1
|
Guo Y, Jin Q, Kang Y, Jin W, Liu Y, Chen Q, Liu J, Wang YG. Integrating machine learning and neural networks for new diagnostic approaches to idiopathic pulmonary fibrosis and immune infiltration research. PLoS One 2025; 20:e0320242. [PMID: 40273141 PMCID: PMC12021136 DOI: 10.1371/journal.pone.0320242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a fatal outcome, known for its rapid progression and unpredictable clinical course. However, the tools available for diagnosing and treating IPF are quite limited. This study aims to identify and screen potential biomarkers for IPF diagnosis, thereby providing new diagnostic approaches. METHODS We choosed datasets from the Gene Expression Omnibus (GEO) database, including samples from both IPF patients and healthy controls. For the training set, we combined two gene array datasets (GSE24206 and GSE10667) and utilized GSE32537 as the test set. We identified differentially expressed genes (DEGs) between IPF and normal tissues and determined IPF-related modules using Weighted Gene Co-expression Network Analysis (WGCNA). Subsequently, we employed two machine learning strategies to screen potential diagnostic biomarkers. Candidate biomarkers were quantitatively evaluated using Receiver Operating Characteristic (ROC) curves to identify key diagnostic genes, followed by the construction of a nomogram. Further validation of the expression of these genes through transcriptomic sequencing data from IPF and normal group animal models. Next, we conducted immune infiltration analysis, single-gene Gene Set Enrichment Analysis (GSEA), and targeted drug prediction. Finally, we created an artificial neural network model specifically for IPF. RESULTS We identified ASPN, COMP, and GPX8 as candidate biomarker genes for IPF, all of which exhibited Area Under the Curve (AUC) above 0.90. These genes were validated by RT-qPCR. Immune infiltration analysis revealed that specific immune cell types are closely related to IPF, suggesting that these immune cells may play a significant role in the pathogenesis of IPF. CONCLUSION ASPN, COMP, and GPX8 have been identified as potential diagnostic genes for IPF, and the most relevant immune cell types have been determined. Our research results propose potential biomarkers for diagnosing IPF and present new pathways for investigating its pathogenesis and devising novel therapeutic approaches.
Collapse
Affiliation(s)
- Yali Guo
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
| | - Qian Jin
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China.
| | - Yi Kang
- Beijing University of Chinese Medicine, Beijing, China.
| | - Wenwen Jin
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
| | - Ying Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Qian Chen
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
| | - Jian Liu
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
| | - Yu guang Wang
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Cardona-Timoner M, Gomes RN, Nascimento DS. Dressed in Collagen: 2D and 3D Cardiac Fibrosis Models. Int J Mol Sci 2025; 26:3038. [PMID: 40243696 PMCID: PMC11988687 DOI: 10.3390/ijms26073038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular diseases (CVD), the leading cause of death worldwide, and their strong association with fibrosis highlight the pressing need for innovative antifibrotic therapies. In vitro models have emerged as valuable tools for replicating cardiac fibrosis 'in a dish', facilitating the study of disease mechanisms and serving as platforms for drug testing and development. These in vitro systems encompass 2D and 3D models, each with its own limitations and advantages. 2D models offer high reproducibility, cost-effectiveness, and high-throughput capabilities, but they oversimplify the complex fibrotic environment. On the other hand, 3D models provide greater biological relevance but are more complex, harder to reproduce, and less suited for high-throughput screening. The choice of model depends on the specific research question and the stage of drug development. Despite significant progress, challenges remain, including the integration of immune cells in cardiac fibrosis and optimizing the scalability and throughput of highly biomimetic systems. Herein, we review recent in vitro cardiac fibrosis models, with a focus on their shared characteristics and remaining challenges, and explore how in vitro fibrosis models of other organs could inspire novel approaches in cardiac research, showcasing potential strategies that could be adapted to refine myocardial fibrosis models.
Collapse
Affiliation(s)
- Maria Cardona-Timoner
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Rita N. Gomes
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana S. Nascimento
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Bhattacharyya A, Yadav P, Bhattacharya M. Myeloid-Mesenchymal Crosstalk in Lung Fibrosis. Compr Physiol 2025; 15:e70004. [PMID: 39980172 DOI: 10.1002/cph4.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by progressive scarring of the lung parenchyma. While two drugs have been approved by the US Food and Drug Administration (FDA) for IPF, median survival remains limited at 3 years, and the discovery of novel therapeutic targets is urgently needed. Recent studies indicate that immune cells play a critical role in regulating fibrosis. In this Mini Review, we discuss the recent literature focused on cells of the myeloid lineage that serve as key agents of pathologic interorgan communication in fibrosis. These cells are recruited from the bone marrow and have been found to be key drivers of the fibrotic process in the lung.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Preeti Yadav
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mallar Bhattacharya
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Tan C, Zhou H, Xiong Q, Xian X, Liu Q, Zhang Z, Xu J, Yao H. Cromolyn sodium reduces LPS-induced pulmonary fibrosis by inhibiting the EMT process enhanced by MC-derived IL-13. Respir Res 2025; 26:3. [PMID: 39762844 PMCID: PMC11706190 DOI: 10.1186/s12931-024-03045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate. The underlying mechanism of ARDS-related pulmonary fibrosis remains unclear. METHODS To evaluate the role of mast cell in sepsis-induced pulmonary fibrosis and elucidate its molecular mechanism. We investigated the level of mast cell and epithelial-mesenchymal transition(EMT) in LPS-induced mouse model and cellular model. We also explored the influence of cromolyn sodium and mast cell knockout on pulmonary fibrosis. Additionally, we explored the effect of MC-derived IL-13 on the EMT and illustrated the relationship between mast cell and pulmonary fibrosis. RESULTS Mast cell was up-regulated in the lung tissues of the pulmonary fibrotic mouse model compared to control groups. Cromolyn sodium and mast cell knockout decreased the expression of EMT-related protein and IL-13, alleviated the symptoms of pulmonary fibrosis in vivo and in vitro. The PI3K/AKT/mTOR signaling was activated in fibrotic lung tissue, whereas Cromolyn sodium and mast cell knockout inhibited this pathway. CONCLUSION The expression level of mast cell is increased in fibrotic lungs. Cromolyn sodium intervention and mast cell knockout alleviate the symptoms of pulmonary fibrosis probably via the PI3K/AKT/mTOR signaling pathway. Therefore, mast cell inhibition is a potential therapeutic target for sepsis-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China
| | - Hang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiangfei Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiyuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Zexin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China.
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
5
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
6
|
Ran Z, Mu BR, Zhu T, Zhang Y, Luo JX, Yang X, Li B, Wang DM, Lu MH. Predicting biomarkers related to idiopathic pulmonary fibrosis: Robust ranking aggregation analysis and animal experiment verification. Int Immunopharmacol 2024; 139:112766. [PMID: 39067403 DOI: 10.1016/j.intimp.2024.112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable lung disease characterized by unknown etiology. This study employs robust ranking aggregation to identify consistent differential genes across multiple datasets, aiming to enhance prognostic evaluation and facilitate the development of more effective immunotherapy strategies for IPF. Using the GSE10667, GSE110147, and GSE24206 datasets, the analysis identifies 92 robust differentially expressed genes (DEGs), including SPP1, IGF1, ASPN, and KLHL13, highlighted as potential biomarkers through machine learning and experimental validation. Additionally, significant differences in immune cell types between IPF samples and controls, such as Plasma cells, Macrophages M0, Mast cells resting, T cells CD8, and NK cells resting, inform the construction of diagnostic and survival prediction models, demonstrating good applicability. These findings provide insights into IPF pathophysiology and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Respiratory Medicine, Guangyuan Hospital of Traditional Chinese Medicine, No.133 Jianshe Road, Lizhou District, Guangyuan 628099, Sichuan, China
| | - Dong-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
8
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
9
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
10
|
Thiam F, Phogat S, Abokor FA, Osei ET. In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 2023; 24:298. [PMID: 38012580 PMCID: PMC10680329 DOI: 10.1186/s12931-023-02608-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
IPF is a fatal lung disease characterized by intensive remodeling of lung tissue leading to respiratory failure. The remodeling in IPF lungs is largely characterized by uncontrolled fibrosis. Fibroblasts and their contractile phenotype the myofibroblast are the main cell types responsible for typical wound healing responses, however in IPF, these responses are aberrant and result in the overactivation of fibroblasts which contributes to the inelasticity of the lung leading to a decrease in lung function. The specific mechanisms behind IPF pathogenesis have been elusive, but recently the innate and adaptive immunity have been implicated in the fibrotic processes of the disease. In connection with this, several in vitro co-culture models have been used to investigate the specific interactions occurring between fibroblasts and immune cells and how this contributes to the pathobiology of IPF. In this review, we discuss the in vitro models that have been used to examine the abnormal interactions between fibroblasts and cells of the innate and adaptive immune system, and how these contribute to the fibrotic processes in the lungs of IPF patients.
