1
|
Patrick OS, Younkin GC, Brody RG, Hem JW, Jander G, Holland CK. Identification of UDP-dependent glycosyltransferases in the wallflower cardenolide biosynthesis pathway. J Biol Chem 2025:108565. [PMID: 40316018 DOI: 10.1016/j.jbc.2025.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025] Open
Abstract
Cardenolides are potent plant defensive metabolites that have been studied for decades for their significance in plant-insect interactions and their use in treating heart failure in humans. With recent advancements in genome and transcriptome sequencing, genes in the cardenolide biosynthetic pathway have begun to be identified. Here we employed gene co-expression network analysis using published data from the cardenolide-producing plant Erysimum cheiranthoides (wormseed wallflower) to identify two UDP-dependent glycosyltransferases, UGT73C44 and UGT73C45, that are capable of glucosylating the aglycone cardenolide digitoxigenin, as well as other predicted cardenolide pathway intermediates. In vitro and in planta assays revealed that UGT73C44 acted on cardenolide pathway intermediates with a low Km value of 7.0 μM for digitoxigenin, while UGT73C45 displayed broader substrate specificity in vitro and could glucosylate diverse steroid and flavonoid substrates. A phylogeny and comparisons of structural models of UGT73C44 and UGT73C45 suggest that the enzymes have divergent active site architectures, which may account for their different substrate specificities. These data report the first plant-derived UGT specific to cardenolides, advancing our understanding of cardenolide biosynthesis and the enzymes that drive specialized metabolite diversity. These findings lay the foundation for future efforts to reconstitute the cardenolide pathway in heterologous systems and design cardenolide analogs with the potential for improved therapeutic properties.
Collapse
Affiliation(s)
- Owen S Patrick
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Gordon C Younkin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Rebecca G Brody
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Jessica W Hem
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | | | - Cynthia K Holland
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
2
|
Tai JH, Lee DC, Lin HF, Chao TL, Ruan Y, Cheng YW, Chou YC, Lin YY, Chang SY, Chen PJ, Yeh SH, Wang HY. Tradeoffs between proliferation and transmission in virus evolution- insights from evolutionary and functional analyses of SARS-CoV-2. Virol J 2025; 22:107. [PMID: 40253323 PMCID: PMC12008902 DOI: 10.1186/s12985-025-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
To be successful, a virus must maintain high between-host transmissibility while also effectively adapting within hosts. The impact of these potentially conflicting demands on viral genetic diversity and adaptation remains largely unexplored. These modes of adaptation can induce uncorrelated selection, bring mutations that enhance certain fitness aspects at the expense of others to high freqency, and contribute to the maintenance of genetic variation. The vast wealth of SARS-CoV-2 genetic data gathered from within and across hosts offers an unparalleled opportunity to test the above hypothesis. By analyzing a large set of SARS-CoV-2 sequences (~ 2 million) collected from early 2020 to mid-2021, we found that high frequency mutations within hosts are sometimes detrimental during between-host transmission. This highlights potential inverse selection pressures within- versus between-hosts. We also identified a group of nonsynonymous changes likely maintained by pleiotropy, as their frequencies are significantly higher than neutral expectation, yet they have never experienced clonal expansion. Analyzing one such mutation, spike M1237I, reveals that spike I1237 boosts viral assembly but reduces in vitro transmission, highlighting its pleiotropic effect. Though they make up about 2% of total changes, these types of variants represent 37% of SARS-CoV-2 genetic diversity. These mutations are notably prevalent in the Omicron variant from late 2021, hinting that pleiotropy may promote positive epistasis and new successful variants. Estimates of viral population dynamics, such as population sizes and transmission bottlenecks, assume neutrality of within-host variation. Our demonstration that these changes may affect fitness calls into question the robustness of these estimates.
Collapse
Affiliation(s)
- Jui-Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Ding-Chin Lee
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Fu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ya-Wen Cheng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department of Medical Research, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 10002, Taiwan.
| |
Collapse
|
3
|
Souza KFCDSE, Rabelo VWH, Abreu PA, Santos CC, Amaral e Silva NAD, Luna DD, Ferreira VF, Braz BF, Santelli RE, Gonçalves-de-Albuquerque CF, Paixão ICDP, Burth P. Synthetic Naphthoquinone Inhibits Herpes Simplex Virus Type-1 Replication Targeting Na +, K + ATPase. ACS OMEGA 2024; 9:36835-36846. [PMID: 39220530 PMCID: PMC11360054 DOI: 10.1021/acsomega.4c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Since 1970 acyclovir (ACV) has been the reference drug in treating herpes simplex virus (HSV) infections. However, resistant herpes simplex virus type 1 (HSV-1) strains have emerged, narrowing the treatment efficacy. The antiviral activity of classical Na+, K+ ATPase enzyme (NKA) inhibitors linked the viral replication to the NKA's activity. Herein, we evaluated the anti-HSV-1 activity of synthetic naphthoquinones, correlating their antiviral activity with NKA inhibition. We tested seven synthetic naphthoquinones initially at 50 μM on HSV-1-infected African green monkey kidney cells (VERO cells). Only one compound, 2-hydroxy-3-(2-thienyl)-1,4-naphthoquinone (AN-06), exhibited higher antiviral activity with a low cytotoxicity. AN-06 reduced the viral titer of 9 (log10) to 1.32 (log10) and decreased the steps of attachment and penetration. The addition of AN-06 up to 20 h postinfection (hpi) interfered with the viral cycle. The viral infection alone increases NKA activity 3 h postinfection (hpi), scaling up to 6 hpi. The addition of AN-06 in a culture infected with HSV-1 decreased NKA activity, suggesting that its antiviral action is linked to NKA inhibition. Also, docking results showed that this compound binds at the same site of NKA in which adenosine triphosphate (ATP) binds. AN-06 exhibited promising pharmacokinetic and toxicology properties. Thus, we postulate that AN-06 may be a good candidate for antiviral compounds with a mechanism of action targeting NKA activity.
