1
|
Yang M, Zhang X, Zhang D, Zhang Y, Wang J, Zhang Y, Gu C, Zhang X, Wei L. Body Fluid Biomarkers of Neurological Injury in HIV-1-Associated Neurocognitive Disorder. AIDS Res Hum Retroviruses 2025. [PMID: 39938886 DOI: 10.1089/aid.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Since combined antiretroviral therapy for human immunodeficiency virus-associated neurocognitive dysfunction (HAND) only slows the disease's progression, early identification and timely intervention are crucial for effective therapy. In this article, we review the latest evidence in body fluid biomarkers of HAND, providing an overview of research conducted on cerebrospinal fluid and blood samples to draw conclusions on promising biomarkers. Although the significance of biomarkers such as amyloid metabolites, tau proteins, neurofilament light chain, myelin oligodendrocyte glycoprotein, and brain-derived neurotrophic factor in the early detection of HAND may not be immediately clear, they could potentially play a crucial role in evaluating prognosis and tracking the effectiveness of treatment.
Collapse
Affiliation(s)
- Meijuan Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaomei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Dong Zhang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yamin Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Jiamei Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yi Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Cheng Gu
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwang Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Sundermann EE, Campbell LM, Villers O, Bondi MW, Gouaux B, Salmon DP, Galasko D, Soontornniyomkij V, Ellis RJ, Moore DJ. Alzheimer's Disease Pathology in Middle Aged and Older People with HIV: Comparisons with Non-HIV Controls on a Healthy Aging and Alzheimer's Disease Trajectory and Relationships with Cognitive Function. Viruses 2023; 15:1319. [PMID: 37376619 PMCID: PMC10305373 DOI: 10.3390/v15061319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
We determined the prevalence of Alzheimer's disease (AD) pathological hallmarks, amyloid-β and phosphorylated-Tau, in autopsied brains of 49 people with HIV (PWH) (ages: 50-68; mean age = 57.0) from the National NeuroAIDS Tissue Consortium and in a comparative cohort of 55 people without HIV (PWoH) from the UC San Diego Alzheimer's Disease Research Center (17 controls, 14 mild cognitive impairment, 24 AD; ages: 70-102, mean age = 88.7). We examined how AD pathology relates to domain-specific cognitive functions in PWH overall and in sex-stratified samples. Amyloid-β and phosphorylated-Tau positivity (presence of pathology of any type/density) was determined via immunohistochemistry in AD-sensitive brain regions. Among PWH, amyloid-β positivity ranged from 19% (hippocampus) to 41% (frontal neocortex), and phosphorylated-Tau positivity ranged from 47% (entorhinal cortex) to 73% (transentorhinal cortex). Generally, AD pathology was significantly less prevalent, and less severe when present, in PWH versus PWoH regardless of cognitive status. Among PWH, positivity for AD pathology related most consistently to memory-related domains. Positivity for p-Tau pathology related to memory-related domains in women with HIV only, although the sample size of women with HIV was small (n = 10). Results indicate that AD pathology is present in a sizable portion of middle aged and older PWH, although not to the extent in older PWoH. Studies with better age-matched PWoH are needed to examine the effect of HIV status on AD pathology.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Laura M. Campbell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Olivia Villers
- School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Ben Gouaux
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Virawudh Soontornniyomkij
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - David J. Moore
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| |
Collapse
|
3
|
Du C, Li G, Han G. Biosafety and mental health: Virus induced cognitive decline. BIOSAFETY AND HEALTH 2023; 5:159-167. [PMID: 40078510 PMCID: PMC11895046 DOI: 10.1016/j.bsheal.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 03/14/2025] Open
Abstract
Biological agents threats people's life through different ways, one of which lies in the impairment of cognition. It is believed cognitive decline may result from biological agents mediated neuron damage directly, or from the activation of the host immune response to eradicate the pathogen. However, direct linkage between infections and cognitive decline is very limited. Here we focus on the mechanisms of how different biological virus or they induced systemic and local inflammation link to the cognitive impairment, focusing on the roles of activated microglia and several molecular pathways mediated neurotoxicity.
Collapse
Affiliation(s)
- Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
4
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
5
|
Machine Learning-Based Virtual Screening for the Identification of Cdk5 Inhibitors. Int J Mol Sci 2022; 23:ijms231810653. [PMID: 36142566 PMCID: PMC9502400 DOI: 10.3390/ijms231810653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is an atypical proline-directed serine/threonine protein kinase well-characterized for its role in the central nervous system rather than in the cell cycle. Indeed, its dysregulation has been strongly implicated in the progression of synaptic dysfunction and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and also in the development and progression of a variety of cancers. For this reason, Cdk5 is considered as a promising target for drug design, and the discovery of novel small-molecule Cdk5 inhibitors is of great interest in the medicinal chemistry field. In this context, we employed a machine learning-based virtual screening protocol with subsequent molecular docking, molecular dynamics simulations and binding free energy evaluations. Our virtual screening studies resulted in the identification of two novel Cdk5 inhibitors, highlighting an experimental hit rate of 50% and thus validating the reliability of the in silico workflow. Both identified ligands, compounds CPD1 and CPD4, showed a promising enzyme inhibitory activity and CPD1 also demonstrated a remarkable antiproliferative activity in ovarian and colon cancer cells. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent Cdk5 inhibitors.
Collapse
|
6
|
Magaki SD, Vinters HV, Williams CK, Mareninov S, Khanlou N, Said J, Nemanim N, Gonzalez J, Morales JG, Singer EJ, Yong WH. Neuropathologic Findings in Elderly HIV-Positive Individuals. J Neuropathol Exp Neurol 2022; 81:565-576. [PMID: 35656871 DOI: 10.1093/jnen/nlac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.
