1
|
Nasr G, Ali DME, Fawzy MA, Ali FEM, Fathy M. Combined quercetin with phosphodiesterase inhibitors; sildenafil and pentoxifylline alleviated CCl 4-induced chronic hepatic fibrosis: Role of redox-sensitive pathways. Food Chem Toxicol 2025; 201:115442. [PMID: 40220882 DOI: 10.1016/j.fct.2025.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Liver fibrosis is a common pathological condition that is caused by complicated molecular and cellular processes. This study evaluated the therapeutic potential of combined quercetin (QU) with either sildenafil (Sild) or pentoxifylline (PTX) in chronic carbon tetrachloride (CCl4)-induced liver fibrosis in Wistar albino rats. Fibrosis was induced by CCl4 injections (1.5 mg/kg, i.p.) three times weekly for 10 weeks. After six weeks, rats received oral QU (50 mg/kg/day), Sild (50 mg/kg/day), or PTX (10 mg/kg twice/day) individually or in combination for the remaining four weeks. Results showed significant alterations in liver biochemical markers, histopathology, oxidative stress, inflammation, apoptosis, and hypoxic responses due to CCl4 exposure. These changes included reduced expression of Nrf-2, HO-1, and cytoglobin, alongside increased levels of NF-κB, cleaved caspase-3, TNF-α, IL-1β, and HIF-1. Notably, QU, Sild, and PTX, individually or in combination, improved these parameters. The combination of QU with Sild or PTX proved more effective than single treatments, modulating anti-oxidant (Nrf2/HO-1/cytoglobin), anti-inflammatory (NF-κB/TNF-α), and hypoxic signaling pathways (HIF-1α). In conclusion, QU combined with phosphodiesterase inhibitors shows promise as a therapy for liver fibrosis, offering enhanced protection through anti-oxidants and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | | | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Biochemistry Department, Faculty of Pharmacy, Minia National University, New Minia, Egypt
| |
Collapse
|
2
|
Mendiratta M, Mendiratta M, Sharma Y, Sahoo RK, Malhotra N, Mohanty S. Uncovering the bequeathing potential of apoptotic mesenchymal stem cells via small extracellular vesicles for its enhanced immunomodulatory and regenerative ability. Stem Cell Res Ther 2025; 16:290. [PMID: 40483470 PMCID: PMC12145648 DOI: 10.1186/s13287-025-04370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Mesenchymal Stem Cells-derived Small Extracellular Vesicles endowed with regenerative cargo from their parent cells, have emerged as a promising avenue for cell-free therapeutics in regenerative medicine. Notably, deliberate induction of apoptosis in MSCs before sEV isolation has been identified as a strategy to augment the regenerative capabilities of MSCs-sEVs. This study explores a novel approach to enhance the immunomodulatory potential of MSC-sEVs through apoptosis induction and optimal tissue source to ensure consistent and improved clinical outcomes. METHODS Apoptosis was induced in tissue-specific MSCs using Staurosporine. sEVsV and sEVsApo were isolated via ultracentrifugation. Invitro immune response was assessed via T-cell proliferation, T-regulatory cell induction & macrophage polarization assay. Mitochondrial bioenergetics was studied using MitoSOX staining and Seahorse assay in H2O2-treated HuH7 cells. These findings were validated invivo in the CCL4-induced Chronic Liver Disease model via Histopathological staining, biochemical parameters, and fibrotic, pro-inflammatory, and anti-inflammatory markers and assessed the mechanism by targeting TGF-β/SMAD pathway. RESULTS Our results demonstrate that sEVsApo exhibited significantly higher concentrations and superior immunomodulatory effects by suppressing CD3 + T-cell proliferation, promoting T-regulatory cell differentiation, and polarized macrophages towards M2-phenotype. In terms of tissue specificity, it was observed that WJ-sEVs were faring better. sEVsApo effectively reduced mitochondrial ROS & significantly improved oxidative phosphorylation. Invitro findings were corroborated in an invivo CLD model, wherein sEVsApo ameliorated fibrosis and inflammation, by inhibiting TGF-β/ SMAD2/3 pathway. CONCLUSION This study concludes that apoptosis induction can be considered as minimum manipulation strategy to enhance the immunoregulatory and regenerative potential of MSCs-sEVs, thereby expanding their implication in immune disorder.
Collapse
Affiliation(s)
- Meenakshi Mendiratta
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Yashvi Sharma
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neena Malhotra
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Li J, Li W, Wang S, Zheng H, Bao J, Wang Y, Jin H. The evaluation and molecular mechanisms of hepatotoxicity induced by trans-emodin dianthrones isolated from Polygonum multiflorum Thunb. in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119916. [PMID: 40319934 DOI: 10.1016/j.jep.2025.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine with pharmacological activities such as anti-inflammatory, anti-oxidation and anti-aging. An increasing number of reports have documented liver injury associated with PM both domestically and internationally. In our previous study, we found that dianthrones from PM showed strong hepatotoxicity in the zebrafish model and may be potential toxicity markers. However, the in vitro hepatotoxicity and molecular mechanisms of dianthrones remain to be elucidated. AIM OF THE STUDY Trans-emodin dianthrones is a dianthrones compound isolated from PM. In this study, we focused on the hepatotoxicity and molecular mechanism of the trans-emodin dianthrones. MATERIALS AND METHODS HepG2 cells were used to evaluate hepatotoxicity and study the molecular mechanism of trans-emodin dianthrones in vitro. After administration of trans-emodin dianthrones, CCK-8 was used to detect cell viability, biochemical method was used to detect hepatotoxicity and antioxidant levels, reactive oxygen species (ROS) content and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, the expression levels of JNK/Bax signaling pathway, PI3K/AKT/mTOR signaling pathway and apoptosis-related proteins were detected by Western blotting. Redox and mitochondria-related gene expression levels were detected by qPCR. RESULTS Trans-emodin dianthrones reduced cell viability and activated apoptosis and the process was regulated by JNK/Bax and PI3K/AKT/mTOR pathways. Trans-emodin dianthrones activates JNK and AKT, thereby initiating the ROS-driven apoptosis cascade and increasing ROS-mediated cell damage, highlighting the importance of ROS stress in PM-induced hepatotoxicity. CONCLUSION Trans-emodin dianthrones exhibited significant hepatotoxicity at the level of HepG2 cells, and its mechanism is related to inhibiting the antioxidant system, causing mitochondrial dysfunction and inducing apoptosis induced by JNK/Bax and PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haiyun Zheng
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China.
| |
Collapse
|
4
|
Matin M, Wysocki K, Horbańczuk JO, Rossi L, Atanasov AG. Ginger ( Zingiber officinale) dietary supplementation in mice regulates liver antioxidant defense systems in a dose- and age-dependent. Front Pharmacol 2025; 16:1597599. [PMID: 40444047 PMCID: PMC12119491 DOI: 10.3389/fphar.2025.1597599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Oxidative stress and impaired antioxidant defenses contribute significantly to liver dysfunction, particularly with aging. This study evaluated the dose- and age-dependent effects of dietary ginger (Zingiber officinale) supplementation on liver antioxidant defense systems in mice. Methods Male Swiss Webster mice aged 3, 6, and 12 months (n = 48 per age group) received standard feed or feed supplemented with either 0.6% or 1.8% dried ginger powder for 3 months. Liver tissue was analyzed for multiple antioxidant parameters, including DPPH radical scavenging activity, total antioxidant capacity, vitamin C levels, total phenolic content, superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, and reduced glutathione (GSH) concentrations. Results The results demonstrated significant age-dependent declines in several antioxidant parameters in control animals, including DPPH scavenging activity, total antioxidant capacity, vitamin C levels, total phenolic content, and SOD activity. Ginger supplementation produced differential effects based on both dose and age. While 3-month-old mice showed decreased DPPH radical scavenging with ginger supplementation, both 6- and 12-month-old mice exhibited significantly increased activity. Higher-dose (1.8%) ginger supplementation enhanced GSH levels across all age groups, with effects being most pronounced in older mice. SOD activity remained unaffected by ginger supplementation across all groups. MDA levels were significantly reduced by 1.8% ginger supplementation in 3-month-old mice, with smaller, dose-dependent but non-significant reductions in older groups. Discussion These findings demonstrate that ginger's effects on liver antioxidant systems are both dose- and age-dependent, with generally stronger beneficial effects observed at higher doses and in older animals. The observed dose- and age-dependent variations emphasize the importance of personalized supplementation strategies and provide a foundation for future research into the molecular mechanisms underlying ginger's antioxidant effects.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Wysocki
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences – DIVAS, University of Milan, Milan, Italy
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajat Pant
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Huang J, Jiang W, Ma H, Zhang H, Zhao H, Wang Q, Zhang J. Effect of Lipopolysaccharide (LPS) on Oxidative Stress and Apoptosis in Immune Tissues from Schizothorax prenanti. Animals (Basel) 2025; 15:1298. [PMID: 40362113 PMCID: PMC12070837 DOI: 10.3390/ani15091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, S. prenanti fish were stimulated with LPS at a dose of 10 mg/kg of body weight. After 0 h, 12 h and 24 h, the tissue samples were collected. The OS- and apoptosis-related genes and enzymatic activities in the liver, head kidney (HK), and spleen of S. prenanti were analyzed by a two-way repeated-measures analysis of variance (ANOVA). Hematoxylin and eosin and terminal transferase uridyl nick end labeling staining were also performed. In S. prenanti, LPS administration downregulated the catalase (CAT) and B-cell lymphoma/Leukemia-2 (Bcl-2) expression levels, and upregulated BCL2-associated X (Bax) and cysteine-aspartic-specific protease-3 (caspase-3) expression levels. Meanwhile, superoxide dismutase and CAT enzymatic activities were inhibited and malondialdehyde (MDA) content was increased by LPS treatment. Additionally, LPS treatment induced OS damage and apoptosis in tissue sections. These results indicated that apoptosis in the liver, HK, and spleen of LPS-administered S. prenanti may be mediated by OS via the mitochondrial apoptotic signaling pathway. Our findings are expected to contribute to a better understanding of the responses of different tissues to bacterial challenges. In addition, we can increase the tolerance of fish to the OS through dietary manipulation in the future.
