1
|
Pikus P, Turner RS, Rebeck GW. Mouse models of Anti-Aβ immunotherapies. Mol Neurodegener 2025; 20:57. [PMID: 40361247 PMCID: PMC12076828 DOI: 10.1186/s13024-025-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The development of anti-amyloid-beta (Aβ) immunotherapies as the first disease modifying therapy for Alzheimer's Disease (AD) is a breakthrough of basic research and translational science. MAIN TEXT Genetically modified mouse models developed to study AD neuropathology and physiology were used for the discovery of Aβ immunotherapies and helped ultimately propel therapies to FDA approval. Nonetheless, the combination of modest efficacy and significant rates of an adverse side effect (amyloid related imaging abnormalities, ARIA), has prompted reverse translational research in these same mouse models to better understand the mechanism of the therapies. CONCLUSION This review considers the use of these mouse models in understanding the mechanisms of Aβ clearance, cerebral amyloid angiopathy (CAA), blood brain barrier breakdown, neuroinflammation, and neuronal dysfunction in response to Aβ immunotherapy.
Collapse
Affiliation(s)
- Philip Pikus
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, 3800 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA.
| |
Collapse
|
2
|
Rodriguez-Lopez A, Esteban D, Domínguez-Romero AN, Gevorkian G. Tg-SwDI transgenic mice: A suitable model for Alzheimer's disease and cerebral amyloid angiopathy basic research and preclinical studies. Exp Neurol 2025; 387:115189. [PMID: 39978567 DOI: 10.1016/j.expneurol.2025.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most frequent cause of dementia. Characteristic features observed in the brain of AD patients are the accumulation of amyloid beta peptide (Aβ) aggregates, neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein, neuronal and synaptic loss, and elevated levels of oxidative stress and inflammatory markers. Cerebral amyloid angiopathy (CAA) is another common cause of cognitive decline characterized by the accumulation of Aβ in the cerebral vasculature. The precise overlapping pathogenic mechanisms underlying the co-occurrence of AD and CAA are not very well understood. However, vascular dysfunction observed at early stages is considered a key phenomenon. Tg-SwDI transgenic mice expressing human Aβ precursor protein (AβPP) harboring the Swedish K670N/M671L and vasculotropic Dutch/Iowa E693Q/D694N mutations in the brain have been extensively used to study many pathological features observed in AD/CAA patients and to design biomarkers and therapeutic strategies. The present review summarizes studies addressing different features mimicking human disease in Tg-SwDI mice: parenchymal and cerebral vascular amyloid accumulation, neuroinflammation, complement overactivation, cerebrovascular, mitochondrial and GABAergic system dysfunction, altered NO synthesis, circadian rhythm disruptions, lead exposure effect, among others. Also, reports that evaluated anti-Aβ and anti-inflammatory strategies and compounds capable of delaying or reversing vascular dysfunction and the impairment of GABAergic transmission in Tg-SwDI mice are analyzed. This review may help researchers determine this model's appropriateness for future studies of a particular mechanism or a novel treatment protocol.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Daniel Esteban
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
3
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
5
|
Barnes CA, Permenter MR, Vogt JA, Chen K, Beach TG. Human Alzheimer's Disease ATN/ABC Staging Applied to Aging Rhesus Macaque Brains: Association With Cognition and MRI-Based Regional Gray Matter Volume. J Comp Neurol 2024; 532:e25670. [PMID: 39315417 PMCID: PMC11451939 DOI: 10.1002/cne.25670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
The brain changes of Alzheimer's disease (AD) include Abeta (Aβ) amyloid plaques ("A"), abnormally phosphorylated tau tangles ("T"), and neurodegeneration ("N"). These have been used to construct in vivo and postmortem diagnostic and staging classifications for evaluating the spectrum of AD in the "ATN" and "ABC" ("B" for Braak tau stage, "C" for Consortium to Establish a Registry for Alzheimer's Disease [CERAD] neuritic plaque density) systems. Another common AD feature involves cerebral amyloid angiopathy (CAA). We report the first experiment to examine relationships among cognition, brain distribution of amyloid plaques, CAA, tau/tangles, and magnetic resonance imaging (MRI)-determined volume changes (as a measure of "N") in the same group of behaviorally characterized nonhuman primates. Both ATN and ABC systems were applied to a group of 32 rhesus macaques aged between 7 and 33 years. When an immunohistochemical method for "T" and "B" was used, some monkeys were "triple positive" on ATN, with a maximum ABC status of A1B2C3. With silver or thioflavin S methods, however, all monkeys were classified as T-negative and B0, indicating the absence of mature neurofibrillary tangles (NFTs) and hence neuropathologically defined AD. Although monkeys at extremes of the ATN and ABC classifications, or with frequent CAA, had significantly lower scores on some cognitive tests, the lack of fully mature NFTs or dementia-consistent cognitive impairment indicates that fully developed AD may not occur in rhesus macaques. There were sex differences noted in the types of histopathology present, and only CAA was significantly related to gray matter volume.
Collapse
Affiliation(s)
- Carol A Barnes
- Departments of Psychology, Neurology and Neuroscience, Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Tucson, Arizona, USA
| | - Michele R Permenter
- California National Primate Center, University of California, Davis, Davis, California, USA
| | - Julie A Vogt
- California National Primate Center, University of California, Davis, Davis, California, USA
| | - Kewei Chen
- Arizona State University, Tempe, Arizona, USA
| | - Thomas G Beach
- Department of Neuroscience, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
6
|
Ferrer I. Alzheimer's Disease Neuropathological Change in Aged Non-Primate Mammals. Int J Mol Sci 2024; 25:8118. [PMID: 39125687 PMCID: PMC11311584 DOI: 10.3390/ijms25158118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human brain aging is characterized by the production and deposition of β-amyloid (Aβ) in the form of senile plaques and cerebral amyloid angiopathy and the intracellular accumulation of hyper-phosphorylated tau (Hp-tau) to form neurofibrillary tangles (NFTs) and dystrophic neurites of senile plaques. The process progresses for years and eventually manifests as cognitive impairment and dementia in a subgroup of aged individuals. Aβ is produced and deposited first in the neocortex in most aged mammals, including humans; it is usually not accompanied by altered behavior and cognitive impairment. Hp-tau is less frequent than Aβ pathology, and NFTs are rare in most mammals. In contrast, NFTs are familiar from middle age onward in humans; NFTs first appear in the paleocortex and selected brain stem nuclei. NFTs precede for decades or years Aβ deposition and correlate with dementia in about 5% of individuals at the age of 65 and 25% at the age of 85. Based on these comparative data, (a) Aβ deposition is the most common Alzheimer's disease neuropathological change (ADNC) in the brain of aged mammals; (b) Hp-tau is less common, and NFTs are rare in most aged mammals; however, NFTs are the principal cytoskeletal pathology in aged humans; (c) NFT in aged humans starts in selected nuclei of the brain stem and paleocortical brain regions progressing to the most parts of the neocortex and other regions of the telencephalon; (d) human brain aging is unique among mammalian species due to the early appearance and dramatic progression of NFTs from middle age onward, matching with cognitive impairment and dementia in advanced cases; (e) neither mammalian nor human brain aging supports the concept of the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain;
- Reial Acadèmia de Medicina de Catalunya, carrer del Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
7
|
Shi Q, Wang X, Pradhan AK, Fenzl T, Rammes G. The Effects of Sevoflurane and Aβ Interaction on CA1 Dendritic Spine Dynamics and MEGF10-Related Astrocytic Synapse Engulfment. Int J Mol Sci 2024; 25:7393. [PMID: 39000499 PMCID: PMC11242502 DOI: 10.3390/ijms25137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
General anesthetics may accelerate the neuropathological changes related to Alzheimer's disease (AD), of which amyloid beta (Aβ)-induced toxicity is one of the main causes. However, the interaction of general anesthetics with different Aβ-isoforms remains unclear. In this study, we investigated the effects of sevoflurane (0.4 and 1.2 maximal alveolar concentration (MAC)) on four Aβ species-induced changes on dendritic spine density (DSD) in hippocampal brain slices of Thy1-eGFP mice and multiple epidermal growth factor-like domains 10 (MEGF10)-related astrocyte-mediated synaptic engulfment in hippocampal brain slices of C57BL/6 mice. We found that both sevoflurane and Aβ downregulated CA1-dendritic spines. Moreover, compared with either sevoflurane or Aβ alone, pre-treatment with Aβ isoforms followed by sevoflurane application in general further enhanced spine loss. This enhancement was related to MEGF10-related astrocyte-dependent synaptic engulfment, only in AβpE3 + 1.2 MAC sevoflurane and 3NTyrAβ + 1.2 MAC sevoflurane condition. In addition, removal of sevoflurane alleviated spine loss in Aβ + sevoflurane. In summary, these results suggest that both synapses and astrocytes are sensitive targets for sevoflurane; in the presence of 3NTyrAβ, 1.2 MAC sevoflurane alleviated astrocyte-mediated synaptic engulfment and exerted a lasting effect on dendritic spine remodeling.