Collapse
Affiliation(s)
| | - Vitor Won-Held Rabelo
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Paula Alvarez Abreu
- Instituto
de Biodiversidade e Sustentabilidade, Universidade
Federal do Rio de Janeiro, Macaé, Rio de Janeiro CEP 27965-045, Brazil
| | - Cláudio
César Cirne Santos
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Nayane Abreu do Amaral e Silva
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Daniela de Luna
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Vitor Francisco Ferreira
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense, Faculdade de Farmácia, Niterói, Rio de Janeiro 24241-002, Brazil
| | - Bernardo Ferreira Braz
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Ricardo Erthal Santelli
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório
de Imunofarmacologia, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro CEP 21040-900 Brazil
- Laboratório
de Imunofarmacologia, Universidade Federal
do Estado do Rio de Janeiro, Rio
de Janeiro, Rio de Janeiro CEP 20211-010 Brazil
| | | | - Patricia Burth
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| |
Collapse
|
4
|
Jahanshahi S, Ouyang H, Ahmed C, Zahedi Amiri A, Dahal S, Mao YQ, Van Ommen DAJ, Malty R, Duan W, Been T, Hernandez J, Mangos M, Nurtanto J, Babu M, Attisano L, Houry WA, Moraes TJ, Cochrane A. Broad spectrum post-entry inhibitors of coronavirus replication: Cardiotonic steroids and monensin. Virology 2024; 589:109915. [PMID: 37931588 DOI: 10.1016/j.virol.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Choudhary Ahmed
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Zahedi Amiri
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Subha Dahal
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qian Mao
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Ramy Malty
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Terek Been
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Mangos
- Donnelly Center, University of Toronto, Ontario, Canada
| | | | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Liliana Attisano
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Donnelly Center, University of Toronto, Ontario, Canada
| | - Walid A Houry
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Dept. of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Carroll E, Ravi Gopal B, Raghavan I, Mukherjee M, Wang ZQ. A cytochrome P450 CYP87A4 imparts sterol side-chain cleavage in digoxin biosynthesis. Nat Commun 2023; 14:4042. [PMID: 37422531 PMCID: PMC10329713 DOI: 10.1038/s41467-023-39719-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
Digoxin extracted from the foxglove plant is a widely prescribed natural product for treating heart failure. It is listed as an essential medicine by the World Health Organization. However, how the foxglove plant synthesizes digoxin is mostly unknown, especially the cytochrome P450 sterol side chain cleaving enzyme (P450scc), which catalyzes the first and rate-limiting step. Here we identify the long-speculated foxglove P450scc through differential transcriptomic analysis. This enzyme converts cholesterol and campesterol to pregnenolone, suggesting that digoxin biosynthesis starts from both sterols, unlike previously reported. Phylogenetic analysis indicates that this enzyme arises from a duplicated cytochrome P450 CYP87A gene and is distinct from the well-characterized mammalian P450scc. Protein structural analysis reveals two amino acids in the active site critical for the foxglove P450scc's sterol cleavage ability. Identifying the foxglove P450scc is a crucial step toward completely elucidating digoxin biosynthesis and expanding the therapeutic applications of digoxin analogs in future work.
Collapse
Affiliation(s)
- Emily Carroll
- Department of Biological Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Baradwaj Ravi Gopal
- Department of Biological Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Indu Raghavan
- Department of Biological Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA.
| |
Collapse
|
6
|
Tizoxanide Antiviral Activity on Dengue Virus Replication. Viruses 2023; 15:v15030696. [PMID: 36992406 PMCID: PMC10055917 DOI: 10.3390/v15030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The quantification of viral production indicated the antiviral activity of TIZ. The protein profiles in infected Vero cells treated and not treated with TIZ were analyzed using the label-free quantitative proteomic approach. TIZ was able to inhibit virus replication mainly intracellularly after DENV-2 penetration and before the complete replication of the viral genome. Additionally, the study of the protein profile of infected not-treated and infected-treated Vero cells showed that TIZ interferes with cellular processes such as intracellular trafficking and vesicle-mediated transport and post-translational modifications when added after infection. Our results also point to the activation of immune response genes that would eventually lead to a decrease of DENV-2 production. TIZ is a promising therapeutic molecule for the treatment of DENV-2 infections.
Collapse
|
7
|
Wu KX, Yogarajah T, Choy Loe MW, Kaur P, Hua Lee RC, Mok CK, Wong YH, Phuektes P, Yeo LS, Chow VT, Tan YW, Hann Chu JJ. The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses. Acta Pharm Sin B 2023; 13:2039-2055. [DOI: 10.1016/j.apsb.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
|
8
|
The Alpha-1 Subunit of the Na +/K +-ATPase (ATP1A1) Is a Host Factor Involved in the Attachment of Porcine Epidemic Diarrhea Virus. Int J Mol Sci 2023; 24:ijms24044000. [PMID: 36835408 PMCID: PMC9966514 DOI: 10.3390/ijms24044000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.
Collapse
|
9
|
Xu L, Zhong XL, Xi ZC, Li Y, Xu HX. Medicinal plants and natural compounds against acyclovir-resistant HSV infections. Front Microbiol 2022; 13:1025605. [PMID: 36299732 PMCID: PMC9589345 DOI: 10.3389/fmicb.2022.1025605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuan-Lei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Yang Li,
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong-Xi Xu,
| |
Collapse
|
10
|
Searching for Blockers of Dengue and West Nile Virus Viroporins. Viruses 2022; 14:v14081750. [PMID: 36016372 PMCID: PMC9413451 DOI: 10.3390/v14081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Flavivirus infections, such as those caused by dengue and West Nile viruses, emerge as new challenges for the global healthcare sector. It has been found that these two viruses encode ion channels collectively termed viroporins. Therefore, drug molecules that block such ion-channel activity can serve as potential antiviral agents and may play a primary role in therapeutic purposes. We screened 2839 FDA-approved drugs and compounds in advanced experimental phases using three bacteria-based channel assays to identify such ion channel blockers. We primarily followed a negative genetic screen in which the channel is harmful to the bacteria due to excessive membrane permeabilization that can be relieved by a blocker. Subsequently, we cross-checked the outcome with a positive genetic screen and a pH-dependent assay. The following drugs exhibited potential blocker activities: plerixafor, streptomycin, tranexamic acid, CI-1040, glecaprevir, kasugamycin, and mesna were effective against dengue virus DP1. In contrast, idasanutlin, benzbromarone, 5-azacytidine, and plerixafor were effective against West Nile Virus MgM. These drugs can serve as future antiviral therapeutic agents following subsequent in vitro and in vivo efficacy studies.
Collapse
|
11
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
12
|
Pan X, Zhang Y, Zhao Y, Yao S, Guan C, Wang L, Chen L. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 2022; 167:1619-1636. [PMID: 35648293 DOI: 10.1007/s00705-022-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50-90% of the world's population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.
Collapse
Affiliation(s)
- Xuanhe Pan
- Department of Clinical Laboratory, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yiming Zhao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Siqi Yao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Chaxiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Linqian Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Tverskoi AM, Poluektov YM, Klimanova EA, Mitkevich VA, Makarov AA, Orlov SN, Petrushanko IY, Lopina OD. Depth of the Steroid Core Location Determines the Mode of Na,K-ATPase Inhibition by Cardiotonic Steroids. Int J Mol Sci 2021; 22:ijms222413268. [PMID: 34948068 PMCID: PMC8708600 DOI: 10.3390/ijms222413268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiotonic steroids (CTSs) are specific inhibitors of Na,K-ATPase (NKA). They induce diverse physiological effects and were investigated as potential drugs in heart diseases, hypertension, neuroinflammation, antiviral and cancer therapy. Here, we compared the inhibition mode and binding of CTSs, such as ouabain, digoxin and marinobufagenin to NKA from pig and rat kidneys, containing CTSs-sensitive (α1S) and -resistant (α1R) α1-subunit, respectively. Marinobufagenin in contrast to ouabain and digoxin interacted with α1S-NKA reversibly, and its binding constant was reduced due to the decrease in the deepening in the CTSs-binding site and a lower number of contacts between the site and the inhibitor. The formation of a hydrogen bond between Arg111 and Asp122 in α1R-NKA induced the reduction in CTSs’ steroid core deepening that led to the reversible inhibition of α1R-NKA by ouabain and digoxin and the absence of marinobufagenin’s effect on α1R-NKA activity. Our results elucidate that the difference in signaling, and cytotoxic effects of CTSs may be due to the distinction in the deepening of CTSs into the binding side that, in turn, is a result of a bent-in inhibitor steroid core (marinobufagenin in α1S-NKA) or the change of the width of CTSs-binding cavity (all CTSs in α1R-NKA).