Collapse
Affiliation(s)
- Shino D Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Harry V Vinters
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sergey Mareninov
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Natasha Nemanim
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessica Gonzalez
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jose G Morales
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
7
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Vijayan M, Yin L, Reddy PH, Benamar K. Behavioral Evidence for a Tau and HIV-gp120 Interaction. Int J Mol Sci 2022; 23:ijms23105514. [PMID: 35628323 PMCID: PMC9146203 DOI: 10.3390/ijms23105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/07/2022] Open
Abstract
Despite successful virologic control with combination antiretroviral therapy (cART), about half of people living with the human immunodeficiency virus-1 (HIV) develop an HIV-associated neurocognitive disorder (HAND). It is estimated that 50% of individuals who are HIV-positive in the United States are aged 50 years or older. Therefore, a new challenge looms as individuals living with HIV increase in age. There is concern that Alzheimer’s disease (AD) may become prevalent with an earlier onset of cognitive decline in people living with HIV (PLWH). Clinical data studies reported the presence of AD biomarkers in PLWH. However, the functional significance of the interaction between HIV or HIV viral proteins and AD biomarkers is still not well studied. The main goal of the present study is to address this knowledge gap by determining if the HIV envelope glycoprotein 120 (HIV-gp120) can affect the cognitive functions in the Tau mouse AD model. Male Tau and age-matched, wild-type (WT) control mice were treated intracerebroventricularly (ICV) with HIV-gp120. The animals were evaluated for cognitive function using a Y-maze. We found that HIV-gp120 altered cognitive function in Tau mice. Notably, HIV-gp120 was able to promote a cognitive decline in transgenic Tau (P301L) mice compared to the control (HIV-gp120 and WT). We provide the first in vivo evidence of a cognitive interaction between an HIV viral protein and Tau mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine Lubbock, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3570; Fax: +1-806-743-2744
| |
Collapse
|
9
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
11
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
12
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
13
|
Khushafa T, Jing L, Zhaojun Z, Jiameng S, Haixia Z. Insights into the biomarkers of viral encephalitis from clinical patients. Pathog Dis 2020; 79:6006267. [PMID: 33238302 DOI: 10.1093/femspd/ftaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND biomarkers can be helpful in identifying patients who may profit by explicit treatments or evaluating the reaction to the treatment of specific disease. Finding unique biomarkers in the process of disease could help clinicians in identifying serious disease in the early stage, so as to improve prognosis. OBJECTIVE these investigations, nonetheless, have made constrained progress. Numerous infections are known to cause intense viral encephalitis (VE) in people which can cause a variable level of meningeal just as parenchymal aggravation. Initial clinical manifestations in most encephalitis are nonspecific, resembling a viral-like illness. However, with disease progression, symptoms can become quite severe and fatal, including prominent cranial hypertension, cognitive problems, cerebral hernia and respiratory failure. Forwards: the clinical and research center discoveries in huge numbers of those viral issues are to a great extent comparable and in this way increasingly explicit biomarkers for indicative and prognostic intentions are justified. These biomarkers are progressively significant in the acknowledgment and treatment of the viral central nervous system (CNS) issue. CONCLUSION Clinical manifestations have been the indicative approaches for analysis of viral encephalitis. Lots of studies have been endeavored to distinguish progressively objective laboratory-based quantitative CSF biomarkers for VE.
Collapse
Affiliation(s)
- Thekra Khushafa
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Liu Jing
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Zeng Zhaojun
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Sun Jiameng
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Zhu Haixia
- The Third Xiangya Hospital, Central South University, Tongzipo Road No. 138, Changsha 410013, Hunan, China
| |
Collapse
|
14
|
Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neurosci Lett 2020; 741:135502. [PMID: 33202259 DOI: 10.1016/j.neulet.2020.135502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Opiate abuse is prevalent among HIV-infected individuals and may exacerbate HIV-associated age-related neurocognitive disorders. However, the extent to which HIV and opiates converge to accelerate pathological traits indicative of brain aging remains unknown. The pathological phospho-isotypes of tau (pSer396, pSer404, pThr205, pSer202, and pThr181) and the tau kinases GSK3β and CDK5/p35 were explored in the striatum, hippocampus, and prefrontal cortex of inducible male and female HIV-1 Tat-transgenic mice, with some receiving escalating doses of morphine for 2 weeks. In the striatum of male mice, pSer396 was increased by co-exposure to morphine and Tat as compared to all other groups. Striatal pSer404 and pThr205 were increased by Tat alone, while pSer202 and pThr181 were unchanged. A comparison between Tat-transgenic female and male mice revealed disparate outcomes for pThr205. No other sex-related changes to tau phosphorylation were observed. In the hippocampus, Tat increased pSer396, while other phosphorylation sites were unchanged and pSer202 was not detected. In the prefrontal cortex, morphine increased pSer396 levels, which were unaffected by Tat, while other phosphorylation sites were unaffected. Assessment of tau kinases revealed no changes to striatal GSK3β (phosphorylated or total) or the total CDK5 levels. Striatal levels of phosphorylated CDK5 and p35, the activator of CDK5, were increased by Tat and with morphine co-exposure, respectively. P35 levels positively correlated with those of pSer396 with Tat and morphine co-exposure. The results reveal region-specific hyperphosphorylation of tau induced by exposure to morphine, Tat, and unique morphine and Tat interactions.
Collapse
|
15
|
Mackiewicz MM, Overk C, Achim CL, Masliah E. Pathogenesis of age-related HIV neurodegeneration. J Neurovirol 2019; 25:622-633. [PMID: 30790184 PMCID: PMC6703984 DOI: 10.1007/s13365-019-00728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer's disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid β, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.
Collapse
Affiliation(s)
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging/NIH, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Inhibition of Cyclin-dependent Kinase 2 Signaling Prevents Liver Ischemia and Reperfusion Injury. Transplantation 2019; 103:724-732. [PMID: 30801519 DOI: 10.1097/tp.0000000000002614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Liver ischemia and reperfusion injury (IRI) is a major complication of liver transplant, hepatectomy, and hemorrhagic shock. The cyclin-dependent kinase 2 (CDK2) acts as a pivotal regulator of cell cycle and proliferation. METHODS This study evaluated the modulation and therapeutic potential of CDK2 inhibition in a mouse model of partial liver warm IRI. RESULTS Liver IR-triggered intrinsic CDK2 expression, peaking by 0.5 hour of reperfusion and maintaining a high-level throughout 1 to 24 hours. Roscovitine, a specific CDK2 inhibitor, prevented liver IR-mediated damage with abolished serum alanine aminotransferase levels and reserved liver pathology. CDK2 inhibition-mediated liver protection was accompanied by decreased macrophage/neutrophil infiltration, diminished hepatocyte apoptosis, abolished toll like receptor 4 signaling and downstream gene inductions (C-X-C motif ligand-10, Tumor necrosis factor-α, interleukin-1β, and interleukin-6), yet augmented interleukin-10 expression. In vitro, CDK2 inhibition by Roscovitine suppressed macrophage TLR4 activation and further depressed downstream inflammatory signaling (myeloid differentiation factor 88, interferon regulatory transcription factor 3, p38, c-Jun N-terminal kinase, and extracellular-regulated kinase). CONCLUSIONS Our novel findings revealed the critical role of CDK2 in hepatic cytoprotection and homeostasis against liver IRI. As CDK2 inhibition regulated local immune response and prevented hepatocyte death, this study provided the evidence for new treatment approaches to combat IRI in liver transplant.