Collapse
Affiliation(s)
- Qinfang Shi
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Arpit Kumar Pradhan
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Graduate School of Systemic Neuroscience, Ludwig Maximilian University of Munich, 82152 Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| |
Collapse
|
8
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
9
|
Behof WJ, Haynes JR, Whitmore CA, Cheung YY, Tantawy MN, Peterson TE, Wijesinghe P, Matsubara JA, Pham W. Synthesis and Evaluation of a Novel PET Radioligand for Imaging Glutaminyl Cyclase Activity as a Biomarker for Detecting Alzheimer's Disease. ACS Sens 2024; 9:2605-2613. [PMID: 38718161 PMCID: PMC11129349 DOI: 10.1021/acssensors.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Several new lines of research have demonstrated that a significant number of amyloid-β peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.
Collapse
Affiliation(s)
- William J Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Clayton A Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, United States
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z3N9, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z3N9, Canada
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer 's disease and the challenges: A topical advancement. Ageing Res Rev 2024; 94:102199. [PMID: 38232903 DOI: 10.1016/j.arr.2024.102199] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-β (Aβ) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aβ, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aβ, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Zhao Z, Liu Y, Ruan S, Hu Y. Current Anti-Amyloid-β Therapy for Alzheimer's Disease Treatment: From Clinical Research to Nanomedicine. Int J Nanomedicine 2023; 18:7825-7845. [PMID: 38144511 PMCID: PMC10749171 DOI: 10.2147/ijn.s444115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Recent successive approval of anti-amyloid-β (Aβ) monoclonal antibodies as disease-modifying therapies against Alzheimer's disease (AD) has raised great confidence in the development of anti-AD therapies; however, the current therapies still face the dilemma of significant adverse reactions and limited effects. In this review, we summarized the therapeutic characteristics of the approved anti-Aβ immunotherapies and dialectically analyzed the gains and losses from clinical trials. The review further proposed the reasonable selection of animal models in preclinical studies from the perspective of different animal models of Aβ deposition and deals in-depth with the recent advances of exploring preclinical nanomedical application in Aβ targeted therapy, aiming to provide a reliable systematic summary for the development of novel anti-Aβ therapies. Collectively, this review comprehensively dissects the pioneering work of Aβ-targeted therapies and proposed perspective insight into AD-modified therapies.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yun Liu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Shirong Ruan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yixuan Hu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
12
|
Jucker M, Walker LC. Alzheimer's disease: From immunotherapy to immunoprevention. Cell 2023; 186:4260-4270. [PMID: 37729908 PMCID: PMC10578497 DOI: 10.1016/j.cell.2023.08.021] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Recent Aβ-immunotherapy trials have yielded the first clear evidence that removing aggregated Aβ from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Rodriguez-Lopez A, Torres-Paniagua AM, Acero G, Díaz G, Gevorkian G. Increased TSPO expression, pyroglutamate-modified amyloid beta (AβN3(pE)) accumulation and transient clustering of microglia in the thalamus of Tg-SwDI mice. J Neuroimmunol 2023; 382:578150. [PMID: 37467699 DOI: 10.1016/j.jneuroim.2023.578150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aβ in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AβN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Alicia M Torres-Paniagua
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
14
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
15
|
Tan Z, Garduño BM, Aburto PF, Chen L, Ha N, Cogram P, Holmes TC, Xu X. Cognitively impaired aged Octodon degus recapitulate major neuropathological features of sporadic Alzheimer's disease. Acta Neuropathol Commun 2022; 10:182. [PMID: 36529803 PMCID: PMC9761982 DOI: 10.1186/s40478-022-01481-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The long-lived Chilean rodent (Octodon degus) has been reported to show spontaneous age-dependent neuropathology and cognitive impairments similar to those observed in human AD. However, the handful of published papers on degus of differing genetic backgrounds yield inconsistent findings about sporadic AD-like pathological features, with notably differing results between lab in-bred degus versus outbred degus. This motivates more extensive characterization of spontaneously occurring AD-like pathology and behavior in degus. In the present study, we show AD-like neuropathological markers in the form of amyloid deposits and tau abnormalities in a cognitively impaired subset of aged outbred degus. Compared to the aged degus that show normal burrowing behavior, the age-matched degus with burrowing behavior deficits correlatively exhibit detectable human AD-like Aβ deposits and tau neuropathology, along with neuroinflammatory markers that include enhanced microglial activation and higher numbers of reactive astrocytes in the brain. This subset of cognitively impaired aged degus also exhibits cerebral amyloid angiopathy and tauopathy. We find robust neurodegenerative features in behaviorally deficient aged degus, including hippocampal neuronal loss, altered parvalbumin and perineuronal net staining in the cortex, and increased c-Fos neuronal activation in the cortex that is consistent with the neural circuit hyperactivity reported in human AD patients. By focusing on the subset of aged degus that show AD-like behavioral deficits and correlative neuropathology, our findings establish outbred degus as a natural model of sporadic AD and demonstrate the potential importance of wild-type outbred genetic backgrounds for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - B Maximiliano Garduño
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Pedro Fernández Aburto
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lujia Chen
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Nicole Ha
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
16
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
17
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
18
|
Wakeman DR, Weed MR, Perez SE, Cline EN, Viola KL, Wilcox KC, Moddrelle DS, Nisbett EZ, Kurian AM, Bell AF, Pike R, Jacobson PB, Klein WL, Mufson EJ, Lawrence MS, Elsworth JD. Intrathecal amyloid-beta oligomer administration increases tau phosphorylation in the medial temporal lobe in the African green monkey: A nonhuman primate model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12800. [PMID: 35156715 PMCID: PMC10902791 DOI: 10.1111/nan.12800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