Collapse
Affiliation(s)
- Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Wei Jiang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hongying Ma
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Han Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hu Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Qijun Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| |
Collapse
|
7
|
Han P, Xue Y, Sun Z, Liu X, Miao L, Yuan M, Wang X. The toxicological effects of perfluorooctanoic acid (PFOA) exposure in large yellow croaker (Larimichthys crocea): exploring the relationship between liver damage and gut microbiota dysbiosis. ENVIRONMENTAL RESEARCH 2025; 278:121683. [PMID: 40280390 DOI: 10.1016/j.envres.2025.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic organofluorine compounds characterized by their persistence, toxicity, and bioaccumulative properties, rendering them substantial environmental contaminants. However, limited research has investigated the effects of a short-term low-concentration PFAS exposure on the hepatic and intestinal systems of marine fish. In this study, large yellow croaker was selected as the experimental subject to explore the toxic effects of exposure to 1000 ng/L PFOA after 3, 7, and 14 days, with a focus on liver and gut microbiota. The results demonstrated that a short-term exposure to PFOA induced significant histopathological damage in both liver and gut, with cumulative effects becoming more pronounced over time. Moreover, transcriptome analysis of the liver revealed that PFOA exposure significantly altered the expression of genes associated with lipid metabolism, inflammatory response, and cellular apoptosis. GO and KEGG functional enrichment analyses showed significant enrichment in the P53, NF-κB, MAPK, and PPAR signaling pathways. On the other hand, 16S rRNA gene sequencing demonstrated that PFOA exposure resulted in a decline in gut microbiota diversity, an increase in the abundance of potentially pathogenic bacteria (e.g. Proteobacteria), and a significant reduction in beneficial bacteria (Lactobacillus). These changes indicated gut microbiota dysbiosis. Correlation analysis between gut microbiota changes and potential liver damage indicators suggested an association between liver damage and gut microbiota dysbiosis. Furthermore, we propose a hypothetical model involving lipid accumulation-mediated mitochondrial oxidative stress and inflammation pathway activation, triggered by damage-associated molecular patterns (DAMPs) resulting from PFOA exposure. These findings offered valuable insights into the toxic effects of a short-term low-concentration PFOA on the hepatic and intestinal systems of large yellow croaker, and establish a connection between liver damage to gut microbiota dysbiosis after PFOA exposure.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Zhennan Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Liang Miao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Mingzhe Yuan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
8
|
Ibrahim E, Sohail SK, Ihunwo A, Eid RA, Al-Shahrani Y, Rezigalla AA. Effect of high-altitude hypoxia on function and cytoarchitecture of rats' liver. Sci Rep 2025; 15:12771. [PMID: 40229399 PMCID: PMC11997024 DOI: 10.1038/s41598-025-97863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
The liver is central to metabolic, detoxification, and homeostatic functions. Exposure to hypobaric hypoxia at high altitudes causes detrimental effects on the liver, leading to injury. This study evaluated the effect of hypoxia-induced at high altitudes on liver function, oxidative stress, and histopathological changes in rats. This study used 24 male Wistar rats (aged 8-10 weeks). The hypoxia (hypobaric hypoxia) was inducted at a high altitude of 2,100 m above sea level. Normoxia is defined as 40 m above the sea level. The rats were randomly divided into two groups: a control group maintained at low altitudes and an experimental group exposed to high altitudes for eight weeks. Blood samples were collected from all rats through a cardiac puncture, and liver samples were taken through an abdominal approach. All samples were processed through standard methods and evaluated for liver function tests and histopathological assessment. Serum aspartate aminotransferase and alanine transaminase levels significantly increased by 25% and 30%, respectively, in the high-altitude group compared to controls (p < 0.01), indicating mild hepatocellular damage. Oxidative stress assessment indicated a significant elevation in malondialdehyde by 42% in the liver homogenates of high-altitude rats compared to controls (p < 0.001). Moreover, Superoxide dismutase activity and glutathione content decreased by 18% and 22% in the high-altitude group (p < 0.01), confirming the increased oxidative stress. Histologically, minimal inflammatory infiltration was observed in the rat livers at high altitudes, with no signs of necrosis or severe structural changes. Subclinical liver dysfunction, as evidenced by altered serum enzyme levels and increased oxidative stress with mild histological changes, is induced by high-altitude hypoxia in rats. This study's results support that a hypobaric hypoxic environment physiologically stresses the liver. Further research into the long-term implications of hypobaric hypoxia and the adaptive responses of the liver is warranted.
Collapse
Grants
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
Collapse
Affiliation(s)
- Elwathiq Ibrahim
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Amadi Ihunwo
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, 62529, 12573, Saudi Arabia
| | - Yazeed Al-Shahrani
- Department of Emergency Medicine, King Abdalla Hospital, Health Affairs Administration, Bisha, Saudi Arabia
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
9
|
Jamalinia M, Lonardo A, Weiskirchen R. Abdominal Aortic Aneurysm and Liver Fibrosis: Clinical Evidence and Molecular Pathomechanisms. Int J Mol Sci 2025; 26:3440. [PMID: 40244390 PMCID: PMC11989544 DOI: 10.3390/ijms26073440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
To stimulate further research, this review summarizes studies linking liver fibrosis with the risk of abdominal aortic aneurysms (AAA). AAA is defined as a permanently weakened and dilated abdominal aorta, which develops due to inflammation of the tunica media, activation of the renin-angiotensin-aldosterone system, immune system activation, and coagulation disorders. Typically asymptomatic, AAA is often incidentally detected through imaging done for abdominal symptoms or as part of screening programs. AAA follows a variable course and has a mortality rate strongly dependent on age and sex. Risk factors for AAA include age, male sex, ethnicity, family history of AAA, lifestyle habits, arterial hypertension, dyslipidemia, and comorbid atherosclerotic cardiovascular disease. Conversely, individuals with type 2 diabetes, female sex, and certain ethnicities are at a reduced risk of AAA. Liver fibrosis, resulting from chronic liver diseases owing to varying etiologies, is increasingly recognized as a potential contributor to AAA development. Evidence increasingly indicates that metabolic dysfunction-associated steatotic liver disease (MASLD) and other chronic liver conditions may intensify inflammatory pathways shared with AAA, thereby potentially exacerbating AAA progression. This review specifically examines the epidemiology and risk factors associated with the link between AAA and liver fibrosis. It also highlights potential pathomechanisms, including systemic inflammation, oxidative stress, and extracellular matrix remodeling, which may contribute to both conditions. Although these findings underscore significant overlaps in risk profiles, additional research is needed to clarify whether type 2 diabetes, female sex, and certain ethnicities truly confer protection against AAA or if this association is influenced by other confounding variables. Ultimately, addressing these open questions will help guide targeted therapeutic interventions and the identification of novel biomarkers to predict disease progression.
