratti J, Mignot C, Gras D, Nava C, Pierce SR, Keren B, Kennedy BC, Pena SDJ, Helbig I, Cuddapah VA. A recurrent de novo splice site variant involving DNM1 exon 10a causes developmental and epileptic encephalopathy through a dominant-negative mechanism. Am J Hum Genet 2022; 109:2253-2269. [PMID: 36413998 PMCID: PMC9748255 DOI: 10.1016/j.ajhg.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.
Collapse
Affiliation(s)
- Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Sarah McKeown Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Antoinette Gelot
- AP-HP, Hôpital Armand-Trousseau, Service d'Anatomie Pathologique, 75012 Paris, France; INMED INSERM U 901 Parc Scientifique de Luminy, 13273 Marseille, France; Centre de Recherche Clinique ConCer-LD, Paris, France
| | - Fernanda C Soardi
- GENE - Núcleo de Genética Médica, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Genômica Clínica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3052, Australia; School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3053, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3052, Australia; School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alain Schmitt
- INSERM U 1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caroline Rambaud
- AP-HP, Hôpital Raymond-Poincaré, Laboratoire Anatomie Pathologique, Garches, France
| | - Alfonso Represa
- INMED, INSERM, Aix-Marseille Université, Campus de Luminy, 13009 Marseille, France
| | - Hongbo M Xie
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Laina Lusk
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Olivia Wilmarth
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pamela Pojomovsky McDonnell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Olivia A Juarez
- Baylor College of Medicine Genetics Clinic, Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Alexandra N Grace
- Baylor College of Medicine Genetics Clinic, Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Julien Buratti
- AP-HP, Hôpital de la Pitié Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Cyril Mignot
- AP-HP, Hôpital de la Pitié Salpêtrière, Département de Génétique, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM, 75013 Paris, France; AP-HP, Hôpital Robert Debré, Service de Neurologie Pediatrique et de Maladies Métaboliques, 75019 Paris, France
| | - Domitille Gras
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pediatrique et de Maladies Métaboliques, 75019 Paris, France
| | - Caroline Nava
- AP-HP, Hôpital de la Pitié Salpêtrière, Département de Génétique, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM, 75013 Paris, France; AP-HP, Hôpital Robert Debré, Service de Neurologie Pediatrique et de Maladies Métaboliques, 75019 Paris, France
| | - Samuel R Pierce
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Boris Keren
- AP-HP, Hôpital de la Pitié Salpêtrière, Département de Génétique, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM, 75013 Paris, France; AP-HP, Hôpital Robert Debré, Service de Neurologie Pediatrique et de Maladies Métaboliques, 75019 Paris, France
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Department of Neurosurgery, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergio D J Pena
- GENE - Núcleo de Genética Médica, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Genômica Clínica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vishnu Anand Cuddapah
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
30
|
Özdemir Ç, Şahin N, Edgünlü T. Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 2022; 49:12193-12202. [PMID: 36198849 DOI: 10.1007/s11033-022-07970-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Vesicle-mediated membrane traffic is the mechanism fundamental to many biological events, especially the release of neurotransmitters. The main proteins of the mechanism that mediates membrane fusion in vesicle-mediated membrane traffic are N-ethylmaleimide sensitive factor (NSF) supplemental protein (SNAP) receptor (SNAREs) proteins. SNAREs are classified into vesicle-associated SNAREs (vesicle-SNAREs/v-SNAREs) and target membrane-associated SNAREs (target-SNARE/t-SNAREs). Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by many symptoms, especially complications in social communication and stereotypical behaviours. Defects in synaptogenesis and neurotransmission, oxidative stress, and developmental defects in the early stages of development are defined in the pathogenesis of the disease. SNARE proteins are on the basis of synaptogenesis and neurotransmission. Although the formation mechanisms and underlying causes of the SNARE complex are not fully understood, expression differences, polymorphisms, abnormal expressions or dysfunctions of the proteins that make up the SNARE complex have been associated with many neurodevelopmental diseases, including autism. Further understanding of SNARE mechanisms is crucial both for understanding ASD and for developing new treatments. In this review, the formation mechanisms of the SNARE complex and the roles of various factors involved in this process are explained. In addition, a brief evaluation of clinical and basic studies on the SNARE complex in autism spectrum disorders was made.