AIMS An obstacle to developing new treatment strategies for Alzheimer's disease (AD) has been the inadequate translation of findings in current AD transgenic rodent models to the prediction of clinical outcomes. By contrast, nonhuman primates (NHPs) share a close neurobiology with humans in virtually all aspects relevant to developing a translational AD model. The present investigation used African green monkeys (AGMs) to refine an inducible NHP model of AD based on the administration of amyloid-beta oligomers (AβOs), a key upstream initiator of AD pathology. METHODS AβOs or vehicle were repeatedly delivered over 4 weeks to age-matched young adult AGMs by intracerebroventricular (ICV) or intrathecal (IT) injections. Induction of AD-like pathology was assessed in subregions of the medial temporal lobe (MTL) by quantitative immunohistochemistry (IHC) using the AT8 antibody to detect hyperphosphorylated tau. Hippocampal volume was measured by magnetic resonance imaging (MRI) scans prior to, and after, intrathecal injections. RESULTS IT administration of AβOs in young adult AGMs revealed an elevation of tau phosphorylation in the MTL cortical memory circuit compared with controls. The largest increases were detected in the entorhinal cortex that persisted for at least 12 weeks after dosing. MRI scans showed a reduction in hippocampal volume following AβO injections. CONCLUSIONS Repeated IT delivery of AβOs in young adult AGMs led to an accelerated AD-like neuropathology in MTL, similar to human AD, supporting the value of this translational model to de-risk the clinical trial of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Sylvia E Perez
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika N Cline
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kyle C Wilcox
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - David S Moddrelle
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ernell Z Nisbett
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - Amanda F Bell
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ricaldo Pike
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - William L Klein
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Elliott J Mufson
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
19
|
Russ H, Mazzanti M, Parsons C, Riemann K, Gebauer A, Rammes G. The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23105794. [PMID: 35628602 PMCID: PMC9144469 DOI: 10.3390/ijms23105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022] Open
Abstract
Soluble amyloid β (Aβ) oligomers have been shown to be highly toxic to neurons and are considered to be a major cause of the neurodegeneration underlying Alzheimer’s disease (AD). That makes soluble Aβ oligomers a promising drug target. In addition to eliminating these toxic species from the patients’ brain with antibody-based drugs, a new class of drugs is emerging, namely Aβ aggregation inhibitors or modulators, which aim to stop the formation of toxic Aβ oligomers at the source. Here, pharmacological data of the novel Aβ aggregation modulator GAL-201 are presented. This small molecule (288.34 g/mol) exhibits high binding affinity to misfolded Aβ1-42 monomers (KD = 2.5 ± 0.6 nM). Pharmacokinetic studies in rats using brain microdialysis are supportive of its oral bioavailability. The Aβ oligomer detoxifying potential of GAL-201 has been demonstrated by means of single cell recordings in isolated hippocampal neurons (perforated patch experiments) as well as in vitro and in vivo extracellular monitoring of long-term potentiation (LTP, in rat transverse hippocampal slices), a cellular correlate for synaptic plasticity. Upon preincubation, GAL-201 efficiently prevented the detrimental effect on LTP mediated by Aβ1-42 oligomers. Furthermore, the potential to completely reverse an already established neurotoxic process could also be demonstrated. Of particular note in this context is the self-propagating detoxification potential of GAL-201, leading to a neutralization of Aβ oligomer toxicity even if GAL-201 has been stepwise removed from the medium (serial dilution), likely due to prion-like conformational changes in Aβ1-42 monomer aggregates (trigger effect). The authors conclude that the data presented strongly support the further development of GAL-201 as a novel, orally available AD treatment with potentially superior clinical profile.
Collapse
Affiliation(s)
- Hermann Russ
- Galimedix Therapeutics Inc., 2704 Calvend Lane, Kensington, MD 20895, USA; (C.P.); (A.G.)
- Correspondence: ; Tel.: +41-79-876-3519
| | - Michele Mazzanti
- Laboratory of Cellular and Molecular Physiology, Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy;
| | - Chris Parsons
- Galimedix Therapeutics Inc., 2704 Calvend Lane, Kensington, MD 20895, USA; (C.P.); (A.G.)
| | - Katrin Riemann
- Department of Anaesthesiology and Intensive Care Medicine, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany; (K.R.); (G.R.)
| | - Alexander Gebauer
- Galimedix Therapeutics Inc., 2704 Calvend Lane, Kensington, MD 20895, USA; (C.P.); (A.G.)
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany; (K.R.); (G.R.)
| |
Collapse
|
20
|
Grimmer T. [Therapy Developments in Alzheimer's Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:352-360. [PMID: 35588740 DOI: 10.1055/a-1802-4837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of new therapies to treat Alzheimer's disease is a focus of global drug discovery. Research is being conducted into more potent therapies for symptomatic treatment, particularly for behavioral disturbances, but also into drugs that intervene in the pathophysiology of the disease, with the aim of halting or at least slowing the progression of the disease. To this end, the focus of identifying people with Alzheimer's disease is shifting to stages of pre-dementia such as that of Mild Cognitive Impairment (MCI), almost synonymous with prodromal AD, or even to asymptomatic stages. Currently, passive immunization using monoclonal antibodies against Aβ42 has shown the most encouraging results. However, it has not been possible to demonstrate statistically significant differences on the primary target parameters in multiple completed pivotal trials. The anti-amyloid antibody aducanumab received conditional preliminary approval in the U.S. based on amyloid reduction; approval for its use in Europe is an ongoing process. Current pharmacological treatments of Alzheimer's disease offer limited symptomatic benefit. No drugs to delay progression of the disease is yet on the market in Germany. Therefore, it is recommended that patients, especially those in pre-dementia stages or at the onset of Alzheimer's disease, be encouraged to participate in clinical trials in order to help develop new drugs that are more effective in the treatment of this disease and that can then benefit many more patients in the future.
Collapse
Affiliation(s)
- Timo Grimmer
- Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| |
Collapse
|
21
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Sharma A, Swetha R, Bajad NG, Ganeshpurkar A, Singh R, Kumar A, Singh SK. Cathepsin B - A Neuronal Death Mediator in Alzheimer’s Disease Leads to Neurodegeneration. Mini Rev Med Chem 2022; 22:2012-2023. [DOI: 10.2174/1389557522666220214095859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aβ amyloid in the AD brain by acting as the β-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aβ amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aβ, which is a truncated and highly neurotoxic form of Aβ. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aβ inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
23
|
Pyroglutamate Aβ cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022; 27:1880-1885. [PMID: 34880449 PMCID: PMC9126800 DOI: 10.1038/s41380-021-01409-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.