Collapse
Affiliation(s)
- Mohamad Jamalinia
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 41100, Iran;
| | - Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
10
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
11
|
Xiong Z, Chen P, Wang Z, Yao L, Yuan M, Liu P, Sun M, Shu K, Jiang Y. Human umbilical cord-derived mesenchymal stem cells attenuate liver fibrosis by inhibiting hepatocyte ferroptosis through mitochondrial transfer. Free Radic Biol Med 2025; 231:163-177. [PMID: 40023296 DOI: 10.1016/j.freeradbiomed.2025.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Liver fibrosis is a reversible dynamic pathological process induced by chronic liver injury. Without intervention, liver fibrosis can progress to become cirrhosis, liver failure, or hepatocellular carcinoma, thus posing a high global health burden. Therefore, effective therapies for liver fibrosis are urgently required. Although transplantation of mesenchymal stem cells (MSCs) has significant value as a treatment strategy for liver damage, the underlying mechanisms remain unclear. Chronic liver injury progression is significantly influenced by hepatocyte ferroptosis, and targeting ferroptosis is emerging as a potential treatment strategy for liver fibrosis. Here, we showed that the infusion of human umbilical cord-derived MSCs (hUC-MSCs) alleviated TAA-induced liver fibrosis, improved liver functionality, and decreased ferroptosis in mice. hUC-MSCs inhibit ferroptosis-related mitochondrial damage and lipid peroxidation in AML12 cells in vitro. Mechanistically, under oxidative stress, hUC-MSCs transfer healthy mitochondria to damaged hepatocytes through tunneling nanotubes (TNTs). Cytochalasin D (CytoD), an inhibitor of TNT formation, abrogated the protective effects of hUC-MSCs against ferroptosis. This research emphasizes the ability of hUC-MSCs to serve as a promising treatment for liver fibrosis via mitochondrial transfer through TNTs.
Collapse
Affiliation(s)
- Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Mengqin Yuan
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China.
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Muhua Sun
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Kan Shu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Sharma N, Chandra Y, Andugulapati SB. Inhibition of MALT1 Protease Attenuates Hepatic Sinusoidal Obstruction Syndrome by Modulating NRF2/HO1 and NF-κB Pathway. Liver Int 2025; 45:e70050. [PMID: 40052713 DOI: 10.1111/liv.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND AND PURPOSE Hepatic sinusoidal obstruction syndrome (HSOS) is a rare liver disorder with potentially life-threatening consequences for colorectal chemotherapy and haematopoietic stem cell transplant recipients. MALT1 (mucous-associated lymphoid tissue lymphoma translocation protein-1) is a protein that plays a key role in the production of inflammatory cytokines, ischemia, atherosclerosis, apoptosis and thromboinflammation; however, its role in HSOS is largely unknown. We aimed to investigate the effect of MALT-1 inhibition in in vitro and in vivo models of HSOS. EXPERIMENTAL APPROACH Two mouse models (FOLFOX challenge in immunocompetent and immunocompromised mice) were used to investigate the therapeutic benefits of the MALT-1 inhibitor (MI-2) in vivo. HHSEC, HLEC and RAW-264.7 cells served as in vitro models. HSOS-responsible genes, marker levels and downstream signalling were examined using quantitative real-time PCR, western blot, immunocytochemistry and immunohistochemistry analysis. KEY RESULTS In the current investigation, MI-2 significantly reduced FOLFOX-induced HSOS in both mouse models by inhibiting the occlusion of sinusoids, RBC extravasation and bridging fibrosis in liver sections. MI-2 treatment also dramatically reduced specific SOS markers (vWF, VEGF, ephrin, bilirubin and PECAM) and other inflammatory markers. Mechanistic investigation in in vitro models using macrophages, sinusoidal and endothelial cells demonstrated that MI-2 treatment significantly diminished the inflammatory marker levels/expression by lowering ROS production. In addition to the pharmacological approach, siRNA-mediated MALT1 suppression remarkably reduced chemokine and cytokine marker expression in sinusoidal cells. CONCLUSIONS AND IMPLICATIONS Thus, our findings demonstrate that MALT1 suppression dramatically reduces FOLFOX-induced inflammatory and fibrotic conditions by modulating the NF-κB activation, paving the way for innovative HSOS therapy approaches.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Lin B, Wu T, Nasb M, Li Z, Chen N. Regular exercise alleviates metabolic dysfunction-associated steatohepatitis through rescuing mitochondrial oxidative stress and dysfunction in liver. Free Radic Biol Med 2025; 230:163-176. [PMID: 39954868 DOI: 10.1016/j.freeradbiomed.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe mitochondrial dysfunction, associated with the production of mitochondrial reactive oxygen species (mROS). The substantial generation of mROS in the MASH liver, resulting from lipid surplus and electron transport chain (ETC) overload, impairs mitochondrial structure and functionality, thereby contributing to the development of severe hepatic steatosis and inflammation. Regular exercise represents an effective strategy for the treatment of MASH. Understanding the effects of exercise on oxidative stress and mitochondrial function is essential for effective treatment of MASH. This article reviews the pathological alterations in mitochondrial β-oxidation, ETC efficiency and mROS production within MASH liver. Additionally, it discusses how exercise influences the redox state and mitochondrial quality control mechanisms-such as biogenesis, mitophagy, fusion, and fission-within the MASH liver. The article emphasizes the importance of in-depth studies on exercise-induced MASH mitigation through the enhancement of mitochondrial redox balance, quality control, and function. Exploring the relationship between exercise and hepatic mitochondria could provide valuable insights into identifying potential therapeutic targets for MASH.
Collapse
Affiliation(s)
- Baoxuan Lin
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Zeyun Li
- Department of Rehabilitation Medicine, Xiangtan Central Hospital, Xiangtan, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China.
| |
Collapse
|
14
|
Yang X, Li H, Xie H, Ma Y, Yu Y, Liu Q, Kuang J, Zhang M, Liu J, Zhao B. Mangrove Against Invasive Snails: Aegiceras corniculatum Shows a Molluscicidal Effect on Exotic Apple Snails ( Pomacea canaliculata) in Mangroves. PLANTS (BASEL, SWITZERLAND) 2025; 14:823. [PMID: 40094819 PMCID: PMC11902146 DOI: 10.3390/plants14050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Apple snails (Pomacea canaliculata), one of the 100 most serious invasive species in the world, have invaded mangrove wetlands due to their salinity tolerance. We firstly prepared a plant molluscicide against apple snails based on the mangrove Aegiceras corniculatum in coastal wetland. The effects of four mangrove extracts from A. corniculatum, including ethanol extract (EE), petroleum ether extract (PEE), ethyl acetate extract (EAE), and n-butanol extract (BE), were studied for molluscicidal activity against apple snails in a saline environment. The LC50 values at 48 h of EE, PEE, EAE, and BE were 25 mg/L, 123 mg/L, 170 mg/L, and 14 mg/L, respectively. BE had the highest molluscicidal value (96.7%) against apple snails at 48 h. At 48 h, BE of A. corniculatum leaves significantly decreased the soluble sugar content, soluble protein content, acetylcholinesterase, and glutathione of apple snails to 4.25 mg/g, 29.50 mg/g, 947.1 U/gprot, and 6.22 U/gprot, respectively, compared to those in the control. The increased BE concentration significantly enhanced the malondialdehyde and aspartate aminotransferase contents to 4.18 mmol/gprot and 18.9 U/gprot at 48 h. Furthermore, the damage in the hepatopancreas tissue of apple snails increased, and the cellular structure became necrotic as the concentration of BE from A. corniculatum increased. The content of palmitic acid in BE of A. corniculatum leaves was the highest (10.9%), possibly be a toxic ingredient against apple snails. The n-butanol extract of A. corniculatum leaves showed a potential to control apple snails in the brackish water, and its plantation was beneficial to control the further spread of apple snails in mangrove wetlands.