Collapse
Affiliation(s)
- Çilem Özdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Nilfer Şahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tuba Edgünlü
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, 48000, Mugla, Turkey.
| |
Collapse
|
31
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
32
|
Wang Y, Miao Y, Shen Q, Liu X, Chen M, Du J, Ning M, Bi J, Gu W, Wang L, Meng Q. Eriocheir sinensis vesicle-associated membrane protein can enhance host cell phagocytosis to resist Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:582-591. [PMID: 35964876 DOI: 10.1016/j.fsi.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Vesicle-associated membrane protein (VAMP) belongs to the receptor protein on the membrane of the secretory transport vesicle and involves in host immune function. The intracellular pathogen Spiroplasma eriocheiris could cause Eriocheir sinensis tremor disease. In a previous study, it was found E. sinensis VAMP (EsVAMP) was differently expressed in S. eriocheiris infection by proteomics analysis. This study mainly aims at the function of EsVAMP in the process of the S. eriocheiris infection. The length of EsVAMP gene was 1681 bp, which contained a 395 bp open reading frame, 90 bp 5'-non-coding region (UTR) and 1277 bp 3'-UTR. The results of qPCR showed that EsVAMP was expressed highly in hemocytes and nerves, followed by gills, intestines and hepatopancreas, and lowly expressed in heart and muscles. EsVAMP in hemocytes was up-regulated after S. eriocheiris infection. After EsVAMP over-expression and S. eriocheiris infection, the RAW264.7 cell morphology and cell viability of the experiment group were significantly better than the control group. Meanwhile, the copy number of S. eriocheiris in the experiment group was significantly lower than that in the control group. After EsVAMP and pCMV-Cre-mCherry were ligated and transfected into RAW264.7 cells, it was found that EsVAMP and lysosome co-localized. Meanwhile, the phagocytosed inactivated S. eriocheiris number and phagocytosed efficiency in RAW264.7 cells were increased significantly. The interference experiment was carried out by synthesizing EsVAMP dsRNA to verify that the EsVAMP transcriptions were successfully suppressed. The S. eriocheiris copy number and the mortality of crab increased significantly after EsVAMP RNAi and S. eriocheiris infection. Meanwhile, the phagocytosed inactivated S. eriocheiris number and phagocytosed efficiency in hemocytes decreased significantly after EsVAMP RNAi and S. eriocheiris infection. These results showed that VAMP was involved in the cell phagocytosis to resist pathogen infection.
Collapse
Affiliation(s)
- Yaqin Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Yanyang Miao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qingchun Shen
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xueshi Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Minyi Chen
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Mingxiao Ning
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, 250100, China
| | - Jingxiu Bi
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, 250100, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
33
|
Heidarpour N, Singh A, Caputo JM, Barbieri R, Pampana VS, Kamath VG, Kaur G. Unfolding of Novel Independent Missense Mutations in VAMP2 and AGRN and Their Collective Role in Global Developmental Delay: A Case Report. Cureus 2022; 14:e28464. [PMID: 36176870 PMCID: PMC9511814 DOI: 10.7759/cureus.28464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2) and Agrin (AGRN) are crucial proteins in neurotransmission. VAMP2 is a vesicular protein that facilitates the exocytosis of neurotransmitters. At the same time, AGRN plays a critical role in the maintenance and function of neuromuscular junctions. Mutations in the signaling pathway of VAMP2 and AGRN impair proper signaling between the presynaptic and postsynaptic neurons, and can result in neurodevelopmental conditions known as global developmental delay (GDD). This study highlights a presentation of GDD in a patient with concurrent mutations in VAMP2 and AGRN. A three-year-old female child presented with GDD characterized by hypotonia, intellectual disability, and dysphagia. Physical exam exhibited signs of developmental delay and severe muscle weakness. EEG findings were suggestive of a hypsarrhythmia pattern. The ophthalmological evaluation showed partial optic atrophy bilaterally. Therapeutic interventions included Keppra and Topamax, which proved ineffective. The patient’s outcome was inconclusive as care was transferred to another facility. This case study reports the novel appearance of two concurrent mutations: p.Gln76Pro associated with VAMP2 and p.Gln970Glu associated with AGRN. Mutations in VAMP2 lead to a dysfunctional SNARE complex and inhibit exocytosis of neurotransmitters into the synaptic cleft. Mutations in AGRN impair the ability to form and activate postsynaptic nicotinic acetylcholine receptors. Improper signaling between presynaptic and postsynaptic neurons is an important determinant of GDD. We hope that accounting for this mutational pattern will contribute to understanding synapse assembly and help unravel the complex interplay of factors involved in the pathology of neuromuscular disorders and GDD.
