1
|
Zhang YT, Yang Y, Bu DP, Ma L. The effects of gamma-aminobutyric acid on growth performance, diarrhoea, ruminal fermentation, and antioxidant capacity in pre-weaned calves. Animal 2025; 19:101493. [PMID: 40279853 DOI: 10.1016/j.animal.2025.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
The pre-weaning phase is a vital period for the growth and development of calves, significantly impacting their future health and productivity. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the mammalian central nervous system that lowers blood pressure, stimulates feed intake, and enhances antioxidant capability. Gamma-aminobutyric acid has been proven beneficial for adult cows, while little research has been conducted on calves. Therefore, this study examined the effects of GABA on growth performance, diarrhoea, ruminal fermentation, and antioxidant capacity in pre-weaned Holstein calves. Ninety male Holstein calves were allocated to five groups: 0 mg/d (G0), 25 mg/d (G25), 50 mg/d (G50), 100 mg/d (G100), and 200 mg/d (G200). The experiment was conducted from 11 to 75 days of calves age, and the calves were weaned at 75 days of age. Growth performance indicators, ruminal fluid, faecal score, and serum were collected at 11, 28, 42, 60, and 75 days of calves' age. The results showed that adding GABA positively affected average daily gain and body height, with no effects on diarrhoea frequency. All dosages significantly reduced acetate and total volatile fatty acid levels in ruminal fermentation, with butyrate showing a complex response at higher doses. Overall, we recommended 100 mg/d as the optimal GABA supplementation level to improve growth performance and regulate the ruminal fermentation of pre-weaned calves before weaning.
Collapse
Affiliation(s)
- Y T Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Y Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - L Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
2
|
Zhang R, Zhang L, An X, Li J, Niu C, Zhang J, Geng Z, Xu T, Yang B, Xu Z, Yue Y. Hybridization promotes growth performance by altering rumen microbiota and metabolites in sheep. Front Vet Sci 2024; 11:1455029. [PMID: 39386242 PMCID: PMC11461465 DOI: 10.3389/fvets.2024.1455029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Hybridization can substantially improve growth performance. This study used metagenomics and metabolome sequencing to examine whether the rumen microbiota and its metabolites contributed to this phenomenon. We selected 48 approximately 3 month-old male ♂Hu × ♀Hu (HH, n = 16), ♂Poll Dorset × ♀Hu (DH, n = 16), and ♂Southdown × ♀Hu (SH, n = 16) lambs having similar body weight. The sheep were fed individually under the same nutritional and management conditions for 95 days. After completion of the trial, seven sheep close to the average weight per group were slaughtered to collect rumen tissue and content samples to measure rumen epithelial parameters, fermentation patterns, microbiota, and metabolite profiles. The final body weight (FBW), average daily gain (ADG), and dry matter intake (DMI) values in the DH and SH groups were significantly higher and the feed-to-gain ratio (F/G) significantly lower than the value in the HH group; additionally, the papilla height in the DH group was higher than that in the HH group. Acetate, propionate, and total volatile fatty acid (VFA) concentrations in the DH group were higher than those in the HH group, whereas NH3-N concentration decreased in the DH and SH groups. Metagenomic analysis revealed that several Prevotella and Fibrobacter species were significantly more abundant in the DH group, contributing to an increased ability to degrade dietary cellulose and enrich their functions in enzymes involved in carbohydrate breakdown. Bacteroidaceae bacterium was higher in the SH group, indicating a greater ability to digest dietary fiber. Metabolomic analysis revealed that the concentrations of rumen metabolites (mainly lysophosphatidylethanolamines [LPEs]) were higher in the DH group, and microbiome-related metabolite analysis indicated that Treponema bryantii and Fibrobacter succinogenes were positively correlated with the LPEs. Moreover, we found methionine sulfoxide and N-methyl-4-aminobutyric acid were characteristic metabolites in the DH and SH groups, respectively, and are related to oxidative stress, indicating that the environmental adaptability of crossbred sheep needs to be further improved. These findings substantially deepen the general understanding of how hybridization promotes growth performance from the perspective of rumen microbiota, this is vital for the cultivation of new species and the formulation of precision nutrition strategies for sheep.
Collapse
Affiliation(s)
- Rui Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Liwa Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xuejiao An
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jinxia Zhang
- Qingyang Research Institute of Agricultural Sciences, Qingyang, China
| | - Zhiguang Geng
- Qingyang Research Institute of Agricultural Sciences, Qingyang, China
| | - Tao Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Agricultural and Rural Comprehensive Service Center of Gengwan Township, Qingyang, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Zhenfei Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
3
|
Zhang B, Yang Q, Liu N, Zhong Q, Sun Z. The Effects of Glutamine Supplementation on Liver Inflammatory Response and Protein Metabolism in Muscle of Lipopolysaccharide-Challenged Broilers. Animals (Basel) 2024; 14:480. [PMID: 38338123 PMCID: PMC10854980 DOI: 10.3390/ani14030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1β, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Chang Cheng Road, Cheng Yang District, Qingdao 266109, China
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China
| | - Qian Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Ning Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| |
Collapse
|
4
|
Li X, Zhao X, Yu M, Zhang M, Feng J. Effects of Heat Stress on Breast Muscle Metabolomics and Lipid Metabolism Related Genes in Growing Broilers. Animals (Basel) 2024; 14:430. [PMID: 38338073 PMCID: PMC10854583 DOI: 10.3390/ani14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
With global warming and worsening climatic conditions, heat stress (HS) has become a significant challenge affecting the development of poultry production. In this study, we aimed to determine the effects of HS on breast muscle metabolomics and lipid metabolism-related genes in growing broilers. One hundred twenty 29-day-old Arbor Acres broilers were randomly divided into normal temperature (NT; 21 ± 1 °C) and heat stress (HS; 31 ± 1 °C) groups, with six replicates (ten birds in each replicate) in each group, raised for 14 days in two environment chambers at 60 ± 7% relative humidity. Compared with the broilers in the NT group, the average daily food intake, average daily gain and breast muscle yield in the HS group were significantly lower (p < 0.05). The feed conversion ratio was significantly higher in the HS group (p < 0.05). The concentrations of serum corticosterone, free fatty acids and cholesterol and the percentage of abdominal fat of broilers in the HS group were significantly higher (p < 0.05) than the values of the broilers in the NT group. Untargeted breast muscle metabolome analysis revealed 14 upregulated differential metabolites, including glycerophosphocholine, and 27 downregulated differential metabolites, including taurine, in the HS group compared to the NT group; the HS group also displayed significant effects on six metabolic pathways compared to the NT group (p < 0.05). The mRNA expression levels of peroxisome proliferator-activated receptor gamma coactivator-1-alpha, peroxisome proliferator-activated receptor alpha (PPARα) and ATP-binding cassette transporter A1 in the liver and breast muscles were significantly decreased in the HS group compared with the NT group (p < 0.05). The collective findings reveal that HS can cause disorders in breast muscle lipid metabolism in broilers. The PPARα gene might be the key gene in the mechanism of the lipid metabolism that is induced by HS in breast muscle of broilers. These findings provide novel insights into the effects of HS on chicken growth.
Collapse
Affiliation(s)
| | | | | | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (M.Y.); (J.F.)
| | | |
Collapse
|
5
|
Lee S, Moniruzzaman M, Farris N, Min T, Bai SC. Interactive Effect of Dietary Gamma-Aminobutyric Acid (GABA) and Water Temperature on Growth Performance, Blood Plasma Indices, Heat Shock Proteins and GABAergic Gene Expression in Juvenile Olive Flounder Paralichthys olivaceus. Metabolites 2023; 13:metabo13050619. [PMID: 37233660 DOI: 10.3390/metabo13050619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system of living organisms and has the ability to reduce the magnitude of stress in humans and animals. In this study, we evaluated the supplemental effects of GABA on normal and high water temperature based on growth, blood plasma composition as well as heat shock proteins and GABA-related gene expression in juvenile olive flounder. For this, a 2 × 2 factorial design of experiment was employed to investigate the dietary effects of GABA at 0 mg/kg of diet (GABA0 diet) and 200 mg/kg of diet (GABA200 diet) in water temperatures of 20 ± 1 °C (normal temperature) and 27 ± 1 °C (high temperature) for 28 days. A total of 180 fish with an average initial weight of 40.1 ± 0.4 g (mean ± SD) were distributed into 12 tanks, of which, each tank contained 15 fish based on the 4 dietary treatment groups in triplicate. At the end of the feeding trial, the results demonstrated that both temperature and GABA had significant effects on the growth performance of the fish. However, fish fed the GABA200 diet had a significantly higher final body weight, weight gain and specific growth rate as well as a significantly lower feed conversion ratio than the fish fed the GABA0 diet at the high water temperature. A significant interactive effect of water temperature and GABA was observed on the growth performance of olive flounder based on the two-way analysis of variance. The plasma GABA levels in fish were increased in a dose-dependent manner at normal or high water temperatures, whereas cortisol and glucose levels were decreased in fish fed GABA-supplemented diets under temperature stress. The GABA-related mRNA expression in the brains of the fish such as GABA type A receptor-associated protein (Gabarap), GABA type B receptor 1 (Gabbr1) and glutamate decarboxylase 1 (Gad1) were not significantly affected by GABA-supplemented diets under normal or temperature stressed conditions. On the other hand, the mRNA expression of heat shock proteins (hsp) in the livers of the fish, such as hsp70 and hsp90, were unchanged in fish fed the GABA diets compared to the control diet at the high water temperature. Collectively, the present study showed that dietary supplementation with GABA could enhance growth performance, and improve the feed utilization, plasma biochemical parameters and heat shock proteins and GABA-related gene expression under the stress of high water temperatures in juvenile olive flounder.