Collapse
Affiliation(s)
- Xinyan Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Hongmei Li
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Huizhen Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Yanfang Ma
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Yuting Yu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Qingping Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Junhao Kuang
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Miaoying Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Jinling Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Benliang Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| |
Collapse
|
15
|
Mao Y, Xie Z, Zhang X, Fu Y, Yu X, Deng L, Zhang X, Hou B, Wang X, Ma M, Ren F. Ergothioneine Ameliorates Liver Fibrosis by Inhibiting Glycerophospholipids Metabolism and TGF-β/Smads Signaling Pathway: Based on Metabonomics and Network Pharmacology. J Appl Toxicol 2025; 45:514-530. [PMID: 39579000 DOI: 10.1002/jat.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Ergothioneine (EGT) is a diet-derived natural sulfur-containing amino acid that exhibits strong anti-oxidant and anti-inflammation activities. Oxidative stress and chronic inflammatory injury are predominant pro-fibrogenic factors. Therefore, EGT may have therapeutic potential against liver fibrosis; however, its underlying mechanism is incompletely understood. This study aimed at investigating the protective effects of EGT on liver fibrosis based on metabonomics and network pharmacology. A mouse model of liver fibrosis was established by intraperitoneal injection with 40% CCl4 solution (2 mL/kg, twice a week) and intragastric administration with EGT (5, 10 mg/kg/d) for six weeks. Results showed that EGT improved liver function by reducing serum levels of ALT (alanine aminotransferase), AST (aspartate aminotransferase), and TBIL (total bilirubin), and alleviated liver fibrosis by reducing LN (laminin) and HyP (hydroxyproline) levels, decreasing expressions of α-SMA (α-smooth muscle actin), Col-I (collagen type I), and Col-III (collagen type III), and improving pathological changes. EGT also significantly inhibited CCl4-induced hepatic inflammation and TGF-β/Smads signaling pathway. Metabolomics identified six key metabolic pathways, such as purine metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, and eight key metabolites, such as xanthine, guanine, ATP, phosphatidylcholine, and sphingosine. Network pharmacology analysis showed that IL-17, cAMP and NF-κB signaling pathways were potential key mechanisms. Integrated analysis revealed that PLA2G2A might be a potential target of EGT against liver fibrosis. EGT may inhibit the glycerophospholipid metabolism through PLA2G2A to inhibit the TGF-β/Smads signaling pathway, thereby alleviating fibrosis. The present study indicates that EGT may be considered a valid therapeutic strategy to regress liver fibrosis, and provides novel insights into the pharmacological mechanism of EGT against liver fibrosis.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Zhenghui Xie
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiangxia Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Yu Fu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaotong Yu
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lili Deng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiu Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Bo Hou
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang, China
| |
Collapse
|
16
|
Zhou X, Liu X, Yi Y, Chen S, Zhang Y, Fan W, Lv C, Qin S. Molecular Mechanism of Vine Tea Dihydromyricetin Extract on Alleviating Glucolipid Metabolism Disorder in db/db Mice: Based on Liver RNA-Seq and TLR4/MyD88/NF-κB Pathway. Int J Mol Sci 2025; 26:2169. [PMID: 40076792 PMCID: PMC11900051 DOI: 10.3390/ijms26052169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The primary active compound in vine tea is dihydromyricetin (DMY), which has a longstanding history as a dietary supplement and traditional ethnic medicine. However, the precise molecular mechanism by which vine tea dihydromyricetin extract (VDMY) regulates glucolipid metabolic disorder remains unclear. In this study, we first assessed the effect of VDMY on various physiological parameters in db/db mice, followed by RNA sequencing (RNA-seq) to identify key signaling pathways affected by VDMY in liver tissues. We also examined the impact of VDMY on the liver's TLR4/MyD88/NF-κB and FOXO1 pathways using Western blotting. Our results showed that VDMY significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, VDMY enhanced the liver's antioxidant capacity by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while lowering malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), thus alleviating liver damage. RNA-seq analysis further revealed that VDMY influenced multiple biological processes, including transcription, glycolysis, gluconeogenesis, and redox reactions, suggesting that its effects may be mediated through the TLR4/MyD88/NF-κB and FOXO1 pathways. Additionally, Western blot analysis revealed that VDMY effectively downregulated the expressions of TLR4, MyD88, NF-κB, and FOXO1 proteins in the liver of db/db mice, indicating that VDMY could target these pathways to intervene glucolipid metabolism dysfunction.
Collapse
Affiliation(s)
- Xixin Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Xin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Yuhang Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Shiyun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| | - Yi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| | - Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
- Xiangya School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| |
Collapse
|
17
|
Ran Q, Huang M, Wang L, Li Y, Wu W, Liu X, Chen J, Yang M, Han K, Guo X. Integrated bioinformatics and multi-omics to investigate the mechanism of Rhododendron molle Flos-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119308. [PMID: 39746411 DOI: 10.1016/j.jep.2024.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Drug-induced liver injury (DILI) is an important and common adverse drug event. Rhododendron molle Flos (RMF), as one of toxic Traditional Chinese medicines (TCMs), holds a prominent position in clinical practice for treating rheumatoid arthritis. However, the toxicity of RMF limits its safe. Most of the concerns are about its rapid neurotoxicity and cardiotoxicity, with less attention paid to its hepatotoxicity, and the mechanism of which is still unclear. AIM OF THE STUDY To reveal the mechanism of RMF-induced hepatotoxicity by bioinformatics and multi-omics. MATERIALS AND METHODS Rats were intragastric administered RMF at doses of 0.8 g/kg, 0.4 g/kg, and 0.2 g/kg once daily for 2 weeks. Initially, hepatotoxicity was then evaluated using liver function enzymes, antioxidant enzymes, and histopathology. Subsequently, network toxicology, transcriptomics, and metabolomics were used to identify the genes and metabolites. In addition, molecular docking and Western blot were employed to verify toxic components and key targets. RESULTS RMF caused abnormal levels of ALT, γ-GT, TBIL, and TBA in the serum of rats, as well as abnormal levels of MDA, GSH-Px, and SOD in the liver, leading to inflammatory infiltration of liver cells, with a dose-dependent manner. RMF disordered the steroid hormone biosynthesis, pyruvate metabolism, fatty acid biosynthesis, and arachidonic acid metabolism. Six key targets were identified- UGT1A6, CYP2E1, ACOT1, ACSL5, CTH, and PKLR, along with their corresponding metabolites, namely 17β-estradiol, estriol, arachidonic acid, octadecanoic acid, and pyruvic acid. The hepatotoxicity could be attributed to five diterpenoid components, including grayanotoxin-III, rhodojaponin (RJ)-I, RJ-II, RJ-III, and RJ-V. CONCLUSIONS This study comprehensively identified the toxic components, upstream targets, and downstream metabolites of RMF-induced liver toxicity, providing a basis for evaluating and monitoring liver function in patients during clinical application.
Collapse
Affiliation(s)
- Qiang Ran
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Mengjun Huang
- National-Local Joint Engineering Research Center for Innovative Targeted Drugs, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Lijuan Wang
- Department of Pathology, Chongqing Traditional Chinese Medicine Hospital (the First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine), Chongqing, 400021, China.
| | - Yanyan Li
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Wenhui Wu
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Juan Chen
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Min Yang
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Keqing Han
- Department of Pharmacy, Shaanxi Provincial Tuberculosis Prevention and Control Hospital (the Fifth People's Hospital of Shaanxi Province), Xi'an, Shanxi, 710100, China.
| | - Xiaohong Guo
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
18
|
Osorio ES, María-Guadalupe RP, Víctor-Manuel MN, Jorge CÍ, Marcos SH, Juana RP, Ernesto RL, Benny WS, Graciela GG, Taide-Laurita AU, Víctor-Manuel CS, Itzen AS. Hepatoprotective effect of the Sechium HD-Victor hybrid extract in a model of liver damage induced by carbon tetrachloride in mice. Biomed Pharmacother 2025; 183:117831. [PMID: 39842268 DOI: 10.1016/j.biopha.2025.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Sechium spp., is a vegetable species renowned for its pharmacological properties, including hepatoprotective activity. This species can crossbreed with its wild relatives, leading to the creation of an HD-Victor hybrid with higher levels of flavonoids, cucurbitacins, and phenolic acids compared to the Sechium edule. However, the antioxidant and hepatoprotective properties of this hybrid are not well-known. We investigated the hepatoprotective effect of HD-Victor hybrid extract on a hepatic-damage mouse model induced by carbon tetrachloride (CCl₄). We conducted a phytochemical characterization and quantified its antioxidant activity. Subsequently, we evaluated the extract at different concentrations, testing the potential to mitigate liver damage induced by CCl₄. After, we performed tests to assess liver function through AST, ALT, ALP and albumin, antioxidant levels, and histopathological examination. Our findings reveal that HD-Victor hybrid extract is rich in flavonoids, phenolic acids, and cucurbitacins and shows DPPH-free radical inhibition, protection in liver function, and increased antioxidant levels. Therefore, the Sechium HD-Victor hybrid extract exerts a protective effect against hepatic damage induced by oxidative stress, showing its potential as a hepatoprotective agent.
Collapse
Affiliation(s)
- Edelmiro-Santiago Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico.
| | - Ramírez-Padilla María-Guadalupe
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico.
| | - Mendoza-Núñez Víctor-Manuel
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
| | - Cadena-Íñiguez Jorge
- Innovation in Natural Resource Management, Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí CP 78622, Mexico.
| | - Soto-Hernández Marcos
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico.
| | - Rosado-Pérez Juana
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
| | - Romero-López Ernesto
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico.
| | - Weiss-Steider Benny
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico.
| | - Gavia-García Graciela
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
| | - Arista-Ugalde Taide-Laurita
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
| | | | - Aguiñiga-Sánchez Itzen
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico; Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 56410, Mexico.
| |
Collapse
|
19
|
Xi C, Zhou J, Zheng X, Fu X, Xie M. Sodium aescinate-induced hepatotoxicity via ATF4/GSH/GPX4 axis-mediated ferroptosis. Sci Rep 2025; 15:1141. [PMID: 39774712 PMCID: PMC11706965 DOI: 10.1038/s41598-024-79723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium aescinate (SA), a natural plant extract with various bioactivities, is widely used to treat oedema and inflammation in clinics. However, adverse events, including liver injury, kidney injury, and phlebitis, have been reported in patients with SA in recent years. In this study, we used BALB/c mice and L02 cells to evaluate the role of ferroptosis in SA-induced liver injury. SA significantly increased AST, ALT, MDA and Fe2+, decreased GSH levels, and induced pathological changes in the liver in vivo. SA also reduced the viability of L02 cells and induced LDH release, intracellular cysteine reduction, GSH depletion, iron accumulation, ROS production, and lipid peroxidation, indicating that SA causes ferroptosis. In addition, SA inhibited transcriptional activity of activating transcription factor 4 (ATF4) and subsequently reduced the expression of the downstream genes xCT (solute carrier family 7a member 11, SLC7A11) and Cystathionine gamma-lyase (CTH) which play vital roles in GSH biosynthesis. Interestingly, the cytotoxic effects of SA were effectively attenuated by ATF4 overexpression, while they were significantly aggravated by ATF4 silencing. These results revealed that SA triggers hepatocyte ferroptosis by inhibiting the activity of ATF4, which causes an oxidative imbalance.