Collapse
|
34
|
Lins ÉM, Oliveira NCM, Reis O, Ferrasa A, Herai R, Muotri AR, Massirer KB, Bengtson MH. Genome-wide translation control analysis of developing human neurons. Mol Brain 2022; 15:55. [PMID: 35706057 PMCID: PMC9199153 DOI: 10.1186/s13041-022-00940-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 11/25/2022] Open
Abstract
During neuronal differentiation, neuroprogenitor cells become polarized, change shape, extend axons, and form complex dendritic trees. While growing, axons are guided by molecular cues to their final destination, where they establish synaptic connections with other neuronal cells. Several layers of regulation are integrated to control neuronal development properly. Although control of mRNA translation plays an essential role in mammalian gene expression, how it contributes temporarily to the modulation of later stages of neuronal differentiation remains poorly understood. Here, we investigated how translation control affects pathways and processes essential for neuronal maturation, using H9-derived human neuro progenitor cells differentiated into neurons as a model. Through Ribosome Profiling (Riboseq) combined with RNA sequencing (RNAseq) analysis, we found that translation control regulates the expression of critical hub genes. Fundamental synaptic vesicle secretion genes belonging to SNARE complex, Rab family members, and vesicle acidification ATPases are strongly translationally regulated in developing neurons. Translational control also participates in neuronal metabolism modulation, particularly affecting genes involved in the TCA cycle and glutamate synthesis/catabolism. Importantly, we found translation regulation of several critical genes with fundamental roles regulating actin and microtubule cytoskeleton pathways, critical to neurite generation, spine formation, axon guidance, and circuit formation. Our results show that translational control dynamically integrates important signals in neurons, regulating several aspects of its development and biology.
Collapse
Affiliation(s)
- Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil.,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Osvaldo Reis
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Adriano Ferrasa
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil.,Department of Computer Science, State University of Ponta Grossa-UEPG, Ponta Grossa, PR, 84030-900, Brazil
| | - Roberto Herai
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Cellular and Molecular Medicine, School of Medicine, UC San Diego, La Jolla, CA, 92037, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering-CBMEG, University of Campinas-UNICAMP, Campinas, SP, 13083-875, Brazil.,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil. .,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil.
| |
Collapse
|
35
|
Xian J, Parthasarathy S, Ruggiero SM, Balagura G, Fitch E, Helbig K, Gan J, Ganesan S, Kaufman MC, Ellis CA, Lewis-Smith D, Galer P, Cunningham K, O’Brien M, Cosico M, Baker K, Darling A, Veiga de Goes F, El Achkar CM, Doering JH, Furia F, García-Cazorla Á, Gardella E, Geertjens L, Klein C, Kolesnik-Taylor A, Lammertse H, Lee J, Mackie A, Misra-Isrie M, Olson H, Sexton E, Sheidley B, Smith L, Sotero L, Stamberger H, Syrbe S, Thalwitzer KM, van Berkel A, van Haelst M, Yuskaitis C, Weckhuysen S, Prosser B, Son Rigby C, Demarest S, Pierce S, Zhang Y, Møller RS, Bruining H, Poduri A, Zara F, Verhage M, Striano P, Helbig I. Assessing the landscape of STXBP1-related disorders in 534 individuals. Brain 2022; 145:1668-1683. [PMID: 35190816 PMCID: PMC9166568 DOI: 10.1093/brain/awab327] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Disease-causing variants in STXBP1 are among the most common genetic causes of neurodevelopmental disorders. However, the phenotypic spectrum in STXBP1-related disorders is wide and clear correlations between variant type and clinical features have not been observed so far. Here, we harmonized clinical data across 534 individuals with STXBP1-related disorders and analysed 19 973 derived phenotypic terms, including phenotypes of 253 individuals previously unreported in the scientific literature. The overall phenotypic landscape in STXBP1-related disorders is characterized by neurodevelopmental abnormalities in 95% and seizures in 89% of individuals, including focal-onset seizures as the most common seizure type (47%). More than 88% of individuals with STXBP1-related disorders have seizure onset in the first year of life, including neonatal seizure onset in 47%. Individuals with protein-truncating variants and deletions in STXBP1 (n = 261) were almost twice as likely to present with West syndrome and were more phenotypically similar than expected by chance. Five genetic hotspots with recurrent variants were identified in more than 10 individuals, including p.Arg406Cys/His (n = 40), p.Arg292Cys/His/Leu/Pro (n = 30), p.Arg551Cys/Gly/His/Leu (n = 24), p.Pro139Leu (n = 12), and p.Arg190Trp (n = 11). None of the recurrent variants were significantly associated with distinct electroclinical syndromes, single phenotypic features, or showed overall clinical similarity, indicating that the baseline variability in STXBP1-related disorders is too high for discrete phenotypic subgroups to emerge. We then reconstructed the seizure history in 62 individuals with STXBP1-related disorders in detail, retrospectively assigning seizure type and seizure