Collapse
Affiliation(s)
- Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Nathaniel Farris
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Sungchul C Bai
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Ncho CM, Gupta V, Choi YH. Effects of Dietary Glutamine Supplementation on Heat-Induced Oxidative Stress in Broiler Chickens: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:570. [PMID: 36978818 PMCID: PMC10045030 DOI: 10.3390/antiox12030570] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In avian species, heat stress (HS) is usually the result of being exposed to high ambient temperatures, whereas oxidative stress (OS) results from the overproduction of reactive oxygen species. The current literature suggests that HS often leads to OS. Therefore, this systematic review and meta-analysis was conducted to assess the effects of dietary supplementation of glutamine on the antioxidant status and growth performances in heat-stressed broilers. A total of 13 studies were deemed eligible after an exhaustive search of the literature from Google Scholar, PubMed, and Scopus. Briefly, the following criteria were used to select the studies: trials performed on broilers; publication in peer-review journals using English as the text language; and sufficient details about the design and inclusion of dietary glutamine as a treatment for HS. Two main categories of outcomes were extracted from the studies included in the review: growth parameters and OS markers. For the meta-analysis, a random effect model was used when the heterogeneity was higher than 50%, and a fixed effect model was applied otherwise. Pooled standardized mean differences (SMD), and mean differences (MD) with their confidence intervals (CI) from the studies revealed that dietary glutamine could increase body weight gain (SMD = 0.70, CI = 0.50 to 0.90, p < 0.05), and feed intake (FI) (SMD = 0.64, CI = 0.43 to 0.86, p < 0.05), and reduce the feed conversion ratio (MD = -0.05, CI = -0.07 to -0.02, p < 0.05) in heat-exposed birds. Additionally, higher glutamine (SMD = 1.21, CI = 1.00 to 1.43, p < 0.05), glutathione (SMD = 1.25, CI = 0.88 to 1.62, p < 0.05), superoxide dismutase (SOD) (SMD = 0.97, CI = 0.58 to 1.36, p < 0.05), and catalase (SMD = 0.94, CI = 0.72 to 1.16, p < 0.05) levels were recorded in the serum, breast, and thigh muscle after supplementation of glutamine. Furthermore, the subgroup analysis revealed that malondialdehydes levels were decreased only in the serum (SMD = -0.83, CI = -1.25 to -0.41, p < 0.001) and thigh muscle (SMD = -1.30, CI = -1.86 to -0.35, p < 0.001) while glutathione peroxidase (GPX) activity was increased in the breast (SMD = 1.32, CI = 0.95 to 1.68, p < 0.05) and thigh muscle (SMD = 1.53, CI = 1.06 to 1.99, p < 0.05). Meta-regression models indicated that longer periods of heat exposure were inversely associated with the effectiveness of dietary glutamine in increasing FI, GPX, and SOD (p < 0.05). Besides, increasing the dietary concentration of glutamine led to higher GPX and SOD levels (p < 0.05). Taken together, results suggest that dietary supplementation of glutamine can effectively mitigate the deleterious effects of HS by enhancing the antioxidant status and increasing growth performances in broilers.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|
8
|
Uyanga VA, Musa TH, Oke OE, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front Physiol 2023; 14:1123582. [PMID: 36824469 PMCID: PMC9941544 DOI: 10.3389/fphys.2023.1123582] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Heat stress remains a major environmental factor affecting poultry production. With growing concerns surrounding climate change and its antecedent of global warming, research on heat stress in poultry has gradually gained increased attention. Therefore, this study aimed to examine the current status, identify the research frontiers, and highlight the research trends on heat stress in poultry research using bibliometric analysis. Methods: The literature search was performed on the Web of Science Core Collection database for documents published from 2000 to 2021. The documents retrieved were analyzed for their publication counts, countries, institutions, keywords, sources, funding, and citation records using the bibliometric app on R software. Network analysis for co-authorship, co-occurrence, citation, co-citation, and bibliographic coupling was visualized using the VOSviewer software. Results: A total of 468 publications were retrieved, and over the past two decades, there was a gradual increase in the annual number of publications (average growth rate: 4.56%). China had the highest contribution with respect to the number of publications, top contributing authors, collaborations, funding agencies, and institutions. Nanjing Agricultural University, China was the most prolific institution. Kazim Sahin from Firat University, Turkey contributed the highest number of publications and citations to heat stress in poultry research, and Poultry Science was the most productive and the most cited journal. The top 10 globally cited documents mainly focused on the effects of heat stress, alleviation of heat stress, and the association between heat stress and oxidative stress in poultry. All keywords were grouped into six clusters which included studies on "growth performance", "intestinal morphology", "heat stress", "immune response", "meat quality", and "oxidative stress" as current research hotspots. In addition, topics such as; "antioxidants", "microflora", "intestinal barrier", "rna-seq", "animal welfare", "gene expression", "probiotics", "feed restriction", and "inflammatory pathways" were identified for future research attention. Conclusion: This bibliometric study provides a detailed and comprehensive analysis of the global research trends on heat stress in poultry over the last two decades, and it is expected to serve as a useful reference for potential research that will help address the impacts of heat stress on poultry production globally.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| | - Taha H. Musa
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| |
Collapse
|
9
|
Park KT, Oh M, Joo Y, Han JK. Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments. Anim Biosci 2023; 36:248-255. [PMID: 36108701 PMCID: PMC9834722 DOI: 10.5713/ab.22.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. METHODS The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. RESULTS The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. CONCLUSION Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.
Collapse
Affiliation(s)
- Keun-tae Park
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Mihyang Oh
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Younghye Joo
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea,Corresponding Author: Jong-Kwon Han, Tel: +82-2-2203-7397, Fax: +82-2-2203-7398, E-mail:
| |
Collapse
|
10
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
11
|
Fathi M, Saeedyan S, Kaoosi M. Gamma-amino butyric acid (GABA) supplementation alleviates dexamethasone treatment-induced oxidative stress and inflammation response in broiler chickens. Stress 2023; 26:2185861. [PMID: 36861448 DOI: 10.1080/10253890.2023.2185861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
This experiment was conducted to investigate the effect of Gamma-amino butyric acid (GABA) on growth performance, serum and liver antioxidant status, inflammation response and hematological changes, in male broiler chickens under experimentally induced stress via in-feed dexamethasone (DEX). A total of 300 male chicks (Ross 308) on day 7 after hatching, were randomly selected into four groups which were positive control group (PC, without any treatment), negative control (NC, with 1 mg/kg DEX), a third group received 1 mg/kg DEX and 100 mg/kg GABA (DG +) and the last one was (DG ++) which received 1 mg/kg DEX and 200 mg/kg GABA. Each group has five replicates (15 birds/replicate). Dietary GABA modulated DEX-induced adverse effects on body weight, feed intake, and feed conversion ratio. The DEX-induced effect of serum levels of IL-6 and IL-10 was reduced by dietary GABA supplementation. The activity of serum and liver superoxide dismutase, catalase, glutathione peroxidase were enhanced and malondialdehyde was reduced by GABA supplementation. The serum levels of total cholesterol & triglyceride were higher while low-density lipoprotein & high-density lipoprotein were lower in GABA groups than NC group. GABA supplementation also significantly decreased the heterophil, heterophil/lymphocyte ratio and elevated the activities of aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) than NC group. In conclusion, dietary GABA supplementation can alleviate DEX stress-induced oxidative stress and inflammation response.
Collapse
Affiliation(s)
- Mokhtar Fathi
- Department of Animal Science, Payam Noor University, Tehran, Iran
| | | | - Majid Kaoosi
- Department of Biology, Payam Noor University, Tehran, Iran
| |
Collapse
|
12
|
Javaid A, Wang F, Horst EA, Diaz-Rubio ME, Wang LF, Baumgard LH, McFadden JW. Effects of acute intravenous lipopolysaccharide administration on the plasma lipidome and metabolome in lactating Holstein cows experiencing hyperlipidemia. Metabolomics 2022; 18:75. [PMID: 36125563 DOI: 10.1007/s11306-022-01928-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The effects of lipopolysaccharides (i.e., endotoxin; LPS) on metabolism are poorly defined in lactating dairy cattle experiencing hyperlipidemia. OBJECTIVES Our objective was to explore the effects of acute intravenous LPS administration on metabolism in late-lactation Holstein cows experiencing hyperlipidemia induced by intravenous triglyceride infusion and feed restriction. METHODS Ten non-pregnant lactating Holstein cows (273 ± 35 d in milk) were administered a single bolus of saline (3 mL of saline; n [Formula: see text] 5) or LPS (0.375 [Formula: see text]g of LPS/kg of body weight; n [Formula: see text] 5). Simultaneously, cows were intravenously infused a triglyceride emulsion and feed restricted for 16 h to induce hyperlipidemia in an attempt to model the periparturient period. Blood was sampled at routine intervals. Changes in circulating total fatty acid concentrations and inflammatory parameters were measured. Plasma samples were analyzed using untargeted lipidomics and metabolomics. RESULTS Endotoxin increased circulating serum amyloid A, LPS-binding protein, and cortisol concentrations. Endotoxin administration decreased plasma lysophosphatidylcholine (LPC) concentrations and increased select plasma ceramide concentrations. These outcomes suggest modulation of the immune response and insulin action. Lipopolysaccharide decreased the ratio of phosphatidylcholine to phosphatidylethanomanine, which potentially indicate a decrease in the hepatic activation of phosphatidylethanolamine N-methyltransferase and triglyceride export. Endotoxin administration also increased plasma concentrations of pyruvic and lactic acids, and decreased plasma citric acid concentrations, which implicate the upregulation of glycolysis and downregulation of the citric acid cycle (i.e., the Warburg effect), potentially in leukocytes. CONCLUSION Acute intravenous LPS administration decreased circulating LPC concentrations, modified ceramide and glycerophospholipid concentrations, and influenced intermediary metabolism in dairy cows experiencing hyperlipidemia.