Collapse
|
24
|
Pivtoraiko VN, Racic T, Abrahamson EE, Villemagne VL, Handen BL, Lott IT, Head E, Ikonomovic MD. Postmortem Neocortical 3H-PiB Binding and Levels of Unmodified and Pyroglutamate Aβ in Down Syndrome and Sporadic Alzheimer's Disease. Front Aging Neurosci 2021; 13:728739. [PMID: 34489686 PMCID: PMC8416541 DOI: 10.3389/fnagi.2021.728739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Individuals with Down syndrome (DS) have a genetic predisposition for amyloid-β (Aβ) overproduction and earlier onset of Aβ deposits compared to patients with sporadic late-onset Alzheimer’s disease (AD). Positron emission tomography (PET) with Pittsburgh Compound-B (PiB) detects fibrillar Aβ pathology in living people with DS and AD, but its relationship with heterogeneous Aβ forms aggregated within amyloid deposits is not well understood. We performed quantitative in vitro3H-PiB binding assays and enzyme-linked immunosorbent assays of fibrillar (insoluble) unmodified Aβ40 and Aβ42 forms and N-terminus truncated and pyroglutamate-modified AβNpE3-40 and AβNpE3-42 forms in postmortem frontal cortex and precuneus samples from 18 DS cases aged 43–63 years and 17 late-onset AD cases aged 62–99 years. Both diagnostic groups had frequent neocortical neuritic plaques, while the DS group had more severe vascular amyloid pathology (cerebral amyloid angiopathy, CAA). Compared to the AD group, the DS group had higher levels of Aβ40 and AβNpE3-40, while the two groups did not differ by Aβ42 and AβNpE3-42 levels. This resulted in lower ratios of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 in the DS group compared to the AD group. Correlations of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 ratios with CAA severity were strong in DS cases and weak in AD cases. Pyroglutamate-modified Aβ levels were lower than unmodified Aβ levels in both diagnostic groups, but within group proportions of both pyroglutamate-modified Aβ forms relative to both unmodified Aβ forms were lower in the DS group but not in the AD group. The two diagnostic groups did not differ by 3H-PiB binding levels. These results demonstrate that compared to late-onset AD cases, adult DS individuals with similar severity of neocortical neuritic plaques and greater CAA pathology have a preponderance of both pyroglutamate-modified AβNpE3-40 and unmodified Aβ40 forms. Despite the distinct molecular profile of Aβ forms and greater vascular amyloidosis in DS cases, cortical 3H-PiB binding does not distinguish between diagnostic groups that are at an advanced level of amyloid plaque pathology. This underscores the need for the development of CAA-selective PET radiopharmaceuticals to detect and track the progression of cerebral vascular amyloid deposits in relation to Aβ plaques in individuals with DS.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tamara Racic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Chandran R, Dileep KV. Exploring the binding mode of PQ912 against secretory glutaminyl cyclase through systematic exploitation of conformational ensembles. Chem Biol Drug Des 2021; 98:850-856. [PMID: 34423556 DOI: 10.1111/cbdd.13940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022]
Abstract
Secretory glutaminyl cyclase (sQC) plays an important role in the formation of the pyroglutamate-amyloid beta (pGlu-Aβ) peptide, one of the most abundant variants of Aβ found in the Alzheimer's disease (AD) brain. This post-translationally modified pGlu-Aβ possesses high toxicity and rapid aggregation propensity when compared to the wild-type Aβ (WT-Aβ). Since pGlu-Aβ acts as seed for WT-Aβ, the inhibition of sQC limits the formation of pGlu-Aβ and reduces the overall load of Aβ plaques in the AD brain. PQ912 is a potent inhibitor of sQC and has been enrolled in phase 2b clinical trial of the AD drug development pipeline; however, the binding mode of PQ912 against sQC is not elucidated yet. Understanding the binding mode of PQ912 is important as it helps in the discovery against AD where sQC as a target. To explore the binding mode of PQ912, we employed ensemble docking towards 9 sQC structures that differ either in active site geometry or in the bound ligands. Further pose clustering and binding energy calculations yielded three possible binding modes for PQ912. Finally, all atom molecular dynamics simulations determined the most energetically favorable binding mode for PQ912, in the active site of sQC, which is similar to that of LSB-09, a recently reported sQC inhibitor containing benzimidazole-6-carboxamide moiety.
Collapse
Affiliation(s)
- Remya Chandran
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| |
Collapse
|
26
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Camargo LC, Schöneck M, Sangarapillai N, Honold D, Shah NJ, Langen KJ, Willbold D, Kutzsche J, Schemmert S, Willuweit A. PEAβ Triggers Cognitive Decline and Amyloid Burden in a Novel Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137062. [PMID: 34209113 PMCID: PMC8267711 DOI: 10.3390/ijms22137062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Understanding the physiopathology of Alzheimer’s disease (AD) has improved substantially based on studies of mouse models mimicking at least one aspect of the disease. Many transgenic lines have been established, leading to amyloidosis but lacking neurodegeneration. The aim of the current study was to generate a novel mouse model that develops neuritic plaques containing the aggressive pyroglutamate modified amyloid-β (pEAβ) species in the brain. The TAPS line was developed by intercrossing of the pEAβ-producing TBA2.1 mice with the plaque-developing line APPswe/PS1ΔE9. The phenotype of the new mouse line was characterized using immunostaining, and different cognitive and general behavioral tests. In comparison to the parental lines, TAPS animals developed an earlier onset of pathology and increased plaque load, including striatal pEAβ-positive neuritic plaques, and enhanced neuroinflammation. In addition to abnormalities in general behavior, locomotion, and exploratory behavior, TAPS mice displayed cognitive deficits in a variety of tests that were most pronounced in the fear conditioning paradigm and in spatial learning in comparison to the parental lines. In conclusion, the combination of a pEAβ- and a plaque-developing mouse model led to an accelerated amyloid pathology and cognitive decline in TAPS mice, qualifying this line as a novel amyloidosis model for future studies.
Collapse
Affiliation(s)
- Luana Cristina Camargo
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (L.C.C.); (D.H.); (D.W.); (J.K.); (S.S.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Schöneck
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (N.S.); (N.J.S.); (K.-J.L.)
| | - Nivethini Sangarapillai
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (N.S.); (N.J.S.); (K.-J.L.)
| | - Dominik Honold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (L.C.C.); (D.H.); (D.W.); (J.K.); (S.S.)
| | - N. Jon Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (N.S.); (N.J.S.); (K.-J.L.)
- JARA-Brain-Translational Medicine, JARA Institute Molecular Neuroscience and Neuroimaging, 52062 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (N.S.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (L.C.C.); (D.H.); (D.W.); (J.K.); (S.S.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (L.C.C.); (D.H.); (D.W.); (J.K.); (S.S.)
| | - Sarah Schemmert
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (L.C.C.); (D.H.); (D.W.); (J.K.); (S.S.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (N.S.); (N.J.S.); (K.-J.L.)