Collapse
Affiliation(s)
- Artem M. Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
- Correspondence: (A.M.T.); (O.D.L.)
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Elizaveta A. Klimanova
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Olga D. Lopina
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
- Correspondence: (A.M.T.); (O.D.L.)
| |
Collapse
|
14
|
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021; 26:molecules26185627. [PMID: 34577097 PMCID: PMC8469069 DOI: 10.3390/molecules26185627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Collapse
|
15
|
Zhang J, Zheng T, Zhou X, Wang H, Li Z, Huan C, Zheng B, Zhang W. ATP1B3 Restricts Hepatitis B Virus Replication Via Reducing the Expression of the Envelope Proteins. Virol Sin 2021; 36:678-691. [PMID: 33534085 PMCID: PMC7856454 DOI: 10.1007/s12250-021-00346-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Our recent study reported that ATP1B3 inhibits hepatitis B virus (HBV) replication via inducing NF-κB activation. However, ATP1B3 mutants which were defective in NF-κB activation still maintained the moderate degree of suppression on HBV replication, suggesting that another uncharacterized mechanism is also responsible for ATP1B3-mediated HBV suppression. Here, we demonstrated that ATP1B3 reduced the expression of HBV envelope proteins LHBs, MHBs and SHBs, but had no effect on intracellular HBV DNA, RNA levels as well as HBV promoter activities. Further investigation showed that proteasome inhibitor MG132 rescued ATP1B3-mediated envelope proteins degradation, demonstrating that proteasome-dependent pathway is involved in ATP1B3-induced degradation of envelope proteins. Co-IP showed that ATP1B3 interacts with LHBs and MHBs and induces LHBs and MHBs polyubiquitination. Immunofluorescence co-localization analysis confirmed LHBs and MHBs colocalized with ATP1B3 together. Our work provides important information for targeting ATP1B3 as a potential therapeutic molecule for HBV infection.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage. mBio 2021; 12:e0058721. [PMID: 34311586 PMCID: PMC8406174 DOI: 10.1128/mbio.00587-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the D614G substitution in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, the variant strain has undergone a rapid expansion to become the most abundant strain worldwide. Therefore, this substitution may provide an advantage for viral spreading. To explore the mechanism, we analyzed 18 viral isolates containing S proteins with either G614 or D614 (S-G614 and S-D614, respectively). The plaque assay showed a significantly higher virus titer in S-G614 than in S-D614 isolates. We further found increased cleavage of the S protein at the furin substrate site, a key event that promotes syncytium formation, in S-G614 isolates. The enhancement of the D614G substitution in the cleavage of the S protein and in syncytium formation has been validated in cells expressing S protein. The effect on the syncytium was abolished by furin inhibitor treatment and mutation of the furin cleavage site, suggesting its dependence on cleavage by furin. Our study pointed to the impact of the D614G substitution on syncytium formation through enhanced furin-mediated S cleavage, which might increase the transmissibility and infectivity of SARS-CoV-2 strains containing S-G614.
Collapse
|
17
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
18
|
Harrison KS, Jones C. Wnt antagonists suppress herpes simplex virus type 1 productive infection. Antiviral Res 2021; 191:105082. [PMID: 33961904 DOI: 10.1016/j.antiviral.2021.105082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Following acute infection of mucosal surfaces, herpes simplex virus 1 (HSV-1) establishes life-long latent infections within neurons, including sensory neurons in trigeminal ganglia (TG). Periodically, reactivation from latency occurs resulting in virus transmission and recurrent disease. In the absence of lytic cycle viral transcriptional proteins, host factors are predicted to mediate early stages of reactivation from latency. Previous studies suggested the canonical Wnt/β-catenin signaling pathway promotes productive infection. To further examine how the Wnt/β-catenin signaling pathway enhances productive infection, we examined two antagonists of the Wnt-signaling pathway. KYA1797K enhances formation of the β-catenin destruction complex, resulting in β-catenin degradation. Conversely, iCRT14 inhibits β-catenin dependent transcription by interfering with β-catenin interactions with T-cell factor/lymphoid enhancer factor (TCF)/Lef family of cellular transcription factors and interferes with TCF/Lef binding to DNA. iCRT14 and KYA1797K significantly inhibited HSV-1 productive infection in human and mouse neuronal cells and monkey kidney cells (VERO). Although iCRT14 was only effective when present throughout infection, delayed addition or early removal of KYA1797K did not significantly reduce its antiviral properties. KYA1797K had no effect on virus entry or penetration indicating it impairs certain aspects of viral replication. These studies demonstrated β-catenin promotes HSV-1 productive infection and indicate antagonists of the canonical Wnt/β-catenin signaling pathway may be effective anti-HSV therapeutic agents.
Collapse
Affiliation(s)
- Kelly S Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, 74078, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, 74078, USA.
| |
Collapse
|
19
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Agostinho KF, Rechenchoski DZ, Faccin-Galhardi LC, de Sousa ALN, Cunha AP, Ricardo NMPS, Linhares REC, Nozawa C. Cucumis melo pectin as potential candidate to control herpes simplex virus infection. FEMS Microbiol Lett 2021; 368:6132268. [PMID: 33565598 DOI: 10.1093/femsle/fnab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 12/28/2022] Open
Abstract
The herpes simplex virus, also known as HSV, is an important human pathogen. Acyclovir (ACV) is the first-line antiviral for the treatment of HSV infections; nevertheless HSV resistance to ACV has been increasingly reported and, therefore, search for alternative drugs have been encouraged. Herein, the effect of Cucumis melo sulfated pectin (SPCm) was evaluated in the HSV-1 infection. Pectin cytotoxicity and its antiherpetic action were determined by assays of MTT and plaque reduction, respectively. The SPCm concentration that reduced the cell viability by 50% (CC50) was 1440 μg/mL, while the concentration that reduced PFU in 50% (IC50) was 6 μg/mL against ACV-sensitive (KOS) strain and 12 μg/mL for ACV-resistant (AR-29) strain. The pectin showed high selectivity index (SI) for both viral strains. Therefore, we suggest that SPCm has been effective for HSV-1, strenghten by viral protein and DNA syntheses inhibition. In conclusion, we have found that SPCm is a promising alternative compound to control HSV infection.
Collapse
Affiliation(s)
| | | | | | | | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica. CC, Universidade Federal do Ceará, 60740-903, Fortaleza, CE, Brasil
| | | | - Rosa Elisa Carvalho Linhares
- Departamento de Química Orgânica e Inorgânica. CC, Universidade Federal do Ceará, 60740-903, Fortaleza, CE, Brasil
| | - Carlos Nozawa
- Departamento de Química Orgânica e Inorgânica. CC, Universidade Federal do Ceará, 60740-903, Fortaleza, CE, Brasil
| |
Collapse
|
21
|
Huang K, Lin M, Kuo T, Chen C, Lin C, Chou Y, Chao T, Pang Y, Kao H, Huang R, Lin S, Chang S, Yang P. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol Med 2021; 13:e12828. [PMID: 33159417 PMCID: PMC7799362 DOI: 10.15252/emmm.202012828] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
To circumvent the devastating pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a humanized decoy antibody (ACE2-Fc fusion protein) was designed to target the interaction between viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). First, we demonstrated that ACE2-Fc could specifically abrogate virus replication by blocking the entry of SARS-CoV-2 spike-expressing pseudotyped virus into both ACE2-expressing lung cells and lung organoids. The impairment of viral entry was not affected by virus variants, since efficient inhibition was also observed in six SARS-CoV-2 clinical strains, including the D614G variants which have been shown to exhibit increased infectivity. The preservation of peptidase activity also enables ACE2-Fc to reduce the angiotensin II-mediated cytokine cascade. Furthermore, this Fc domain of ACE2-Fc was shown to activate NK cell degranulation after co-incubation with Spike-expressing H1975 cells. These promising characteristics potentiate the therapeutic prospects of ACE2-Fc as an effective treatment for COVID-19.