Collapse
Affiliation(s)
- Awais Javaid
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Feiran Wang
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
- China Agricultural University, Beijing, 100193, China
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - M Elena Diaz-Rubio
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lin F Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Impact of embryonic manipulations on core body temperature dynamics and survival in broilers exposed to cyclic heat stress. Sci Rep 2022; 12:15110. [PMID: 36068282 PMCID: PMC9448727 DOI: 10.1038/s41598-022-19063-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Ambient temperature-associated stress has been shown to affect the normal physiological functions of birds. The recent literature indicated that both, embryonic thermal manipulation (ETM) and in ovo feeding (IOF) of γ-aminobutyric acid (GABA) can mitigate the deleterious effects of heat stress (HS) in young broiler chicks. Therefore, this study intended to assess the effects of cyclic HS (32 ± 1 °C, 4 h/day from day 29 to 35) on rectal temperatures (RTs) and survival in broiler chickens after ETM and in IOF of GABA. A total of 275 RT data points and survival data were collected from chicks assigned to the following five treatments: chicks hatched from control eggs (CON); chicks hatched from control eggs but exposed to HS (CON + HS); chicks hatched from eggs injected at 17.5 days of incubation with 0.6 mL of 10% GABA and exposed to HS (G10 + HS); chicks hatched from thermally manipulated eggs (39.6 °C, 6 h/day from embryonic days 10 to 18) and exposed to HS (TM + HS); chicks hatched from eggs that received both previous treatments during incubation and exposed to HS (G10 + TM + HS). Under thermoneutral conditions, RTs increased quadratically from 39.9 ± 0.2 °C at hatching to 41.4 ± 0.1 °C at 8 days of age. When exposed to cyclic HS during the last week of rearing, the birds' RTs tended to decrease at the end of the heat stress challenge (from 43.0 ± 0.2 °C on day 29 to 42.4 ± 0.1 °C on day 35). A stepwise Cox regression indicated that treatment was predictive of birds' survival. Hazard ratios (HR) and their confidence intervals (CI) were calculated to assess the likelihood of death during the trial. The birds, belonging to the G10 + TM + HS group, were less likely to die under HS (HR 0.11, 95% CI 0.02 to 0.91, P = 0.041) compared to the CON + HS birds. Taken together, the combination of ETM and GABA IOF may help mitigate the drawbacks of cyclic HS by improving the survival of broilers.
Collapse
|
14
|
Incharoen T, Roytrakul S, Likittrakulwong W. Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress. Proteomes 2021; 9:48. [PMID: 34941813 PMCID: PMC8708272 DOI: 10.3390/proteomes9040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Germinated paddy rice (GPR) could be a good alternative feed source for poultry with stocking density and heat stress problems. A total of 72 Hy-line Brown laying hens raised under low (LSD, 0.12 m2/bird) and high stocking densities (HSD, 0.06 m2/bird) were investigated. Three dietary GPR levels (0, 74 and 148 g/kg) were used. It was found that average daily feed intake, hen-day egg production, and egg mass significantly decreased in the HSD group. The levels of serum glucose (GLU), phosphorous (P), corticosterone (CORT), total Ig, lysozyme (LZY), and superoxide dismutase activities (SOD) in the HSD group were higher than those in the LSD group. Dietary GPR significantly affected GLU, P, alternative complement haemolytic 50 (ACH50), total Ig, and LZY. Moreover, CORT level significantly decreased in 74 and 148 g/kg dietary GPR groups, whereas SOD significantly increased only in the 148 g/kg dietary GPR group. Serum samples were analyzed using liquid chromatography-tandem mass spectrometry, and 8607 proteins were identified. Proteome analysis revealed 19 proteins which were enriched in different stocking densities and dietary GPR levels. Quantitative real-time reverse transcription-PCR technique was successfully used to verify the differentiated abundant protein profile changes. The proteins identified in this study could serve as appropriate biomarkers.
Collapse
Affiliation(s)
- Tossaporn Incharoen
- Department of Agricultural Science, Faculty of Agriculture Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sittiruk Roytrakul
- National Center for Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12100, Thailand;
| | - Wirot Likittrakulwong
- Animal Science Program, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| |
Collapse
|
15
|
Performance, Carcass Yield, Muscle Amino Acid Profile, and Levels of Brain Neurotransmitters in Aged Laying Hens Fed Diets Supplemented with Guanidinoacetic Acid. Animals (Basel) 2021; 11:ani11113091. [PMID: 34827823 PMCID: PMC8614553 DOI: 10.3390/ani11113091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
Guanidinoacetic acid (GA) is a natural precursor of creatine in the body and is usually used to improve the feed conversion and cellular energy metabolism of broiler chickens. The objective was to elucidate the effect of dietary supplementation of GA on carcass yield, muscle amino acid profile, and concentrations of brain neurotransmitters in laying hens. In total, 128 72-week-old ISA Brown laying hens were assigned to four equal groups (32 birds, eight replicates per group). The control group (T1) was fed a basal diet with no supplements, while the other experimental groups were fed a basal diet supplemented with 0.5 (T2), 1.0 (T3), and 1.5 (T4) g GA kg-1 diet. The T3 and T4 groups showed higher hen-day egg production and carcass yield compared to the control group (p = 0.016 and 0.039, respectively). The serum creatine level increased linearly with the increased level of dietary GA (p = 0.007). Among the essential amino acids of breast muscle, a GA-supplemented diet linearly increased the levels of leucine, isoleucine, phenylalanine, methionine, and threonine in the breast (p = 0.003, 0.047, 0.001, 0.001, and 0.015, respectively) and thigh (p = 0.026, 0.001, 0.020, 0.009, and 0.028, respectively) muscles. GA supplementation linearly reduced the level of brain serotonin compared to the control group (p = 0.010). Furthermore, supplementation of GA in the diet of laying hens linearly increased the level of brain dopamine (p = 0.011), but reduced the level of brain Gamma-aminobutyric acid (p = 0.027). Meanwhile, the concentration of brain nitric oxide did not differ between the experimental groups (p = 0.080). In conclusion, the dietary supplementation of GA may improve the carcass yield and levels of essential amino acids in the breast muscles, as well as the brain neurotransmitters in aged laying hens.
Collapse
|
16
|
Hosseini-Vashan SJ, Piray AH. Effect of dietary saffron (Crocus sativus) petal extract on growth performance, blood biochemical indices, antioxidant balance, and immune responses of broiler chickens reared under heat stress conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1921628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Ali Hossein Piray
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Liu ZL, Xue JJ, Huang XF, Chen Y, Wang QG, Zhang S, Wang C. Effect of stocking density on growth performance, feather quality, serum hormone, and intestinal development of geese from 1 to 14 days of age. Poult Sci 2021; 100:101417. [PMID: 34530230 PMCID: PMC8450253 DOI: 10.1016/j.psj.2021.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to investigate the effect of stocking density on growth performance, feather quality, serum hormone, and intestinal development of geese from 1 to 14 d of age. A total of 450 one-day-old geese were randomly allotted to 45 battery cage (0.65 m × 0.62 m) pens according to 5 stocking densities (15, 20, 25, 30, and 35 birds/m2). The results showed that ADG and ADFI were reduced (P < 0.05) as stocking density increased from 15 to 35 birds/m2, but increasing stocking density did not influence (P > 0.05) feed conversion ratio (FCR) and body measurement traits. High stocking density significantly decreased (P < 0.05) the feather quality of back, thoracoabdominal, wing, and tail. No significant difference (P > 0.05) was found in serum concentration of adrenocorticotrophic hormone, cortisol, corticosterone, triiodothyronine, and thyroxine. The weight of cecum and intestine decreased (P < 0.05) as the stocking density increased. Increasing stocking density decreased (P < 0.05) jejunal villus height and villus height-to-crypt depth ratio, and increased (P < 0.05) jejunal crypt depth and ileal crypt depth in geese. Consequently, the high stocking density could depress the growth and impaired feather quality and intestinal development of geese. Under our experimental conditions, we recommend that the stocking density of geese from 1 to 14 d of age should not more than 20 birds/m2.