- Correspondence: ; Tel.: +49-2461-6196358
| |
Collapse
|
28
|
Sun T, Shi Q, Zhang Y, Power C, Hoesch C, Antonelli S, Schroeder MK, Caldarone BJ, Taudte N, Schenk M, Hettmann T, Schilling S, McDannold NJ, Lemere CA. Focused ultrasound with anti-pGlu3 Aβ enhances efficacy in Alzheimer's disease-like mice via recruitment of peripheral immune cells. J Control Release 2021; 336:443-456. [PMID: 34186148 DOI: 10.1016/j.jconrel.2021.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Pyroglutamate-3 amyloid-β (pGlu3 Aβ) is an N-terminally modified, pathogenic form of amyloid-β that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aβ monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aβ removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aβ mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.
Collapse
Affiliation(s)
- Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Yongzhi Zhang
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Chanikarn Power
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Camilla Hoesch
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Shawna Antonelli
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Maren K Schroeder
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Barbara J Caldarone
- Harvard Medical School Mouse Behavior Core, Boston, MA, United States of America
| | - Nadine Taudte
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | | | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany; Vivoryon Therapeutics AG, Halle (Saale), Germany; Anhalt University of Applied Sciences, Köthen, Germany
| | - Nathan J McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
29
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Lacas-Gervais S, Roques BP, Chami M, Checler F. Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer's disease (AD) mouse model and is increased at early stage in sporadic AD brain. Acta Neuropathol 2021; 141:823-839. [PMID: 33881611 PMCID: PMC8113186 DOI: 10.1007/s00401-021-02308-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aβ peptide species harboring a pyroglutamate at position three pE3-Aβ. Several studies indicated that pE3-Aβ is toxic, prone to aggregation and serves as a seed of Aβ aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aβ N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aβ and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aβ1-40 to yield Aβ2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aβ-precursor protein (βAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aβ- and Aβ1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aβ-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aβ N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.
Collapse
Affiliation(s)
- Audrey Valverde
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Julie Dunys
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Thomas Lorivel
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Delphine Debayle
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Anne-Sophie Gay
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | | | - Bernard P Roques
- Faculté de Pharmacie, Université Paris-Descartes, 75006, Paris, France
| | - Mounia Chami
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France.
| |
Collapse
|
30
|
Janssens J, Hermans B, Vandermeeren M, Barale-Thomas E, Borgers M, Willems R, Meulders G, Wintmolders C, Van den Bulck D, Bottelbergs A, Ver Donck L, Larsen P, Moechars D, Edwards W, Mercken M, Van Broeck B. Passive immunotherapy with a novel antibody against 3pE-modified Aβ demonstrates potential for enhanced efficacy and favorable safety in combination with BACE inhibitor treatment in plaque-depositing mice. Neurobiol Dis 2021; 154:105365. [PMID: 33848635 DOI: 10.1016/j.nbd.2021.105365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
The imbalance between production and clearance of amyloid β (Aβ) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aβ is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aβ concentrations include prevention of de novo production of Aβ through inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aβ deposits via passive Aβ immunotherapy. We have developed a novel, high affinity antibody against Aβ peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aβ species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.
Collapse
Affiliation(s)
- Jonathan Janssens
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Hermans
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Erio Barale-Thomas
- Non-Clinical Science, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Roland Willems
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Greet Meulders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dries Van den Bulck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Luc Ver Donck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Larsen
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dieder Moechars
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Marc Mercken
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bianca Van Broeck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
31
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
32
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Kumar S, Kapadia A, Theil S, Joshi P, Riffel F, Heneka MT, Walter J. Novel Phosphorylation-State Specific Antibodies Reveal Differential Deposition of Ser26 Phosphorylated Aβ Species in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2021; 13:619639. [PMID: 33519377 PMCID: PMC7844098 DOI: 10.3389/fnmol.2020.619639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer's disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD. We recently showed that Aβ phosphorylated at serine residue 26 (pSer26Aβ) has peculiar characteristics in aggregation, deposition, and neurotoxicity. In the current study, we developed and thoroughly validated novel monoclonal and polyclonal antibodies that recognize Aβ depending on the phosphorylation-state of Ser26. Our results demonstrate that selected phosphorylation state-specific antibodies were able to recognize Ser26 phosphorylated and non-phosphorylated Aβ with high specificity in enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB) assays. Furthermore, immunofluorescence analyses with these antibodies demonstrated the occurrence of pSer26Aβ in transgenic mouse brains that show differential deposition as compared to non-phosphorylated Aβ (npAβ) or other modified Aβ species. Notably, pSer26Aβ species were faintly detected in extracellular Aβ plaques but most prominently found intraneuronally and in cerebral blood vessels. In conclusion, we developed new antibodies to specifically differentiate Aβ peptides depending on the phosphorylation state of Ser26, which are applicable in ELISA, WB, and immunofluorescence staining of mouse brain tissues. These site- and phosphorylation state-specific Aβ antibodies represent novel tools to examine phosphorylated Aβ species to further understand and dissect the complexity in the age-related and spatio-temporal deposition of different Aβ variants in transgenic mouse models and human AD brains.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Akshay Kapadia
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pranav Joshi
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Riffel
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases and Geropsychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
34
|
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nat Neurosci 2020; 23:1580-1588. [PMID: 33199898 DOI: 10.1038/s41593-020-00737-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
Amyloid-β (Aβ) deposits are a relatively late consequence of Aβ aggregation in Alzheimer's disease. When pathogenic Aβ seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aβ seeds before Aβ deposition becomes detectable in Aβ precursor protein-transgenic mice. We also characterized the different antibody recognition profiles using immunoprecipitation of size-fractionated, native, mouse and human brain-derived Aβ assemblies. At least one antibody, aducanumab, after acute administration at the pre-amyloid stage, led to a significant reduction of Aβ deposition and downstream pathologies 6 months later. This demonstrates that therapeutically targetable pathogenic Aβ seeds already exist during the lag phase of protein aggregation in the brain. Thus, the preclinical phase of Alzheimer's disease-currently defined as Aβ deposition without clinical symptoms-may be a relatively late manifestation of a much earlier pathogenic seed formation and propagation that currently escapes detection in vivo.
Collapse
|
35
|
Gnoth K, Piechotta A, Kleinschmidt M, Konrath S, Schenk M, Taudte N, Ramsbeck D, Rieckmann V, Geissler S, Eichentopf R, Barendrecht S, Hartlage-Rübsamen M, Demuth HU, Roßner S, Cynis H, Rahfeld JU, Schilling S. Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer's disease-like pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:149. [PMID: 33189132 PMCID: PMC7666770 DOI: 10.1186/s13195-020-00719-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022]
Abstract
Background Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. Methods This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. Results Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. Conclusions The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy. Supplementary information The online version contains supplementary material available at 10.1186/s13195-020-00719-x.