Collapse
Affiliation(s)
- Fama Thiam
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Sakshi Phogat
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Xu Y, Lan P, Wang T. The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1984. [PMID: 38004032 PMCID: PMC10672798 DOI: 10.3390/medicina59111984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology with limited treatment options. The role of the immune system in IPF has received increasing attention. Uncontrolled immune responses drive the onset and progression of IPF. This article provides an overview of the role of innate immune cells (including macrophages, neutrophils, mast cells, eosinophils, dendritic cells, nature killer cells, nature kill cells and γδ T cells) and adaptive immune cells (including Th1 cells, Th2 cells, Th9 cells, Th17 cells, Th22 cells, cytotoxic T cells, B lymphocytes and Treg cells) in IPF. In addition, we review the current status of pharmacological treatments for IPF and new developments in immunotherapy. A deeper comprehension of the immune system's function in IPF may contribute to the development of targeted immunomodulatory therapies that can alter the course of the disease.
Collapse
Affiliation(s)
- Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Özgüden-Akkoc CG, Mutlu AM, Keskin A, Yumuşak E, Akkoc A. Phenotypic evaluation of mast cells in bovine mammary tissue and mastitis in the context of fibrosis. J DAIRY RES 2023; 90:387-392. [PMID: 38186214 DOI: 10.1017/s0022029923000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This research paper addresses the hypothesis that mast cells (MCs) contribute to the formation of mammary fibrosis. MCs are important immune regulatory and immune modulatory cells that play major roles in the inflammatory process. Since there is no detailed knowledge, this research study aimed to comparatively investigate the presence, localization, and immunophenotypes of MCs in healthy and mastitic mammary tissues. A total of 264 mammary samples were evaluated for the examination of mast cells and fibrosis. The mean mast cell number in both acute and chronic mastitis samples were very significantly higher than the control group P < 0.001). A 7.9-fold increase in the number of mast cells was found when the chronic mastitis group was compared with the control (healthy) group. Immunohistochemistry revealed presence of all three immune phenotypes in control and mastitic mammary samples (tryptase + (MCT), chymase + (MCC) and both chymase and tryptase + (MCTC). The mean MCT, MCC, and MCTC numbers in the chronic mastitis group were found to be significantly higher than the control (P < 0.001 for all three phenotypes) but did not differ significantly between control and acute mastitis samples. When the mean numbers of MCT, MCC, and MCTC in the control group and chronic mastitis group were compared, a 10.5, 7.8, and a 4.1-fold increase was observed, respectively. The amount of connective tissue was strongly increased in tissues with chronic mastitis and a 3.01-fold increase was detected compared to the control group. A statistically significant relation was also found between the amount of fibrosis and the increased number of total MCs (P < 0.001).
Collapse
Affiliation(s)
- Cansel Güzin Özgüden-Akkoc
- Department of Histology & Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ayşe Meriç Mutlu
- Department of Pathology, Health Sciences Institute, Bursa Uludağ University, Bursa, Turkey
| | - Abdülkadir Keskin
- Department of Gynaecology & Obstetrics, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ezgi Yumuşak
- Department of Pathology, Health Sciences Institute, Bursa Uludağ University, Bursa, Turkey
| | - Ahmet Akkoc
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
13
|
Ptaschinski C, Zhu D, Fonseca W, Lukacs NW. Stem cell factor inhibition reduces Th2 inflammation and cellular infiltration in a mouse model of eosinophilic esophagitis. Mucosal Immunol 2023; 16:727-739. [PMID: 37557983 PMCID: PMC10680063 DOI: 10.1016/j.mucimm.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Eosinophilic esophagitis (EoE) is a T helper (Th)2-mediated inflammatory disorder characterized endoscopically by eosinophilic infiltration leading to fibrosis of the esophagus. Stem cell factor (SCF), a multifunctional cytokine, is upregulated in several allergic diseases, including in patients with EoE. Mast cells and eosinophils express c-kit, the cell surface receptor for SCF, and have been found to play an important role in EoE. Therefore, we investigated whether blocking SCF represents a potential therapeutic approach for EoE. Esophageal inflammation was induced in mice using peanut allergen. In mice with experimental EoE, we found that SCF was upregulated in the esophageal tissue. In EoE mice injected with a polyclonal antibody specific for SCF, we observed a decrease in both mast cells and eosinophils by histological and flow cytometric analysis. Furthermore, Th2 cytokines in the esophagus were decreased in anti-SCF treated mice, as were levels of Th2 cytokines from lung-draining and esophageal lymph nodes. Serum levels of peanut-specific immunoglobulin E were reduced following treatment with anti-SCF. In Kitlf/f-Col1-Cre-ERT mice, which have SCF deleted primarily in myofibroblasts that develop in EoE, we observed similar results as the anti-SCF treated animals for inflammatory cell accumulation, cytokines, and histopathology. These results indicate that therapeutic treatments targeting SCF can reduce allergic inflammation in EoE.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA.
| | - Diana Zhu
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA
| |
Collapse
|
14
|
Zhou Y, Hu Z, Sun Q, Dong Y. 5-methyladenosine regulators play a crucial role in development of chronic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Sci Rep 2023; 13:5941. [PMID: 37045913 PMCID: PMC10097674 DOI: 10.1038/s41598-023-32452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
5-methyladenosine (m5C) modification regulates gene expression and biological functions in oncologic areas. However, the effect of m5C modification in chronic hypersensitivity pneumonitis (CHP) and idiopathic pulmonary fibrosis (IPF) remains unknown. Expression data for 12 significant m5C regulators were obtained from the interstitial lung disease dataset. Five candidate m5C regulators, namely tet methylcytosine dioxygenase 2, NOP2/Sun RNA methyltransferase 5, Y-box binding protein 1, tRNA aspartic acid methyltransferase 1, and NOP2/Sun RNA methyltransferase 3 were screened using random forest and nomogram models to predict risks of pulmonary fibrosis. Next, we applied the consensus clustering method to stratify the samples with different m5C patterns into two groups (cluster A and B). Finally, we calculated immune cell infiltration scores via single-sample gene set enrichment analysis, then compared immune cell infiltration, related functions as well as the expression of programmed cell death 1 (PD-1, PDCD1) and programmed death protein ligand-1 (PD-L1, CD274) between the two clusters. Principal component analysis of m5C-related scores across the 288 samples revealed that cluster A had higher immune-related expression than B. Notably, T helper cell (Th) 2 type cytokines and Th1 signatures were more abundant in clusters A and B, respectively. Our results suggest that m5C is associated with and plays a crucial role in development of pulmonary fibrosis. These m5C patterns could be potential biomarkers for identification of CHP and IPF, and guide future development of immunotherapy or other new drugs strategies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyi Zhou
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Qinying Sun
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China.
| |
Collapse
|
15
|
Pan L, Meng F, Wang W, Wang XH, Shen H, Bao P, Kang J, Kong D. Nintedanib in an elderly non-small-cell lung cancer patient with severe steroid-refractory checkpoint inhibitor-related pneumonitis: A case report and literature review. Front Immunol 2023; 13:1072612. [PMID: 36703957 PMCID: PMC9872202 DOI: 10.3389/fimmu.2022.1072612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors tremendously improve cancer prognosis; however, severe-grade immune-related adverse events may cause premature death. Current recommendations for checkpoint inhibitor-related pneumonitis (CIP) treatment are mainly about immunosuppressive therapy, and anti-fibrotic agents are also needed, especially for patients with poor response to corticosteroids and a longer pneumonitis course. This is because fibrotic changes play an important role in the pathological evolution of CIP. Here, we report a case demonstrating that nintedanib is a promising candidate drug for CIP management or prevention, as it has potent anti-fibrotic efficacy and a safety profile. Moreover, nintedanib could partially inhibit tumor growth in patients with non-small-cell lung cancer, and its efficacy can be improved in combination with other anti-tumor therapies.