Collapse
Affiliation(s)
- Kuo‐Yen Huang
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Ming‐Shiu Lin
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Ting‐Chun Kuo
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ci‐Ling Chen
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Chung‐Chih Lin
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Yu‐Chi Chou
- Biomedical Translation Research Center (BioTReC)Academia SinicaTaipeiTaiwan
| | - Tai‐Ling Chao
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Yu‐Hao Pang
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Han‐Chieh Kao
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Rih‐Sheng Huang
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Steven Lin
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
| | - Sui‐Yuan Chang
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Pan‐Chyr Yang
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
- Genomics Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
22
|
Yang CW, Lee YZ, Hsu HY, Jan JT, Lin YL, Chang SY, Peng TT, Yang RB, Liang JJ, Liao CC, Chao TL, Pang YH, Kao HC, Huang WZ, Lin JH, Chang CP, Niu GH, Wu SH, Sytwu HK, Chen CT, Lee SJ. Inhibition of SARS-CoV-2 by Highly Potent Broad-Spectrum Anti-Coronaviral Tylophorine-Based Derivatives. Front Pharmacol 2020; 11:606097. [PMID: 33519469 PMCID: PMC7845692 DOI: 10.3389/fphar.2020.606097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Tylophorine-based compounds and natural cardiotonic steroids (cardenolides and bufadienolides) are two classes of transmissible gastroenteritis coronavirus inhibitors, targeting viral RNA and host cell factors, respectively. We tested both types of compounds against two types of coronaviruses, to compare and contrast their antiviral properties, and with view to their further therapeutic development. Examples of both types of compounds potently inhibited the replication of both feline infectious peritonitis virus and human coronavirus OC43 with EC50 values of up to 8 and 16 nM, respectively. Strikingly, the tylophorine-based compounds tested inhibited viral yields of HCoV-OC43 to a much greater extent (7-8 log magnitudes of p.f.u./ml) than the cardiotonic steroids (about 2-3 log magnitudes of p.f.u./ml), as determined by end point assays. Based on these results, three tylophorine-based compounds were further examined for their anti-viral activities on two other human coronaviruses, HCoV-229E and SARS-CoV-2. These three tylophorine-based compounds inhibited HCoV-229E with EC50 values of up to 6.5 nM, inhibited viral yields of HCoV-229E by 6-7 log magnitudes of p.f.u./ml, and were also found to inhibit SARS-CoV-2 with EC50 values of up to 2.5-14 nM. In conclusion, tylophorine-based compounds are potent, broad-spectrum inhibitors of coronaviruses including SARS-CoV-2, and could be used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sui-Yuan Chang
- Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ting Peng
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tai-Ling Chao
- Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hau Pang
- Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chieh Kao
- Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Zheng Huang
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
23
|
Huang CT, Chao TL, Kao HC, Pang YH, Lee WH, Hsieh CH, Chang SY, Huang HC, Juan HF. Enhancement of the IFN-β-induced host signature informs repurposed drugs for COVID-19. Heliyon 2020; 6:e05646. [PMID: 33289002 PMCID: PMC7709728 DOI: 10.1016/j.heliyon.2020.e05646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative agent for the outbreak of coronavirus disease 2019 (COVID-19). This global pandemic is now calling for efforts to develop more effective COVID-19 therapies. Here we use a host-directed approach, which focuses on cellular responses to diverse small-molecule treatments, to identify potentially effective drugs for COVID-19. This framework looks at the ability of compounds to elicit a similar transcriptional response to IFN-β, a type I interferon that fails to be induced at notable levels in response to SARS-CoV-2 infection. By correlating the perturbation profiles of ~3,000 small molecules with a high-quality signature of IFN-β-responsive genes in primary normal human bronchial epithelial cells, our analysis revealed four candidate COVID-19 compounds, namely homoharringtonine, narciclasine, anisomycin, and emetine. We experimentally confirmed that the predicted compounds significantly inhibited SARS-CoV-2 replication in Vero E6 cells at nanomolar, relatively non-toxic concentrations, with half-maximal inhibitory concentrations of 165.7 nM, 16.5 nM, and 31.4 nM for homoharringtonine, narciclasine, and anisomycin, respectively. Together, our results corroborate a host-centric strategy to inform protective antiviral therapies for COVID-19.
Collapse
Affiliation(s)
- Chen-Tsung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
| | - Wen-Hau Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
| | - Chiao-Hui Hsieh
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral Effects of Oleandrin. J Exp Pharmacol 2020; 12:503-515. [PMID: 33262663 PMCID: PMC7686471 DOI: 10.2147/jep.s273120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc, San Antonio, TX 78217, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Robert Harrod
- Department of Biological Sciences, the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
25
|
Wang L, Wang D, Wu X, Xu R, Li Y. Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells. BMC Infect Dis 2020; 20:832. [PMID: 33176697 PMCID: PMC7661259 DOI: 10.1186/s12879-020-05556-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Carvacrol, as the major components of aromatic plants used for treating human skin diseases including origanum, Satureja, thymus, and coridothymus species, presented a kind of antiviral activity. To explore the mechanisms of carvacrol against herpes simplex virus (HSV) in vitro. METHOD The BSC-1 cells model of HSV infection was established, and from the two aspects of viral replication level and cell death pathway, the antiviral effects of carvacrol on HSV infected cells were also evaluated by plaque assay under the three modes including prevention, treatment, and direct inactivation. RESULTS In the three ways, the half-maximal effective concentration (EC50) of 2% true carvacrol solution on HSV-2 infected cells were severally 0.43, 0.19 and 0.51 mmol/L, and the corresponding therapeutic index (TI) were 4.02, 9.11 and 3.39, respectively. It's the opposite of the increased levels caused by HSV-2 infection, that both the expressions at the transcription genes and protein levels of virus own replication key factors (including ICP4, ICP27, VP16, gB, and UL30) and cytokines (including RIP3, TNF-α, and MLKL) of infected cells treated with carvacrol were dose-dependently inhibited. Besides, HSV-2 infection can cause the decrease of intracellular protein ubiquitination level, and carvacrol can reverse the ubiquitination decrease level caused by HSV-2 infection. CONCLUSION Carvacrol exhibits significant antiviral activity by inhibiting the HSV-2 proliferation process and HSV-2-induced TNF-α increasing levels, decreasing RIP3 and MLKL protein expressions through the intracellular RIP3-mediated programmed cell necrosis pathway. In addition, carvacrol also may exhibit anti-HSV-2 activity by reversing the ubiquitination decrease level caused by HSV-2 infection on the ubiquitin-proteasome system, which provides insights into the molecular mechanism.