Collapse
Affiliation(s)
- Kathrin Gnoth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Anke Piechotta
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Sandra Konrath
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Schenk
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Nadine Taudte
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: PerioTrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Vera Rieckmann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Rico Eichentopf
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna, Germany
| | - Susan Barendrecht
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | | | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Steffen Roßner
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Stephan Schilling
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| |
Collapse
|
36
|
Kumar S, Lemere CA, Walter J. Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer's-like mouse models. Acta Neuropathol Commun 2020; 8:118. [PMID: 32727580 PMCID: PMC7388542 DOI: 10.1186/s40478-020-00959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
The deposition of neurotoxic amyloid-β (Aβ) peptides in extracellular plaques in the brain parenchyma is one of the most prominent neuropathological features of Alzheimer's disease (AD), and considered to be closely related to the pathogenesis of this disease. A number of recent studies demonstrate the heterogeneity in the composition of Aβ deposits in AD brains, due to the occurrence of elongated, truncated and post-translationally modified Aβ peptides that have peculiar characteristics in aggregation behavior and biostability. Importantly, the detection of modified Aβ species has been explored to characterize distinct stages of AD, with phosphorylated Aβ being present in the clinical phase of AD. People with Down syndrome (DS) develop AD pathology by 40 years of age likely due to the overproduction of Aβ caused by the additional copy of the gene encoding the amyloid precursor protein on chromosome 21. In the current study, we analysed the deposition of phosphorylated and non-phosphorylated Aβ species in human DS, AD, and control brains. In addition, deposition of these Aβ species was analysed in brains of a series of established transgenic AD mouse models using phosphorylation-state specific Aβ antibodies. Significant amounts of Aβ phosphorylated at serine residue 8 (pSer8Aβ) and unmodified Aβ were detected in the brains of DS and AD cases. The brains of different transgenic mouse models with either only human mutant amyloid precursor protein (APP), or combinations of human mutant APP, Presenilin (PS), and tau transgenes showed distinct age-dependent and spatiotemporal deposition of pSer8Aβ in extracellular plaques and within the vasculature. Together, these results demonstrate the deposition of phosphorylated Aβ species in DS brains, further supporting the similarity of Aβ deposition in AD and DS. Thus, the detection of phosphorylated and other modified Aβ species could contribute to the understanding and dissection of the complexity in the age-related and spatiotemporal deposition of Aβ variants in AD and DS as well as in distinct mouse models.
Collapse
|
37
|
Dinkel F, Trujillo-Rodriguez D, Villegas A, Streffer J, Mercken M, Lopera F, Glatzel M, Sepulveda-Falla D. Decreased Deposition of Beta-Amyloid 1-38 and Increased Deposition of Beta-Amyloid 1-42 in Brain Tissue of Presenilin-1 E280A Familial Alzheimer's Disease Patients. Front Aging Neurosci 2020; 12:220. [PMID: 32848702 PMCID: PMC7399638 DOI: 10.3389/fnagi.2020.00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
Familial Alzheimer's Disease (FAD) caused by Presenilin-1 (PS1) mutations is characterized by early onset, cognitive impairment, and dementia. Impaired gamma secretase function favors production of longer beta-amyloid species in PS1 FAD. The PS1 E280A mutation is the largest FAD kindred under study. Here, we studied beta-amyloid deposits in PS1 E280A FAD brains in comparison to sporadic Alzheimer's disease (SAD). We analyzed cortices and cerebellum from 10 FAD and 10 SAD brains using immunohistochemistry to determine total beta-amyloid, hyperphosphorylated tau (pTau), and specific beta-amyloid peptides 1-38, 1-40, 1-42, and 1-43. Additionally, we studied beta-amyloid subspecies by ELISA, and vessel pathology was detected with beta-amyloid 1-42 and truncated pyroglutamylated beta-amyloid antibodies. There were no significant differences in total beta-amyloid signal between SAD and FAD. Beta-amyloid 1-38 and 1-43 loads were increased, and 1-42 loads were decreased in frontal cortices of SAD when compared to FAD. Beta-amyloid species assessment by ELISA resembled our findings by immunohistochemical analysis. Differences in beta-amyloid 1-38 and 1-42 levels between SAD and FAD were evidenced by using beta-amyloid length-specific antibodies, reflecting a gamma secretase-dependent shift in beta-amyloid processing in FAD cases. The use of beta-amyloid length-specific antibodies for postmortem assessment of beta-amyloid pathology can differentiate between SAD and PS1 FAD cases and it can be useful for identification of SAD cases potentially affected with gamma secretase dysfunction.
Collapse
Affiliation(s)
- Felix Dinkel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf - UKE, Hamburg, Germany
| | | | - Andres Villegas
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Johannes Streffer
- Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Marc Mercken
- Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf - UKE, Hamburg, Germany
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf - UKE, Hamburg, Germany
| |
Collapse
|
38
|
Neddens J, Daurer M, Flunkert S, Beutl K, Loeffler T, Walker L, Attems J, Hutter-Paier B. Correlation of pyroglutamate amyloid β and ptau Ser202/Thr205 levels in Alzheimer's disease and related murine models. PLoS One 2020; 15:e0235543. [PMID: 32645028 PMCID: PMC7347153 DOI: 10.1371/journal.pone.0235543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Senile plaques frequently contain Aβ-pE(3), a N-terminally truncated Aβ species that is more closely linked to AD compared to other Aβ species. Tau protein is highly phosphorylated at several residues in AD, and specifically phosphorylation at Ser202/Thr205 is known to be increased in AD. Several studies suggest that formation of plaques and tau phosphorylation might be linked to each other. To evaluate if Aβ-pE(3) and ptau Ser202/Thr205 levels correlate in human and transgenic AD mouse models, we analyzed human cortical and hippocampal brain tissue of different Braak stages as well as murine brain tissue of two transgenic mouse models for levels of Aβ-pE(3) and ptau Ser202/Thr205 and correlated the data. Our results show that Aβ-pE(3) formation is increased at early Braak stages while ptau Ser202/Thr205 mostly increases at later stages. Further analyses revealed strongest correlations between the two pathologies in the temporal, frontal, cingulate, and occipital cortex, however correlation in the hippocampus was weaker. Evaluation of murine transgenic brain tissue demonstrated a slow but steady increase of Aβ-pE(3) from 6 to 12 months of age in the cortex and hippocampus of APPSL mice, and a very early and strong Aβ-pE(3) increase in 5xFAD mice. ptau Ser202/Thr205 levels increased at the age of 9 months in APPSL mice and at 6 months in 5xFAD mice. Our results show that Aβ-pE(3) and ptau Ser202/Thr205 levels strongly correlate in human as well as murine tissues, suggesting that tau phosphorylation might be amplified by Aβ-pE(3).
Collapse
Affiliation(s)
| | | | | | - Kerstin Beutl
- QPS Austria GmbH, Grambach, Austria
- FH Joanneum Graz, Graz, Austria
| | | | - Lauren Walker
- Translational and Clinical Research Institute and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Johannes Attems
- Translational and Clinical Research Institute and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
39
|
Wang P, Lin K, Liu H, Andreasson U, Blennow K, Zetterberg H, Yang S. Plasma pyroglutamate-modified amyloid beta differentiates amyloid pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12029. [PMID: 32363230 PMCID: PMC7191392 DOI: 10.1002/dad2.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Pyroglutamate-modified amyloid β (AβpE3) could be a biomarker for Aβ plaque pathology in the brain. An ultra-high-sensitive assay is needed for detecting AβpE3-40. METHODS Immunomagnetic reduction was used for quantification of AβpE3-40 in plasma from 46 participants. The concentrations of AβpE3-40 of these subjects were compared with 18F-florbetapir positron emission tomography (PET) images. RESULTS AβpE3-40 concentration was 44.1 ± 28.2 fg/mL in PET- (n = 28) and 91.6 ± 54.6 fg/mL in PET+ (n = 18; P < .05). The cutoff value of AβpE3-40 for discriminating PET- from PET+ was 55.5 fg/mL, resulting in a sensitivity of 83.3%, a specificity of 71.4%. The concentration of AβpE3-40 showed a moderate correlation (r = 0.437) with PET standardized uptake value ratio. DISCUSSION We did not enroll pre-clinical AD subject with normal cognition but Aβ PET+. It would be an important issue to explore the feasibility of using AβpE3-40 for screening pre-clinical subjects. CONCLUSION These results reveal the feasibility of detecting Aβ pathology using quantification of a plaque-derived Aβ molecule in plasma.