Collapse
Affiliation(s)
- Lei Pan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fanqi Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xu-hao Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Hui Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pengchen Bao
- The First Clinical College, China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Delei Kong,
| |
Collapse
|
16
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
17
|
Chen Y, Song M, Li Z, Hou L, Zhang H, Zhang Z, Hu H, Jiang X, Yang J, Zou X, Pang J, Zhang T, Yang P, Wang J, Wang C. FcεRI deficiency alleviates silica-induced pulmonary inflammation and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114043. [PMID: 36087468 DOI: 10.1016/j.ecoenv.2022.114043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Silicosis is one of the most important occupational diseases worldwide, caused by inhalation of silica particles or free crystalline silicon dioxide. As a disease with high mortality, it has no effective treatment and new therapeutic targets are urgently needed. Recent studies have identified FCER1A, encoding α-subunit of the immunoglobulin E (IgE) receptor FcεRI, as a candidate gene involved in the biological pathways leading to respiratory symptoms. FcεRI is known to be important in allergic asthma, but its role in silicosis remains unclear. In this study, serum IgE concentrations and FcεRI expression were assessed in pneumoconiosis patients and silica-exposed mice. The role of FcεRI was explored in a silica-induced mouse model using wild-type and FcεRI-deficient mice. The results showed that serum IgE concentrations were significantly elevated in both pneumoconiosis patients and mice exposed to silica compared with controls. The mRNA and protein expression of FcεRI were also significantly increased in the lung tissue of patients and silica-exposed mice. FcεRI deficiency significantly attenuated the changes in lung function caused by silica exposure. Silica-induced elevations of IL-1β, IL-6, and TNF-α were significantly attenuated in the lung tissue and bronchoalveolar lavage fluid (BALF) of FcεRI-deficient mice compared with wild-type controls. Additionally, FcεRI-deficient mice showed a significantly lower score of pulmonary fibrosis than wild-type mice following exposure to silica, with significantly lower hydroxyproline content and expression of fibrotic genes Col1a1 and Fn1. Immunofluorescent staining suggested FcεRI mainly on mast cells. Mast cell degranulation took place after silica exposure, as shown by increased serum histamine levels and β-hexosaminidase activity, which were significantly reduced in FcεRI-deficient mice compared with wild-type controls. Together, these data showed that FcεRI deficiency had a significant protective effect against silica-induced pulmonary inflammation and fibrosis. Our findings provide new insights into the pathophysiological mechanisms of silica-induced pulmonary fibrosis and a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Yiling Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meiyue Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhaoguo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lin Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhe Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Huiyuan Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuehan Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuan Zou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
18
|
Kletukhina S, Mutallapova G, Titova A, Gomzikova M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms231911212. [PMID: 36232511 PMCID: PMC9569825 DOI: 10.3390/ijms231911212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Mutallapova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Angelina Titova
- Morphology and General Pathology Department, Kazan Federal University, 420008 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-917-8572269
| |
Collapse
|
19
|
Martinez FJ, Wijsenbeek MS, Raghu G, Flaherty KR, Maher TM, Wuyts WA, Kreuter M, Kolb M, Chambers DC, Fogarty C, Mogulkoc N, Tutuncu AS, Richeldi L. Phase 2b Study of Inhaled RVT-1601 for Chronic Cough in Idiopathic Pulmonary Fibrosis: SCENIC Trial: Multi-Center, Randomized, Placebo-Controlled Study. Am J Respir Crit Care Med 2022; 205:1084-1092. [PMID: 35050837 DOI: 10.1164/rccm.202106-1485oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic cough remains a major and often debilitating symptom for patients with idiopathic pulmonary fibrosis (IPF). In a phase 2a study, inhaled RVT-1601 reduced daytime cough and 24-hour average cough counts in patients with IPF. OBJECTIVES To determine the efficacy, safety and optimal dose of inhaled RVT-1601 for the treatment of chronic cough in patients with IPF. METHODS In this multicenter, randomized, placebo-controlled phase 2b study, patients with IPF and chronic cough for ≥8 weeks were randomized (1:1:1:1) to receive 10, 40, and 80 mg RVT-1601 three times daily or placebo for 12 weeks. The primary endpoint was change from baseline to end of treatment in log-transformed 24-hour cough count. Key secondary endpoints were change from baseline in cough severity and cough specific quality of life. Safety was monitored throughout the study. MEASUREMENTS AND MAIN RESULTS The study was prematurely terminated due to the impact of COVID-19 pandemic. Overall, 108 patients (mean age 71.0 years, 62.9% males) received RVT-1601 10 mg (n = 29), 40 mg (n = 25), 80 mg (n = 27), or matching placebo (n = 27); 61.1% (n = 66) completed double-blind treatment. No statistically significant difference was observed in the least-squares mean change from baseline in log-transformed 24-hour average cough count, cough severity, and cough-specific quality of life score between the RVT-1601 groups and placebo. The mean percentage change from baseline in 24-hour average cough count was 27.7% in the placebo group. Treatment was generally well tolerated. CONCLUSIONS Treatment with inhaled RVT-1601 (10, 40 and 80 mg TID) did not provide benefit over placebo for the treatment of chronic cough in patients with IPF. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT03864328.
Collapse
Affiliation(s)
| | | | - Ganesh Raghu
- University of Washington Medical Center, 21617, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | | | - Toby M Maher
- University of Southern California Keck School of Medicine, 12223, Los Angeles, California, United States
| | - Wim A Wuyts
- K U Leuven, respiratory medicine, Leuven, Belgium
| | - Michael Kreuter
- Center for interstitial and rare lung diseases, Pneumology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research Germany, Heidelberg, Germany
| | - Martin Kolb
- McMaster University, Hamilton, Ontario, Canada
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, Brisbane, Queensland, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Charles Fogarty
- Spartanburg Medical Research, Spartanburg, South Carolina, United States
| | - Nesrin Mogulkoc
- Ege University Hospital, Department of Pulmonology, Bornova, Turkey
| | | | - Luca Richeldi
- Universita Cattolica del Sacro Cuore Sede di Roma, 96983, Pulmonary Medicine, Roma, Italy
| |
Collapse
|
20
|
Salonen J, Kreus M, Lehtonen S, Vähänikkilä H, Purokivi M, Kaarteenaho R. Decline in Mast Cell Density During Diffuse Alveolar Damage in Idiopathic Pulmonary Fibrosis. Inflammation 2021; 45:768-779. [PMID: 34686945 PMCID: PMC8956519 DOI: 10.1007/s10753-021-01582-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Mast cells (MCs) are known to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), although their role in acute exacerbations of IPF has not been investigated. The aims of the study were to evaluate the numbers of MCs in fibrotic and non-fibrotic areas of lung tissue specimens of idiopathic pulmonary fibrosis (IPF) patients with or without an acute exacerbation of IPF, and to correlate the MC density with clinical parameters. MCs of IPF patients were quantified from surgical lung biopsy (SLB) specimens (n = 47) and lung tissue specimens taken at autopsy (n = 7). MC density was higher in the fibrotic areas of lung tissue compared with spared alveolar areas or in controls. Female gender, low diffusion capacity for carbon monoxide, diffuse alveolar damage, and smoking were associated with a low MC density. MC densities of fibrotic areas had declined significantly in five subjects in whom both SLB in the stable phase and autopsy after an acute exacerbation of IPF had been performed. There were no correlations of MC densities with survival time or future acute exacerbations. The MC density in fibrotic areas was associated with several clinical parameters. An acute exacerbation of IPF was associated with a significant decline in MC counts. Further investigations will be needed to clarify the role of these cells in IPF and in the pathogenesis of acute exacerbation as this may help to identify some potential targets for medical treatment for this serious disease.
Collapse
Affiliation(s)
- Johanna Salonen
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| | - Mervi Kreus
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| | - Siri Lehtonen
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Oulu University Hospital, University Hospital of Oulu, P.O. Box 23, 90029 OYS Oulu, Finland
| | - Hannu Vähänikkilä
- Infrastructure for Population Studies, Faculty of Medicine, Northern Finland Birth Cohorts, University of Oulu, Arctic Biobank, P.O. Box 8000, 90014 Oulu, Finland
| | - Minna Purokivi
- The Center of Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| | - Riitta Kaarteenaho
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| |
Collapse
|
21
|
Garcia-Rodriguez KM, Bini EI, Gamboa-Domínguez A, Espitia-Pinzón CI, Huerta-Yepez S, Bulfone-Paus S, Hernández-Pando R. Differential mast cell numbers and characteristics in human tuberculosis pulmonary lesions. Sci Rep 2021; 11:10687. [PMID: 34021178 PMCID: PMC8140073 DOI: 10.1038/s41598-021-89659-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is still a major worldwide health threat and primarily a lung disease. The innate immune response against Mycobacterium tuberculosis (Mtb) is orchestrated by dendritic cells, macrophages, neutrophils, natural killer cells and apparently mast cells (MCs). MCs are located at mucosal sites including the lungs and contribute in host-defence against pathogens, but little is known about their role during Mtb infection. This study investigates the location and characteristics of MCs in TB lesions to assess their contribution to TB pathology. To this purpose, number, location and phenotype of MCs was studied in 11 necropsies of pulmonary TB and 3 necropsies of non-TB infected lungs that were used as controls. MCs were localised at pneumonic areas, in the granuloma periphery and particularly abundant in fibrotic tissue. Furthermore, MCs displayed intracellular Mtb and IL-17A and TGF-β immunostaining. These findings were validated by analysing, post-mortem lung tissue microarrays from 44 individuals with pulmonary TB and 25 control subjects. In affected lungs, increased numbers of MCs expressing intracellularly both tryptase and chymase were found at fibrotic sites. Altogether, our data suggest that MCs are recruited at the inflammatory site and that actively produce immune mediators such as proteases and TGF-β that may be contributing to late fibrosis in TB lesions.
Collapse
Affiliation(s)
- Karen Magdalena Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester, UK
| | - Estela Isabel Bini
- Seccion de Patologia Experimental, Instituto Nacional de Ciencias Medicas y Nutricion "Salvador Zubiran", Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Seccion de Patologia Experimental, Instituto Nacional de Ciencias Medicas y Nutricion "Salvador Zubiran", Mexico City, Mexico
| | - Clara Inés Espitia-Pinzón
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester, UK.,Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rogelio Hernández-Pando
- Seccion de Patologia Experimental, Instituto Nacional de Ciencias Medicas y Nutricion "Salvador Zubiran", Mexico City, Mexico.
| |
Collapse
|
22
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
23
|
Velázquez-Díaz P, Nakajima E, Sorkhdini P, Hernandez-Gutierrez A, Eberle A, Yang D, Zhou Y. Hermansky-Pudlak Syndrome and Lung Disease: Pathogenesis and Therapeutics. Front Pharmacol 2021; 12:644671. [PMID: 33841163 PMCID: PMC8028140 DOI: 10.3389/fphar.2021.644671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before experiencing signs of respiratory failure and eventual death. This review aims to summarize current research on HPS along with its associated pulmonary fibrosis and its implications for the development of novel treatments. We will discuss the genetic basis of the disease, its epidemiology, and current therapeutic and clinical management strategies. We continue to review the cellular processes leading to the development of HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the molecular mechanisms that contribute to its pathogenesis and may be targeted in the treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular approaches for studying HPS, including lentiviral-mediated gene transfer, induced pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based gene editing approaches.