frequency monthly across 4433 time intervals, and retrieved 251 anti-seizure medication prescriptions from the electronic medical records. We demonstrate a dynamic pattern of seizure control and complex interplay with response to specific medications particularly in the first year of life when seizures in STXBP1-related disorders are the most prominent. Adrenocorticotropic hormone and phenobarbital were more likely to initially reduce seizure frequency in infantile spasms and focal seizures compared to other treatment options, while the ketogenic diet was most effective in maintaining seizure freedom. In summary, we demonstrate how the multidimensional spectrum of phenotypic features in STXBP1-related disorders can be assessed using a computational phenotype framework to facilitate the development of future precision-medicine approaches.
Collapse
Affiliation(s)
- Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Neuroscience Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, Genoa, Italy
| | - Eryn Fitch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katherine Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Michael C Kaufman
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP, UK
| | - Peter Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Cunningham
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret O’Brien
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mahgenn Cosico
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Alejandra Darling
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Fernanda Veiga de Goes
- Department of Pediatrics and Pediatric Neurology Laboratory, Instituto Fernandes Figueira, Rio de Janeiro 22250-020, Brazil
| | - Christelle M El Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jan Henje Doering
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Francesca Furia
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Ángeles García-Cazorla
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Elena Gardella
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Lisa Geertjens
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Courtney Klein
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | | | - Hanna Lammertse
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Alexandra Mackie
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Mala Misra-Isrie
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Heather Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Emma Sexton
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Beth Sheidley
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Lacey Smith
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Luiza Sotero
- Department of Pediatrics and Pediatric Neurology Laboratory, Instituto Fernandes Figueira, Rio de Janeiro 22250-020, Brazil
| | - Hannah Stamberger
- Division of Neurology, University Hospital Antwerp, Antwerp, Belgium
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kim Marie Thalwitzer
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Annemiek van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mieke van Haelst
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Christopher Yuskaitis
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sarah Weckhuysen
- Division of Neurology, University Hospital Antwerp, Antwerp, Belgium
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Ben Prosser
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Scott Demarest
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Samuel Pierce
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuehua Zhang
- Department of Pediatrics, Beijing University First Hospital, Beijing, China
| | - Rikke S Møller
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, Genoa, Italy
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Proteomic profiling of exosomes in a mouse model of Candida albicans endophthalmitis. Exp Cell Res 2022; 417:113222. [PMID: 35618014 DOI: 10.1016/j.yexcr.2022.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Exosomes play pivotal roles in intercellular communication, and pathophysiological functions. In this study, we aimed to understand the role of exosomal proteome derived from C. albicans infected mice (C57BL/6) eyeball. Exosomes were characterized by Dynamic Light Scattering and western blot, quantified and subjected to LC-MS/MS and cytokine quantification by ELISA. The average size of exosomes was 170-200 nm with number of exosomes amounted to 1.42 × 1010 in infected set compared to control (1.24 × 109). Western blot was positive for CD9, CD63 and CD81 confirming the presence of exosomes. IL-6, IL1β, TNF-α, and IFN-γ levels were significantly elevated in infected eye at 72 h.p.i. Proteomic analysis identified 42 differentially expressed proteins, of these 37 were upregulated and 5 were downregulated. Gene Ontology (GO) revealed enrichment of cell adhesion, cytoskeleton organization, and cellular response proteins such as aquaporin-5, gasdermin-A, CD5 antigen-like, Catenin, V-ATPase, and vesicle associated protein. Additionally, KEGG pathway analysis indicated the association of metabolic and carbon signalling pathways with exosomes from C. albicans infected eye. The protein cargo in exosomes released during endophthalmitis with C. albicans seems to play a unique role in the pathogenesis of the disease and further validations with larger cohort of patients is required to confirm them as biomarkers. .