Collapse
Affiliation(s)
- Z L Liu
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China
| | - J J Xue
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China
| | - X F Huang
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China
| | - Y Chen
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China
| | - Q G Wang
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, P. R. China
| | - S Zhang
- Kemin (China) Technologies Animal Nutrition and Health. Zhuhai 519040, P. R. China
| | - C Wang
- Poultry Science Institute, Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, P. R. China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, P. R. China.
| |
Collapse
|
18
|
Ncho CM, Jeong C, Gupta V, Goel A. The effect of gamma-aminobutyric acid supplementation on growth performances, immune responses, and blood parameters of chickens reared under stressful environment: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45019-45028. [PMID: 33856631 DOI: 10.1007/s11356-021-13855-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a well-known feed supplement for its capability of reducing the adverse effect of stress in chickens. Several studies using GABA supplementation as a mitigatory measure have been published. However, it remains difficult to draw a general conclusion since these studies have been done under different experimental conditions. Therefore, the objective of this study was to quantify the response (growth performances, immune responses, and blood biochemical parameters) of chickens to GABA supplementation under various stressful conditions through a meta-analysis approach. A total of 19 articles published from 2011 to 2020, including 30 treatments, were used. A mixed-model ANOVA was used to assess how the growth parameters varied based on the GABA mode of supplementation. Linear mixed models and general linear models were used to evaluate the effects of the GABA doses and the duration of the supplementation on the growth performances and the immune parameters. Results indicated that supplementation of GABA via drinking water was more effective than dietary supplementation for reducing the feed conversion ratio in heat-stressed birds (P < 0.01). In addition, an increase in the GABA doses resulted in an augmentation (P < 0.01) of the body weight gain while a longer duration of supplementation resulted in increasing (P<0.01) the feed intake. Furthermore, increasing the duration of the supplementation reduced the immunoglobulin (P < 0.0001) and bursa's relative weight (P < 0.0001), while increasing blood CD8+ count (P < 0.001) and spleen's relative weight (P < 0.0001). Finally, blood total protein content was increased (P < 0.0001) by a longer duration of supplementation. This study showed that the doses and the duration of the GABA supplementation can affect the growth performances of chickens under stressful conditions. However, the effect of GABA on immune responses and blood parameters is perceived with a relatively longer supplementation duration.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chaemi Jeong
- Department of Applied life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Vaishali Gupta
- Department of Applied life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
19
|
Kim DY, Kim JH, Choi WJ, Han GP, Kil DY. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim Biosci 2021; 34:1839-1848. [PMID: 34445851 PMCID: PMC8563245 DOI: 10.5713/ab.21.0230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of the present study was to investigate the comparative effects of dietary functional nutrients including glutamine (Gln), chromium picolinate (Cr picolinate), vitamin C (Vit C), betaine (Bet), and taurine (Tau) on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Methods A total of 420 21-d-old Ross 308 male broiler chickens (initial body weight = 866±61.9 g) were randomly allotted to 1 of 7 treatment groups with 6 replicates. One group was kept under thermoneutral conditions and was fed a basal diet (PC, positive control). Other 6 groups were exposed to a cyclic heat stress condition. One of the 6 groups was fed the basal diet (NC, negative control), whereas 5 other groups were fed the basal diet supplemented with 0.5% Gln, 500 ppb Cr picolinate, 250 mg/kg Vit C, 0.2% Bet, or 1.0% Tau. The diets and water were provided ad libitum for 21 d. Results Broiler chickens in NC group had decreased (p<0.05) growth performance and immune responses measured based on cutaneous basophil hypersensitivity (CBH), but increased (p<0.05) stress responses measured based on feather corticosterone concentrations and blood heterophil:lymphocyte than those in PC group. However, none of dietary functional nutrients had a positive effect on growth performance of broiler chickens. Dietary supplementation of 250 mg/kg Vit C improved (p<0.05) CBH responses of broiler chickens, but other functional nutrients had no such an improvement in CBH responses. All functional nutrients decreased (p<0.05) stress responses of broiler chickens. Conclusion Functional nutrients including Gln, Cr picolinate, Vit C, Bet, and Tau at the supplemental levels used in this study decrease stress responses of broiler chickens to a relatively similar extent. However, this reduction in stress responses could not fully ameliorate decreased productive performance of broiler chickens raised under the current heat stress conditions.
Collapse
Affiliation(s)
- Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jong Hyuk Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Won Jun Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
20
|
Myostatin and Related Factors Are Involved in Skeletal Muscle Protein Breakdown in Growing Broilers Exposed to Constant Heat Stress. Animals (Basel) 2021; 11:ani11051467. [PMID: 34065334 PMCID: PMC8160752 DOI: 10.3390/ani11051467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our results showed that constant heat stress could affect the expression of myostatin and related factors involved in skeletal muscle protein breakdown in growing broilers, resulting in a decrease in muscle protein deposition. These findings suggest a new strategy for regulating muscle protein breakdown in growing broilers, which could benefit the modern broiler industry in combating constant heat stress. Abstract Heat stress has an adverse effect on the development of poultry farming, which has always aroused great concern. This study was carried out to investigate the protein breakdown mechanism responsible for the suppressive effect of constant heat stress on muscle growth in growing broilers. A total of 96, 29-day-old, Arbor Acres male broilers were randomly divided into two groups, a thermoneutral control (21 ± 1 °C, TC) and a heat stress (31 ± 1 °C, HS) group, with six replicates in each group and eight birds in each replicate. The trial period lasted for 14 d, and the trial was performed at 60 ± 7% relative humidity, a wind speed of <0.5 m/s and an ammonia level of <5 ppm. The results showed that the average daily feed intake and average daily gain in the HS group were distinctly lower than those in the TC group (p < 0.05), whereas the HS group showed a significantly increased feed conversion ratio, nitrogen excretion per weight gain and nitrogen excretion per feed intake compared to the TC group (p < 0.05). In addition, the HS group showed a significantly reduced breast muscle yield and nitrogen utilization in the broilers (p < 0.05). The HS group showed an increase in the serum corticosterone level (p < 0.05) and a decrease in the thyroxine levels in the broiler chickens (p < 0.05) compared to the TC group, whereas the HS group showed no significant changes in the serum 3,5,3′-triiodothyronine levels compared to the TC group (p > 0.05). Moreover, the HS group showed increased mRNA expression levels of myostatin, Smad3, forkhead box O 4, muscle atrophy F-box and muscle ring-finger 1, but reduced mRNA expression levels of the mammalian target of rapamycin, the protein kinase B and the myogenic determination factor 1 (p < 0.05). In conclusion, the poor growth performance of birds under constant heat stress may be due to an increased protein breakdown via an mRNA expression of myostatin and related factors.
Collapse
|
21
|
Effects of L-proline on cellular responses of hen erythrocytes subjected to thermal stress. J Therm Biol 2021; 96:102855. [PMID: 33627283 DOI: 10.1016/j.jtherbio.2021.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Little is known on the protective effects of L-proline on hen erythrocytes. The aim of the study was to determine the protective effects of this amino acid at concentrations of 50 μg/mL, 100 μg/mL, 200 μg/mL in hen erythrocytes subjected to temperatures 41 °C, 43 °C and 45 °C for 1 h and 4 h. The following cellular parameters were determined: viability, morphological alterations, caspase 3/7 activity, heat shock protein HSP70 1A activity and glutathione level. The results showed that exposure to 43 °C and 45 °C resulted in a decrease of viability and increased morphological alterations of the non-treated erythrocytes. Caspase 3/7 activity was increased only at 45 °C, however HSP70 1A activity and glutathione level were increased in the temperature-dependent manner. On the other hand, erythrocytes additionally exposed to L-proline showed alterations of the parameters when compared to the non-treated cells. L-proline at 50 μg/mL and 100 μg/mL increased caspase 3/7 activity at both 41 °C and 43 °C, however it was less augmented at all the concentrations at 45 °C. Glutathione level was decreased in heat-stressed (at 43 °C and 45 °C) hen erythrocytes treated with L-proline (at 50 μg/mL and 100 μg/mL) but it was increased at 200 μg/mL. HSP70 1A activity was augmented in a concentration- and temperature-dependent manner. The results indicate that proapoptotic or antiapoptotic effects of L-proline depend on its concentration and temperature of heat stress and thermoprotective effects induced by the amino acid on some parameters in hen erythrocytes may be a result of stimulation of antioxidative defense and stimulation of HSP70 1A activity.
Collapse
|
22
|
Zhong G, Shao D, Wang Q, Tong H, Shi S. Effects of dietary supplemented of γ-amino butyric acid on growth performance, blood biochemical indices and intestinal morphology of yellow-feathered broilers exposed to a high temperature environment. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1747953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Guang Zhong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Wu QJ, Jiao C, Liu ZH, Cheng BY, Liao JH, Zhu DD, Ma Y, Li YX, Li W. Effect of glutamine on the growth performance, digestive enzyme activity, absorption function, and mRNA expression of intestinal transporters in heat-stressed chickens. Res Vet Sci 2020; 134:51-57. [PMID: 33296811 DOI: 10.1016/j.rvsc.2020.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022]
Abstract
To explore the effect of glutamine (Gln) on the growth performance, digestive enzyme activity, absorption function and mRNA expression of intestinal transporters in heat-stressed chickens, 540 21-day-old Arbor Acres broilers were randomly assigned to a control group (no stress, NS), Gln group (Chickens were administered 0.5% and 1.0% Gln, respectively), heat stress group (HT), and Gln + HT group (Chickens were administered 0.5% and 1.0% Gln, respectively). The chickens in the HT and Gln + HT groups were reared under HT (36 ± 1 °C for 10 h/d and 22 ± 1 °C for 14 h/d), for 21 days. In contrast to the NS group, heat stress caused a reduction in the body weight gain (BWG); feed intake (FI); activity of trypsin, lipase, alkaline phosphatases, Ca2+ and Mg2+ adenosine triphosphatases, and Na+-K+-ATPase; and content of glutathione and d-xylose (P < 0.05) in the other groups. In addition, compared to the F:G and expression levels in the NS group, the heat stress increased the feed intake:body weight gain (F:G) and mRNA expression levels of SGLT1, CaBP-D28k, and L-GSBP (P < 0.05). Furthermore, HT-challenged birds were pretreated with Gln, the BWG; FI; activity of trypsin, lipase, alkaline phosphatase, Ca2+ and Mg2+ adenosine triphosphatases, and Na+-K+-ATPase; and content of glutathione and d-xylose (P < 0.05) were dramatically increased, but it decreased the F:G and mRNA expression levels of SGLT1, CaBP-D28k, and L-GSBP (P < 0.05) in the HT group. In summary, Gln can effectively improve growth performance and may promote digestion and absorption in the gastrointestinal tract by mediating the mRNA expression level of nutrient transporters and Gln metabolism in heat-stressed broilers.