Collapse
|
17
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
18
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
19
|
Thaney VE, Sanchez AB, Fields JA, Minassian A, Young JW, Maung R, Kaul M. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuroAIDS research. J Neurovirol 2017; 24:156-167. [PMID: 29075998 DOI: 10.1007/s13365-017-0584-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
HIV-1 infection causes injury to the central nervous system (CNS) and is often associated with neurocognitive disorders. One model for brain damage seen in AIDS patients is the transgenic (tg) mouse expressing a soluble envelope protein gp120 of HIV-1 LAV in the brain in astrocytes under the control of the promoter of glial fibrillary acidic protein. These GFAP-gp120tg mice manifest several key neuropathological features observed in AIDS brains, such as decreased synaptic and dendritic density, increased numbers of activated microglia, and pronounced astrocytosis. Several recent studies show that brains of GFAP-gp120tg mice and neurocognitively impaired HIV patients share also a significant number of differentially regulated genes, activation of innate immunity and other cellular signaling pathways, disturbed neurogenesis, and learning deficits. These findings support the continued relevance of the GFAP-gp120tg mouse as a useful model to investigate neurodegenerative mechanisms and develop therapeutic strategies to mitigate the consequences associated with HIV infection of the CNS, neuroAIDS, and HAND.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jerel A Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
20
|
Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol 2017; 157:117-132. [PMID: 27084354 PMCID: PMC5705228 DOI: 10.1016/j.pneurobio.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
HIV infection often causes neurological symptoms including cognitive and motor dysfunction, which have been collectively termed HIV/neuroAIDS. Neuropsychological assessment and clinical symptoms have been the primary diagnostic criteria for HIV/neuroAIDS, even for the mild cognitive and motor disorder, the most prevalent form of HIV/neuroAIDS in the era of combination antiretroviral therapy. Those performance-based assessments and symptoms are generally descriptive and do not have the sensitivity and specificity to monitor the diagnosis, progression, and treatment response of the disease when compared to objective and quantitative laboratory-based biological markers, or biomarkers. In addition, effects of demographics and comorbidities such as substance abuse, psychiatric disease, nutritional deficiencies, and co-infection on HIV/neuroAIDS could be more readily determined using biomarkers than using neuropsychological assessment and clinical symptoms. Thus, there have been great efforts in identification of HIV/neuroAIDS biomarkers over the past two decades. The need for reliable biomarkers of HIV/neuroAIDS is expected to increase as the HIV-infected population ages and their vulnerability to neurodegenerative diseases, particularly Alzheimer's disease increases. Currently, three classes of HIV/neuroAIDS biomarkers are being pursued to establish objective laboratory-based definitions of HIV-associated neurologic injury: cerebrospinal fluid biomarkers, blood biomarkers, and neuroimaging biomarkers. In this review, we will focus on the current knowledge in the field of HIV/neuroAIDS biomarker discovery.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
21
|
Erdő F, Nagy I, Tóth B, Bui A, Molnár É, Tímár Z, Magnan R, Krajcsi P. Abcb1a (P-glycoprotein) limits brain exposure of the anticancer drug candidate seliciclib in vivo in adult mice. Brain Res Bull 2017. [PMID: 28629814 DOI: 10.1016/j.brainresbull.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seliciclib displayed limited brain exposure in vivo in adult rats with mature blood-brain barrier (BBB). Selicilib was shown to be a specific substrate of human ABCB1 in vitro. To demonstrate that ABCB1/Abcb1 can limit brain exposure in vivo in mice we are showing that seliciclib is a substrate of mouse Abcb1a, the murine ABCB1 ortholog expressed in the BBB as LLC-PK-Abcb1a cells displayed an efflux ratio (ER) of 15.31±3.54 versus an ER of 1.44±0.10 in LLC-PK1-mock cells. Additionally, in the presence of LY335979, an ABCB1/Abcb1a specific inhibitor, the observed ER for seliciclib in the LLC-PK1-mMdr1a cells decreased to 1.05±0.25. To demonstrate in vivo relevance of seliciclib transport by Abcb1a mouse brain microdialysis experiments were carried out that showed that the AUCbrain/AUCblood ratio of 0.143 in anesthetized mice increased about two-fold to 0.279 in the presence of PSC833 another ABCB1/Abcb1a specific inhibitor. PSC833 also increased the brain exposure (AUCbrain) of seliciclib close to 2-fold (136 vs 242) in awake mice. In sum, Abcb1a significantly decreases seliciclib permeability in vitro and is partly responsible for limited brain exposure of seliciclib in vivo in mice.
Collapse
Affiliation(s)
- Franciska Erdő
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083 Hungary
| | - Ildikó Nagy
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Beáta Tóth
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Annamária Bui
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Éva Molnár
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary
| | - Zoltán Tímár
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary
| | - Rémi Magnan
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Peter Krajcsi
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary.