Collapse
|
37
|
Perl E, Ravisankar P, Beerens ME, Mulahasanovic L, Smallwood K, Sasso MB, Wenzel C, Ryan TD, Komár M, Bove KE, MacRae CA, Weaver KN, Prada CE, Waxman JS. Stx4 is required to regulate cardiomyocyte Ca 2+ handling during vertebrate cardiac development. HGG ADVANCES 2022; 3:100115. [PMID: 35599850 PMCID: PMC9114686 DOI: 10.1016/j.xhgg.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Requirements for vesicle fusion within the heart remain poorly understood, despite the multitude of processes that necessitate proper intracellular trafficking within cardiomyocytes. Here, we show that Syntaxin 4 (STX4), a target-Soluble N-ethylmaleimide sensitive factor attachment receptor (t-SNARE) protein, is required for normal vertebrate cardiac conduction and vesicular transport. Two patients were identified with damaging variants in STX4. A patient with a homozygous R240W missense variant displayed biventricular dilated cardiomyopathy, ectopy, and runs of non-sustained ventricular tachycardia, sensorineural hearing loss, global developmental delay, and hypotonia, while a second patient displayed severe pleiotropic abnormalities and perinatal lethality. CRISPR/Cas9-generated stx4 mutant zebrafish exhibited defects reminiscent of these patients' clinical presentations, including linearized hearts, bradycardia, otic vesicle dysgenesis, neuronal atrophy, and touch insensitivity by 3 days post fertilization. Imaging of Vamp2+ vesicles within stx4 mutant zebrafish hearts showed reduced docking to the cardiomyocyte sarcolemma. Optical mapping of the embryonic hearts coupled with pharmacological modulation of Ca2+ handling together support that zebrafish stx4 mutants have a reduction in L-type Ca2+ channel modulation. Transgenic overexpression of zebrafish Stx4R241W, analogous to the first patient's STX4R240W variant, indicated that the variant is hypomorphic. Thus, these data show an in vivo requirement for SNAREs in regulating normal embryonic cardiac function and that variants in STX4 are associated with pleiotropic human disease, including cardiomyopathy.
Collapse
Affiliation(s)
- Eliyahu Perl
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Manu E. Beerens
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lejla Mulahasanovic
- Praxis für Humangenetik, Tübingen, Baden-Württemberg, Germany,CeGaT GmbH, Tübingen, Baden-Württemberg, Germany
| | - Kelly Smallwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marion Bermúdez Sasso
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Thomas D. Ryan
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matej Komár
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Kevin E. Bove
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Calum A. MacRae
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Genetics and Network Medicine Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Boston, MA, USA
| | - K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Carlos E. Prada
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Corresponding author
| |
Collapse
|
38
|
Zhou J, Li Q, Wu W, Zhang X, Zuo Z, Lu Y, Zhao H, Wang Z. Discovery of Novel Drug Candidates for Alzheimer’s Disease by Molecular Network Modeling. Front Aging Neurosci 2022; 14:850217. [PMID: 35493947 PMCID: PMC9051440 DOI: 10.3389/fnagi.2022.850217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
To identify the molecular mechanisms and novel therapeutic agents of late-onset Alzheimer’s disease (AD), we performed integrative network analysis using multiple transcriptomic profiles of human brains. With the hypothesis that AD pathology involves the whole cerebrum, we first identified co-expressed modules across multiple cerebral regions of the aging human brain. Among them, two modules (M3 and M8) consisting of 1,429 protein-coding genes were significantly enriched with AD-correlated genes. Differential expression analysis of microarray, bulk RNA-sequencing (RNA-seq) data revealed the dysregulation of M3 and M8 across different cerebral regions in both normal aging and AD. The cell-type enrichment analysis and differential expression analysis at the single-cell resolution indicated the extensive neuronal vulnerability in AD pathogenesis. Transcriptomic-based drug screening from Connectivity Map proposed Gly-His-Lys acetate salt (GHK) as a potential drug candidate that could probably restore the dysregulated genes of the M3 and M8 network. Pretreatment with GHK showed a neuroprotective effect against amyloid-beta-induced injury in differentiated human neuron-like SH-SY5Y cells. Taken together, our findings uncover a dysregulated network disrupted across multiple cerebral regions in AD and propose pretreatment with GHK as a novel neuroprotective strategy against AD.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyong Li
- Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wensi Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Yanan Lu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiying Zhao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
- *Correspondence: Huiying Zhao,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Zhi Wang,