Collapse
Affiliation(s)
- Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi, P.R. China.
| | - Xin Zheng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi, P.R. China
| | - Xiaoyi Fu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi, P.R. China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi, P.R. China
| |
Collapse
|
20
|
Sotoudeheian M. Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Curr Protein Pept Sci 2025; 26:6-21. [PMID: 38982921 DOI: 10.2174/0113892037315931240618085529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
Collapse
|
21
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
22
|
Wei Z, Liu J, Wang N, Wei K. Kidney function mediates the association of per- and poly-fluoroalkyl substances (PFAS) and heavy metals with hepatic fibrosis risk. ENVIRONMENTAL RESEARCH 2024; 263:120092. [PMID: 39357638 DOI: 10.1016/j.envres.2024.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals and per- and polyfluoroalkyl substances (PFAS) are significantly associated with the risk of hepatic fibrosis. However, the potential mediating effect of kidney function in the relationship between heavy metals, PFAS, and hepatic fibrosis risk remains unexplored. This research gap limits the development of hepatic fibrosis prevention and treatment strategies. To address this, this study conducts a cross-sectional analysis based on data from 10,870 participants in NHANES 2005-2018 to explore the relationship between heavy metals, PFAS, and the risk of hepatic fibrosis, as well as the mediating effect of kidney function. Participants with a Fibrosis-4 index <1.45 are defined as not having hepatic fibrosis in this study. Results from generalized linear regression models and weighted quantile sum regression models indicate that both individual and combined exposures to heavy metals and PFAS are positively associated with the risk of hepatic fibrosis. Nonlinear exposure-response functions suggest that there may be a threshold for the relationship between heavy metals (except mercury) and PFAS with the risk of hepatic fibrosis. Furthermore, heavy metals and PFAS increase the risk of kidney function impairment. After stratification by kidney function stage, the relationship between heavy metals (except lead) and proteinuria is not significant, while PFAS show a significant negative association with proteinuria. The decline in kidney function has a significant mediating effect in the relationship between heavy metals and PFAS and the risk of hepatic fibrosis, with mediation effect proportions all above 20%. The findings suggest that individual or combined exposure to heavy metals and PFAS does not increase the risk of hepatic fibrosis until a certain threshold is reached, and the mediating role of declining kidney function is very important. These results highlight the need to consider kidney function in the context of hepatic fibrosis risk assessment and management.
Collapse
Affiliation(s)
- Zhengqi Wei
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Jincheng Liu
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China
| | - Na Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Keke Wei
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China.
| |
Collapse
|
23
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
24
|
Yan F, Li W, Sun X, Wang L, Liu Z, Zhong Z, Guo Z, Liu Z, Gao M, Zhang J, Wang C, Dong G, Li C, Chen S, Xiong H, Zhang H. Sappanone A Ameliorates Concanavalin A-induced Immune-Mediated Liver Injury by Regulating M1 Macrophage Polarization. Inflammation 2024:10.1007/s10753-024-02189-x. [PMID: 39589634 DOI: 10.1007/s10753-024-02189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
Sappanone A (SAP), a high-isoflavone compound derived from the traditional Chinese medicine Sumu, exhibits various pharmacological activities, including anti-inflammatory and anti-oxidant effects. However, its protective effects on the liver have rarely been reported. The aim of this study was to investigate the effects of SAP on immune-mediated liver injury induced by concanavalin A (Con A) in mice and to explore the underlying molecular mechanisms. Mice were administered SAP intraperitoneally (50 mg/kg body weight). Three hours later, Con A (18 mg/kg) was injected via the tail vein to induce liver damage. Livers and blood were collected 12 h after Con A challenge. Liver cell apoptosis, oxidative stress, and M1 macrophage activation in vivo were investigated. Bone marrow-derived macrophages were used to confirm the effects of SAP on M1 polarization in vitro. The results indicated that SAP decreased transaminase levels, inhibited apoptosis, and improved oxidative stress in mouse livers. Furthermore, SAP significantly reduced the proportion of macrophages, inhibited the expression of CD86, and downregulated the expression of M1 macrophage-related inflammatory cytokines. Moreover, SAP-treated macrophages alleviated liver damage caused by Con A compared to non-SAP-treated macrophages. Mechanistically, SAP inhibited the phosphorylation of key molecules in the MAPK and NF-κB signaling pathways in macrophages, resulting in an inhibitory effect on M1 macrophage activation. Taken together, SAP alleviates immune-mediated liver injury induced by Con A by suppressing M1 macrophage polarization, which is partially associated with NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Xueyang Sun
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhaoming Zhong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhengran Guo
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Ziyu Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Shang Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
25
|
Ferraz DC, Moura CCG, Signorelli NSM, Rosa RC, Pereira SADL, Borges ALS, Bittar VP, Duarte RMF, Teixeira RR, Bertolini M, Espindola FS. The Interaction of Apical Periodontitis, Cigarette Smoke, and Alcohol Consumption on Liver Antioxidant Status in Rats. Int J Mol Sci 2024; 25:12011. [PMID: 39596079 PMCID: PMC11593682 DOI: 10.3390/ijms252212011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the impact of alcohol (A), secondhand cigarette smoking (ShS), and their combined effect on liver antioxidant activity and hepatic damage in rats with induced apical periodontitis (AP). Thirty-five female Wistar rats were randomly allocated into five groups (n = 7): (1) control (rats without ShS, alcoholic diet, or AP), (2) control-AP (induced AP only), (3) ShS-AP (ShS exposure and induced AP), (4) A-AP (alcoholic diet and induced AP), and (5) A+ShS-AP (alcoholic diet, ShS exposure, and induced AP). Alcohol was administered through semi-voluntary intake, while ShS exposure involved the daily inhalation of cigarette smoke. The experimental period lasted 8 weeks, with AP induction occurring in the 4th week following molar pulp exposure. Liver samples were collected post-euthanasia for histomorphometric and antioxidant marker analyses. All AP-induced groups exhibited increased liver sinusoidal dilation compared to the control group (p < 0.05). AP significantly reduced total antioxidant capacity (FRAP) across all groups (p < 0.05). In AP-induced groups, FRAP levels were further decreased in ShS-AP and A+ShS-AP compared to control-AP (p < 0.05). AP also led to a decrease in the glutathione defense system (p < 0.05). Rats with alcohol exposure (A-AP and A+ShS-AP) showed reduced glutathione peroxidase activity (p < 0.05). Glutathione reductase activity was comparable in the control and control-AP groups (p > 0.05), but significantly decreased in the alcohol and ShS-exposed groups (p < 0.05). Apical periodontitis can relate to morphological changes in the liver's sinusoidal spaces and impairment of liver's antioxidant capacity of rats, particularly when combined with chronic alcohol consumption and exposure to cigarette smoke.
Collapse
Affiliation(s)
- Danilo Cassiano Ferraz
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Camilla Christian Gomes Moura
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Nara Sarmento Macêdo Signorelli
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Rodrigo César Rosa
- Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Ana Luiza Silva Borges
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | - Vinícius Prado Bittar
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | | | - Renata Roland Teixeira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| |
Collapse
|
26
|
Chen P, Li X, Zhang Y, Wang H, Yu Y, Wu C, Jia L, Zhang J. Oudemansiella radicata polysaccharides alleviated LPS-induced liver damage via regulating TLR4/NF-κB and Bax/Bcl-2 signaling pathways. Int J Biol Macromol 2024; 282:137370. [PMID: 39521227 DOI: 10.1016/j.ijbiomac.2024.137370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The study was aimed to develop natural non-toxic substances to prevent LPS-induced liver damages and its complications. In present work, a pyranose polysaccharide of Oudemansiella radicata polysaccharides (ORP) with typical characteristics of α-type glycosidic linkage was isolated from the O. radicata fruiting body by physico-chemical analysis, and the potential impact against LPS-induced liver damage were performed in mice model. The results demonstrated that ORP showed significant hepatoprotective effects through its potential anti-oxidative, anti-inflammatory and anti-apoptosis activities via regulating the TLR4/NF-κB and Bax/Bcl-2 signaling pathway, independently or synergistically. These findings had established a robust theoretical framework for promoting the comprehensive utilization of ORP as supplements in the development of functional foods or drugs targeting LPS-induced liver damage and its associated complications.