| |
Collapse
|
22
|
Liu C, Russin J, Heck C, Kawata K, Adiga R, Yen W, Lambert J, Stear B, Law M, Marquez Y, Crino P, Millett D, Langford D. Dysregulation of PINCH signaling in mesial temporal epilepsy. J Clin Neurosci 2017; 36:43-52. [PMID: 27838154 PMCID: PMC6492941 DOI: 10.1016/j.jocn.2016.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/15/2023]
Abstract
Mounting evidence suggests that inflammation is important in epileptogenesis. Particularly Interesting New Cysteine Histidine-rich (PINCH) protein is a highly conserved, LIM-domain protein known to interact with hyperphosphorylated Tau. We assessed PINCH expression in resected epileptogenic human hippocampi and further explored the relationships among PINCH, hpTau and associated kinases. Resected hippocampal tissue from 7 patients with mesial temporal lobe epilepsy (MTLE) was assessed by Western analyses to measure levels of PINCH and hyperphosphorylated Tau, as well as changes in phosphorylation levels of associated kinases AKT and GSK3β in comparison to normal control tissue. Immunolabeling was also conducted to evaluate PINCH and hpTau patterns of expression, co-localization and cell-type specific expression. Hippocampal PINCH was increased by 2.6 fold in the epilepsy cases over controls and hpTau was increased 10 fold over control. Decreased phospho-AKT and phospho-GSK3β in epilepsy tissue suggested involvement of this pathway in MTLE. PINCH and hpTau co-localized in some neurons in MTLE tissue. While PINCH was expressed by both neurons and astrocytes in MTLE tissue, hpTau was extracellular or associated with neurons. PINCH was absent from the serum of control subjects but readily detectable from the serum of patients with chronic epilepsy. Our study describes the expression of PINCH and points to AKT/GSK3β signaling dysregulation as a possible pathway in hpTau formation in MTLE. In view of the interactions between hpTau and PINCH, understanding the role of PINCH in MTLE may provide increased understanding of mechanisms leading to inflammation and MTLE epileptogenesis and a potential biomarker for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christianne Heck
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keisuke Kawata
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Kinesiology, College of Public Health, Philadelphia, PA, USA; Department of Kinesiology, University of Indiana, Philadelphia, PA, USA
| | - Radhika Adiga
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Yen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jonathan Lambert
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Benjamin Stear
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Meng Law
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yvette Marquez
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter Crino
- Department of Neurology, Temple University School of Medicine, and Shriners Hospitals Pediatric Research Center, Philadelphia, PA, USA
| | - David Millett
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Cho YE, Lee MH, Song BJ. Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats. PLoS One 2017; 12:e0169945. [PMID: 28107387 PMCID: PMC5249108 DOI: 10.1371/journal.pone.0169945] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanisms for increased neurodegeneration and neurocognitive deficits in HIV-infected people are unclear. Therefore, this study was aimed to investigate the mechanisms of increased neurodegeneration in 5-month old male HIV-1 Transgenic (Tg) rats compared to the age- and gender-matched wild-type (WT) by evaluating histological changes and biochemical parameters of the key proteins involved in the cell death signaling and apoptosis. Histological and immunohistochemical analyses revealed decreased neuronal cells with elevated astrogliosis in HIV-1 Tg rats compared to WT. Mechanistic studies revealed that increased levels of nitroxidative stress marker proteins such as NADPH-oxidase, cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase (iNOS), the stress-activated mitogen-activated protein kinases such as JNK and p38K, activated cell-cycle dependent CDK5, hypoxia-inducible protein-1α, nitrated proteins, hyperphosphorylated tau, and amyloid plaques in HIV-Tg rats were consistently observed in HIV-1 Tg rats. Confocal microscopy and cell viability analyses showed that treatment with an antioxidant N-acetylcysteine or a specific inhibitor of iNOS 1400W significantly prevented the increased apoptosis of neuro-2A cells by HIV-1 Tat or gp120 protein, demonstrating the causal role of HIV-1 mediated nitroxidative stress and protein nitration in promoting neuronal cell death. Immunoprecipitation and immunoblot analysis confirmed nitration of Hsp90, evaluated as an example of nitrated proteins, suggesting possible involvement of nitrated proteins in neuronal damage. Further, activated p-JNK directly binds tau and phosphorylates multiple amino acids, suggesting an important role of p-JNK in tau hyperphosphorylation and tauopathy. These changes were accompanied with elevated levels of many apoptosis-related proteins Bax and cleaved (activated) caspase-3 as well as proinflammatory cytokines including TNF-α, IL-6 and MCP-1. Collectively, these results indicate that raised nitroxidative stress accompanied by elevated inflammation, cell death signaling pathway including activated p-JNK, C-terminal C99 amyloid fragment formation and tau hyperphosphorylation are responsible for increased apoptosis of neuronal cells and neurodegeneration in 5-month old HIV-Tg rats.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Soliman ML, Geiger JD, Chen X. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation. J Neuroimmune Pharmacol 2016; 12:163-170. [PMID: 27629410 DOI: 10.1007/s11481-016-9707-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022]
Abstract
The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA.
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| |
Collapse
|
25
|
HIV encephalitis with subcortical tau deposition: imaging pathology in vivo using F-18 THK 5117. Eur J Nucl Med Mol Imaging 2016; 43:2456-2457. [PMID: 27488858 DOI: 10.1007/s00259-016-3473-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
26
|
Fields JA, Overk C, Adame A, Florio J, Mante M, Pineda A, Desplats P, Rockenstein E, Achim C, Masliah E. Neuroprotective effects of the immunomodulatory drug FK506 in a model of HIV1-gp120 neurotoxicity. J Neuroinflammation 2016; 13:120. [PMID: 27220536 PMCID: PMC4879748 DOI: 10.1186/s12974-016-0585-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/16/2016] [Indexed: 11/12/2022] Open
Abstract
Background HIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. In this context, the main objective of this study was to evaluate if FK506 could rescue the neuronal degeneration and mitochondrial alterations in a transgenic (tg) animal model of HIV1-gp120 neurotoxicity. Methods GFAP-gp120 tg mice were treated with FK506 and analyzed for neuropathology, behavior, mitochondrial markers, and calcium flux by two-photon microscopy. Results We found that FK506 reduced the neuronal cell loss and neuro-inflammation in the gp120 tg mice. Moreover, while vehicle-treated gp120 tg mice displayed damaged mitochondria and increased neuro-inflammatory markers, FK506 rescued the morphological mitochondrial alterations and neuro-inflammation while increasing levels of optic atrophy 1 and mitofusin 1. By two-photon microscopy, calcium levels were not affected in the gp120 tg mice and no effects of FK506 were detected. However, at a functional level, FK506 ameliorated the gp120 tg mice hyperactivity in the open field. Conclusions Together, these results suggest that FK506 might be potentially neuroprotective in patients with HAND by mitigating inflammation and mitochondrial alterations.
Collapse
Affiliation(s)
- Jerel A Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrea Pineda
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. .,Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, Trejo M, Adame A, Spencer B, Rockenstein E, Murphy AN, Ellis RJ, Letendre S, Grant I, Masliah E. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis 2016; 86:154-69. [PMID: 26611103 PMCID: PMC4713337 DOI: 10.1016/j.nbd.2015.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Elisabeth Serger
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Sofia Campos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Changyoun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kendall Smith
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Margarita Trejo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Rockenstein E, Ubhi K, Mante M, Florio J, Adame A, Winter S, Brandstaetter H, Meier D, Masliah E. Neuroprotective effects of Cerebrolysin in triple repeat Tau transgenic model of Pick's disease and fronto-temporal tauopathies. BMC Neurosci 2015; 16:85. [PMID: 26611895 PMCID: PMC4662012 DOI: 10.1186/s12868-015-0218-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tauopathies are a group of neurodegenerative disorders with accumulation of three-repeat (3R) or four-repeat (4R) Tau. While 3R tau is found in Pick's disease and Alzheimer's disease (AD), 4R tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and AD. We have previously shown that Cerebrolysin™ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the pathology in amyloid precursor protein transgenic (tg) mouse model of AD and 4R tau, however it is unclear if CBL ameliorates the deficits and neuropathology in the mouse model of Pick's disease over expressing 3R tau. RESULTS Mice expressing 3R tau (L266V and G272V mutations) under the mThy-1 promoter were treated with CBL in two separate groups, the first was 3 months old (treated for 3 months, IP) and the second was 6 months old (treated for 3 months, IP) at the start of the treatment. We found that although the levels of total 3R tau were unchanged, CBL reduced the levels of hyper-phosphorylated tau in both groups of mice. This was accompanied by reduced neurodegenerative pathology in the neocortex and hippocampus in both groups and by improvements in the behavioral deficits in the nest-building test and water maze in the 3-6 month group. CONCLUSION Taken together these results support the notion that CBL may be beneficial in other taupathy models by reducing the levels of aberrantly phosphorylated tau.