| |
Collapse
|
39
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
41
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 2022; 59:3159-3169. [DOI: 10.1007/s12035-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
43
|
Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, Nicotera AG, Di Rosa G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front Neurol 2022; 13:826211. [PMID: 35350397 PMCID: PMC8957959 DOI: 10.3389/fneur.2022.826211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
The proper connection between the pre- and post-synaptic nervous cells depends on any element constituting the synapse: the pre- and post-synaptic membranes, the synaptic cleft, and the surrounding glial cells and extracellular matrix. An alteration of the mechanisms regulating the physiological synergy among these synaptic components is defined as “synaptopathy.” Mutations in the genes encoding for proteins involved in neuronal transmission are associated with several neuropsychiatric disorders, but only some of them are associated with Developmental and Epileptic Encephalopathies (DEEs). These conditions include a heterogeneous group of epilepsy syndromes associated with cognitive disturbances/intellectual disability, autistic features, and movement disorders. This review aims to elucidate the pathogenesis of these conditions, focusing on mechanisms affecting the neuronal pre-synaptic terminal and its role in the onset of DEEs, including potential therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- *Correspondence: Vincenzo Salpietro
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
44
|
Cali E, Rocca C, Salpietro V, Houlden H. Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery. Front Neurol 2022; 12:806506. [PMID: 35095745 PMCID: PMC8792400 DOI: 10.3389/fneur.2021.806506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as “SNAREopathies.” These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.
Collapse
Affiliation(s)
- Elisa Cali
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
45
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
46
|
Huber N, Hoffmann D, Giniatullina R, Rostalski H, Leskelä S, Takalo M, Natunen T, Solje E, Remes AM, Giniatullin R, Hiltunen M, Haapasalo A. C9orf72 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology and synaptic dysfunction. Neurobiol Dis 2021; 162:105584. [PMID: 34915153 DOI: 10.1016/j.nbd.2021.105584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/26/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of progressive neurodegenerative syndromes. To date, no validated biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. The most common genetic cause underlying FTLD and amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion in the C9orf72 gene (C9-HRE). FTLD is accompanied by changes in several neurotransmitter systems, including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems and many clinical symptoms can be explained by disturbances in these systems. Here, we aimed to elucidate the effects of the C9-HRE on synaptic function, molecular composition of synapses, and dendritic spine morphology. We overexpressed the pathological C9-HRE in cultured E18 mouse primary hippocampal neurons and characterized the pathological, morphological, and functional changes by biochemical methods, confocal microscopy, and live cell calcium imaging. The C9-HRE-expressing neurons were confirmed to display the pathological RNA foci and DPR proteins. C9-HRE expression led to significant changes in dendritic spine morphologies, as indicated by decreased number of mushroom-type spines and increased number of stubby and thin spines, as well as diminished neuronal branching. These morphological changes were accompanied by concomitantly enhanced susceptibility of the neurons to glutamate-induced excitotoxicity as well as augmented and prolonged responses to excitatory stimuli by glutamate and depolarizing potassium chloride as compared to control neurons. Mechanistically, the hyperexcitation phenotype in the C9-HRE-expressing neurons was found to be underlain by increased activity of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors. Our results are in accordance with the idea suggesting that C9-HRE is associated with enhanced excitotoxicity and synaptic dysfunction. Thus, therapeutic interventions targeted to alleviate synaptic disturbances might offer efficient avenues for the treatment of patients with C9-HRE-associated FTLD.
Collapse
Affiliation(s)
- Nadine Huber
- Molecular Neurodegeneration group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Dorit Hoffmann
- Molecular Neurodegeneration group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Raisa Giniatullina
- Molecular Pain Research group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Hannah Rostalski
- Molecular Neurodegeneration group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Stina Leskelä
- Molecular Neurodegeneration group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland.
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland.