Collapse
Affiliation(s)
- Qiu Jue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China.
| | - Chong Jiao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Zhi Hao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Bin Yao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Jia Hui Liao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Dou Dou Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yuan Xiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Wang Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| |
Collapse
|
24
|
Jeong SB, Kim YB, Lee JW, Kim DH, Moon BH, Chang HH, Choi YH, Lee KW. Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:293-304. [PMID: 33005763 PMCID: PMC7503073 DOI: 10.1016/j.aninu.2020.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022]
Abstract
The present study was conducted to evaluate the effects of dietary gamma-aminobutyric acid (GABA) in broiler chickens raised in high stocking density (HSD) on performance and physiological responses. A total of 900 male broiler chicks (Ross 308) at 1 d old were assigned in a 2 × 2 factorial arrangement to 4 treatments (10 replicates per treatment) with stocking density, 7.5 birds/m2 (low stocking density; LSD) or 15 birds/m2 (HSD), and dietary GABA, 0 or 100 mg/kg. Chickens raised in HSD exhibited a decrease in body weight gain in all phases (P < 0.05) and feed intake in starter and whole phases (P < 0.01), and an increase in feed conversion ratio in the finisher phase (P < 0.01) compared with LSD-raised chickens. However, dietary GABA did not affect growth performance nor interacted with stocking density on production variables. The HSD vs. LSD increased relative liver weight on d 35 whereas dietary GABA increased relative liver weight and decreased relative bursa weight on d 21. Both stocking density and dietary GABA affected yield and quality of breast and leg muscles. Dietary GABA increased (P < 0.05) width of tibia on d 35 and interacted (P = 0.054) with stocking density on breaking stocking density on d 35. The HSD vs. LSD group lowered (P < 0.05) feather coverage scores. Significant interaction between stocking density and GABA on surface temperature of shank on d 21 was noted (P = 0.024). Dietary GABA exhibited an opposite effect on the concentrations of cecal short-chain fatty acids depending on stocking density leading to a moderate to significant interaction. Stocking density decreased alpha-1-acid glycoprotein whereas dietary GABA decreased heterophil-to-lymphocyte ratio and corticosterone in blood or serum samples. Serum biochemical parameters were altered by stocking density or dietary GABA. It is concluded that dietary GABA alleviated stress indices including corticosterone and heterophil-to-lymphocyte ratio, but failed to reverse stocking density-induced growth depression.
Collapse
Affiliation(s)
- Su-Been Jeong
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoo Bhin Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeong-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Hong-Hee Chang
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
25
|
Shimamoto S, Nakamura K, Tomonaga S, Furukawa S, Ohtsuka A, Ijiri D. Effects of Cyclic High Ambient Temperature and Dietary Supplementation of Orotic Acid, a Pyrimidine Precursor, on Plasma and Muscle Metabolites in Broiler Chickens. Metabolites 2020; 10:E189. [PMID: 32408619 PMCID: PMC7281580 DOI: 10.3390/metabo10050189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the effects of high ambient temperature (HT) and orotic acid supplementation on the plasma and muscle metabolomic profiles in broiler chickens. Thirty-two 14-day-old broiler chickens were divided into four treatment groups that were fed diets with or without 0.7% orotic acid under thermoneutral (25 ± 1 °C) or cyclic HT (35 ± 1 °C for 8 h/day) conditions for 2 weeks. The chickens exposed to HT had higher plasma malondialdehyde concentrations, suggesting an increase in lipid peroxidation, which is alleviated by orotic acid supplementation. The HT environment also affected the serine, glutamine, and tyrosine plasma concentrations, while orotic acid supplementation affected the aspartic acid, glutamic acid, and tyrosine plasma concentrations. Untargeted gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS)-based metabolomics analysis identified that the HT affected the plasma levels of metabolites involved in purine metabolism, ammonia recycling, pyrimidine metabolism, homocysteine degradation, glutamate metabolism, urea cycle, β-alanine metabolism, glycine and serine metabolism, and aspartate metabolism, while orotic acid supplementation affected metabolites involved in pyrimidine metabolism, β-alanine metabolism, the malate-aspartate shuttle, and aspartate metabolism. Our results suggest that cyclic HT affects various metabolic processes in broiler chickens, and that orotic acid supplementation ameliorates HT-induced increases in lipid peroxidation.
Collapse
Affiliation(s)
- Saki Shimamoto
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Kiriko Nakamura
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Satoru Furukawa
- Furukawa Research Office Co. Ltd., Setagaya-ku, Tokyo 157-0066, Japan;
| | - Akira Ohtsuka
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| | - Daichi Ijiri
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| |
Collapse
|
26
|
Li XM, Zhang MH, Liu SM, Feng JH, Ma DD, Liu QX, Zhou Y, Wang XJ, Xing S. Effects of stocking density on growth performance, growth regulatory factors, and endocrine hormones in broilers under appropriate environments. Poult Sci 2020; 98:6611-6617. [PMID: 31504910 PMCID: PMC8913966 DOI: 10.3382/ps/pez505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023] Open
Abstract
Stocking density is an important environment factor that affects the development of poultry farming, which has caused widespread concern. This study was carried out to determine the effects of stocking density on growth performance, growth regulatory factors, and endocrine hormones in broilers under appropriate environments. A total of 144 Arbor Acres male broilers (BW 1000 ± 70 g) were randomly divided into low stocking density (LSD; 6.25 birds/m2), medium stocking density (MSD; 12.50 birds/m2), and high stocking density (HSD; 18.75 birds/m2) groups, with 6 replicates in each group, and raised in 3 environmental chambers (same size) from 29-day-old to 42-day-old, respectively. The trial period lasted for 14 D with 21 ± 1°C and 60 ± 7% relative humidity, wind speed < 0.5 m/s, ammonia level<5 ppm. The results indicated that average daily food intake and average daily gain in HSD group showed significantly lower than other 2 groups (P < 0.05). Besides, the HSD group significantly reduced breast muscle yield, tibial length, tibial width, and tibial weight of broilers (P < 0.05). The HSD group increased the mRNA expression level of myostatin, and reduced the mRNA expression levels of insulin-like growth factor 1 (IGF-1) and myogenic determination factor 1 (P < 0.05). The HSD group significantly reduced the expression of parathyroid hormone-related protein in tibial growth plate (P < 0.05). The HSD group increased the serum corticosterone levels of broilers (P < 0.05), and decreased the serum IGF-1 and thyroxine (T4) levels of broiler chickens (P < 0.05) than other stocking density groups. Moreover, the serum alkaline phosphatase levels were decreased (P < 0.05) with increasing stocking density, whereas there were no significant effects on the serum 3,5,3′-triiodothyronine (T3) concentrations in 3 groups (P > 0.05). In conclusion, under appropriate environments HSD reduced the growth performance of broilers and this negative effect was likely associated with decreased growth of muscle and bone.
Collapse
Affiliation(s)
- Xiu Mei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Hong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Si Miao Liu
- School of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jing Hai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Dan Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Xiu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Xing
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Liu A, Gong Z, Lin L, Xu W, Zhang T, Zhang S, Li Y, Chen J, Xiao W. Effects of l-theanine on glutamine metabolism in enterotoxigenic Escherichia coli (E44813)-stressed and non-stressed rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Bai X, Dai S, Li J, Xiao S, Wen A, Hu H. Glutamine Improves the Growth Performance, Serum Biochemical Profile and Antioxidant Status in Broilers Under Medium-Term Chronic Heat Stress. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Yang H, Xing R, Liu S, Yu H, Li P. Analysis of the protective effects of γ-aminobutyric acid during fluoride-induced hypothyroidism in male Kunming mice. PHARMACEUTICAL BIOLOGY 2019; 57:29-37. [PMID: 30676163 PMCID: PMC6346718 DOI: 10.1080/13880209.2018.1563621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Compounds to treat hypothyroidism in the absence of cardiac side effects are urgently required. In this regard, γ-aminobutyric acid (GABA) has gained interest due to its anti-anxiolytic, antihypertensive and antioxidant properties, and reported benefits to the thyroid system. OBJECTIVE We investigated the ability of GABA to ameliorate fluoride-induced thyroid injury in mice, and investigated the mechanism(s) associated with GABA-induced protection. MATERIALS AND METHODS Adult male Kumning mice (N = 90) were exposed to NaF (50 mg/kg) for 30 days as a model of hypothyroidism. To evaluate the effects of GABA administration, fluoride-exposed mice received either thyroid tablets, or low (25 mg/kg), medium (50 mg/kg) or high (75 mg/kg) concentrations of pure GABA orally for 14 days groups (N = 10 each). The effects of low (50 mg/kg); medium (75 mg/kg) and high (100 mg/kg) concentrations of laboratory-separated GABA were assessed for comparison. Effects on thyroid hormone production, oxidative stress, thyroid function-associated genes, and side-effects during therapy were measured. RESULTS GABA supplementation in fluoride-exposed mice significantly increased the expression of thyroid TG, TPO, and NIS (P < 0.05), significantly improved the thyroid redox state (P < 0.05), modulated the expression of thyroid function-associated genes, conferred liver metabolic protection, and prevented changes to myocardial morphology, thus reducing side effects. Both pure and laboratory-separated GABA displayed comparative protective effects. DISCUSSION AND CONCLUSION Our findings support the assertion that GABA exerts therapeutic potential in hypothyroidism. The design and use of human GABA trials to improve therapeutic outcomes in hypothyroidism are now warranted.