Collapse
Affiliation(s)
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | | | - Adam Eberle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
24
|
Li X, Peng C, Zhu Z, Cai H, Zhuang Q. The networks of m 6A-SARS-CoV-2 related genes and immune infiltration patterns in idiopathic pulmonary fibrosis. Aging (Albany NY) 2021; 13:6273-6288. [PMID: 33647885 PMCID: PMC7993677 DOI: 10.18632/aging.202725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a poor prognosis. The current coronavirus disease 2019 (COVID-19) shares some similarities with IPF. SARS-CoV-2 related genes have been reported to be broadly regulated by N6-methyladenosine (m6A) RNA modification. Here, we identified the association between m6A methylation regulators, COVID-19 infection pathways, and immune responses in IPF. The characteristic gene expression networks and immune infiltration patterns of m6A-SARS-CoV-2 related genes in different tissues of IPF were revealed. We subsequently evaluated the influence of these related gene expression patterns and immune infiltration patterns on the prognosis/lung function of IPF patients. The IPF cohort was obtained from the Gene Expression Omnibus dataset. Pearson correlation analysis was performed to identify the correlations among genes or cells. The CIBERSORT algorithm was used to assess the infiltration of 22 types of immune cells. The least absolute shrinkage and selection operator (LASSO) and proportional hazards model (Cox model) were used to develop the prognosis prediction model. Our research is pivotal for further understanding of the cellular and genetic links between IPF and SARS-CoV-2 infection in the context of the COVID-19 pandemic, which may contribute to providing new ideas for prognosis assessment and treatment of both diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Cheng Peng
- Department of Plastic Surgery, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ziqing Zhu
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Haozheng Cai
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha 410013, Hunan, China
| |
Collapse
|
25
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
26
|
Liu B, Yang MQ, Yu TY, Yin YY, Liu Y, Wang XD, He ZG, Yin L, Chen CQ, Li JY. Mast Cell Tryptase Promotes Inflammatory Bowel Disease-Induced Intestinal Fibrosis. Inflamm Bowel Dis 2021; 27:242-255. [PMID: 32507895 DOI: 10.1093/ibd/izaa125] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal fibrosis is the final pathological outcome of chronic intestinal inflammation without specific therapeutic drugs, which leads to ileus and surgical intervention. Intestinal fibrosis is characterized by excessive deposition of extracellular matrix (ECM). The role of mast cells (MCs), which are members of the sentinel immune cell population, is unknown in intestinal fibrosis. METHODS In this study, we analyzed changes in MCs, tryptase proteins, and ECM components in human fibrotic and control patient intestines. We constructed dextran sodium sulfate-induced intestinal fibrosis models using wild-type mice, MC-reconstituted mice, and MC-deficient mice to explore the role of MCs and tryptase in intestinal fibrosis. The roles and mechanisms of MCs and tryptase on fibroblasts were evaluated using human MCs (HMC-1 and LAD-2), commercial tryptase proteins, human colon fibroblasts (CCD-18Co fibroblasts), the tryptase inhibitor APC366, and the protease-activated receptor-2 (PAR-2) antagonist ENMD-1068. RESULTS Regardless of whether the colon was a human colon or a mouse colon, the fibrotic intestinal tissue had increased MC infiltration and a higher expression of ECM proteins or genes than that of the control group. The dextran sodium sulfate-induced intestinal fibrosis in MC-deficient mice was alleviated compared with that in wild-type mice. After MC reconstruction in MC-deficient mice, the alleviating effect disappeared. Tryptase, as a content stored in MC granules, was released into fibrotic intestinal tissues in the form of degranulation, resulting in an increased expression of tryptase. Compared with the control group, the tryptase inhibition group (the APC366 group) had reduced intestinal fibrosis. The CCD-18Co fibroblasts, when cocultured with MCs or treated with tryptase proteins, were activated to differentiate into myofibroblasts and secrete more ECM proteins (such as collagen and fibronectin). The underlying mechanism of fibroblast activation by tryptase was the activation of the PAR-2/Akt/mTOR pathway. CONCLUSIONS We found that MC tryptase promotes inflammatory bowel disease-induced intestinal fibrosis. The underlying mechanism is that tryptase promotes the differentiation of fibroblasts into fibrotic-phenotype myofibroblasts by activating the PAR-2/Akt/ mTOR pathway of fibroblasts.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Mu-Qing Yang
- Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Tian-Yu Yu
- Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Yang-Yang Yin
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Ying Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Xiao-Dong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Zhi-Gang He
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Lu Yin
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Chun-Qiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Ji-Yu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| |
Collapse
|
27
|
Bagher M, Rosmark O, Elowsson Rendin L, Nybom A, Wasserstrom S, Müller C, Zhou XH, Dellgren G, Hallgren O, Bjermer L, Larsson-Callerfelt AK, Westergren-Thorsson G. Crosstalk between Mast Cells and Lung Fibroblasts Is Modified by Alveolar Extracellular Matrix and Influences Epithelial Migration. Int J Mol Sci 2021; 22:ijms22020506. [PMID: 33419174 PMCID: PMC7825515 DOI: 10.3390/ijms22020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mast cells play an important role in asthma, however, the interactions between mast cells, fibroblasts and epithelial cells in idiopathic pulmonary fibrosis (IPF) are less known. The objectives were to investigate the effect of mast cells on fibroblast activity and migration of epithelial cells. Lung fibroblasts from IPF patients and healthy individuals were co-cultured with LAD2 mast cells or stimulated with the proteases tryptase and chymase. Human lung fibroblasts and mast cells were cultured on cell culture plastic plates or decellularized human lung tissue (scaffolds) to create a more physiological milieu by providing an alveolar extracellular matrix. Released mediators were analyzed and evaluated for effects on epithelial cell migration. Tryptase increased vascular endothelial growth factor (VEGF) release from fibroblasts, whereas co-culture with mast cells increased IL-6 and hepatocyte growth factor (HGF). Culture in scaffolds increased the release of VEGF compared to culture on plastic. Migration of epithelial cells was reduced by IL-6, while HGF and conditioned media from scaffold cultures promoted migration. In conclusion, mast cells and tryptase increased fibroblast release of mediators that influenced epithelial migration. These data indicate a role of mast cells and tryptase in the interplay between fibroblasts, epithelial cells and the alveolar extracellular matrix in health and lung disease.
Collapse
Affiliation(s)
- Mariam Bagher
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Oskar Rosmark
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Linda Elowsson Rendin
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Annika Nybom
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | | | - Catharina Müller
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, 431 53 Mölndal, Sweden;
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Oskar Hallgren
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Anna-Karin Larsson-Callerfelt
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Correspondence: ; Tel.: +46-46-222-8580 or +46-733-525420
| | - Gunilla Westergren-Thorsson
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| |
Collapse
|
28
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
29
|
Inoue Y, Okamoto T, Honda T, Nukui Y, Akashi T, Takemura T, Tozuka M, Miyazaki Y. Disruption in the balance between apolipoprotein A-I and mast cell chymase in chronic hypersensitivity pneumonitis. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:659-671. [PMID: 33016012 PMCID: PMC7654418 DOI: 10.1002/iid3.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Background Apolipoprotein A‐I (apoA‐I) has an antifibrotic effect in idiopathic pulmonary fibrosis. Although pulmonary fibrosis is associated with poor prognosis of patients with hypersensitivity pneumonitis (HP), little is known regarding the role of apoA‐I in the pathogenesis of HP. Methods Two‐dimensional electrophoresis, immunoblotting, and enzyme‐linked immunosorbent assays were performed for the identification and quantification of apoA‐I in bronchoalveolar lavage fluid (BALF) from patients with acute and chronic HP. To investigate the degradation of apoA‐I, apoA‐I was incubated with BALF. Moreover, the role of apoA‐I in TGF‐β1‐induced epithelial–mesenchymal transition of A549 cells was examined. Results The concentration of apoA‐I in the BALF was significantly lower in chronic HP (n = 56) compared with acute HP (n = 31). The expression level of apoA‐I was also low in the lung tissues of chronic HP. ApoA‐I was degraded by BALF from HP patients. The number of chymase‐positive mast cells in the alveolar parenchyma was inversely correlated with apoA‐I levels in the BALF of chronic HP patients. In vitro experiment using A549 cells, untreated apoA‐I inhibited TGF‐β1‐induced epithelial–mesenchymal transition, although this trend was not observed in the chymase‐treated apoA‐I. Conclusions A decrease of apoA‐I was associated with the pathogenesis of chronic HP in terms of pulmonary fibrosis and mast cell chymase attenuated the protective effect of apoA‐I against pulmonary fibrosis. Furthermore, apoA‐I could be a crucial molecule associated with lung fibrogenesis of HP.