Collapse
Affiliation(s)
- Peiying Chen
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Yunke Yu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Chao Wu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| |
Collapse
|
27
|
Hsiao YF, Huang SC, Cheng SB, Hsu CC, Huang YC. Glutathione and Selenium Supplementation Attenuates Liver Injury in Diethylnitrosamine-Induced Hepatocarcinogenic Mice by Enhancing Glutathione-Related Antioxidant Capacities. Int J Mol Sci 2024; 25:11339. [PMID: 39518894 PMCID: PMC11546938 DOI: 10.3390/ijms252111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Excess oxidative stress and inadequate antioxidant capacities are critical features in the development of hepatocellular carcinoma. This study aimed to determine whether supplementation with glutathione (GSH) and/or selenium (Se), as antioxidants, attenuates diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. C57BL/6J male mice were randomly assigned to control, DEN, DEN + GSH, DEN + Se, and DEN + GSH + Se groups for 20 weeks. Daily supplementation with GSH and/or Se commenced in the first experimental week and continued throughout the study. DEN was administered in weeks 2-9 and 16-19 of the experimental period. DEN administration induced significant pathological alterations of hepatic foci, evidenced by elevated levels of liver function, accompanied by high malondialdehyde (MDA) levels; low GSH levels; and glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Supplementation with GSH and Se significantly ameliorated liver pathological changes, reducing liver function and MDA levels while increasing GSH levels and GPx, GR, and GST activities. Notably, combined supplementation with GSH and Se more effectively increased the GSH/glutathione disulfide ratio and GPx activity than individual supplementation. Supplementation with GSH and Se attenuated liver injury in DEN-induced hepatocarcinogenic mice by enhancing GSH and its related antioxidant capacities, thereby mitigating oxidative damage.
Collapse
Affiliation(s)
- Yung-Fang Hsiao
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shao-Bin Cheng
- Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
28
|
Yu C, Luo Y, Shen C, Luo Z, Zhang H, Zhang J, Xu W, Xu J. Effects of microbe-derived antioxidants on growth performance, hepatic oxidative stress, mitochondrial function and cell apoptosis in weaning piglets. J Anim Sci Biotechnol 2024; 15:128. [PMID: 39354626 PMCID: PMC11445872 DOI: 10.1186/s40104-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Weaning causes redox dyshomeostasis in piglets, which leads to hepatic oxidative damage. Microbe-derived antioxidants (MA) have great potential for anti-oxidation. This study aimed to investigate changes in hepatic redox system, mitochondrial function and apoptosis after weaning, and effects of MA on growth performance and liver health in weaning piglets. METHODS This study consisted of 2 experiments. In the both experiments, piglets were weaned at 21 days of age. In Exp. 1, at 21 (W0), 22 (W1), 25 (W4), 28 (W7), and 35 (W14) days of age, 6 piglets were slaughtered at each timepoint. In Exp. 2, piglets were divided into 2 groups: one received MA gavage (MA) and the other received saline gavage (CON). At 25 days of age, 6 piglets from each group were sacrificed. RESULTS In Exp. 1, weaning caused growth inhibition and liver developmental retardation from W0 to W4. The mRNA sequencing between W0 and W4 revealed that pathways related to "regulation of apoptotic process" and "reactive oxygen species metabolic process" were enriched. Further study showed that weaning led to higher hepatic content of reactive oxygen species (ROS), H2O2 and O2-. Weaning enhanced mitochondrial fission and suppressed their fusion, activated mitophagy, thus triggering cell apoptosis. In Exp. 2, MA improved growth performance of piglets with higher average daily gain (ADG) and average daily feed intake (ADFI). The hepatic ROS, as well as products of oxidative damage malonaldehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the MA group decreased significantly than that of the CON group. The MA elevated mitochondrial membrane potential, increased activity of mitochondrial respiratory chain complexes (MRC) I and IV, enhanced mitochondrial fusion and reduced mitophagy, thus decreasing cell apoptosis. CONCLUSIONS The present study showed that MA improved the growth performance of weaning piglets and reversed weaning-induced oxidative damage, mitochondrial dysfunction, and apoptosis. Our results suggested that MA had promising prospects for maintaining liver health in weaning piglets and provided a reference for studies of liver diseases in humans.
Collapse
Affiliation(s)
- Chengbing Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Shen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weina Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Andersson A, Escriva Conde M, Surova O, Vermeulen P, Wählby C, Nilsson M, Nyström H. Spatial Transcriptome Mapping of the Desmoplastic Growth Pattern of Colorectal Liver Metastases by In Situ Sequencing Reveals a Biologically Relevant Zonation of the Desmoplastic Rim. Clin Cancer Res 2024; 30:4517-4529. [PMID: 39052239 PMCID: PMC11443209 DOI: 10.1158/1078-0432.ccr-23-3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE We describe the fibrotic rim formed in the desmoplastic histopathologic growth pattern (DHGP) of colorectal cancer liver metastasis (CLM) using in situ sequencing (ISS). The origin of the desmoplastic rim is still a matter of debate, and the detailed cellular organization has not yet been fully elucidated. Understanding the biology of the DHGP in CLM can lead to targeted treatment and improve survival. EXPERIMENTAL DESIGN We used ISS, targeting 150 genes, to characterize the desmoplastic rim by unsupervised clustering of gene coexpression patterns. The cohort comprised 10 chemo-naïve liver metastasis resection samples with a DHGP. RESULTS Unsupervised clustering of spatially mapped genes revealed molecular and cellular diversity within the desmoplastic rim. We confirmed the presence of the ductular reaction and cancer-associated fibroblasts. Importantly, we discovered angiogenesis and outer and inner zonation in the rim, characterized by nerve growth factor receptor and periostin expression. CONCLUSIONS ISS enabled the analysis of the cellular organization of the fibrous rim surrounding CLM with a DHGP and suggests a transition from the outer part of the rim, with nonspecific liver injury response, into the inner part, with gene expression indicating collagen synthesis and extracellular matrix remodeling influenced by the interaction with cancer cells, creating a cancer cell-supportive environment. Moreover, we found angiogenic processes in the rim. Our results provide a potential explanation of the origin of the rim in DHGP and lead to exploring novel targeted treatments for patients with CLM to improve survival.
Collapse
Affiliation(s)
- Axel Andersson
- Science for Life Laboratory, Department of Information Technology, Uppsala University, Uppsala, Sweden.
| | - Maria Escriva Conde
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Olga Surova
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Peter Vermeulen
- Translational Cancer Research Unit - GZA Hospital Sint-Augustinus, Antwerp, Belgium.
| | - Carolina Wählby
- Science for Life Laboratory, Department of Information Technology, Uppsala University, Uppsala, Sweden.
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Hanna Nyström
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
30
|
Hu B, Sui J, Wang Y, Li L, Gong D, Zhu Z, Liao W, Sun G, Xia H. A systematic review of dietary and circulating carotenoids and liver disease. Food Funct 2024; 15:9813-9832. [PMID: 39229651 DOI: 10.1039/d4fo03082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background: due to the high incidence of liver disease and the severity of adverse outcomes, liver disease has become a serious public health problem, bringing a huge disease burden to individuals, families, and society. Most studies have shown significant differences in serum carotenoid content and dietary carotenoid intake between liver disease patients and non-liver disease patients, but some studies have reported contrary results. This paper aimed to systematically review and analyze all published epidemiological studies on carotenoids and liver disease to quantitatively assess the relationship between serum and dietary carotenoid concentrations and liver disease. Methods: by systematically searching PubMed, Web of Science, Scopus, Embase, and Cochrane databases according to pre-combined search terms from inception to July 23, 2024, 30 studies were found to meet the exclusion criteria. Finally, 3 RCT studies, 6 cohort studies, 11 case-control studies, 9 cross-sectional studies, and 1 RCT-combined cross-sectional study were included in the further analysis. Two reviewers independently scored the literature quality and extracted data, and the results were represented by the standard mean difference (SMD) with a 95% confidence interval. Cochran Q statistics and I2 statistics were used to evaluate statistical heterogeneity (defined as significant when P < 0.05 or I2 > 50%). When there was insignificant heterogeneity, a fixed effects model was selected; otherwise a random effects model was used. Publication bias was assessed by the Egger test. Results: pooled meta-analysis showed that serum α-carotene (SMD = -0.58, 95% CI (-0.83, -0.32), P < 0.001), β-carotene (SMD = -0.81, 95% CI (-1.13, -0.49), P < 0.001), and lycopene (SMD = -1.06, 95% CI (-1.74, -0.38), P < 0.001) were negatively correlated with the risk and severity of liver disease. However, no significant difference was observed between serum β-cryptoxanthin (SMD = 0.02, 95% CI (-0.41, 0.45), P = 0.92) and lutein/zeaxanthin (SMD = 0.62, 95% CI (-1.20, 2.45), P = 0.502). Dietary β-carotene intake (SMD = -0.22, 95% CI (-0.31, -0.13), P < 0.001) was negatively associated with the risk of liver disease. The Egger test showed no publication bias (P > 0.05). An intake of more than 6 mg of carotenoids on an energy-restricted diet can effectively alleviate the symptoms of NAFLD. Conclusion: lower serum concentrations of α-carotene, β-carotene, and lycopene were associated with a higher risk of liver disease. Meanwhile, dietary intake of β-carotene could reduce the incidence of liver disease. However, for malignant diseases such as liver cancer, it did not show the significant effects of carotenoid supplementation.