Collapse
Affiliation(s)
- Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
| | - Kiren Ubhi
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
| | - Stefan Winter
- Clinical Research and Pharmacology, EVER Neuro Pharma GmbH, Unterach, Austria.
| | - Hemma Brandstaetter
- Clinical Research and Pharmacology, EVER Neuro Pharma GmbH, Unterach, Austria.
| | - Dieter Meier
- Clinical Research and Pharmacology, EVER Neuro Pharma GmbH, Unterach, Austria.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093-0624, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
29
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Uzasci L, Auh S, Cotter RJ, Nath A. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns. Proteomics Clin Appl 2015; 10:126-35. [PMID: 26033855 DOI: 10.1002/prca.201400134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/18/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain. EXPERIMENTAL DESIGN Parietal cortex from individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high resolution. RESULTS Our phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs, which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2'-3'-cyclic nucleotide-3' phosphodiesterase have relatively higher phosphorylation levels during HIV infection. CONCLUSIONS AND CLINICAL RELEVANCE This study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Lerna Uzasci
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,The Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sungyoung Auh
- Clinical Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Cotter
- The Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Wrasidlo W, Crews LA, Tsigelny IF, Stocking E, Kouznetsova VL, Price D, Paulino A, Gonzales T, Overk CR, Patrick C, Rockenstein E, Masliah E. Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders. Br J Pharmacol 2015; 171:5757-73. [PMID: 25117211 DOI: 10.1111/bph.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood-brain barrier. EXPERIMENTAL APPROACH We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. KEY RESULTS Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. CONCLUSIONS AND IMPLICATIONS Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Wolf Wrasidlo
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207228 DOI: 10.3978/j.issn.2305-5839.2015.03.61] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Roscovitine [CY-202, (R)-Roscovitine, Seliciclib] is a small molecule that inhibits cyclin-dependent kinases (CDKs) through direct competition at the ATP-binding site. It is a broad-range purine inhibitor, which inhibits CDK1, CDK2, CDK5 and CDK7, but is a poor inhibitor for CDK4 and CDK6. Roscovitine is widely used as a biological tool in cell cycle, cancer, apoptosis and neurobiology studies. Moreover, it is currently evaluated as a potential drug to treat cancers, neurodegenerative diseases, inflammation, viral infections, polycystic kidney disease and glomerulonephritis. This review focuses on the use of roscovitine in the disease model as well as clinical model research.
Collapse
Affiliation(s)
- Jonas Cicenas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Karthik Kalyan
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Aleksandras Sorokinas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Edvinas Stankunas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Josh Levy
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Ingrida Meskinyte
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Vaidotas Stankevicius
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| |
Collapse
|
33
|
HIV eradication symposium: will the brain be left behind? J Neurovirol 2015; 21:322-34. [PMID: 25750070 PMCID: PMC4432099 DOI: 10.1007/s13365-015-0322-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
On 18 July 2014, the National Institute of Mental Health in collaboration with ViiV Health Care and Boehringer Ingelheim supported a symposium on HIV eradication and what it meant for the brain. The symposium was an affiliated event to the 20th International AIDS Conference. The meeting was held in Melbourne, Australia, and brought together investigators currently working on HIV eradication together with investigators who are working on the neurological complications of HIV. The purpose of the meeting was to bring the two fields of HIV eradication and HIV neurology together to foster dialogue and cross talk to move the eradication field forward in the context of issues relating to the brain as a potential reservoir of HIV. The outcomes of the symposium were that there was substantive but not definitive evidence for the brain as an HIV reservoir that will provide a challenge to HIV eradication. Secondly, the brain as a clinically significant reservoir for HIV is not necessarily present in all patients. Consequently, there is an urgent need for the development of biomarkers to identify and quantify the HIV reservoir in the brain. Lastly, when designing and developing eradication strategies, it is critical that approaches to target the brain reservoir be included.
Collapse
|
34
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol Cell Neurosci 2015; 65:11-20. [PMID: 25616162 DOI: 10.1016/j.mcn.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 01/03/2023] Open
Abstract
Infection of the CNS with HIV-1 occurs rapidly after primary peripheral infection. HIV-1 can induce a wide range of neurological deficits, collectively known as HIV-1-associated neurocognitive disorders. Our previous work has shown that the selected neurotoxic effects induced by individual viral proteins, Tat and gp120, and by HIV(+) supernatant are enhanced by co-exposure to morphine. This mimics co-morbid neurological effects observed in opiate-abusing HIV(+) patients. Although there is a correlation between opiate drug abuse and progression of HIV-1-associated neurocognitive disorders, the mechanisms underlying interactions between HIV-1 and opiates remain obscure. Previous studies have shown that HIV-1 induces neurotoxic effects through abnormal activation of GSK3β. Interestingly, expression of GSK3β has shown to be elevated in brains of young opiate abusers indicating that GSK3β is also linked to neuropathology seen with opiate-abusing patients. Thus, we hypothesize that GSK3β activation is a point of convergence for HIV- and opiate-mediated interactive neurotoxic effects. Neuronal cultures were treated with supernatant from HIV-1SF162-infected THP-1 cells, in the presence or absence of morphine and GSK3β inhibitors. Our results show that GSK3β inhibitors, including valproate and small molecule inhibitors, significantly reduce HIV-1-mediated neurotoxic outcomes, and also negate interactions with morphine that result in cell death, suggesting that GSK3β-activation is an important point of convergence and a potential therapeutic target for HIV- and opiate-mediated neurocognitive deficits.