Collapse
Affiliation(s)
- Li Wang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dan Wang
- Department of Scientific Research, the Second Affiliated Hospital of Xi' an Medical University, Xi'an, China
| | - Xingan Wu
- Department of Pathogenic Microorganism, School of Preclinical Medicine, Air Force Medical University, Xi'an, China
| | - Rui Xu
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, No. 36, Xin Jian South Road, Taiyuan, 030001, China.
| |
Collapse
|
26
|
Boff L, Schreiber A, da Rocha Matos A, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F, José Alves R, Maia de Pádua R, Maria Oliveira Simões C, Ludwig S. Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules 2020; 25:molecules25204853. [PMID: 33096707 PMCID: PMC7587960 DOI: 10.3390/molecules25204853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3β-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.
Collapse
Affiliation(s)
- Laurita Boff
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Aline da Rocha Matos
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Respiratory Viruses and Measles Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 22775-051, Brazil
| | - Juliana Del Sarto
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Jennifer Munkert
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Gabriela Silva Ramos
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Wolfgang Kreis
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Ricardo José Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
- Correspondence:
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| |
Collapse
|
27
|
Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH, Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh SH. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Rep 2020; 33:108254. [PMID: 33007239 PMCID: PMC7510585 DOI: 10.1016/j.celrep.2020.108254] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Development of specific antiviral agents is an urgent unmet need for SARS-coronavirus 2 (SARS-CoV-2) infection. This study focuses on host proteases that proteolytically activate the SARS-CoV-2 spike protein, critical for its fusion after binding to angiotensin-converting enzyme 2 (ACE2), as antiviral targets. We first validate cleavage at a putative furin substrate motif at SARS-CoV-2 spikes by expressing it in VeroE6 cells and find prominent syncytium formation. Cleavage and the syncytium are abolished by treatment with the furin inhibitors decanoyl-RVKR-chloromethylketone (CMK) and naphthofluorescein, but not by the transmembrane protease serine 2 (TMPRSS2) inhibitor camostat. CMK and naphthofluorescein show antiviral effects on SARS-CoV-2-infected cells by decreasing virus production and cytopathic effects. Further analysis reveals that, similar to camostat, CMK blocks virus entry, but it further suppresses cleavage of spikes and the syncytium. Naphthofluorescein acts primarily by suppressing viral RNA transcription. Therefore, furin inhibitors may be promising antiviral agents for prevention and treatment of SARS-CoV-2 infection. The furin cleavage site in the SARS-CoV-2 spike protein mediates syncytium formation The SARS-CoV-2 spike-mediated syncytium is suppressed by specific furin inhibitors Furin inhibitors block SARS-CoV-2 virus entry and virus replication Furin inhibitors are potential antiviral agents for SARS-CoV-2 infection and pathogenesis
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Mu-Fan Chiu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Sheng-Han Wang
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chih-Hui Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Wen-Hau Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tung-Ching Ho
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Li-Ting Jang
- Biomedical Resource Core at the First Core Labs, Branch Office of Research and Development, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
28
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
29
|
Guo J, Jia X, Liu Y, Wang S, Cao J, Zhang B, Xiao G, Wang W. Inhibition of Na +/K + ATPase blocks Zika virus infection in mice. Commun Biol 2020; 3:380. [PMID: 32669655 PMCID: PMC7363852 DOI: 10.1038/s42003-020-1109-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) is an infectious disease that has become an important concern worldwide, it associates with neurological disorders and congenital malformations in adults, also leading to fetal intrauterine growth restriction and microcephaly during pregnancy. However, there are currently no approved vaccines or specific antiviral drugs for preventing or treating ZIKV infection. Here, we show that two FDA-approved Na+/K+-ATPase inhibitors, ouabain and digoxin, can block ZIKV infection at the replication stage by targeting Na+/K+-ATPase. Furthermore, ouabain reduced the viral burden of ZIKV in adult mice, penetrated the placental barrier to enter fetal tissues, and protected fetal mice from ZIKV infection-induced microcephaly in a pregnant mouse model. Thus, ouabain has therapeutic potential for ZIKV. Guo, Jia et al. show that an FDA-approved Na + /K + - ATPase inhibitor ouabain reduces the burden of Zika virus infection in adult mice while protecting fetal mice from Zika virus infection-induced microcephaly. This study suggests ouabain’s therapeutic potential for Zika virus.
Collapse
Affiliation(s)
- Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China.,Shaobo Wang, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China. .,University of the Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
30
|
Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020; 165:1385-1396. [PMID: 32346764 PMCID: PMC7188521 DOI: 10.1007/s00705-020-04562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.
Collapse
|
31
|
Saha B, Varette O, Stanford WL, Diallo JS, Parks RJ. Development of a novel screening platform for the identification of small molecule inhibitors of human adenovirus. Virology 2019; 538:24-34. [PMID: 31561058 DOI: 10.1016/j.virol.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/01/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease and death in both immunocompromised and immunocompetent patients. The current standards of treatment are often ineffective, and no approved antiviral therapy against HAdV exists. We report here the design and validation of a fluorescence-based high-content screening platform for the identification of novel anti-HAdV compounds. The screen was conducted using a wildtype-like virus containing the red fluorescent protein (RFP) gene under the regulation of the HAdV major late promoter. Thus, RFP expression allows monitoring of viral late gene expression (a surrogate marker for virus replication), and compounds affecting virus growth can be easily discovered by quantifying RFP intensity. We used our platform to screen ~1200 FDA-approved small molecules, and identified several cardiotonic steroids, corticosteroids and chemotherapeutic agents as anti-HAdV compounds. Our screening platform provides the stringency necessary to detect compounds with varying degrees of antiviral activity, and facilitates drug discovery/repurposing to combat HAdV infections.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver Varette
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Assessment of antiherpetic activity of nonsulfated and sulfated polysaccharides from Azadirachta indica. Int J Biol Macromol 2019; 137:54-61. [DOI: 10.1016/j.ijbiomac.2019.06.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
|
33
|
Lingemann M, McCarty T, Liu X, Buchholz UJ, Surman S, Martin SE, Collins PL, Munir S. The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog 2019; 15:e1007963. [PMID: 31381610 PMCID: PMC6695199 DOI: 10.1371/journal.ppat.1007963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading viral cause of acute pediatric lower respiratory tract infections worldwide, with no available vaccine or effective antiviral drug. To gain insight into virus-host interactions, we performed a genome-wide siRNA screen. The expression of over 20,000 cellular genes was individually knocked down in human airway epithelial A549 cells, followed by infection with RSV expressing green fluorescent protein (GFP). Knockdown of expression of the cellular ATP1A1 protein, which is the major subunit of the Na+,K+-ATPase of the plasma membrane, had one of the strongest inhibitory effects on GFP expression and viral titer. Inhibition was not observed for vesicular stomatitis virus, indicating that it was RSV-specific rather than a general effect. ATP1A1 formed clusters in the plasma membrane very early following RSV infection, which was independent of replication but dependent on the attachment glycoprotein G. RSV also triggered activation of ATP1A1, resulting in signaling by c-Src-kinase activity that transactivated epidermal growth factor receptor (EGFR) by Tyr845 phosphorylation. ATP1A1 signaling and activation of both c-Src and EGFR were found to be required for efficient RSV uptake. Signaling events downstream of EGFR culminated in the formation of macropinosomes. There was extensive uptake of RSV virions into macropinosomes at the beginning of infection, suggesting that this is a major route of RSV uptake, with fusion presumably occurring in the macropinosomes rather than at the plasma membrane. Important findings were validated in primary human small airway epithelial cells (HSAEC). In A549 cells and HSAEC, RSV uptake could be inhibited by the cardiotonic steroid ouabain and the digitoxigenin derivative PST2238 (rostafuroxin) that bind specifically to the ATP1A1 extracellular domain and block RSV-triggered EGFR Tyr845 phosphorylation. In conclusion, we identified ATP1A1 as a host protein essential for macropinocytic entry of RSV into respiratory epithelial cells, and identified PST2238 as a potential anti-RSV drug. RSV continues to be the most important viral cause of severe bronchiolitis and pneumonia in infants and young children, and also has a substantial impact in the elderly. It is estimated to claim the lives of ~118,000 children under five years of age annually. No vaccine or antiviral drug suitable for general use is available. The involvement of host factors in RSV infection and replication is not well understood, but this knowledge might lead to intervention strategies to prevent infection. Using a genome-wide siRNA screen to knock down the expression of over 20,000 individual cellular genes, we identified ATP1A1, the major subunit of the Na+,K+-ATPase, as an important host protein for RSV entry. We showed that ATP1A1 activation by RSV resulted in transactivation of EGFR by Src-kinase activity, resulting in the uptake of RSV particles into the host cell through macropinocytosis. We also showed that the cardiotonic steroid ouabain and the synthetic digitoxigenin derivative PST2238, which bind specifically to the extracellular domain of ATP1A1, significantly reduced RSV entry. Taken together, we describe a novel ATP1A1-enabled mechanism used by RSV to enter the host cell, and describe candidate antiviral drugs that block this entry.