Collapse
Affiliation(s)
- Bihuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Ying Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China
| | - Daochen Gong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Zixuan Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Che L, Stevenson CK, Plas DR, Wang J, Du C. BRUCE liver-deficiency potentiates MASLD/MASH in PTEN liver-deficient background by impairment of mitochondrial metabolism in hepatocytes and activation of STAT3 signaling in hepatic stellate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.611500. [PMID: 39314445 PMCID: PMC11419131 DOI: 10.1101/2024.09.13.611500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common liver disease, affecting up to 25% of people worldwide, featuring excessive fat accumulation in hepatocytes. Its advanced form, metabolic dysfunction-associated steatohepatitis (MASH), is a serious disease with hepatic inflammation and fibrosis, increasing the need for liver transplants. However, the pathogenic mechanism of MASLD and MASH is not fully understood. We reported that BRUCE ( BIRC6) is a liver cancer suppressor and is downregulated in MASLD/MASH patient liver specimens, though the functional role of BRUCE in MASLD/MASH remains to be elucidated. To this end, we generated liver-specific double KO (DKO) mice of BRUCE and PTEN, a major tumor suppressor and MASLD/MASH suppressor. By comparing liver histopathology among 2-3-month-old mice, there were no signs of MASLD or MASH in BRUCE liver-KO mice and only onset of steatosis in PTEN liver-KO mice. Interestingly, DKO mice had developed robust hepatic steatosis with inflammation and fibrosis. Further analysis of mitochondrial function with primary hepatocytes found moderate reduction of mitochondrial respiration, ATP production and fatty acid oxidation in BRUCE KO and the greatest reduction in DKO hepatocytes. Moreover, aberrant activation of pro-fibrotic STAT3 signaling was found in hepatic stellate cells (HSCs) in DKO mice which was prevented by administered STAT3-specific inhibitor (TTI-101). Collectively, the data demonstrates by maintaining mitochondrial metabolism BRUCE works in concert with PTEN to suppress the pro-fibrogenic STAT3 activation in HSCs and consequentially prevent MASLD/MASH. The findings highlight BRUCE being a new co-suppressor of MASLD/MASH.
Collapse
|
32
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
33
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Gitto S, Fiorillo C, Argento FR, Fini E, Borghi S, Falcini M, Roccarina D, La Delfa R, Lillo L, Zurli T, Forte P, Ghinolfi D, De Simone P, Chiesi F, Ingravallo A, Vizzutti F, Aspite S, Laffi G, Lynch E, Petruccelli S, Carrai P, Palladino S, Sofi F, Stefani L, Amedei A, Baldi S, Toscano A, Lau C, Marra F, Becatti M. Oxidative stress-induced fibrinogen modifications in liver transplant recipients: unraveling a novel potential mechanism for cardiovascular risk. Res Pract Thromb Haemost 2024; 8:102555. [PMID: 39309232 PMCID: PMC11416524 DOI: 10.1016/j.rpth.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Cardiovascular events represent a major cause of non-graft-related death after liver transplant. Evidence suggest that chronic inflammation associated with a remarkable oxidative stress in the presence of endothelial dysfunction and procoagulant environment plays a major role in the promotion of thrombosis. However, the underlying molecular mechanisms are not completely understood. OBJECTIVES In order to elucidate the mechanisms of posttransplant thrombosis, the aim of the present study was to investigate the role of oxidation-induced structural and functional fibrinogen modifications in liver transplant recipients. METHODS A case-control study was conducted on 40 clinically stable liver transplant recipients and 40 age-matched, sex-matched, and risk factor-matched controls. Leukocyte reactive oxygen species (ROS) production, lipid peroxidation, glutathione content, plasma antioxidant capacity, fibrinogen oxidation, and fibrinogen structural and functional features were compared between patients and controls. RESULTS Patients displayed enhanced leukocyte ROS production and an increased plasma lipid peroxidation with a reduced total antioxidant capacity compared with controls. This systemic oxidative stress was associated with fibrinogen oxidation with fibrinogen structural alterations. Thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in patients compared with controls. Moreover, steatotic graft and smoking habit were associated with high fibrin degradation rate. CONCLUSION ROS-induced fibrinogen structural changes might increase the risk of thrombosis in liver transplant recipients.
Collapse
Affiliation(s)
- Stefano Gitto
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Margherita Falcini
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Roccarina
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosario La Delfa
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ludovica Lillo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Zurli
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesca Chiesi
- Department of Neuroscience, Psychology, Drug, and Child’s Health (NEUROFARBA), Section of Psychology, University of Florence, Florence, Italy
| | - Angelica Ingravallo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Vizzutti
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Aspite
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Laffi
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Lynch
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Stefania Petruccelli
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paola Carrai
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Simona Palladino
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Sofi
- Unit of Clinical Nutrition, Careggi University Hospital, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Stefani
- Sports Medicine Center Clinical and Experimental Medicine Department, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Arianna Toscano
- Division of Internal Medicine, University Hospital of Policlinico G. Martino, Messina, Italy
| | - Chloe Lau
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Fabio Marra
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
35
|
Liao S, Wang Y, Zhou J, Liu Y, He S, Zhang L, Liu M, Wen D, Sun P, Lu G, Wang Q, Ouyang Y, Song Y. Associations between chronic obstructive pulmonary disease and ten common cancers: novel insights from Mendelian randomization analyses. BMC Cancer 2024; 24:601. [PMID: 38760826 PMCID: PMC11100175 DOI: 10.1186/s12885-024-12381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a significant global health issue, suspected to elevate the risk for various cancers. This study sought to discern whether COPD serves as a risk marker or a causative factor for prevalent cancers. METHODS We employed univariable MR (UVMR) analyses to investigate the causal relationship between COPD and the top ten common cancers. Sensitivity analyses were performed to validate the main findings. Multivariable MR (MVMR) and two-step MR analyses were also conducted. False-discovery-rate (FDR) was used to correct multiple testing bias. RESULTS The UVMR analysis demonstrated notable associations between COPD and lung cancer (odds ratio [OR] = 1.42, 95%CI 1.15-1.77, FDR = 6.37 × 10-3). This relationship extends to lung cancer subtypes such as squamous cell carcinoma (LUSC), adenocarcinoma (LUAD), and small cell lung cancer (SCLC). A tentative link was also identified between COPD and bladder cancer (OR = 1.53, 95%CI 1.03-2.28, FDR = 0.125). No significant associations were found between COPD and other types of cancer. The MVMR analysis that adjusted for smoking, alcohol drinking, and body mass index did not identify any significant causal relationships between COPD and either lung or bladder cancer. However, the two-step MR analysis indicates that COPD mediated 19.2% (95% CI 12.7-26.1%), 36.1% (24.9-33.2%), 35.9% (25.7-34.9%), and 35.5% (26.2-34.8%) of the association between smoking and overall lung cancer, as well as LUAD, LUSC, and SCLC, respectively. CONCLUSIONS COPD appears to act more as a risk marker than a direct cause of prevalent cancers. Importantly, it partially mediates the connection between smoking and lung cancer, underscoring its role in lung cancer prevention strategies.
Collapse
Affiliation(s)
- Shixia Liao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Yanwen Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Jian Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Yuting Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Shuangfei He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Lanying Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Maomao Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Dongmei Wen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Pengpeng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Guangbing Lu
- Department of Respiration, Meishan Hospital of Traditional Chinese Medicine in Sichuan Province, Meishan, 620010, China
| | - Qi Wang
- China-Canada Medical and Health Science Association, Toronto, L3R 1A3, Canada
| | - Yao Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| |
Collapse
|
36
|
Tang S, Dong X, Ma Y, Zhou H, He Y, Ren D, Li X, Cai Y, Wang Q, Wu L. Highly crystalline cellulose microparticles from dealginated seaweed waste ameliorate high fat-sugar diet-induced hyperlipidemia in mice by modulating gut microbiota. Int J Biol Macromol 2024; 263:130485. [PMID: 38423434 DOI: 10.1016/j.ijbiomac.2024.130485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The effects of seaweed cellulose (SC) on high fat-sugar diet (HFSD)-induced glucolipid metabolism disorders in mice and potential mechanisms were investigated. SC was isolated from dealginated residues of giant kelp (Macrocystis pyrifera), with a crystallinity index of 85.51 % and an average particle size of 678.2 nm. Administering SC to C57BL/6 mice at 250 or 500 mg/kg BW/day via intragastric gavage for six weeks apparently inhibited the development of HFSD-induced obesity, dyslipidemia, insulin resistance, oxidative stress and liver damage. Notably, SC intervention partially restored the structure and composition of the gut microbiota altered by the HFSD, substantially lowering the Firmicutes to Bacteroidetes ratio, and greatly increasing the relative abundance of Lactobacillus, Bifidobacterium, Oscillospira, Bacteroides and Akkermansia, which contributed to improved short-chain fatty acid (SCFA) production. Supplementing with a higher dose of SC led to more significant increases in total SCFA (67.57 %), acetate (64.56 %), propionate (73.52 %) and butyrate (66.23 %) concentrations in the rectal contents of HFSD-fed mice. The results indicated that highly crystalline SC microparticles could modulate gut microbiota dysbiosis and ameliorate HFSD-induced obesity and related metabolic syndrome in mice. Furthermore, particle size might have crucial impact on the prebiotic effects of cellulose as insoluble dietary fiber.