Collapse
Affiliation(s)
- Yukihisa Inoue
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamiko Takemura
- Department of Pathology, Japan Red Cross Centre, Tokyo, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Overed-Sayer C, Miranda E, Dunmore R, Liarte Marin E, Beloki L, Rassl D, Parfrey H, Carruthers A, Chahboub A, Koch S, Güler-Gane G, Kuziora M, Lewis A, Murray L, May R, Clarke D. Inhibition of mast cells: a novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax 2020; 75:754-763. [PMID: 32709610 PMCID: PMC7476277 DOI: 10.1136/thoraxjnl-2019-214000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease which presents a grave prognosis for diagnosed patients. Nintedanib (a triple tyrosine kinase inhibitor) and pirfenidone (unclear mechanism of action) are the only approved therapies for IPF, but have limited efficacy. The pathogenic mechanisms of this disease are not fully elucidated; however, a role for mast cells (MCs) has been postulated. Objectives The aim of this work was to investigate a role for MCs in IPF and to understand whether nintedanib or pirfenidone could impact MC function. Methods and results MCs were significantly elevated in human IPF lung and negatively correlated with baseline lung function (FVC). Importantly, MCs were positively associated with the number of fibroblast foci, which has been linked to increased mortality. Furthermore, MCs were increased in the region immediately surrounding the fibroblast foci, and co-culture studies confirmed a role for MC–fibroblast crosstalk in fibrosis. Nintedanib but not pirfenidone inhibited recombinant stem cell factor (SCF)–induced MC survival. Further evaluation of nintedanib determined that it also inhibited human fibroblast-mediated MC survival. This was likely via a direct effect on ckit (SCF receptor) since nintedanib blocked SCF-stimulated ckit phosphorylation, as well as downstream effects on MC proliferation and cytokine release. In addition, nintedanib ablated the increase in lung MCs and impacted high tissue density frequency (HDFm) in a rat bleomycin model of lung fibrosis. Conclusion Nintedanib inhibits MC survival and activation and thus provides a novel additional mechanism by which this drug may exert anti-fibrotic effects in patients with IPF.
Collapse
Affiliation(s)
- Catherine Overed-Sayer
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Miranda
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Dunmore
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Liarte Marin
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorea Beloki
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Doris Rassl
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Helen Parfrey
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Alan Carruthers
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amina Chahboub
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Koch
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gülin Güler-Gane
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Kuziora
- Translational Science, Early Oncology, Oncology Bioinformatics, AstraZeneca, Gaithersburg, Maryland, USA
| | - Arthur Lewis
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lynne Murray
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard May
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deborah Clarke
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
31
|
Komi DEA, Khomtchouk K, Santa Maria PL. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin Rev Allergy Immunol 2020; 58:298-312. [PMID: 30729428 DOI: 10.1007/s12016-019-08729-w] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs), apart from their classic role in allergy, contribute to a number of biologic processes including wound healing. In particular, two aspects of their histologic distribution within the skin have attracted the attention of researchers to study their wound healing role; they represent up to 8% of the total number of cells within the dermis and their cutaneous versions are localized adjacent to the epidermis and the subdermal vasculature and nerves. At the onset of a cutaneous injury, the accumulation of MCs and release of proinflammatory and immunomodulatory mediators have been well documented. The role of MC-derived mediators has been investigated through the stages of wound healing including inflammation, proliferation, and remodeling. They contribute to hemostasis and clot formation by enhancing the expression of factor XIIIa in dermal dendrocytes through release of TNF-α, and contribute to clot stabilization. Keratinocytes, by secreting stem cell factor (SCF), recruit MCs to the site. MCs in return release inflammatory mediators, including predominantly histamine, VEGF, interleukin (IL)-6, and IL-8, that contribute to increase of endothelial permeability and vasodilation, and facilitate migration of inflammatory cells, mainly monocytes and neutrophils to the site of injury. MCs are capable of activating the fibroblasts and keratinocytes, the predominant cells involved in wound healing. MCs stimulate fibroblast proliferation during the proliferative phase via IL-4, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) to produce a new extracellular matrix (ECM). MC-derived mediators including fibroblast growth factor-2, VEGF, platelet-derived growth factor (PDGF), TGF-β, nerve growth factor (NGF), IL-4, and IL-8 contribute to neoangiogenesis, fibrinogenesis, or reepithelialization during the repair process. MC activation inhibition and targeting the MC-derived mediators are potential therapeutic strategies to improve wound healing through reduced inflammatory responses and scar formation.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kelly Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, 801 Welch Rd, Stanford, CA, 94305, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, 801 Welch Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Beute J, Ganesh K, Nastiti H, Hoogenboom R, Bos V, Folkerts J, Schreurs MWJ, Hockman S, Hendriks RW, KleinJan A. PDE3 Inhibition Reduces Epithelial Mast Cell Numbers in Allergic Airway Inflammation and Attenuates Degranulation of Basophils and Mast Cells. Front Pharmacol 2020; 11:470. [PMID: 32425769 PMCID: PMC7206980 DOI: 10.3389/fphar.2020.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Epithelial mast cells are generally present in the airways of patients with allergic asthma that are inadequately controlled. Airway mast cells (MCs) are critically involved in allergic airway inflammation and contribute directly to the main symptoms of allergic patients. Phosphodiesterase 3 (PDE3) tailors signaling of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are critical intracellular second messenger molecules in various signaling pathways. This paper investigates the pathophysiological role and disease-modifying effects of PDE3 in mouse bone marrow-derived MCs (bmMCs), human LAD2- and HMC1 mast cell lines, human blood basophils, and peripheral blood-derived primary human MCs (HuMCs). In a chronic house dust mite (HDM)-driven allergic airway inflammation mouse model, we observed that PDE3 deficiency or PDE3 inhibition (PDE3i) therapy reduced the numbers of epithelial MCs, when compared to control mice. Mouse bone marrow-derived MCs (bmMCs) and the human HMC1 and LAD2 cell lines predominantly expressed PDE3B and PDE4A. BmMCs from Pde3−/− mice showed reduced loss of the degranulation marker CD107b compared with wild-type BmMCs, when stimulated in an immunoglobulin E (IgE)-dependent manner. Following both IgE-mediated and substance P-mediated activation, PDE3i-pretreated basophils, LAD2 cells, and HuMCs, showed less degranulation than diluent controls, as measured by surface CD63 expression. MCs lacking PDE3 or treated with the PDE3i enoximone exhibited a lower calcium flux upon stimulation with ionomycine. In conclusion PDE3 plays a critical role in basophil and mast cell degranulation and therefore its inhibition may be a treatment option in allergic disease.
Collapse
Affiliation(s)
- Jan Beute
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Keerthana Ganesh
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Hedwika Nastiti
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Robin Hoogenboom
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Vivica Bos
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Steve Hockman
- Flow Cytometry Core of the National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
33
|
Wang X, Lin L, Chai X, Wu Y, Li Y, Liu X. Hypoxic mast cells accelerate the proliferation, collagen accumulation and phenotypic alteration of human lung fibroblasts. Int J Mol Med 2020; 45:175-185. [PMID: 31746371 PMCID: PMC6889934 DOI: 10.3892/ijmm.2019.4400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary vascular remodeling and fibrosis are the critical pathological characteristics of hypoxic pulmonary hypertension. Our previous study demonstrated that hypoxia is involved in the functional alteration of lung fibroblasts, but the underlying mechanism has yet to be fully elucidated. The aim of the present study was to investigate the effect of mast cells on the proliferation, function and phenotype of fibroblasts under hypoxic conditions. Hypoxia facilitated proliferation and the secretion of proinflammatory cytokines, including tumor necrosis factor (TNF)‑α and interleukin (IL)‑6, in human mast cells (HMC‑1). RNA sequencing identified 2,077 upregulated and 2,418 downregulated mRNAs in human fetal lung fibroblasts (HFL‑1) cultured in hypoxic conditioned medium from HMC‑1 cells compared with normoxic controls, which are involved in various pathways, including extracellular matrix organization, cell proliferation and migration. Conditioned medium from hypoxic HMC‑1 cells increased the proliferation and migration capacity of HFL‑1 and triggered phenotypic transition from fibroblasts to myofibroblasts. A greater accumulation of collagen type I and III was also observed in an HFL‑1 cell culture in hypoxic conditioned medium from HMC‑1 cells, compared with HFL‑1 cells cultured in normoxic control medium. The expression of matrix metalloproteinase (MMP)‑9 and MMP‑13 was upregulated in HFL‑1 cells grown in hypoxic conditioned medium from HMC‑1 cells. Similar pathological phenomena, including accumulation of mast cells, activated collagen metabolism and vascular remodeling, were observed in a hypoxic rat model. The results of the present study provide direct evidence that the multiple effects of the hypoxic microenvironment and mast cells on fibroblasts contribute to pulmonary vascular remodeling, and this process appears to be among the most important mechanisms underlying hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinmin Liu
- Correspondence to: Professor Xinmin Liu, Department of Geriatrics, Peking University First Hospital, 8 Xishiku Street, Beijing 100034, P.R. China, E-mail:
| |
Collapse
|
34
|
Rasky A, Habiel DM, Morris S, Schaller M, Moore BB, Phan S, Kunkel SL, Phillips M, Hogaboam C, Lukacs NW. Inhibition of the stem cell factor 248 isoform attenuates the development of pulmonary remodeling disease. Am J Physiol Lung Cell Mol Physiol 2019; 318:L200-L211. [PMID: 31747308 DOI: 10.1152/ajplung.00114.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell factor (SCF) and its receptor c-kit have been implicated in inflammation, tissue remodeling, and fibrosis. Ingenuity Integrated Pathway Analysis of gene expression array data sets showed an upregulation of SCF transcripts in idiopathic pulmonary fibrosis (IPF) lung biopsies compared with tissue from nonfibrotic lungs that are further increased in rapid progressive disease. SCF248, a cleavable isoform of SCF, was abundantly and preferentially expressed in human lung fibroblasts and fibrotic mouse lungs relative to the SCF220 isoform. In fibroblast-mast cell coculture studies, blockade of SCF248 using a novel isoform-specific anti-SCF248 monoclonal antibody (anti-SCF248), attenuated the expression of COL1A1, COL3A1, and FN1 transcripts in cocultured IPF but not normal lung fibroblasts. Administration of anti-SCF248 on days 8 and 12 after bleomycin instillation in mice significantly reduced fibrotic lung remodeling and col1al, fn1, acta2, tgfb, and ccl2 transcript expression. In addition, bleomycin increased numbers of c-kit+ mast cells, eosinophils, and ILC2 in lungs of mice, whereas they were not significantly increased in anti-SCF248-treated animals. Finally, mesenchymal cell-specific deletion of SCF significantly attenuated bleomycin-mediated lung fibrosis and associated fibrotic gene expression. Collectively, these data demonstrate that SCF is upregulated in diseased IPF lungs and blocking SCF248 isoform significantly ameliorates fibrotic lung remodeling in vivo suggesting that it may be a therapeutic target for fibrotic lung diseases.