Collapse
Affiliation(s)
- Ruturaj R Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 2015; 13:43-54. [PMID: 25760044 PMCID: PMC4455959 DOI: 10.2174/1570162x13666150311164201] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/13/2014] [Accepted: 01/29/2015] [Indexed: 12/16/2022]
Abstract
The advent of more effective antiretroviral therapies has reduced the frequency of HIV dementia, however the prevalence of milder HIV associated neurocognitive disorders [HAND] is actually rising. Neurodegenerative mechanisms in HAND might include toxicity by secreted HIV-1 proteins such as Tat, gp120 and Nef that could activate neuro-inflammatory pathways, block autophagy, promote excitotoxicity, oxidative stress, mitochondrial dysfunction and dysregulation of signaling pathways. Recent studies have shown that Tat could interfere with several signal transduction mechanisms involved in cytoskeletal regulation, cell survival and cell cycle re-entry. Among them, Tat has been shown to hyper-activate cyclin-dependent kinase [CDK] 5, a member of the Ser/Thr CDKs involved in cell migration, angiogenesis, neurogenesis and synaptic plasticity. CDK5 is activated by binding to its regulatory subunit, p35 or p39. For this manuscript we review evidence showing that Tat, via calcium dysregulation, promotes calpain-1 cleavage of p35 to p25, which in turn hyper-activates CDK5 resulting in abnormal phosphorylation of downstream targets such as Tau, collapsin response mediator protein-2 [CRMP2], doublecortin [DCX] and MEF2. We also present new data showing that Tat interferes with the trafficking of CDK5 between the nucleus and cytoplasm. This results in prolonged presence of CDK5 in the cytoplasm leading to accumulation of aberrantly phosphorylated cytoplasmic targets [e.g.: Tau, CRMP2, DCX] that impair neuronal function and eventually lead to cell death. Novel therapeutic approaches with compounds that block Tat mediated hyper-activation of CDK5 might be of value in the management of HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Dr., MTF 348, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
36
|
Brown LAM, Scarola J, Smith AJ, Sanberg PR, Tan J, Giunta B. The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener 2014; 9:40. [PMID: 25304757 PMCID: PMC4210623 DOI: 10.1186/1750-1326-9-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 11/14/2022] Open
Abstract
Given the increased life expectancy of human immunodeficiency virus (HIV) infected individuals treated with combination antiretroviral therapy (cART) and the ongoing inflammation observed in the brains of these patients, it is likely that premature neurodegeneration as measured by phospho-tau (p-tau) or increased total tau (t-tau) protein may become an increasing problem. This review examines the seven human studies that have occurred over the past 14 years measuring p-tau and/or t-tau in cerebrospinal fluid (CSF) or via post-mortem brain immunohistochemistry. Although not all studies are in agreement as to the changes in p-and t-tau in HIV infected patients, HIV persists in the brain despite cART. Thus is it is suggested that those maintained on long-term cART may develop tau pathology beyond the extent seen in the studies reviewed herein and overtime may then reach the threshold for clinical manifestation.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian Giunta
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613, USA.
| |
Collapse
|
37
|
D'Alton S, Lewis J. Therapeutic and diagnostic challenges for frontotemporal dementia. Front Aging Neurosci 2014; 6:204. [PMID: 25191265 PMCID: PMC4137452 DOI: 10.3389/fnagi.2014.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022] Open
Abstract
In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer's disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau-a protein which is pathologically aggregated in the majority of the remaining cases-there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.
Collapse
Affiliation(s)
- Simon D'Alton
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida Gainesville, FL, USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida Gainesville, FL, USA
| |
Collapse
|
38
|
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 2014; 9:26. [PMID: 24980976 PMCID: PMC4107468 DOI: 10.1186/1750-1326-9-26] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. RESULTS We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington's disease, Parkinson's disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function. CONCLUSIONS Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Adiga R, Ozdemir AY, Carides A, Wasilewski M, Yen W, Chitturi P, Ellis R, Langford D. Changes in PINCH levels in the CSF of HIV+ individuals correlate with hpTau and CD4 count. J Neurovirol 2014; 20:371-9. [PMID: 24817145 DOI: 10.1007/s13365-014-0252-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023]
Abstract
Several studies report associations between the particularly interesting new cysteine histidine-rich (PINCH) protein and HIV-associated CNS disease. PINCH is detected in the CSF of HIV patients, and changes in levels during disease may be indicative of changes in disease status over time. PINCH binds hyperphosphorylated Tau (hpTau) in the brain and CSF, but little is known about the relevance of these interactions to HIV CNS disease. In this study, PINCH and hpTau levels were assessed in three separate CSF samples collected longitudinally from 20 HIV+ participants before and after initiating antiretroviral therapy or before and after a change in the treatment regimen. The intervals were approximately 1 (T2) and 3-7 (T3) months from the initial visit (baseline, T1). Correlational analyses were conducted for CSF levels of PINCH and hpTau and other variables including blood CD4 T-cell count, plasma and CSF viral burden, CSF neopterin, white blood cell (WBC) count, and antiretroviral CNS penetration effectiveness (CPE). Values for PINCH and hpTau were determined for each patient by calculating the fold changes between the second (T2) and third measurements (T3) from the baseline measurement (T1). Statistical analyses showed that the fold changes in CSF PINCH protein from T1 to T2 were significantly higher in participants with CD4 counts >200 cells/mm(3) at T2 compared to those with CD4 counts <200 cells/mm(3) at T2. This trend persisted irrespective of plasma or CSF viral burden or antiretroviral therapy CPE scores. The fold changes in PINCH levels between T1 and T2, and T1 and T3 were highly correlated to the fold changes in hpTau at T2/T1 and T3/T1 (correlation coefficient = 0.69, p < 0.001; correlation coefficient = 0.83, p < 0.0001, respectively). In conclusion, in these HIV participants, changes in CSF levels of PINCH appear to correlate with changes in blood CD4 count and with changes in CSF hpTau levels, but not with plasma or CSF viral burden, neopterin, WBC, or antiretroviral regimen CPE.