Collapse
Affiliation(s)
- Shiying Tang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiuyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Yueyun Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yidi Cai
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
37
|
Guo P, Yu J. Association of multiple serum minerals and vitamins with metabolic dysfunction-associated fatty liver disease in US adults: National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2024; 11:1335831. [PMID: 38562487 PMCID: PMC10982334 DOI: 10.3389/fnut.2024.1335831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite the rapid increase in the global prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), there are no approved therapeutic drugs for MAFLD yet. Nutrient supplementation might mitigate the risk of MAFLD. It is more typical for individuals to consume multiple nutrients simultaneously. However, the studies exploring the combined effects of multiple nutrients on MAFLD are limited. This study aimed to investigate the relationship between both individual nutrients and their combined influence on the risk of MAFLD. Methods Data were obtained from National Health and Nutrition Examination Survey (NHANES), and 18 types of nutrients were considered in this study. Logistic regression analysis was performed to evaluate the correlation between single nutrients and the risk of MAFLD. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to pinpoint the most relevant nutrient associated with the risk of MAFLD. Subsequently, both Weighted Quantile Sum (WQS) regression and Quantile g-computation (Qgcomp) were used to assess the combined effects of multiple nutrients on the risk of MAFLD. Results A total of 3,069 participants were included in this study. LASSO regression analysis showed that Se, α-tocopherol, and γ-tocopherol exhibited a positive association with the risk of MAFLD. In contrast, the serum levels of Co, P, α-cryptoxanthin, LZ, and trans-β-carotene were inversely associated with the prevalence of MAFLD. When Se and two types of vitamin E were excluded, the WQS index showed a significant inverse relationship between the remaining 15 nutrients and the risk of MAFLD; α-cryptoxanthin showed the most substantial contribution. Similarly, Qgcomp suggested that the combined effects of these 15 nutrients were associated with a lower risk of MAFLD, with α-cryptoxanthin possessing the most significant negative weights. Conclusion This study suggested that the complex nutrients with either a low proportion of Se, α-tocopherol, and γ-tocopherol or without them should be recommended for patients with MAFLD to reduce its risk.
Collapse
Affiliation(s)
| | - Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
38
|
Guo WY, Lu DY, Guan ZZ, Zheng L, Chen SS, Liu T. Periploca forrestii Schltr. ameliorate liver injury caused by fluorosis in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115813. [PMID: 38113798 DOI: 10.1016/j.ecoenv.2023.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
To investigate the impact of the ethanoic fractions of Periploca forrestii Schltr. (P. forrestii) in ameliorating the liver injury caused by fluoride ingestion and to explore the potential mechanisms. Initially, an in vitro fluorosis cell model was constructed using the human normal liver cell line (L-02) induced by fluoride. Cell viability was assessed using the CCK-8 assay kit. The lactate dehydrogenase (LDH) assay kit was utilized to measure LDH content in the cell supernatant, while the malonic dialdehyde (MDA) assay kit was employed to determine MDA levels within the cells. Subsequently, a fluorosis rat model was established, and LDH content in the cell supernatant was measured using the LDH assay kit. Various parameters, including MDA, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and reactive oxygen species (ROS) content within the cells, were detected using appropriate assay kits. Additionally, cell apoptosis rate was determined using the Annexin V-FITC/PI cell apoptosis assay kit. The protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, Cleaved Caspase-3, Caspase-9, and Cleaved Caspase-9 were analyzed through Western blotting. Compared to the model group, the ethanolic fraction D of P.forrestii (Fr.D) increased cell viability (P < 0.01) and decreased LDH and MDA levels (P < 0.01). In the high-dose Fr.D treatment group of fluoride-poisoned rats, serum ALT, AST, LDH and MDA levels significantly decreased (P < 0.01). Results from rat primary cells exhibited that the Fr.D administration group exhibited significantly higher cell survival rates than the fluoride group (P < 0.01). Similarly, primary rat cells treated with Fr.D showed enhanced cell viability (P < 0.05) and reduced apoptosis rate, LDH, MDA, SOD, GSH-Px, CAT, and ROS levels (P < 0.05) compared to the model group. Western blot analysis indicated that the Fr.D treatment group elevated the Bcl-2/Bax protein expression ratio and reduced Caspase-3 and Caspase-9 activation levels (P < 0.01) compared to the model group. The results suggest that components within the Fr.D from Periploca forrestii may alleviate fluoride-induced liver injury by potentially counteracting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Wei-Yu Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Ding-Yan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Shuai-Shuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
39
|
Liu H, Nguyen HH, Hwang SY, Lee SS. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. Int J Mol Sci 2023; 24:16805. [PMID: 38069125 PMCID: PMC10706054 DOI: 10.3390/ijms242316805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In patients with portal hypertension, there are many complications including cardiovascular abnormalities, hepatorenal syndrome, ascites, variceal bleeding, and hepatic encephalopathy. The underlying mechanisms are not yet completely clarified. It is well known that portal hypertension causes mesenteric congestion which produces reactive oxygen species (ROS). ROS has been associated with intestinal mucosal injury, increased intestinal permeability, enhanced gut bacterial overgrowth, and translocation; all these changes result in increased endotoxin and inflammation. Portal hypertension also results in the development of collateral circulation and reduces liver mass resulting in an overall increase in endotoxin/bacteria bypassing detoxication and immune clearance in the liver. Endotoxemia can in turn aggravate oxidative stress and inflammation, leading to a cycle of gut barrier dysfunction → endotoxemia → organ injury. The phenotype of cardiovascular abnormalities includes hyperdynamic circulation and cirrhotic cardiomyopathy. Oxidative stress is often accompanied by inflammation; thus, blocking oxidative stress can minimize the systemic inflammatory response and alleviate the severity of cardiovascular diseases. The present review aims to elucidate the role of oxidative stress in cirrhosis-associated cardiovascular abnormalities and discusses possible therapeutic effects of antioxidants on cardiovascular complications of cirrhosis including hyperdynamic circulation, cirrhotic cardiomyopathy, and hepatorenal syndrome.
Collapse
Affiliation(s)
| | | | | | - Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada (H.H.N.); (S.Y.H.)
| |
Collapse
|
40
|
Ma X, Tian Y, Zhang W, Zhang R, Xu X, Han J, Jiang Y, Wang X, Man C. Stress-induced immunosuppression inhibits immune response to infectious bursal disease virus vaccine partially by miR-27b-3p/SOCS3 regulatory gene network in chicken. Poult Sci 2023; 102:103164. [PMID: 39492374 PMCID: PMC10628791 DOI: 10.1016/j.psj.2023.103164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which often reduces the prevention and control effects of various vaccines, including infectious bursal disease virus (IBDV) vaccine, and brings enormous economic losses to the poultry industry. However, the molecular mechanisms of SIIS inhibiting immune response to IBDV vaccine remain unclear. In this study, suppressor of cytokine signaling 3 (SOCS3) gene was selected and stress-induced immunosuppressed chickens were simulated using dexamethasone (Dex). Quantitative real-time PCR (qRT-PCR) was conducted to analyze its expression characteristics and game relationships between SOCS3 gene and miR-27b-3p (it could target SOCS3 gene) in the process of SIIS inhibiting immune response to IBDV vaccine in chicken, and the potential application value of circulating miR-27b-3p as a biomarker was also identified. The results showed that SOCS3 gene and miR-27b-3p were significantly differentially expressed in the candidate tissues during SIIS inhibiting the immune response to IBDV (P < 0.05), respectively, which were key factors involved in the process. Moreover, miR-27b-3p and SOCS3 gene showed game regulation relationships in several tissues during the process, so the miR-27b-3p/SOCS3 regulatory network was one of the key mechanisms of SOCS3 gene participating in the process. Circulating miR-27b-3p was differentially expressed in serum at 10 time points (1, 2, 3, 4, 5, 7, 14, 21, 28, and 35 days postimmunization (dpi)) in the process (P < 0.05), showing that circulating miR-27b-3p was a valid candidate target as a molecular marker for detecting SIIS inhibiting the IBDV immune response. This study can provide references for further studying molecular mechanisms of stress affecting immune response.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
41
|
Maiers JL, Chakraborty S. The Cellular, Molecular, and Pathologic Consequences of Stress on the Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1353-1354. [PMID: 37544504 PMCID: PMC10548265 DOI: 10.1016/j.ajpath.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|