Collapse
Affiliation(s)
- Pei‐Ning Wang
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologySchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Brain Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
| | - Kun‐Ju Lin
- Department of Nuclear Medicine and Molecular Imaging CenterLinkou Chang Gung Memorial HospitalTao‐YuanTaiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological SciencesCollege of Medicine, Chang Gung UniversityTao‐YuanTaiwan
| | | | - Ulf Andreasson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Shieh‐Yueh Yang
- MagQu Co., Ltd.New Taipei CityTaiwan
- MagQu LLCSurpriseArizonaUSA
| |
Collapse
|
40
|
Acero G, Garay C, Venegas D, Ortega E, Gevorkian G. Novel monoclonal antibody 3B8 specifically recognizes pyroglutamate-modified amyloid β 3-42 peptide in brain of AD patients and 3xTg-AD transgenic mice. Neurosci Lett 2020; 724:134876. [PMID: 32114116 DOI: 10.1016/j.neulet.2020.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
In addition to the full-length beta-amyloid peptides (Aβ 1-40/42), several Aβ variants, truncated at their N- or C-termini and bearing different post-translational modifications, have been detected in the brain of Alzheimer´s disease (AD) patients. AβN3(pE), an Aβ peptide bearing an amino-terminal pyroglutamate at position 3, is a significant constituent of intracellular, extracellular and vascular Aβ deposits in brain tissue from individuals with AD and Down syndrome. Pioneering immunotherapy studies have primarily focused on the full-length Aβ peptide, disregarding the presence of N-truncated/modified species. However, in recent years, increasing attention has been directed towards AβN3(pE), in both pre-clinical studies and clinical trials. In the present study, we generated and characterized an anti-AβN3(pE) mouse monoclonal antibody (3B8) that recognizes amyloid aggregates in brain tissue from AD patients and in 3xTg-AD transgenic mice. To identify the epitope recognized by 3B8, a library of random heptapeptides fused to the minor coat protein of M13 phage was screened. Results from screening, along with those from ELISA assays against distinct Aβ fragments, suggest recognition of two conformational epitopes present in AβN3(pE) and Aβ 3-42, regardless of the glutamate-pyroglutamate modification. The novel 3B8 antibody may be useful in future therapeutic and diagnostic applications for AD.
Collapse
Affiliation(s)
- Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Claudia Garay
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - David Venegas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico.
| |
Collapse
|
41
|
Hettmann T, Gillies SD, Kleinschmidt M, Piechotta A, Makioka K, Lemere CA, Schilling S, Rahfeld JU, Lues I. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer's disease with reduced complement activation. Sci Rep 2020; 10:3294. [PMID: 32094456 PMCID: PMC7040040 DOI: 10.1038/s41598-020-60319-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/08/2020] [Indexed: 11/09/2022] Open
Abstract
In clinical trials with early Alzheimer's patients, administration of anti-amyloid antibodies reduced amyloid deposits, suggesting that immunotherapies may be promising disease-modifying interventions against Alzheimer's disease (AD). Specific forms of amyloid beta (Aβ) peptides, for example post-translationally modified Aβ peptides with a pyroglutamate at the N-terminus (pGlu3, pE3), are attractive antibody targets, due to pGlu3-Aβ's neo-epitope character and its propensity to form neurotoxic oligomeric aggregates. We have generated a novel anti-pGlu3-Aβ antibody, PBD-C06, which is based on a murine precursor antibody that binds with high specificity to pGlu3-Aβ monomers, oligomers and fibrils, including mixed aggregates of unmodified Aβ and pGlu3-Aβ peptides. PBD-C06 was generated by first grafting the murine antigen binding sequences onto suitable human variable light and heavy chains. Subsequently, the humanized antibody was de-immunized and site-specific mutations were introduced to restore original target binding, to eliminate complement activation and to improve protein stability. PBD-C06 binds with the same specificity and avidity as its murine precursor antibody and elimination of C1q binding did not compromise Fcγ-receptor binding or in vitro phagocytosis. Thus, PBD-C06 was specifically designed to target neurotoxic aggregates and to avoid complement-mediated inflammatory responses, in order to lower the risk for vasogenic edemas in the clinic.
Collapse
Affiliation(s)
- Thore Hettmann
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Stephen D Gillies
- Provenance Biopharmaceuticals, 70 Bedford Rd, Carlisle, MA, 01741, USA
| | - Martin Kleinschmidt
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anke Piechotta
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Koki Makioka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Stephan Schilling
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | - Inge Lues
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
42
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|
43
|
Crehan H, Liu B, Kleinschmidt M, Rahfeld JU, Le KX, Caldarone BJ, Frost JL, Hettmann T, Hutter-Paier B, O'Nuallain B, Park MA, DiCarli MF, Lues I, Schilling S, Lemere CA. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer's-like mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:12. [PMID: 31931873 PMCID: PMC6958628 DOI: 10.1186/s13195-019-0579-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pyroglutamate-3 Aβ (pGlu-3 Aβ) is an N-terminally truncated and post-translationally modified Aβ species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aβ antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aβ mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aβ mAb (3A1 IgG1) for their ability to clear Aβ and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aβ in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aβ. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aβ mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.
Collapse
Affiliation(s)
- Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Bin Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Martin Kleinschmidt
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA, USA.,Mouse Behavior Core, Harvard Medical School, Boston, MA, USA
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | | | | | - Brian O'Nuallain
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Marcelo F DiCarli
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Inge Lues
- Vivoryon Therapeutics AG, Halle (Saale), Germany
| | - Stephan Schilling
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Abstract
A diverse range of N-terminally truncated and modified forms of amyloid-β (Aβ) oligomers have been discovered in Alzheimer’s disease brains, including the pyroglutamate-Aβ (AβpE3). AβpE3 species are shown to be more neurotoxic when compared with the full-length Aβ peptide. Findings visibly suggest that glutaminyl cyclase (QC) catalyzed the generation of cerebral AβpE3, and therapeutic effects are achieved by reducing its activity. In recent years, efforts to effectively develop QC inhibitors have been pursued worldwide. The inhibitory activity of current QC inhibitors is mainly triggered by zinc-binding groups that coordinate Zn2+ ion in the active site and other common features. Herein, we summarized the current state of discovery and evolution of QC inhibitors as a potential Alzheimer’s disease-modifying strategy.