Collapse
Affiliation(s)
- Radhika Adiga
- School of Medicine, Department of Neuroscience, Temple University, 3500 N. Broad Street, MERB 750, Philadelphia, PA, 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 2014; 9:102-16. [PMID: 24510686 PMCID: PMC3973421 DOI: 10.1007/s11481-013-9520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Brain viral burden, neuroinflammation and neurodegeneration in HAART-treated HIV positive injecting drug users. J Neurovirol 2014; 20:28-38. [PMID: 24420447 DOI: 10.1007/s13365-013-0225-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022]
Abstract
The long-term impact of chronic human immunodeficiency virus (HIV) infection on brain status in injecting drug users (IDU) treated with highly active antiretroviral therapy (HAART) is unknown. Viral persistence in the brain with ongoing neuroinflammation may predispose to Alzheimer-like neurodegeneration. In this study, we investigated the brains of ten HAART-treated individuals (six IDU and four non-DU), compared with ten HIV negative controls (six IDU and four non-DU). HIV DNA levels in brain tissue were correlated with plasma and lymphoid tissue viral loads, cognitive status, microglial activation and Tau protein and amyloid deposition. Brain HIV proviral DNA levels were low in most cases but higher in HIV encephalitis (n = 2) and correlated significantly with levels in lymphoid tissue (p = 0.0075), but not with those in plasma. HIV positive subjects expressed more Tau protein and amyloid than HIV negative controls (highest in a 58 year old), as did IDU, but brain viral loads showed no relation to Tau and amyloid. Microglial activation linked significantly to HIV positivity (p = 0.001) and opiate abuse accentuated these microglial changes (p = 0.05). This study confirms that HIV DNA persists in brains despite HAART and that opiate abuse adds to the risk of brain damage in HIV positive subjects. Novel findings in this study show that (1) plasma levels are not a good surrogate indicator of brain status, (2) viral burden in brain and lymphoid tissues is related, and (3) while Tau and amyloid deposition is increased in HIV positive IDU, this is not specifically related to increased HIV burden within the brain.
Collapse
|
42
|
Lee MH, Amin ND, Venkatesan A, Wang T, Tyagi R, Pant HC, Nath A. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol 2013; 19:418-31. [PMID: 23982957 PMCID: PMC3799978 DOI: 10.1007/s13365-013-0194-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 01/26/2023]
Abstract
Human immunodeficiency virus (HIV) infection-associated neurocognitive disorders is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However, sustained exercise activity was necessary as the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it increased the expression of hippocampal brain-derived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyperactivated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway.
Collapse
Affiliation(s)
- Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institutes of Health, M.D. Bldg 10, Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, Ellis R, Cherner M, Grant I, Masliah E. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 2013; 80:1415-23. [PMID: 23486877 DOI: 10.1212/wnl.0b013e31828c2e9e] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We aimed to investigate whether HIV latency in the CNS might have adverse molecular, pathologic, and clinical consequences. METHODS This was a case-control comparison of HIV-1 seropositive (HIV+) patients with clinical and neuropathologic examination. Based on the levels of HIV-1 DNA, RNA, and p24 in the brain, cases were classified as controls, latent HIV CNS infection, and HIV encephalitis (HIVE). Analysis of epigenetic markers including BCL11B, neurodegeneration, and neuroinflammation was performed utilizing immunoblot, confocal microscopy, immunochemistry/image analysis, and qPCR. Detailed antemortem neurocognitive data were available for 23 out of the 32 cases. RESULTS HIV+ controls (n = 12) had no detectable HIV-1 DNA, RNA, or p24 in the CNS; latent HIV+ cases (n = 10) showed high levels of HIV-1 DNA but no HIV RNA or p24; and HIVE cases (n = 10) had high levels of HIV-1 DNA, RNA, and p24. Compared to HIV+ controls, the HIV+ latent cases displayed moderate cognitive impairment with neurodegenerative and neuroinflammatory alterations, although to a lesser extent than HIVE cases. Remarkably, HIV+ latent cases showed higher levels of BCL11B and other chromatin modifiers involved in silencing. Increased BCL11B was associated with deregulation of proinflammatory genes like interleukin-6, tumor necrosis factor-α, and CD74. CONCLUSION Persistence of latent HIV-1 infection in the CNS was associated with increased levels of chromatin modifiers, including BCL11B. Alteration of these epigenetic factors might result in abnormal transcriptomes, leading to inflammation, neurodegeneration, and neurocognitive impairment. BCL11B and other epigenetic factors involved in silencing might represent potential targets for HIV-1 involvement of the CNS.
Collapse
Affiliation(s)
- Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ozdemir AY, Rom I, Kovalevich J, Yen W, Adiga R, Dave RS, Langford D. PINCH in the cellular stress response to tau-hyperphosphorylation. PLoS One 2013; 8:e58232. [PMID: 23554879 PMCID: PMC3595241 DOI: 10.1371/journal.pone.0058232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 02/04/2013] [Indexed: 12/28/2022] Open
Abstract
Particularly interesting new cysteine- histidine- rich protein (PINCH) is an adaptor protein that our data have shown is required for neurite extension under stressful conditions. Our previous studies also report that PINCH is recalled by neurons showing decreased levels of synaptodendritic signaling proteins such as MAP2 or synaptophysin in the brains of human immunodeficiency virus (HIV) patients. The current study addressed potential role(s) for PINCH in neurodegenerative diseases. Mass spectrometry predicted the interaction of PINCH with Tau and with members of the heat shock response. Our in vitro data confirmed that PINCH binds to hyperphosphorylated (hp) Tau and to E3 ubiquitin ligase, carboxy-terminus of heat shock-70 interacting protein. Silencing PINCH prior to induction of hp-Tau resulted in more efficient clearance of accumulating hp-Tau, suggesting that PINCH may play a role in stabilizing hp-Tau. Accumulation of hp-Tau is implicated in more than 20 neuropathological diseases including Alzheimer's disease (AD), frontotemporal dementia (FTD), and human immunodeficiency virus encephalitis (HIVE). Analyses of brain tissues from HIVE, AD and FTD patients showed that PINCH is increased and binds to hp-Tau. These studies address a new mechanism by which AD and HIV may intersect and identify PINCH as a contributing factor to the accumulation of hyperphosphorylated Tau.