Collapse
Affiliation(s)
- Andrew Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Opsidio, LLC, Bryn Mawr, Pennsylvania
| | | | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Opsidio, LLC, Bryn Mawr, Pennsylvania
| | - Matthew Schaller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sem Phan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Cory Hogaboam
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Zhang T, Day JH, Su X, Guadarrama AG, Sandbo NK, Esnault S, Denlinger LC, Berthier E, Theberge AB. Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front Bioeng Biotechnol 2019; 7:196. [PMID: 31475142 PMCID: PMC6702460 DOI: 10.3389/fbioe.2019.00196] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 11/14/2022] Open
Abstract
Mechanical forces have long been recognized as fundamental drivers in biological processes, such as embryogenesis, tissue formation and disease regulation. The collagen gel contraction (CGC) assay has served as a classic tool in the field of mechanobiology to study cell-induced contraction of extracellular matrix (ECM), which plays an important role in inflammation and wound healing. In a conventional CGC assay, cell-laden collagen is loaded into a cell culture vessel (typically a well plate) and forms a disk-shaped gel adhering to the bottom of the vessel. The decrement in diameter or surface area of the gel is used as a parameter to quantify the degree of cell contractility. In this study, we developed a microscale CGC assay with an engineered well plate insert that uses surface tension forces to load and manipulate small volumes (14 μL) of cell-laden collagen. The system is easily operated with two pipetting steps and the microscale device moves dynamically as a result of cellular forces. We used a straightforward one-dimensional measurement as the gel contraction readout. We adapted a conventional lung fibroblast CGC assay to demonstrate the functionality of the device, observing significantly more gel contraction when human lung fibroblasts were cultured in serum-containing media vs. serum-free media (p ≤ 0.05). We further cocultured eosinophils and fibroblasts in the system, two important cellular components that lead to fibrosis in asthma, and observed that soluble factors from eosinophils significantly increase fibroblast-mediated gel contraction (p ≤ 0.01). Our microscale CGC device provides a new method for studying downstream ECM effects of intercellular cross talk using 7- to 35-fold less cell-laden gel than traditional CGC assays.
Collapse
Affiliation(s)
- Tianzi Zhang
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - John H Day
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Xiaojing Su
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Arthur G Guadarrama
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nathan K Sandbo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States.,Department of Urology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
36
|
Amiot L, Vu N, Drenou B, Scrofani M, Chalin A, Devisme C, Samson M. The anti-fibrotic role of mast cells in the liver is mediated by HLA-G and interaction with hepatic stellate cells. Cytokine 2019; 117:50-58. [PMID: 30825834 DOI: 10.1016/j.cyto.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/15/2018] [Accepted: 02/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS We have reported a significant association between HLA-G expression or the number of hepatic mast cells and liver fibrosis. Here, we investigated the role of HLA-G and mast cells in liver fibrosis, focusing, in particular, on interactions between human mast and stellate cells. METHODS Human mast cells (HMC cell line, CD34-derived mast cells, or tissue-derived mast cells) were co-cultured with purified human hepatic stellate cells (HSCs), and collagen I production by HSCs was evaluated. Mast cells and HSCs were characterized by immunocytochemistry. Various conditions were tested: different times in direct or indirect contact, presence or absence of cytokines, addition or not of HLA-G, and presence or absence of specific protease inhibitors. RESULTS The reciprocal interaction between HSCs and mast cells led to the attraction of mast cells to HSCs in vivo and in vitro, and to a significant decrease in collagen production, at all times of co-culture, following the direct or indirect contact of mast cells with HSCs alone or in the presence of TGF-β, IFN-α or IL-10. We identified the diffusible factors involved in collagen I degradation as mast cell proteases. Moreover, HLA-G expression increased during the co-culture of HSCs and mast cells, with HLA-G acting on both mast cells and HSCs, to enhance collagen I degradation. CONCLUSIONS Mast cells play a beneficial, anti-fibrotic role in liver fibrosis, via the HLA-G-mediated decrease of collagen I. These findings are consistent with high levels of cross-communication between mast cells and hepatic stellate cells and the role of HLA-G.
Collapse
Affiliation(s)
- Laurence Amiot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; Univ Rennes, CHU Rennes, F-35000 Rennes, France.
| | - Nicolas Vu
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bernard Drenou
- CH Emile Muller, F-68100 Mulhouse, France; Institut de Recherche en Hématologie et Transplantation (IRHT), F-68100 Mulhouse, France
| | - Maurice Scrofani
- Institut de Recherche en Hématologie et Transplantation (IRHT), F-68100 Mulhouse, France
| | - Arnaud Chalin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christelle Devisme
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
37
|
Shimbori C, Upagupta C, Bellaye PS, Ayaub EA, Sato S, Yanagihara T, Zhou Q, Ognjanovic A, Ask K, Gauldie J, Forsythe P, Kolb MRJ. Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax 2019; 74:455-465. [PMID: 30808717 DOI: 10.1136/thoraxjnl-2018-211516] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The role of mast cells accumulating in idiopathic pulmonary fibrosis (IPF) lungs is unknown. OBJECTIVES We investigated the effect of fibrotic extracellular matrix (ECM) on mast cells in experimental and human pulmonary fibrosis. RESULTS In IPF lungs, mast cell numbers were increased and correlated with disease severity (control vs 60%<FVC<90%, mean difference=-222.7, 95% CI -386.3 to -59.2, p=0.004; control vs FVC<60%, mean difference=-301.7, 95% CI of difference -474.1 to -129.34, p=0.0001; FVC>90% vs 60%<FVC<90%, mean difference=-189.6, 95% CI of difference -353.1 to -26.03, p=0.017; FVC>90% vs FVC<60%, mean difference=-268.6, 95% CI of difference -441.0 to -96.17, p=0.0007). Plasma tryptase levels were increased in IPF and negatively correlated with FVC (control vs FVC<60%, mean difference=-17.12, 95% CI of difference -30.02 to -4.22, p=0.006: correlation curves R=-0.045, p=0.025). In a transforming growth factor (TGF)-β1-induced pulmonary fibrosis model, chymase-positive and tryptase-positive mast cells accumulated in fibrotic lung. Lung tissue was decellularised and reseeded with bone marrow or peritoneum-derived mast cells; cells on fibrotic ECM released more TGF-β1 compared with normal ECM (active TGF-β1: bone marrow-derived mast cell (BMMC)-DL vs BMMC-TGF-β1 p=0.0005, peritoneal mast cell (PMC)-DL vs PMC-TGF-β1 p=0.0003, total TGF-β1: BMMC-DL vs BMMC-TGF-β1 p=0.013, PMC-DL vs PMC-TGF-β1 p=0.001). Mechanical stretch of lungs caused mast cell degranulation; mast cell stabilisers inhibited degranulation (histamine: cont vs doxantrazole p=0.004, β-hexosaminidase: cont vs doxantrazole, mean difference=1.007, 95% CI of difference 0.2700 to 1.744, p=0.007) and TGF-β1 activation (pSmad2/Smad2: cont vs dox p=0.006). Cromoglycate attenuated pulmonary fibrosis in rats (collagen: phosphate-buffered saline (PBS) vs cromoglycate p=0.036, fibrotic area: PBS vs cromoglycate p=0.031). CONCLUSION This study suggests that mast cells may contribute to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiko Shimbori
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Chandak Upagupta
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Pierre-Simon Bellaye
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Ehab A Ayaub
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Seidai Sato
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Toyoshi Yanagihara
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Quan Zhou
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Alexander Ognjanovic
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Kjetil Ask
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Jack Gauldie
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Paul Forsythe
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
- McMaster Brain-Body Institute, The Research Institute of St Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Martin R J Kolb
- St Joseph's Healthcare and Department of Medicine, Firestone Institute for Respiratory Health, McMaster University Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
39
|
Sivakumar P, Kitson C, Jarai G. Modeling and measuring extracellular matrix alterations in fibrosis: challenges and perspectives for antifibrotic drug discovery. Connect Tissue Res 2019; 60:62-70. [PMID: 30071759 DOI: 10.1080/03008207.2018.1500557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An imbalance of extracellular matrix (ECM) deposition and turnover is a hallmark of fibrotic pathologies as opposed to normal repair response to injury across several organs. Antifibrotic approaches to date have targeted multiple mechanisms and pathways involved in inflammation, angiogenesis, injury, wound repair, ECM biosynthesis, assembly, crosslinking and degradation. Many of these approaches have been unsuccessful which may in part be due to suboptimal models and the lack of validated functional ECM end points relevant to fibrosis. In addition, drug discovery and development for fibrotic diseases has been challenging due to the lack of translatability from in vivo models to the clinic. Targeting growth factor signaling pathways such as transforming growth factor beta (TGFβ), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) are possible in simple recombinant cell models and the approval of the tyrosine kinase inhibitor, nintedanib (Ofev) is testament to the approach. However, drug targets directly impacting ECM synthesis, assembly or degradation have proven clinically intractable to date. The reasons for a lack of progress are many and include; non-traditional drug targets, lack of suitable high throughput screening assays and translational models, incomplete understanding of the role of the target. Here, we review the role of ECM in fibrosis, the challenges of ECM-targeted antifibrotic approaches, progress in the development of functional and biomarker-related ECM assays and where new translational models of fibrotic ECM remodeling could support drug discovery for fibrotic diseases.