Collapse
|
45
|
Abrahamson EE, Head E, Lott IT, Handen BL, Mufson EJ, Christian BT, Klunk WE, Ikonomovic MD. Neuropathological correlates of amyloid PET imaging in Down syndrome. Dev Neurobiol 2019; 79:750-766. [PMID: 31379087 DOI: 10.1002/dneu.22713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) results in an overproduction of amyloid-β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12-30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre-clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid-based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, California
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, California
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Bradley T Christian
- Departments of Medical Physics and Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Kumar S, Frost JL, Cotman CW, Head E, Palmour R, Lemere CA, Walter J. Deposition of phosphorylated amyloid-β in brains of aged nonhuman primates and canines. Brain Pathol 2019; 28:427-430. [PMID: 29740941 DOI: 10.1111/bpa.12573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Elizabeth Head
- Sanders Brown Center on Aging, Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Roberta Palmour
- St. Kitts and Nevis, Eastern Caribbean, The Behavioral Science Foundation.,McGill University School of Medicine, Montreal, Quebec, Canada
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
47
|
Protective Effects of 1-Methylnicotinamide on Aβ1–42-Induced Cognitive Deficits, Neuroinflammation and Apoptosis in Mice. J Neuroimmune Pharmacol 2019; 14:401-412. [DOI: 10.1007/s11481-018-09830-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023]
|
48
|
Schemmert S, Schartmann E, Honold D, Zafiu C, Ziehm T, Langen KJ, Shah NJ, Kutzsche J, Willuweit A, Willbold D. Deceleration of the neurodegenerative phenotype in pyroglutamate-Aβ accumulating transgenic mice by oral treatment with the Aβ oligomer eliminating compound RD2. Neurobiol Dis 2018; 124:36-45. [PMID: 30391539 DOI: 10.1016/j.nbd.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease, a multifactorial incurable disorder, is mainly characterised by progressive neurodegeneration, extracellular accumulation of amyloid-β protein (Aβ), and intracellular aggregation of hyperphosphorylated tau protein. During the last years, Aβ oligomers have been claimed to be the disease causing agent. Consequently, development of compounds that are able to disrupt already existing Aβ oligomers is highly desirable. We developed d-enantiomeric peptides, consisting solely of d-enantiomeric amino acid residues, for the direct and specific elimination of toxic Aβ oligomers. The drug candidate RD2 did show high oligomer elimination efficacy in vitro and the in vivo efficacy of RD2 was demonstrated in treatment studies by enhanced cognition in transgenic mouse models of amyloidosis. Here, we report on the in vitro and in vivo efficacy of the compound towards pyroglutamate-Aβ, a particular aggressive Aβ species. Using the transgenic TBA2.1 mouse model, which develops pyroglutamate-Aβ(3-42) induced neurodegeneration, we are able to show that oral RD2 treatment resulted in a significant deceleration of the progression of the phenotype. The in vivo efficacy against this highly toxic Aβ species further validates RD2 as a drug candidate for the therapeutic use in humans.
Collapse
Affiliation(s)
- Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Dominik Honold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Zafiu
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany; Clinic for Nuclear Medicine, RWTH Aachen University, Aachen, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| |
Collapse
|
49
|
Rammes G, Seeser F, Mattusch K, Zhu K, Haas L, Kummer M, Heneka M, Herms J, Parsons CG. The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology 2018; 140:184-192. [PMID: 30016667 DOI: 10.1016/j.neuropharm.2018.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
Aβ1-42 is well accepted to be a primary early pathogenic agent in Alzheimer's disease (AD). However, other amyloid peptides are now gaining considerable attention as potential key participants in AD due to their proposed higher neuronal toxicity. Impairment of the glutamatergic system is also widely accepted to be associated with pathomechanisms underlying AD. There is ample evidence that Aβ1-42 affects GLUN2B subunit containing N-methyl-D-aspartate receptor function and abolishes the induction of long term potentiation (LTP). In this study we show that different β-amyloid species, 1-42 Aβ1-42 and 1-40 (Aβ1-40) as well as post-translationally modified forms such as pyroglutamate-modified amyloid-(AβpE3) and nitrated Aβ (3NTyr10-Aβ), when applied for 90 min to murine hippocampal slices, concentration-dependently prevented the development of CA1-LTP after tetanic stimulation of the Schaffer collaterals with IC50s of 2, 9, 2 and 35 nM, respectively whilst having no effect on baseline AMPA receptor mediated fEPSPs. Aβ1-43 had no effect. Interestingly, the combination of all Aβ species did not result in any synergistic or additive inhibitory effect on LTP - the calculated pooled Aβ species IC50 was 20 nM. A low concentration (10 nM) of the GLUN2B receptor antagonist Radiprodil restored LTP in the presence of Aβ1-42, 3NTyr10-Aβ, Aβ1-40, but not AβpE3. In contrast to AMPA receptor mediated fEPSPs, all different β-amyloid species tested at 50 nM supressed baseline NMDA-EPSC amplitudes. Similarly, all different Aβ species tested decreased spine density. As with LTP, Radiprodil (10 nM) reversed the synaptic toxicity of Aβ species but not that of AβpE3. These data do not support the enhanced toxic actions reported for some Aβ species such as AβpE3, nor synergistic toxicity of the combination of different Aβ species. However, whilst in our hands AβpE3-42 was actually less toxic than Aβ1-42, its effects were not reversed by Radiprodil indicating that the target receptors/subunits mediating such synaptotoxicity may differ between the different Aβ species tested.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, Munich, Germany.
| | - Franziska Seeser
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Korinna Mattusch
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Laura Haas
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Kummer
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Michael Heneka
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Chris G Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Abedini A, Derk J, Schmidt AM. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci 2018; 27:1166-1180. [PMID: 29664151 PMCID: PMC6032365 DOI: 10.1002/pro.3425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Proteotoxicity plays a key role in many devastating human disorders, including Alzheimer's, Huntington's and Parkinson's diseases; type 2 diabetes; systemic amyloidosis; and cardiac dysfunction, to name a few. The cellular mechanisms of proteotoxicity in these disorders have been the focus of considerable research, but their role in prevalent and morbid disorders, such as diabetes, is less appreciated. There is a large body of literature on the impact of glucotoxicity and lipotoxicity on insulin-producing pancreatic β-cells, and there is increasing recognition that proteotoxicty plays a key role. Pancreatic islet amyloidosis by the hormone IAPP, the production of advanced glycation endproducts (AGE), and insulin misprocessing into cytotoxic aggregates are all sources of β-cell proteotoxicity in diabetes. AGE, produced by the reaction of reducing sugars with proteins and lipids are ligands for the receptor for AGE (RAGE), as are the toxic pre-fibrillar aggregates of IAPP produced during amyloid formation. The mechanisms of amyloid formation by IAPP in vivo or in vitro are not well understood, and the cellular mechanisms of IAPP-induced β-cell death are not fully defined. Here, we review recent findings that illuminate the factors and mechanisms involved in β-cell proteotoxicity in diabetes. Together, these new insights have far-reaching implications for the establishment of unifying mechanisms by which pathological amyloidoses imbue their injurious effects in vivo.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Julia Derk
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| |
Collapse
|