Collapse
Affiliation(s)
- Haoyue Yang
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ronge Xing
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huahua Yu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengcheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
30
|
El-Naggar K, El-Kassas S, Abdo SE, Kirrella AAK, Al Wakeel RA. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. J Therm Biol 2019; 84:164-175. [PMID: 31466750 DOI: 10.1016/j.jtherbio.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
This study was conducted to investigate the effects of dietary GABA supplementation on blood biochemical parameters, the overall growth performance, and the relative mRNA expression of some FI- regulating genes in broiler chickens. A total of 192, three-day old chicks of mixed sex from two commercial broiler strains (Ross 308 and Cobb 500) were distributed into 2 groups; a control group and GABA-supplemented group (100 mg/kg diet). When the chicks reached 21 days of age, each group of each strain was randomly subdivided into two subgroups: one was exposed to HS (33 ± 2 °C for 5 h/day for 2 weeks), while the other remained at thermoneutral temperature (24 °C). GABA significantly improved bird growth performance under normal and HS conditions, by increasing body weight (BW), weight gain (WG), and FI and significantly reduced the elevated body temperature of birds under HS. GABA supplementation increased FI by reducing the mRNA expression levels of FI-inhibiting neuropeptides, such as POMC, leptin, Ghrelin, and CCK, during HS and by increasing the expression of FI-stimulating neuropeptides such as AgRP and NPY. Moreover, GABA significantly altered FAS and ACC gene expression, resulting in significant increases in abdominal fat content in birds reared normally. In contrast, GABA lowered fat content in Cobb birds and increased it in Ross birds under HS. Therefore, GABA (100 mg/kg diet) is a strong FI-stimulating neurotransmitter and its regulatory effects depend on broiler strain and housing temperature.
Collapse
Affiliation(s)
- Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, 22758, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Abeer A K Kirrella
- Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
31
|
El-Tarabany MS, Ahmed-Farid OA, El-Tarabany AA. Impact of space allowance on performance traits, brain neurotransmitters and blood antioxidant activity of New Zealand White rabbits. Prev Vet Med 2018; 163:44-50. [PMID: 30670185 DOI: 10.1016/j.prevetmed.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 01/22/2023]
Abstract
The objective of this trial was to investigate the effect of space allowance on performance, welfare-related parameters and the levels of brain neurotransmitters in growing male rabbits. In a cage housing system, a total of 96 weaned rabbits were accommodated on three space allowance conditions (S1 = 1425 cm2/rabbit; S2 = 850 cm2/rabbit; S3 = 625 cm2/rabbit), with 8 replicate cages per each group. Rabbits in the S1 and S2 groups showed better daily feed intake and feed conversion ratio compared with the high stocking density group (p = 0.004 and 0.018, respectively). Compared to the highest stocking density group (S3), rabbits in the S1 and S2 groups showed significantly lower serum cortisol, MDA and GSSH level (p = 0.026, 0.018 and 0.009, respectively). The concentration of dopamine in brain tissues was significantly decreased in the S3 group compared with other experimental groups (P = 0.001). However, there was no significant effect of space allowance on the brain AChE level (P = 0.277). Brain serotonin and GABA levels showed a significant decrease in rabbits reared with a limited space allowance (S3) compared with S1 and S2 groups (P = 0.001 and 0.038, respectively). The level of brain MDA was significantly increased in the S3 group compared with the S1 group (P = 0.006). However, there were no detectable differences in the brain ATP level in rabbits reared with different space allowance (P = 0.693). In conclusion, the current study indicates that the 850 cm2/rabbit stocking density has resulted in a better feed intake, and welfare-related conditions compared with the 625 cm2/rabbit. Furthermore, the limited space allowance may impair the most important brain neurotransmitters in male rabbits.
Collapse
Affiliation(s)
- Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt.
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Egypt
| | - Akram A El-Tarabany
- Biological Applications Department, Radioisotopes Applications Division, NRC, Atomic Energy Authority, Inshas, Cairo, Egypt
| |
Collapse
|
32
|
Gholipour V, Chamani M, Aghdam Shahryar H, Sadeghi A, Aminafshar M. Effects of dietary L-glutamine supplement on performance, characteristics of the carcase and intestinal morphometry in guinea fowl chickens (Numida meleagris). ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1544856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vahid Gholipour
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Habib Aghdam Shahryar
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Aliasghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Sifa D, Bai X, Zhang D, Hu H, Wu X, Wen A, He S, Zhao L. Dietary glutamine improves meat quality, skeletal muscle antioxidant capacity and glutamine metabolism in broilers under acute heat stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1520113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dai Sifa
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Dan Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Lei Zhao
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| |
Collapse
|
34
|
Xue GD, Barekatain R, Wu SB, Choct M, Swick RA. Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poult Sci 2018; 97:1334-1341. [PMID: 29452407 DOI: 10.3382/ps/pex444] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) causes significant economic losses in the broiler chicken industry, especially in birds raised without in-feed antibiotics. L-glutamine (Gln) is an amino acid that may compensate for metabolic losses from infection and improve the intestinal development. This study investigated the effects of dietary Gln (10 g/kg) supplementation on growth performance, intestinal lesions, jejunum morphology, and serum biochemical indices of broiler chickens during NE challenge. The study employed a factorial arrangement of treatments with factors: NE challenge, no or yes; dietary Gln inclusion, 0 g/kg in starter (S), d 0 to 10, grower (G) d 10 to 24, and finisher (F) d 24 to 35; 10 g/kg in S, G, F, or 10 g/kg in S, G only. Each treatment was replicated in 6 floor pens with 17 birds per pen as the experimental unit for performance and 2 birds for other measurements. Challenge significantly reduced bird performance, increased incidence of intestinal lesions, and affected intestinal development and serum biochemical indices. Regardless of challenge, Gln supplementation increased gain (P < 0.05), feed intake (P < 0.05), and decreased FCR (P < 0.05) on d 24. On d 35, Gln improved gain (P < 0.05) and FCR (P < 0.001) whereas withdrawing Gln from finisher tended to diminish the beneficial effect on weight gain but not FCR. Dietary Gln reduced lesion scores in the jejunum (P < 0.01) and ileum (P < 0.01) in challenged birds. On d 16, Gln increased villus height to crypt depth ratio in unchallenged birds (P < 0.05) and reduced crypt depth of challenged birds on d 24 (P < 0.05). Regardless of challenge, supplementation with Gln reduced crypt depth on d 16 (P < 0.05), and increased villus height (P < 0.01) and the villus height to crypt depth ratio (P < 0.001) on d 24. Dietary Gln lowered serum uric acid level regardless of challenge (P < 0.05). The current study indicates that dietary Gln alleviates adverse effects of NE and may be useful in antibiotic-free diets.
Collapse
Affiliation(s)
- G D Xue
- Department of Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - S B Wu
- Department of Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - M Choct
- Department of Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - R A Swick
- Department of Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
35
|
Thymol supplementation effects on adrenocortical, immune and biochemical variables recovery in Japanese quail after exposure to chronic heat stress. Animal 2018; 13:318-325. [PMID: 29983133 DOI: 10.1017/s175173111800157x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic heat stress (CHS) exposure negatively impairs avian' immunoneuroendocrine interplay. Thymol has shown several bioactive properties including antioxidant, bactericidal, antifungal and gamma-aminobutyric acid modulator activities. Indeed, supplementation with thymol has been used with positive effects on poultry production and immune-related variables. This study evaluates whether a thymol dietary supplementation can be used as a new functional feed strategy to mitigate CHS deleterious effects on endocrine, biochemical and immune-related variables. Starting at 100 days of age, 24 fully adult Japanese quail were fed with a diet supplemented with thymol (≈80 mg/quail per day) and other 24 quail remained non-supplemented (control diet). Between 119 and 127 days of age, half of the quail within those groups were submitted to a CHS by increasing environmental temperature from 24°C to 34°C during the light phase and the other half remained at 24°C (non-stressed controls). A period of 3 days after CHS ended (during the recovery period), corticosterone, albumin, total proteins and globulins and glucose concentrations, inflammatory response, antibody production and heterophil to lymphocyte (H/L) ratio were assessed. No differences between groups were found in basal corticosterone concentrations. Total proteins, total globulins and glucose concentrations were found elevated in the previously CHS group compared with their control counterparts. Regardless of the previous CHS exposure, thymol supplementation increased albumin concentrations and inflammatory responses and decreased antibody titers. An interaction between thymol supplementation and prior CHS exposure was found on the H/L ratio. Quail previously exposed to CHS and supplemented with thymol showed similar H/L values than their control non-stressed counterparts, suggesting that thymol has a stress preventive effect on this variable. The present findings together with the already reported thymol bioactive properties, suggest that feed supplementation with this compound could be a useful strategy to help overcoming some of the CHS induced alterations.