Collapse
Affiliation(s)
- Ahmet Yunus Ozdemir
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Inna Rom
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Jane Kovalevich
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - William Yen
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Radhika Adiga
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Rajnish S. Dave
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Dianne Langford
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Fields J, Dumaop W, Rockenstein E, Mante M, Spencer B, Grant I, Ellis R, Letendre S, Patrick C, Adame A, Masliah E. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. J Neurovirol 2013; 19:89-101. [PMID: 23341224 PMCID: PMC3567331 DOI: 10.1007/s13365-012-0145-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
Aged (>50 years old) human immunodeficiency virus (HIV) patients are the fastest-growing segment of the HIV-infected population in the USA and despite antiretroviral therapy, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group. Autophagy is an intracellular clearance pathway for aggregated proteins and aged organelles; dysregulation of autophagy is implicated in the pathogenesis of Parkinson’s disease, Alzheimer’s disease, and HAND. Here, we hypothesized that dysregulated autophagy may contribute to aging-related neuropathology in HIV-infected individuals. To explore this possibility, we surveyed autophagy marker levels in postmortem brain samples from a cohort of well-characterized <50 years old (young) and >50 years old (aged) HIV+ and HIV encephalitis (HIVE) patients. Detailed clinical and neuropathological data showed the young and aged HIVE patients had higher viral load, increased neuroinflammation and elevated neurodegeneration; however, aged HIVE postmortem brain tissues showed the most severe neurodegenerative pathology. Interestingly, young HIVE patients displayed an increase in beclin-1, cathepsin-D and light chain (LC)3, but these autophagy markers were reduced in aged HIVE cases compared to age-matched HIV+ donors. Similar alterations in autophagy markers were observed in aged gp120 transgenic (tg) mice; beclin-1 and LC3 were decreased in aged gp120 tg mice while mTor levels were increased. Lentivirus-mediated beclin-1 gene transfer, that is known to activate autophagy pathways, increased beclin-1, LC3, and microtubule-associated protein 2 expression while reducing glial fibrillary acidic protein and Iba1 expression in aged gp120 tg mice. These data indicate differential alterations in the autophagy pathway in young versus aged HIVE patients and that autophagy reactivation may ameliorate the neurodegenerative phenotype in these patients.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer's disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), (VaD) and HIV-associated neurocognitive disorders (HAND). The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias.
Collapse
|
47
|
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012; 46:614-38. [PMID: 22899188 PMCID: PMC3496540 DOI: 10.1007/s12035-012-8320-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA. S-nitrosylation of Cdk5: potential implications in amyloid-β-related neurotoxicity in Alzheimer disease. Prion 2012; 6:364-70. [PMID: 22874667 DOI: 10.4161/pri.21250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aberrant activation of Cdk5 has been implicated in the process of neurodegenerative diseases such as Alzheimer's disease (AD). We recently reported that S-nitrosylation of Cdk5 (forming SNO-Cdk5) at specific cysteine residues results in excessive activation of Cdk5, contributing to mitochondrial dysfunction, synaptic damage, and neuronal cell death in models of AD. Furthermore, SNO-Cdk5 acts as a nascent S-nitrosylase, transnitrosylating the mitochondrial fission protein Drp1 and enhancing excessive mitochondrial fission in dendritic spines. However, a molecular mechanism that leads to the formation of SNO-Cdk5 in neuronal cells remained obscure. Here, we demonstrate that neuronal nitric oxide synthase (NOS1) interacts with Cdk5 and that the close proximity of the two proteins facilitates the formation of SNO-Cdk5. Interestingly, as a negative feedback mechanism, Cdk5 phosphorylates and suppresses NOS1 activity. Thus, together with our previous report, these findings delineate an S-nitrosylation pathway wherein Cdk5/NOS1 interaction enhances SNO-Cdk5 formation, mediating mitochondrial dysfunction and synaptic loss during the etiology of AD.
Collapse
Affiliation(s)
- Jing Qu
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
49
|
Jaeger LB, Nath A. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis. Dis Model Mech 2012; 5:313-22. [PMID: 22563057 PMCID: PMC3339825 DOI: 10.1242/dmm.008763] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that infection with the human immunodeficiency virus (HIV) leads to immune suppression. Less well known is the fact that long-term, progressive HIV disease is associated with the development of cognitive deficits. Since the introduction of combined antiretroviral therapy (cART), the clinical presentation of HIV infection has evolved into a chronic illness with very low levels of viral replication and chronic immune activation, with compliant affected individuals surviving for decades with a high quality of life. Despite these advances, many HIV-infected individuals develop some degree of neurodegeneration and cognitive impairment. The underlying pathophysiological mechanisms are not well understood, and there are no effective treatments. Thus, there is an unmet need for animal models that enable the study of HIV-associated neurocognitive disorders (HAND) and the testing of new therapeutic approaches to combat them. Here, we review the pros and cons of existing mouse models of HIV infection for addressing these aims and propose a detailed strategy for developing a new mouse model of HIV infection.
Collapse
Affiliation(s)
- Laura B Jaeger
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1296, USA
| | | |
Collapse
|
50
|
Crews L, Ruf R, Patrick C, Dumaop W, Trejo-Morales M, Achim CL, Rockenstein E, Masliah E. Phosphorylation of collapsin response mediator protein-2 disrupts neuronal maturation in a model of adult neurogenesis: Implications for neurodegenerative disorders. Mol Neurodegener 2011; 6:67. [PMID: 21943307 PMCID: PMC3204248 DOI: 10.1186/1750-1326-6-67] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/24/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent studies suggest that the pathogenic process in neurodegenerative disorders may disrupt mature neuronal circuitries and neurogenesis in the adult brain. Abnormal activation of CDK5 is associated with neurodegenerative disorders, and recently a critical role for CDK5 in adult neurogenesis has been identified. We have developed an in vitro model of abnormal CDK5 activation during adult hippocampal neurogenesis, and here we used this model to investigate aberrantly phosphorylated downstream targets of CDK5. RESULTS Abnormal CDK5 activation in an in vitro model of adult neurogenesis results in hyperphosphorylation of collapsin-response mediator protein-2 (CRMP2) and impaired neurite outgrowth. Inhibition of CDK5, or expression of a non-phosphorylatable (S522A) CRMP2 construct reduced CRMP2 hyperphosphorylation, and reversed neurite outgrowth deficits. CRMP2 plays a role in microtubule dynamics; therefore we examined the integrity of microtubules in this model using biochemical and electron microscopy techniques. We found that microtubule organization was disrupted under conditions of CDK5 activation. Finally, to study the relevance of these findings to neurogenesis in neurodegenerative conditions associated with HIV infection, we performed immunochemical analyses of the brains of patients with HIV and transgenic mice expressing HIV-gp120 protein. CDK5-mediated CRMP2 phosphorylation was significantly increased in the hippocampus of patients with HIV encephalitis and in gp120 transgenic mice, and this effect was rescued by genetic down-modulation of CDK5 in the mouse model. CONCLUSIONS These results reveal a functional mechanism involving microtubule destabilization through which abnormal CDK5 activation and CRMP2 hyperphosphorylation might contribute to defective neurogenesis in neurodegenerative disorders such as HIV encephalitis.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Neurosciences; University of California, San Diego; 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| | | | | | | | | | | | | | | |
Collapse
|