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, P. O. Box 100, FI-70029 KYS, Finland.
| | - Anne M Remes
- Medical Research Center, Oulu University Hospital, P. O. Box 8000, FI-90014 University of Oulu, Finland; Unit of Clinical Neuroscience, Neurology, University of Oulu, P. O. Box 8000, FI-90014 University of Oulu, Finland.
| | - Rashid Giniatullin
- Molecular Pain Research group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Molecular Neurodegeneration group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| |
Collapse
|
47
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
48
|
Tran Mau-Them F, Duffourd Y, Vitobello A, Bruel AL, Denommé-Pichon AS, Nambot S, Delanne J, Moutton S, Sorlin A, Couturier V, Bourgeois V, Chevarin M, Poe C, Mosca-Boidron AL, Callier P, Safraou H, Faivre L, Philippe C, Thauvin-Robinet C. Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases. Mol Genet Genomic Med 2021; 9:e1836. [PMID: 34716697 PMCID: PMC8683640 DOI: 10.1002/mgg3.1836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Exome sequencing (ES) has become the most powerful and cost‐effective molecular tool for deciphering rare diseases with a diagnostic yield approaching 30%–40% in solo‐ES and 50% in trio‐ES. We applied an innovative parental DNA pooling method to reduce the parental sequencing cost while maintaining the diagnostic yield of trio‐ES. Methods We pooled six (Agilent‐CRE‐v2–100X) or five parental DNA (TWIST‐HCE–70X) aiming to detect allelic balance around 8–10% for heterozygous status. The strategies were applied as second‐tier (74 individuals after negative solo‐ES) and first‐tier approaches (324 individuals without previous ES). Results The allelic balance of parental‐pool variants was around 8.97%. Sanger sequencing uncovered false positives in 1.5% of sporadic variants. In the second‐tier approach, we evaluated than two thirds of the Sanger validations performed after solo‐ES (41/59–69%) would have been saved if the parental‐pool segregations had been available from the start. The parental‐pool strategy identified a causative diagnosis in 18/74 individuals (24%) in the second‐tier and in 116/324 individuals (36%) in the first‐tier approaches, including 19 genes newly associated with human disorders. Conclusions Parental‐pooling is an efficient alternative to trio‐ES. It provides rapid segregation and extension to translational research while reducing the cost of parental and Sanger sequencing.
Collapse
Affiliation(s)
- Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Yannis Duffourd
- Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France.,FHU-TRANSLAD, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Ange-Line Bruel
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de l'Est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Julian Delanne
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de l'Est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Sebastien Moutton
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de l'Est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Arthur Sorlin
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de l'Est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | -
- FHU-TRANSLAD, Dijon, France
| | - Victor Couturier
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Valentin Bourgeois
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Martin Chevarin
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Charlotte Poe
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | | | - Patrick Callier
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU de Dijon, France
| | - Hana Safraou
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de l'Est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France.,Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France.,FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
49
|
Aguilera C, Gabau E, Ramirez-Mallafré A, Brun-Gasca C, Dominguez-Carral J, Delgadillo V, Laurie S, Derdak S, Padilla N, de la Cruz X, Capdevila N, Spataro N, Baena N, Guitart M, Ruiz A. New genes involved in Angelman syndrome-like: Expanding the genetic spectrum. PLoS One 2021; 16:e0258766. [PMID: 34653234 PMCID: PMC8519432 DOI: 10.1371/journal.pone.0258766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by severe developmental delay with absence of speech, happy disposition, frequent laughter, hyperactivity, stereotypies, ataxia and seizures with specific EEG abnormalities. There is a 10–15% of patients with an AS phenotype whose genetic cause remains unknown (Angelman-like syndrome, AS-like). Whole-exome sequencing (WES) was performed on a cohort of 14 patients with clinical features of AS and no molecular diagnosis. As a result, we identified 10 de novo and 1 X-linked pathogenic/likely pathogenic variants in 10 neurodevelopmental genes (SYNGAP1, VAMP2, TBL1XR1, ASXL3, SATB2, SMARCE1, SPTAN1, KCNQ3, SLC6A1 and LAS1L) and one deleterious de novo variant in a candidate gene (HSF2). Our results highlight the wide genetic heterogeneity in AS-like patients and expands the differential diagnosis.
Collapse
Affiliation(s)
- Cinthia Aguilera
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Ariadna Ramirez-Mallafré
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carme Brun-Gasca
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- Department of Clinical Psychology and Health Psychology, Universitat Autònoma de Barcelona, Bellatera, Barcelona, Spain
| | - Jana Dominguez-Carral
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Veronica Delgadillo
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steve Laurie
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophia Derdak
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Natàlia Padilla
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Núria Capdevila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Neus Baena
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| |
Collapse
|
50
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|