Collapse
Affiliation(s)
- Matthias Lingemann
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sonja Surman
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Scott E. Martin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
35
|
Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur J Med Chem 2019; 167:546-561. [DOI: 10.1016/j.ejmech.2019.01.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022]
|
36
|
García-Murria MJ, Expósito-Domínguez N, Duart G, Mingarro I, Martinez-Gil L. A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus Entry Inhibitors. Viruses 2019; 11:E229. [PMID: 30866435 PMCID: PMC6466393 DOI: 10.3390/v11030229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022] Open
Abstract
Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quantitatively investigate the formation of a syncytium. Furthermore, we demonstrated that our procedure meets the requirements of a drug discovery approach and performed a proof of concept small molecule high-throughput screening to identify compounds that could block the entry of the emerging Nipah virus.
Collapse
Affiliation(s)
- María J García-Murria
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, 46100 Valencia, Spain.
| | - Neus Expósito-Domínguez
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, 46100 Valencia, Spain.
| | - Gerard Duart
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, 46100 Valencia, Spain.
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, 46100 Valencia, Spain.
| | - Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, 46100 Valencia, Spain.
| |
Collapse
|
37
|
Du Q, Gu Z, Leneva I, Jiang H, Li R, Deng L, Yang Z. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis. Int Immunopharmacol 2019; 68:58-67. [PMID: 30612085 PMCID: PMC7106079 DOI: 10.1016/j.intimp.2018.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Objective HSV-2 infection has increased significantly in recent years, which is closely associated with cervical cancer and HIV infection. The lack of success in vaccine development and the emergence of drug resistance to commonly used drugs emphasize the urgent need for alternative antivirals against HSV-2 infection. Arbidol (ARB) has been demonstrated to be a broad spectrum antiviral drug that exhibits immunomodulatory properties that affect the HSV-2 life cycle. This study investigated the efficacy and mechanism of ARB against HSV-2 in vivo and in vitro to further explore the clinical application of ARB. Methods The efficacy of ARB on HSV-2 infection in vitro was examined by CPE and MTT assays. A vaginitis model was established to monitor changes in histopathology and inflammatory cytokine (IL-2, IL-4, TNF-α and TGF-β) expression by H&E staining and ELISA, respectively, and the efficacy of ARB was evaluated accordingly. Furthermore, flow cytometry was used to determine the ratio of CD4+/CD8+ T cells in the peripheral blood of the vaginitis animals. Considering the balance of efficacy and pharmacokinetics, ARB ointment was strictly prepared to observe formulation efficacy differences compared to the oral dosing form. Results The results showed that, in vitro, the TC50 and IC50 of ARB were 32.32 μg/mL and 4.77 μg/mL (SI = 6.82), respectively, indicating that ARB presents effective activity against HSV-2 in a dose-dependent manner. The results of the time-course assay suggested that 25 μg/mL ARB affected the late stage of HSV-2 replication. However, ARB did not inhibit viral attachment or cell penetration. The in vivo results showed that ARB ointment can improve the survival rate, prolong the survival time and reduce the reproductive tract injury in mice infected with HSV-2, regulate cytokine expression; and balance the CD4+ and CD8+ T lymphocyte ratio in the peripheral blood to participate in the regulation of immune response. Conclusion ARB showed anti-HSV-2 activity in vitro in a dose-dependent manner and played a role in inhibiting the late replication cycle of the virus. The vaginitis model was successfully established, according to immunomodulation outcomes, responded better to ARB in ointment form than in oral form. ARB showed anti-HSV-2 activity in vitro in a dose-dependent manner. ARB inhibited the late replication cycle of HSV-2. ARB ointment participated in the regulation of immune response to reduce the reproductive tract injury. ARB in ointment form responded to vaginitis better than in oral form.
Collapse
Affiliation(s)
- Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Zhen Gu
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China; Luke Medical Center, Rua de Joao de Almeida No 10 LJB RC, Macau SAR, PR China
| | - Irina Leneva
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute for Vaccines and Sera", Moscow, Russia
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Liehua Deng
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, PR China.
| |
Collapse
|
38
|
Yang CW, Chang HY, Lee YZ, Hsu HY, Lee SJ. The cardenolide ouabain suppresses coronaviral replication via augmenting a Na +/K +-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol Appl Pharmacol 2018; 356:90-97. [PMID: 30053394 PMCID: PMC7103114 DOI: 10.1016/j.taap.2018.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Cardenolides are plant-derived toxic substances. Their cytotoxicity and the underlying mechanistic signaling axes have been extensively documented, but only a few anti-viral activities of cardenolides and the associated signaling pathways have been reported. Previously, we reported that a variety of cardenolides impart anti-transmissible gastroenteritis coronavirus (TGEV) activity in swine testicular (ST) cells, through targeting of the cell membrane sodium/potassium pump, Na+/K+-ATPase. Herein, we further explore the potential signaling cascades associated with this anti-TGEV activity in ST cells. Ouabain, a representative cardenolide, was found to potently diminish TGEV titers and inhibit the TGEV-induced production of IL-6 in a dose dependent manner, with 50% inhibitory concentrations of 37 nM and 23 nM respectively. By pharmacological inhibition and gene silencing, we demonstrated that PI3K_PDK1_RSK2 signaling was induced in TGEV-infected ST cells, and ouabain imparted a degree of anti-TGEV activity via further augmentation of this existing PI3K_PDK1 axis signaling, in a manner dependent upon its association with the Na+/K+-ATPase. Finally, inhibition of PI3K by LY294002 or PDK1 by BX795 antagonized the anti-viral activity of ouabain and restored the TGEV virus titer and yields. This finding is the first report of a PI3K_PDK1 signaling axis further induced by ouabain and implicated in the suppression of TGEV activity and replication; greatly illuminates the underlying mechanism of cardenolide toxicity; and is expected to result in one or more anti-viral applications for the cardenolides in the future. Ouabain eliminated TGEV titers and inhibited viral replication. Ouabain diminished TGEV induced IL-6 production. Ouabain enhanced PI3K or PDK1 activation induced by TGEV via Na+/K+-ATPase. PI3K or PDK1 inhibition antagonized the anti-TGEV activity of ouabain. Ouabain augmented the PI3K_PDK1 axis signaling that inhibited TGEV activity.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsin-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsing-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
39
|
Amarelle L, Lecuona E. The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview. Int J Mol Sci 2018; 19:ijms19082154. [PMID: 30042322 PMCID: PMC6121263 DOI: 10.3390/ijms19082154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay.