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- a Fibrosis Translational Research and Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christopher Kitson
- b Fibrosis Discovery Biology , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Gabor Jarai
- a Fibrosis Translational Research and Development , Bristol-Myers Squibb , Pennington , NJ , USA
| |
Collapse
|
40
|
Bagher M, Larsson-Callerfelt AK, Rosmark O, Hallgren O, Bjermer L, Westergren-Thorsson G. Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun Signal 2018; 16:59. [PMID: 30219079 PMCID: PMC6139170 DOI: 10.1186/s12964-018-0269-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mast cells may activate fibroblasts and contribute to remodeling processes in the lung. However, the mechanism behind these actions needs to be further investigated. Fibroblasts are major regulators of on-going remodeling processes. Protease activated receptor 2 (PAR2) expressed by fibroblasts may be activated by serine proteases, such as the mast cell mediator tryptase. The objective in this study was to investigate the effects of mast cells and specifically mast cell tryptase on fibroblast migration and the role of PAR2 activation. METHODS Human lung fibroblasts (HFL-1) were cultured together with human peripheral blood-derived mast cells or LAD2 mast cells and stimulated with either conditioned medium from LAD2 cells or tryptase. Analyses of immunological stimulation of mast cells by IgE/anti IgE in the co-culture system were also performed. The importance of PAR2 activation by mast cells and mast cell tryptase for the migratory effects of fibroblasts was investigated by pre-treatment with the PAR2 antagonist P2pal-18S. The expression of PAR2 was analyzed on fibroblasts and mast cells. RESULTS The migratory capacity of HFL-1 cells was enhanced by blood-derived mast cells (p < 0.02), LAD2 cells (p < 0.001), conditioned medium (p < 0.05) and tryptase (p < 0.006). P2pal-18S decreased the induced migration caused by mast cells (p < 0.001) and tryptase (p < 0.001) and the expression of PAR2 was verified in HFL-1 cells. Mast cells immunologically stimulated with IgE/Anti IgE had no further effects on fibroblast migration. CONCLUSIONS Mast cells and the mast cell mediator tryptase may have crucial roles in inducing lung fibroblast migration via PAR-2 activation, which may contribute to remodeling processes in chronic lung diseases.
Collapse
Affiliation(s)
- Mariam Bagher
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden. .,Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden.
| | | | - Oskar Rosmark
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Oskar Hallgren
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Gunilla Westergren-Thorsson
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden
| |
Collapse
|
41
|
Pincha N, Hajam EY, Badarinath K, Batta SPR, Masudi T, Dey R, Andreasen P, Kawakami T, Samuel R, George R, Danda D, Jacob PM, Jamora C. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis. J Clin Invest 2018; 128:1807-1819. [PMID: 29584619 DOI: 10.1172/jci99088] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.
Collapse
Affiliation(s)
- Neha Pincha
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Edries Yousaf Hajam
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,National Centre for Biological Sciences (NCBS), GKVK post, Bangalore, Karnataka, India
| | - Surya Prakash Rao Batta
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Tafheem Masudi
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Peter Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences, Research Center for Allergy and Immunology (IMS-RCAI), Yokohama, Japan
| | - Rekha Samuel
- Department of Pathology, Center for Stem Cell Research
| | - Renu George
- Department of Dermatology, Venereology and Leprosy
| | | | | | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| |
Collapse
|
42
|
Bale S, Venkatesh P, Sunkoju M, Godugu C. An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines. Front Pharmacol 2018; 9:248. [PMID: 29623041 PMCID: PMC5874319 DOI: 10.3389/fphar.2018.00248] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF.
Collapse
Affiliation(s)
- Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pooladanda Venkatesh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Manoj Sunkoju
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
43
|
Valero-Jiménez A, Zúñiga J, Cisneros J, Becerril C, Salgado A, Checa M, Buendía-Roldán I, Mendoza-Milla C, Gaxiola M, Pardo A, Selman M. Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS One 2018; 13:e0192963. [PMID: 29529050 PMCID: PMC5846721 DOI: 10.1371/journal.pone.0192963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by epithelial cell activation, expansion of the fibroblast population and excessive extracellular matrix accumulation. The mechanisms are incompletely understood but evidence indicates that the deregulation of several proteases contributes to its pathogenesis. Transmembrane protease serine 4 (TMPRSS4) is a novel type II transmembrane serine protease that may promote migration and facilitate epithelial to mesenchymal transition (EMT), two critical processes in the pathogenesis of IPF. Thus, we hypothesized that over-expression of TMPRSS4 in the lung could promote the initiation and/or progression of IPF. In this study we first evaluated the expression and localization of TMPRSS4 in IPF lungs by real time PCR, western blot and immunohistochemistry. Then we examined the lung fibrotic response in wild-type and TMPRSS4 deficient mice using the bleomycin-induced lung injury model. We found that this protease is upregulated in IPF lungs, where was primarily expressed by epithelial and mast cells. Paralleling the findings in vivo, TMPRSS4 was expressed by alveolar and bronchial epithelial cells in vitro and unexpectedly, provoked an increase of E-cadherin. No expression was observed in normal human or IPF lung fibroblasts. The lung fibrotic response evaluated at 28 days after bleomycin injury was markedly attenuated in the haplodeficient and deficient TMPRSS4 mice. By morphology, a significant reduction of the fibrotic index was observed in KO and heterozygous mice which was confirmed by measurement of collagen content (hydroxyproline: WT: 164±21.1 μg/lung versus TMPRSS4 haploinsufficient: 110.2±14.3 μg/lung and TMPRSS4 deficient mice: 114.1±24.2 μg/lung (p<0.01). As in IPF, TMPRSS4 was also expressed in epithelial and mast cells. These findings indicate that TMPRSS4 is upregulated in IPF lungs and that may have a profibrotic role.