Collapse
|
36
|
GABA regulates the proliferation and apoptosis of MAC-T cells through the LPS-induced TLR4 signaling pathway. Res Vet Sci 2018; 118:395-402. [DOI: 10.1016/j.rvsc.2018.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
|
37
|
Nazar FN, Videla EA, Fernandez ME, Labaque MC, Marin RH. Insights into thermal stress in Japanese quail (Coturnix coturnix): dynamics of immunoendocrine and biochemical responses during and after chronic exposure. Stress 2018; 21:257-266. [PMID: 29478357 DOI: 10.1080/10253890.2018.1442430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Avian require comfortable temperatures for optimal development and heat stress is a high concern in warm weather countries. We aimed to assess the dynamics of immunoendocrine and biochemical variables responses of birds exposed to a heat stressor applied during daylight hours, during the chronic stress and the recovery periods. We hypothesize that variables involved in the birds response will be differentially and gradually modified during those periods. Female quail (n = 210) were housed in six rearing boxes. At 29 days of age, the temperature in three boxes was increased from 24 to 34 °C during the light period throughout the nine days (Stress Treatment). The other three boxes remained at 24 °C and were used as controls. The subsequent 12 days were considered as recovery period. Different sets of 12 birds/treatment were blood-sampled at 29 (basal), 32, 35, 38 (stress), 41, 44, 47, and 50 (recovery) days of age, respectively. Immunoendocrine (corticosterone, lymphoproliferation, heterophil/lymphocyte ratio (H/L), and antibody response) and biochemical (glucose, total proteins, globulins, and albumin) variables were assessed. During stress, progressive corticosterone and H/L increments, and antibody titers and lymphoproliferation decreases were detected. No clear pattern of changes was found in biochemical variables. During recovery, while corticosterone and lymphoproliferation had recovered three days after the stressor ended, H/L and antibody responses required respectively nine and 12 days to recover to their basal levels, respectively. Findings suggest that immunity is already threatened when heat stress is sustained for three or more days. However, the system appears resilient, needing six to 12 days to recover to their basal responses.
Collapse
Affiliation(s)
- Franco Nicolas Nazar
- a Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) , Universidad Nacional de Córdoba (UNC) , Córdoba , Argentina
- b Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC.) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Córdoba , Argentina
| | - Emiliano Ariel Videla
- a Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) , Universidad Nacional de Córdoba (UNC) , Córdoba , Argentina
- b Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC.) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Córdoba , Argentina
| | - Maria Emilia Fernandez
- a Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) , Universidad Nacional de Córdoba (UNC) , Córdoba , Argentina
- b Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC.) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Córdoba , Argentina
| | - Maria Carla Labaque
- a Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) , Universidad Nacional de Córdoba (UNC) , Córdoba , Argentina
- b Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC.) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Córdoba , Argentina
| | - Raul Hector Marin
- a Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) , Universidad Nacional de Córdoba (UNC) , Córdoba , Argentina
- b Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC.) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Córdoba , Argentina
| |
Collapse
|
38
|
Al Wakeel RA, Shukry M, Abdel Azeez A, Mahmoud S, Saad MF. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress 2017; 20:562-572. [PMID: 28911262 DOI: 10.1080/10253890.2017.1377177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
High ambient temperature adversely influences poultry production. In the present study, gamma amino butyric acid (GABA) supplementation was used to alleviate the adverse changes due to heat stress (HS) in a broiler chicken strain (Ross 308). At 21 days of age, the birds were divided into four groups of 13. Two groups were housed under normal room temperature, one group was given orally 0.2 ml 0.9% physiological saline (CN) daily, the other group received 0.2 ml of 0.5% GABA solution orally (GN). A third group was exposed to environmental HS (33 ± 1 °C lasting for 2 weeks) + physiological saline (CH) and a fourth group was exposed to HS + GABA supplementation (GH). GABA supplementation during HS significantly reduced the birds' increased body temperature (p <.0001) and increased their body weight gain (p <.0001). This effect was associated with increases in the heat stress-induced reductions in jejunal villus length, crypt depth and mucous membrane thickness, and decreases in the vascular changes occurred due to HS. Additionally, GABA supplementation significantly modulated HS-induced changes in glucose facilitated transporter 2 (GLUT2), peptide transporter 1 (PEPT1) and heat shock protein 70 (HSP70) mRNA expression in the jejunal mucosa (p < .0001). GABA supplementation also significantly elevated the triiodothyronine (T3) hormone level and hemoglobin levels and decreased the heterophil-lymphocyte ratio (H/L ratio) (p <.0001). Furthermore, it induced higher hepatic glutathione peroxidase enzyme (GSH-Px) activities and decreased the malondialdehyde dehydrogenase (MDA) content. These results indicate that GABA supplementation during HS may be used to alleviate HS-related changes in broiler chickens.
Collapse
Affiliation(s)
- Rasha A Al Wakeel
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Mustafa Shukry
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Ahmed Abdel Azeez
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Shawky Mahmoud
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Michel Fahmy Saad
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| |
Collapse
|
39
|
Park N, Lee TK, Nguyen TTH, An EB, Kim NM, You YH, Park TS, Kim D. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2891-2897. [PMID: 27790703 DOI: 10.1002/jsfa.8123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. RESULTS A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). CONCLUSION Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Namhyeon Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| | - Tae-Kyung Lee
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| | - Eun-Bae An
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| | - Nahyun M Kim
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Korea
| | - Tae-Sub Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
- Institute of Food Industrialization, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Korea
| |
Collapse
|
40
|
Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H. Nanoselenium Supplementation of Heat-Stressed Broilers: Effects on Performance, Carcass Characteristics, Blood Metabolites, Immune Response, Antioxidant Status, and Jejunal Morphology. Biol Trace Elem Res 2017; 178:105-116. [PMID: 27878513 DOI: 10.1007/s12011-016-0899-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
An experiment was conducted to investigate the effects of dietary nanoselenium supplementation at 0, 0.6 and 1.2 mg/kg of diet on growth performance, serum biochemical parameters, immune response, antioxidant capacity, and jejunal morphology of 29-d-old male broilers subjected to heat stress at 37 ± 1°C for 14 d. Broilers were fed for 42 d on the experimental diets. The results showed that nanoselenium supplementation had no effect on growth performance, but it supplementation at the rate of 1.2 mg/kg diet decreased the serum concentration of cholesterol prior to the heat exposure. Further, dietary nanoselenium supplementation linearly increased the high-density lipoprotein cholesterol concentration, while linearly decreased those of low-density lipoprotein cholesterol and aspartate aminotransferase in the serum before applying heat stress. Compared with thermoneutral temperature, heat stress reduced body mass gain, feed intake, percentages of carcass, breast, leg, abdominal fat, bursa of Fabricius, thymus, antibody response against sheep red blood cells, serum concentration of protein, erythrocyte activities of glutathione peroxidase and superoxide dismutase, jejunal villus height, and villus height to crypt depth ratio, while increased feed conversion ratio, percentages of liver, gizzard, pancreas, gallbladder, heart, and the concentrations of aspartate aminotransferase and malondialdehyde. Dietary supplementation of nanoselenium linearly reduced the abdominal fat and liver percentages, while linearly increased the activity of glutathione peroxidase and villus height in heat-stressed broilers. Furthermore, the lower level of nanoselenium decreased the percentages of gizzard and heart in broilers under heat stress. The diet supplemented with 1.2 mg/kg nanoselenium improved feed conversion ratio and increased antibody response against sheep red blood cells, activity of superoxide dismutase, and villus height to crypt depth ratio, but decreased the serum concentrations of cholesterol, low-density lipoprotein cholesterol, and malondialdehyde in heat-stressed broilers. The results suggest that supplemental nanoselenium improved growth performance, internal organs health, immune response, and jejunal morphology by alleviating the oxidative stress induced by heat stress.
Collapse
Affiliation(s)
- Morteza Safdari-Rostamabad
- Department of Animal Science, Faculty of Agriculture, University of Birjand, PO Box 91775-163, Birjand, Iran
| | | | - Ali Hossein Perai
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, PO Box 6715685418, Kermanshah, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, PO Box 91775-163, Birjand, Iran
| |
Collapse
|
41
|
Chand N, Muhammad S, Khan RU, Alhidary IA, Rehman ZU. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23930-23935. [PMID: 27628921 DOI: 10.1007/s11356-016-7604-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to find the effect of synthetic γ-aminobutyric acid (GABA) on the performance, antioxidant status, and immune response in broiler exposed to summer stress. A total of 400-day-old male broiler chickens (Ross 308) was randomly distributed into five treatments (5 replicates). One group served as a control (basal diet only) while the others were supplemented with GABA at the rate of 25 (GABA-25), 50 (GABA 50), 75 (GABA-75), and 100 (GABA-100) mg/kg feed. The experiment was continued for 35 days. Feed intake during the third week was significantly higher (P < 0.05) in GABA-75 and GABA-100, however, it increased significantly (P < 0.05) in GABA-100 during the fourth and fifth week. Overall mean feed intake was significantly (P < 0.05) high in GABA-75 and GABA-100. From the results, we found that body weight improved significantly (P < 0.05) in GABA-50 in week-3. During the fourth, fifth, and overall, body weight increased significantly (P < 0.05) in GABA-100. Significantly, high (P < 0.05) feed conversion ratio (FCR) was found in GABA-100 during the third, fourth, fifth, and on an overall basis. Mean Malondialdehyde (MDA) decreased significantly (P < 0.05) in GABA-100 while Paraoxonase (PON1) and Newcastle disease (ND) titer increased significantly (P < 0.05) in the same group. We concluded that performance traits, antioxidant status, and immune response improved in broiler supplemented 100 mg/kg GABA, exposed to cyclic heat stress.