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Iwasaki M, Minder P, Caì Y, Kuhn JH, Yates JR, Torbett BE, de la Torre JC. Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses. PLoS Pathog 2018; 14:e1006892. [PMID: 29462184 PMCID: PMC5834214 DOI: 10.1371/journal.ppat.1006892] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/02/2018] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Petra Minder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
41
|
Green seaweed Enteromorpha compressa ( Chlorophyta , Ulvaceae ) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol 2017; 102:605-612. [DOI: 10.1016/j.ijbiomac.2017.04.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
|
42
|
Yang CW, Chang HY, Hsu HY, Lee YZ, Chang HS, Chen IS, Lee SJ. Identification of anti-viral activity of the cardenolides, Na +/K +-ATPase inhibitors, against porcine transmissible gastroenteritis virus. Toxicol Appl Pharmacol 2017; 332:129-137. [PMID: 28438630 PMCID: PMC7103123 DOI: 10.1016/j.taap.2017.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/17/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Abstract
A series of naturally occurring cardenolides that exhibit potent anti-transmissible gastroenteritis virus (TGEV) activity in swine testicular (ST) cells has been identified. In an immunofluorescence assay, these cardenolides were found to diminish the expressions of TGEV nucleocapsid and spike protein, which was used as an indication for viral replication; block TGEV infection induced apoptosis and cytopathic effects; and impart the same trend of inhibitory activity against Na+/K+-ATPase as for anti-TGEV activity. The viral titer inhibition was found to take place in a dose-dependent manner. Knocking down expression of Na+/K+-ATPase, the cellular receptor of cardenolides, in ST cells was found to significantly impair the susceptibility of ST cells to TGEV infectivity. Thus, we have identified Na+/K+-ATPase as an anti-viral drug target and its antagonists, cardenolides, a novel class of anti- TGEV agents.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsin-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsing-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
43
|
Antiviral screen identifies EV71 inhibitors and reveals camptothecin-target, DNA topoisomerase 1 as a novel EV71 host factor. Antiviral Res 2017; 143:122-133. [PMID: 28427827 DOI: 10.1016/j.antiviral.2017.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease (HFMD) associated with severe neurological disease. EV71's pathogenesis remains poorly understood and the lack of approved antiviral has led to its emergence as a clinically important neurotropic virus. The goals of this study were to: (i) identify novel anti-EV71 compounds that may serve as lead molecules for therapeutics; and (ii) investigate their targets in downstream studies. We screened a 502-compound library of highly purified natural products for anti-EV71 activities in a cell-based immunofluorescence assay that were then confirmed in viral plaque reduction assays. Along with known antivirals, novel inhibitors of EV71 were also identified. We selected camptothecin for downstream studies and found that it is a limited spectrum enterovirus inhibitor that inhibits coxsackievirus A16 but not ECHOvirus 7. Camptothecin, a DNA topoisomerase 1 (TOP1) inhibitor, inhibits both viral RNA replication and translation based on luciferase replicon studies. Depletion of TOP1 using siRNA was then able to rescue EV71 infection from camptothecin inhibition. Interestingly, EV71 viral RNA replication and translation were also in TOP1 depleted cells. We found that nuclear TOP1 was relocalized to cytoplasmic replication vesicles during EV71 infection and localized with viral 3CD using confocal microscopy and proximity-ligation assays. Our findings reveal camptothecin to be a limited spectrum antiviral against enteroviruses that functions in a TOP1-dependent but cytotoxicity-independent manner. TOP1 is in turn needed for maximal EV71 viral RNA replication and viral protein synthesis.
Collapse
|
44
|
Kaushik NK, Guha R, Thomas BM. Antiviral potential and mode of action of Indigofera heterantha against HSV-2 by targeting the early stages of infection. Antivir Ther 2016; 22:381-391. [PMID: 28008866 DOI: 10.3851/imp3118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The development of antivirals against herpes simplex virus 2 (HSV-2) has a major public health importance because of the wide spectrum of associated clinical disease in both immunocompetent and immunocompromised populations. Even with the extensive use of acyclovir, issues such as emergence of drug-resistant strains, poor oral bioavailability and low effectiveness in recurrent infections have highlighted the requirement for alternate therapies. Plants, which are rich in metabolites and active against viruses, are being explored as one such source. We had earlier reported specific and potent anti-HSV-2 activity from the roots of the plant Indigofera heterantha. Herein, we describe the mechanism by which it exerts this antiviral potential against HSV-2. METHODS MTT, plaque reduction and immunofluorescence techniques were used for in vitro antiviral studies. Animal studies were carried out in HSV-2-infected mice followed by plaque reduction assays. RESULTS The extract was found to act at multiple steps of viral entry viz attachment, adsorption and penetration by blocking binding sites present on the viral envelope glycoproteins which eventually blocks its binding with the cell surface receptors present on the host cells. We also showed efficacy of PP9706642 topical application in prohibiting HSV-2 invasion to nearby organs from the site of infection, that is vagina in HSV-2 infected animals. CONCLUSIONS The extract targets the early and late stages of HSV-2 viral life cycle and thus shows great promise as both a prophylactic as well as therapeutic phytopharmaceutical against HSV-2.
Collapse
Affiliation(s)
| | - Rupa Guha
- Piramal Healthcare Limited, Mumbai, India
| | | |
Collapse
|
45
|
Schneider NFZ, Geller FC, Persich L, Marostica LL, Pádua RM, Kreis W, Braga FC, Simões CMO. Inhibition of cell proliferation, invasion and migration by the cardenolides digitoxigenin monodigitoxoside and convallatoxin in human lung cancer cell line. Nat Prod Res 2015; 30:1327-31. [PMID: 26252521 DOI: 10.1080/14786419.2015.1055265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiac glycosides consist of a large family of naturally derived compounds that are clinically used to treat congestive heart failure, and also present anticancer properties. In this study, the cytotoxic effects of two cardenolides, digitoxigenin monodigitoxoside (DGX) and convallatoxin (CON) were screened in four human tumour cell lines. Both compounds showed anti-proliferative effects in all tumour cells, at nanomolar concentrations. Since the human lung cancer cell line A549 was the most sensitive, we investigated the anti-proliferative, anti-migratory and anti-invasive effects of these cardenolides. DGX and CON reduced A549 cell migration, being able to reduce more than 90% of cell invasion. Their effects on the expression of key regulators of metastatic mechanism showed decreased levels of MMP-2, MMP-9 and p-FAK. Both compounds also presented low toxicity for healthy cells. Finally, this work provides the first insights into the effects of these cardenolides on key steps of lung cancer metastasis.