Collapse
Affiliation(s)
- Ana Valero-Jiménez
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - José Cisneros
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Alfonso Salgado
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Marco Checa
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Ivette Buendía-Roldán
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
44
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
45
|
Ohfuji S. Renaut bodies in the hind limb nerves of cattle with downer cow syndrome. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2665-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Löfdahl A, Wenglén C, Rydell-Törmänen K, Westergren-Thorsson G, Larsson-Callerfelt AK. Effects of 5-Hydroxytryptamine Class 2 Receptor Antagonists on Bronchoconstriction and Pulmonary Remodeling Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1113-1119. [PMID: 29454752 DOI: 10.1016/j.ajpath.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is associated with several chronic pulmonary diseases, recognizing 5-HT2 receptor antagonists as potential inhibitors of tissue remodeling. However, the effects of 5-HT2 receptors, especially 5-HT2B receptors on airway function and remodeling, are unclear. We investigated the role of 5-HT2B receptors on airway smooth muscle contractility and remodeling processes. Murine precision-cut lung slices were pretreated with 5-HT2B receptor antagonists (EXT5, EXT9, RS 127445, and PRX 08066), as well as ketanserin (5-HT2A/2C receptor antagonist) (1, 10 μmol/L), before addition of cumulative concentrations of 5-HT to induce bronchoconstriction. Remodeling effects after treatment with 10 μmol/L 5-HT and 5-HT2 receptor antagonists were further studied in distal lung tissue by examining release of profibrotic transforming growth factor (TGF)-β1 and proliferation of human bronchial smooth muscle cells (HBSMCs). 5-HT-induced bronchoconstriction was significantly reduced by EXT5, EXT9, and ketanserin, but not by RS 127445 or PRX 08066. The 5-HT2B receptor antagonists significantly reduced TGF-β1 release. 5-HT, in combination with TGF-β1, increased proliferation of HBSMCs, a process reduced by EXT5 and EXT9. Our results indicate that EXT5 and EXT9 may relieve bronchoconstriction in murine airways and serve as an add-on effect in attenuating pulmonary remodeling by improving airway function. The antiproliferative effect on HBSMCs and the inhibition of TGF-β1 release further support a role of 5-HT2B receptors in pathologic remodeling processes.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology Group, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Andersson CK, Weitoft M, Rydell-Törmänen K, Bjermer L, Westergren-Thorsson G, Erjefält JS. Uncontrolled asthmatics have increased FceRI+
and TGF-β-positive MCTC
mast cells and collagen VI in the alveolar parenchyma. Clin Exp Allergy 2018; 48:266-277. [DOI: 10.1111/cea.13092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 02/04/2023]
Affiliation(s)
- C. K. Andersson
- Department of Respiratory Medicine and Allergology; Lund University; Lund Sweden
| | - M. Weitoft
- Department Experimental Medical Science; Lund University; Lund Sweden
| | | | - L. Bjermer
- Department of Respiratory Medicine and Allergology; Lund University; Lund Sweden
| | | | - J. S. Erjefält
- Department Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
48
|
White MJV, Chinea LE, Pilling D, Gomer RH. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. J Leukoc Biol 2017; 103:119-128. [PMID: 29345066 DOI: 10.1002/jlb.3a0717-308r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Compared to neutrophil chemoattractants, relatively little is known about the mechanism neutrophils use to respond to chemorepellents. We previously found that the soluble extracellular protein dipeptidyl peptidase IV (DPPIV) is a neutrophil chemorepellent. In this report, we show that an inhibitor of the protease activated receptor 2 (PAR2) blocks DPPIV-induced human neutrophil chemorepulsion, and that PAR2 agonists such as trypsin, tryptase, 2f-LIGRL, SLIGKV, and AC55541 induce human neutrophil chemorepulsion. Several PAR2 agonists in turn block the ability of the chemoattractant fMLP to attract neutrophils. Compared to neutrophils from male and female C57BL/6 mice, neutrophils from male and female mice lacking PAR2 are insensitive to the chemorepulsive effects of DPPIV or PAR2 agonists. Acute respiratory distress syndrome (ARDS) involves an insult-mediated influx of neutrophils into the lungs. In a mouse model of ARDS, aspiration of PAR2 agonists starting 24 h after an insult reduce neutrophil numbers in the bronchoalveolar lavage (BAL) fluid, as well as the post-BAL lung tissue. Together, these results indicate that the PAR2 receptor mediates DPPIV-induced chemorepulsion, and that PAR2 agonists might be useful to induce neutrophil chemorepulsion.
Collapse
Affiliation(s)
- Michael J V White
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
49
|
Herazo-Maya JD, Sun J, Molyneaux PL, Li Q, Villalba JA, Tzouvelekis A, Lynn H, Juan-Guardela BM, Risquez C, Osorio JC, Yan X, Michel G, Aurelien N, Lindell KO, Klesen MJ, Moffatt MF, Cookson WO, Zhang Y, Garcia JGN, Noth I, Prasse A, Bar-Joseph Z, Gibson KF, Zhao H, Herzog EL, Rosas IO, Maher TM, Kaminski N. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. THE LANCET. RESPIRATORY MEDICINE 2017; 5:857-868. [PMID: 28942086 PMCID: PMC5677538 DOI: 10.1016/s2213-2600(17)30349-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical course of idiopathic pulmonary fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS We enrolled patients with IPF diagnosis in a six-cohort study at Yale University (New Haven, CT, USA), Imperial College London (London, UK), University of Chicago (Chicago, IL, USA), University of Pittsburgh (Pittsburgh, PA, USA), University of Freiburg (Freiburg im Breisgau, Germany), and Brigham and Women's Hospital-Harvard Medical School (Boston, MA, USA). Peripheral blood mononuclear cells or whole blood were collected at baseline from 425 participants and from 98 patients (23%) during 4-6 years' follow-up. A 52-gene signature was measured by the nCounter analysis system in four cohorts and extracted from microarray data (GeneChip) in the other two. We used the Scoring Algorithm for Molecular Subphenotypes (SAMS) to classify patients into low-risk or high-risk groups based on the 52-gene signature. We studied mortality with a competing risk model and transplant-free survival with a Cox proportional hazards model. We analysed timecourse data and response to antifibrotic drugs with linear mixed effect models. FINDINGS The application of SAMS to the 52-gene signature identified two groups of patients with IPF (low-risk and high-risk), with significant differences in mortality or transplant-free survival in each of the six cohorts (hazard ratio [HR] range 2·03-4·37). Pooled data showed similar results for mortality (HR 2·18, 95% CI 1·53-3·09; p<0·0001) or transplant-free survival (2·04, 1·52-2·74; p<0·0001). Adding 52-gene risk profiles to the Gender, Age, and Physiology index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of decreased transplant-free survival (3·18, 1·16-8·76; p=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of antifibrotic drugs was associated with a significant (p=0·0050) improvement in FVC in the Yale cohort. INTERPRETATION The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies. FUNDING The Pulmonary Fibrosis Foundation, the Harold Amos Medical Faculty Development Program of the Robert Wood Johnson Foundation, and the National Heart, Lung, and Blood Institute of the US National Institutes of Health.
Collapse
Affiliation(s)
- Jose D. Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA,Section of Pulmonary, Critical Care and Sleep Medicine. Department of Medicine. NCH Healthcare System and Mayo Clinic School of Medicine, Naples, FL, USA,Correspondence: Jose D. Herazo-Maya and Naftali Kaminski, Contact information: 300 Cedar Street, TAC–441 South, P.O. Box 208057, New Haven CT, 06520-8057, 203-785-4162
| | - Jiehuan Sun
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | | - Qin Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - Julian A. Villalba
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Argyrios Tzouvelekis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - Heather Lynn
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - Brenda M. Juan-Guardela
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA,Section of Pulmonary, Critical Care and Sleep Medicine. Department of Medicine. NCH Healthcare System and Mayo Clinic School of Medicine, Naples, FL, USA
| | - Cristobal Risquez
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Juan C. Osorio
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - George Michel
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - Nachelle Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA,Section of Pulmonary, Critical Care and Sleep Medicine. Department of Medicine. NCH Healthcare System and Mayo Clinic School of Medicine, Naples, FL, USA
| | - Kathleen O. Lindell
- Division of Pulmonary, Allergy and Critical Care Medicine. University of Pittsburgh, Pittsburgh, PA, USA
| | - Melinda J. Klesen
- Division of Pulmonary, Allergy and Critical Care Medicine. University of Pittsburgh, Pittsburgh, PA, USA
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - William O. Cookson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine. University of Pittsburgh, Pittsburgh, PA, USA
| | - Joe GN Garcia
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, Department of Medicine. University of Chicago, Chicago, IL, USA
| | - Antje Prasse
- Department of Pneumology, Hannover Medical School, Hannover, Germany,University Clinical Center Freiburg, Department of Pneumology, Freiburg, Germany
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kevin F. Gibson
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Hongyu Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine. Department of Medicine. NCH Healthcare System and Mayo Clinic School of Medicine, Naples, FL, USA
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, United Kingdom,National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine. Yale School of Medicine, New Haven, CT, USA,Correspondence: Jose D. Herazo-Maya and Naftali Kaminski, Contact information: 300 Cedar Street, TAC–441 South, P.O. Box 208057, New Haven CT, 06520-8057, 203-785-4162
| |
Collapse
|
50
|
Abstract
In 5 Japanese Black steers (2-2.4 years old) that originated from 5 different feedlots, the livers were found at slaughter to have multiple nodular or cordlike lesions (5 steers) and an extensive fibrotic area (1 steer). Microscopic changes included extensive fibroplasia in the portal tracts and chronic proliferative endophlebitis-like lesions confined to the portal vein branches. Fibroplasia was much more prominent in the macroscopic fibrotic lesion of 1 steer. Portal vein branches presented irregular variciform dilation of the vascular lumen and fibroplastic changes in the subendothelial areas that showed occasional hemorrhage and were simultaneously infiltrated with large numbers of mast cells and moderate to large numbers of eosinophils. Within these subendothelial regions, not only did mast cells exhibit cytologically atypical features, but they also formed multifocal nodules. The venous lesions may represent a variant of mastocytosis with specific involvement of the hepatic portal vein branches in cattle.
Collapse
Affiliation(s)
- Susumu Ohfuji
- Department of Histopathology, Diagnostic Animal Pathology Office, Hokkaido, Japan
| |
Collapse
|