Collapse
Affiliation(s)
- Naila Chand
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Sher Muhammad
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rifat Ullah Khan
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Ibrahim Abdullah Alhidary
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Zia Ur Rehman
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
42
|
Hu H, Bai X, Wen A, Shah A, Dai S, Ren Q, Wang S, He S, Wang L. Assessment of interactions between glutamine and glucose on meat quality, AMPK, and glutamine concentrations in pectoralis major meat of broilers under acute heat stress. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Hu H, Bai X, Shah AA, Dai S, Wang L, Hua J, Che C, He S, Wen A, Jiang J. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:907-915. [PMID: 26493197 DOI: 10.1007/s00484-015-1084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased (P < 0.05) daily weight gain (DWG), daily feed consumption (DFC), the concentrations of Gln, glutamate (Glu), and GABA, and the activities of glutaminase and glutamic acid decarboxylase (GAD) in breast muscle at 28, 35, and 42 days, while it increased (P < 0.05) the activities of glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved (P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased (P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased (P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased (P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased (P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions (P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Xi Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Assar Ali Shah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sifa Dai
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China.
| | - Like Wang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinpeng Jiang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| |
Collapse
|
44
|
Salmanzadeh M, Ebrahimnezhad Y, Aghdam Shahryar H, Ghiasi Ghaleh-Kandi J. The effects of in ovo feeding of glutamine in broiler breeder eggs on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-235-2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The aim of the present study was to investigate the effect of in ovo feeding (IOF) of glutamine on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Fertilized eggs were subjected to injections with glutamine (Gln) (10, 20, 30, 40 or 50 mg dissolved in 0.5 mL of dionized water) on day 7 of incubation. Hatchability, growth performance, carcass characteristics (carcass weight and relative weights of breast, thigh, heart, liver, gizzard, abdominal fat, intestine, pancreas and spleen) and jejunal morphometry (measurement of villus height and width and crypt depth) were determined during the experiment. The weight of newly hatched chickens was significantly greater in groups with Gln injection than in control and sham groups. But IOF caused lower hatchability than in the control group (non-injected eggs) (p < 0.05). Chickens from IOF of Gln showed better weight gain and feed conversion ratio (0–42 days of age), when compared to chickens hatched from control and sham groups. The IOF of Gln significantly increased villus height, villus width and crypt depth at hatch period and villus height at 42 days of age. In addition, carcass weights and relative weights of breast, thigh and gizzard were also markedly increased in chickens treated in ovo with Gln; whereas heart, liver, abdominal fat, intestine, pancreas and spleen were not significantly altered at the end of the experimental period. These data suggest that the IOF of Gln may improve jejunum development, leading to an increased nutrient assimilation and consequently to greater performance in broiler chickens.
Collapse
|
45
|
Fouad A, Chen W, Ruan D, Wang S, Xia W, Zheng C. Impact of Heat Stress on Meat, Egg Quality, Immunity and Fertility in Poultry and Nutritional Factors That Overcome These Effects: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2016.81.95] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Zhu YZ, Cheng JL, Ren M, Yin L, Piao XS. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1006-13. [PMID: 26104406 PMCID: PMC4478492 DOI: 10.5713/ajas.15.0119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 11/27/2022]
Abstract
Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.
Collapse
Affiliation(s)
- Y. Z. Zhu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
- Jiangsu Unison Biotechnology Development Co., Ltd., Suqian 233100,
China
| | - J. L. Cheng
- Jiangsu Unison Biotechnology Development Co., Ltd., Suqian 233100,
China
| | - M. Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
| | - L. Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
| | - X. S. Piao
- Ministry of Agriculture Feed Industry Centre, China Agricultural Univeristy, Beijing 100193,
China
| |
Collapse
|
47
|
Hu H, Bai X, Shah AA, Wen AY, Hua JL, Che CY, He SJ, Jiang JP, Cai ZH, Dai SF. Dietary supplementation with glutamine and γ-aminobutyric acid improves growth performance and serum parameters in 22- to 35-day-old broilers exposed to hot environment. J Anim Physiol Anim Nutr (Berl) 2015; 100:361-70. [PMID: 25980810 DOI: 10.1111/jpn.12346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
This study was designed using 360 21-day-old chicks to determine the influences of diet supplementation with glutamine (5 g/kg), γ-aminobutyric acid (GABA, 100 mg/kg) or their combinations on performance and serum parameters exposed to cycling high temperatures. From 22 to 35 days, the experimental groups (2 × 2) were subjected to circular heat stress by exposing them to 30-34 °C cycling, while the positive control group was exposed to 23 °C constant. The blood of broilers was collected to detect serum parameters on days 28 and 35. Compared with the positive control group, the cycling high temperature decreased (p < 0.05) the feed consumption, weight gain and serum total protein (TP), glucose, thyroxine (T4), insulin, alkaline phosphatase (ALP), glutamine, GABA and glutamate levels, while increased (p < 0.05) the serum triglyceride (TG), corticosterone (CS), glucagon (GN), creatine kinase (CK), glutamic oxaloacetic transaminase (GOT), nitric oxide synthase (NOS), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) levels during 22-35 days. However, dietary glutamine (5 g/kg) increased (p < 0.05) the feed consumption, weight gain and serum levels of glutamine, TP, insulin and ALP, but decreased (p < 0.05) the serum TG, CK, GOT, NOS and GPT levels. Diet supplemented with GABA also increased (p < 0.05) weight gain and the serum levels of TP, T4, ALP, GABA and glutamine. In addition, the significant interactions (p < 0.05) between glutamine and GABA were found in the feed consumption, weight gain and the serum ALP, CK, LDH, GABA, T3 and T4 levels of heat-stressed chickens. This research indicated that dietary glutamine and GABA improved the antistress ability in performance and serum parameters of broilers under hot environment.
Collapse
Affiliation(s)
- H Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - X Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - A A Shah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - A Y Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - J L Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - C Y Che
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - S J He
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - J P Jiang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Z H Cai
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - S F Dai
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
48
|
Perai AH, Kermanshahi H, Moghaddam HN, Zarban A. Effects of chromium and chromium + vitamin C combination on metabolic, oxidative, and fear responses of broilers transported under summer conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:453-462. [PMID: 25005123 DOI: 10.1007/s00484-014-0860-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/08/2014] [Accepted: 06/08/2014] [Indexed: 06/03/2023]
Abstract
A total of 240 female broilers (42 days old) were randomly assigned to four groups with six replicates and fed either a basal diet (two control groups) or a basal diet supplemented with either 1,200 μg Cr(+3) from chromium (Cr) methionine/kg (Cr group) or 1,200 μg Cr(+3) from Cr methionine plus 800 mg vitamin C (Vit C)/kg of diet (Cr + Vit C group). After 7 days on the dietary treatment, all groups except one of the controls were transported for 3 h under the summer conditions. Performance parameters were not influenced by dietary treatments. The plasma concentrations of insulin, triiodothyronine, triglyceride, and the ratio of triiodothyronine/thyroxin were decreased and the ratio of glucose/insulin was increased due to transport process. Road transportation also increased the plasma concentrations of protein, cholesterol, aspartate aminotransferase, and creatine kinase and decreased the concentration of low-density lipoprotein cholesterol in the Cr + Vit C group. The pretransport concentrations of insulin and triiodothyronine were highest in the Cr + Vit C group. The concentration of phosphorous was lower in the Cr group than that in the other groups after transport. No significant effects of dietary treatments were observed on the other biochemical parameters. Transport increased malondialdehyde concentration in the control group and did not change plasma total antioxidant capacity and erythrocyte glutathione peroxidase activity. Either in combination or alone, Cr increased plasma total antioxidant capacity (before transport P ≤ 0.05, after transport P = 0.07) but did not affect the concentration of malondialdehyde and activity of glutathione peroxidase. The duration of tonic immobility (TI) was similar between nontransported control chicks and transported chicks without any supplements. Pretreatment with Cr + Vit C significantly reduced the duration of TI.
Collapse
Affiliation(s)
- A H Perai
- The Excellence Center for Animal Sciences and Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran,
| | | | | | | |
Collapse
|
49
|
He S, Zhao S, Dai S, Liu D, Bokhari SG. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim Sci J 2015; 86:897-903. [DOI: 10.1111/asj.12372] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shaojun He
- College of Animal Science; Anhui Science and Technology University; Fengyang Anhui Province China
| | - Shujing Zhao
- College of Animal Science; Anhui Science and Technology University; Fengyang Anhui Province China
| | - Sifa Dai
- College of Animal Science; Anhui Science and Technology University; Fengyang Anhui Province China
| | - Deyi Liu
- College of Animal Science; Anhui Science and Technology University; Fengyang Anhui Province China
| | - Shehla Gul Bokhari
- Faculty of Veterinary Science; University of Veterinary and Animal Sciences; Lahore Pakistan
| |
Collapse
|
50
|
Cheng J, Bu D, Wang J, Sun X, Pan L, Zhou L, Liu W. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows. J Dairy Sci 2014; 97:5599-607. [DOI: 10.3168/jds.2013-6797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
|