Collapse
Affiliation(s)
- Naira F Z Schneider
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Fabiana C Geller
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Lara Persich
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Lucas L Marostica
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Rodrigo M Pádua
- b Faculdade de Farmácia, Departamento de Produtos Farmacêuticos , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Wolfgang Kreis
- c Department of Biology , Friedrich-Alexander Universität , Erlangen-Nürnberg , Germany
| | - Fernão C Braga
- b Faculdade de Farmácia, Departamento de Produtos Farmacêuticos , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Cláudia M O Simões
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| |
Collapse
|
46
|
Hafidh RR, Abdulamir AS, Abu Bakar F, Sekawi Z, Jahansheri F, Jalilian FA. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus -1: an in vitro study on virally infected Vero and MRC-5 cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:179. [PMID: 26062546 PMCID: PMC4461985 DOI: 10.1186/s12906-015-0688-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/21/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND New sources for discovering novel antiviral agents are desperately needed. The current antiviral products are both expensive and not very effective. METHODS The antiviral activity of methanol extract of mung bean sprouts (MBS), compared to Ribavarin and Acyclovir, on respiratory syncytial virus (RSV) and Herpes Simplex virus -1 (HSV-1) was investigated using cytotoxicity, virus yield reduction, virucidal activity, and prophylactic activity assays on Vero and MRC-5 cell lines. Moreover, the level of antiviral cytokines, IFNβ, TNFα, IL-1, and IL-6 was assessed in MBS-treated, virally infected, virally infected MBS-treated, and control groups of MRC-5 cells using ELISA. RESULTS MBS extract showed reduction factors (RF) 2.2 × 10 and 0.5 × 10(2) for RSV and HSV-1, respectively. The 2 h incubation virucidal and prophylactic selectivity indices (SI) of MBS on RSV were 14.18 and 12.82 versus Ribavarin SI of 23.39 and 21.95, respectively, and on HSV-1, SI were 18.23 and 10.9 versus Acyclovir, 22.56 and 15.04, respectively. All SI values were >10 indicating that MBS has a good direct antiviral and prophylactic activities on both RSV and HSV-1. Moreover, interestingly, MBS extract induced vigorously IFNβ, TNFα, IL-1, and IL-6 cytokines in MRC-5 infected-treated group far more than other groups (P < 0.05) and induced TNFα and IL-6 in treated group more than infected group (P < 0.05). CONCLUSIONS MBS extract has potent antiviral and to a lesser extent, prophylactic activities against both RSV and HSV-1, and in case of HSV-1, these activities were comparable to Acyclovir. Part of the underlying mechanism(s) of these activities is attributed to MBS potential to remarkably induce antiviral cytokines in human cells. Hence, we infer that MBS methanol extract could be used as such or as purified active component in protecting and treating RSV and HSV-1 infections. More studies are needed to pinpoint the exact active components responsible for the MBS antiviral activities.
Collapse
|
47
|
Abstract
UNLABELLED In addition to transporting ions, the multisubunit Na(+),K(+)-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na(+),K(+)-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included. Using gene silencing, the ATP1A1 protein was shown to be critical for infection of cells with murine hepatitis virus (MHV), feline infectious peritonitis virus (FIPV), and VSV but not with IAV. Lack of ATP1A1 did not affect virus binding to host cells but resulted in inhibited entry of MHV and VSV. Consistently, nanomolar concentrations of the cardiotonic steroids ouabain and bufalin, which are known not to affect the transport function of Na(+),K(+)-ATPase, inhibited infection of cells with MHV, FIPV, Middle East respiratory syndrome (MERS)-CoV, and VSV, but not IAV, when the compounds were present during virus inoculation. Cardiotonic steroids were shown to inhibit entry of MHV at an early stage, resulting in accumulation of virions close to the cell surface and, as a consequence, in reduced fusion. In agreement with an early block in infection, the inhibition of VSV by CTSs could be bypassed by low-pH shock. Viral RNA replication was not affected when these compounds were added after virus entry. The antiviral effect of ouabain could be relieved by the addition of different Src kinase inhibitors, indicating that Src signaling mediated via ATP1A1 plays a crucial role in the inhibition of CoV and VSV infections. IMPORTANCE Coronaviruses (CoVs) are important pathogens of animals and humans, as demonstrated by the recent emergence of new human CoVs of zoonotic origin. Antiviral drugs targeting CoV infections are lacking. In the present study, we show that the ATP1A1 subunit of Na(+),K(+)-ATPase, an ion transporter and signaling transducer, supports CoV infection. Targeting ATP1A1 either by gene silencing or by low concentrations of the ATP1A1-binding cardiotonic steroids ouabain and bufalin resulted in inhibition of infection with murine, feline, and MERS-CoVs at an early entry stage. Infection with the control virus VSV was also inhibited. Src signaling mediated by ATP1A1 was shown to play a crucial role in the inhibition of virus entry by ouabain and bufalin. These results suggest that targeting the Na(+),K(+)-ATPase using cardiotonic steroids, several of which are FDA-approved compounds, may be an attractive therapeutic approach against CoV and VSV infections.
Collapse
|
48
|
Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN. Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 2015; 10:e0115475. [PMID: 25643242 PMCID: PMC4314066 DOI: 10.1371/journal.pone.0115475] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Animals
- Antiviral Agents/isolation & purification
- Antiviral Agents/pharmacology
- Cell Line
- Drug Resistance, Viral/drug effects
- Gene Expression Regulation, Viral/drug effects
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/metabolism
- Herpesvirus 2, Human/physiology
- Hot Temperature
- Houttuynia/chemistry
- Humans
- NF-kappa B/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Viral Envelope Proteins/metabolism
- Virion/drug effects
- Virion/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
- Water/chemistry
Collapse
Affiliation(s)
- Pei-Yun Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Szu-Yuan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chuan-Liang Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shoei-Sheng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Nan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Jin F, Zhuo C, He Z, Wang H, Liu W, Zhang R, Wang Y. Anti-herpes simplex virus activity of polysaccharides from Eucheuma gelatinae. World J Microbiol Biotechnol 2015; 31:453-60. [DOI: 10.1007/s11274-015-1798-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
|
50
|
Cai H, Wang HYL, Venkatadri R, Fu DX, Forman M, Bajaj SO, Li H, O’Doherty GA, Arav-Boger R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med Chem Lett 2014; 5:395-9. [PMID: 24900847 DOI: 10.1021/ml400529q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/25/2014] [Indexed: 12/21/2022] Open
Abstract
Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure-activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication.
Collapse
Affiliation(s)
- Hongyi Cai
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Hua-Yu L. Wang
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rajkumar Venkatadri
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - De-Xue Fu
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michael Forman
- Department
of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Sumit O. Bajaj
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hongyan Li
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - George A. O’Doherty
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ravit Arav-Boger
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|