1
|
Lai DC, Nguyen TN, Poonsuk K, McVey DS, Vu HLX. Lipid nanoparticle-encapsulated DNA vaccine encoding African swine fever virus p54 antigen elicits robust immune responses in pigs. Vet Microbiol 2025; 305:110508. [PMID: 40250107 DOI: 10.1016/j.vetmic.2025.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
African swine fever virus (ASFV) is one of the most significant viral pathogens affecting swine production worldwide. While several live attenuated ASF vaccines have been approved for clinical application in certain countries, there is a concern that the vaccine viruses might revert to virulence. Subunit vaccines containing one or a few viral immunogens provide a safer alternative. DNA plasmids are highly stable, easy to produce in large quantities at low cost, and safe for use in animals. However, unencapsulated DNA vaccines often exhibited low immunogenicity, largely due to the inefficient cellular entry of the plasmid DNA, leading to low protein expression. In this study, we used ASFV p54 as a model antigen to investigate the feasibility of using lipid nanoparticles (LNP) as nanocarriers to enhance the immunogenicity of DNA vaccines. Pigs immunized with the p54 LNP-DNA vaccine elicited high titers of p54-specific antibodies and T-cell responses after the second immunization. Using ELISAs based on an overlapping peptide library, we identified three antigenic areas within p54. Additionally, we noted that pigs vaccinated with the p54 LNP-DNA vaccine exhibited a similar antibody profile as those vaccinated with an experimental live attenuated vaccine or infected with a wild-type ASFV strain. The results highlight the promising potential of LNP-DNA as an effective platform for developing gene-based vaccines against ASFV.
Collapse
Affiliation(s)
- Danh C Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - The N Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - Korakrit Poonsuk
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA 99164. USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; Department of Animal Science, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
2
|
Galeeva A, Efimova M, Frolov G, Khammadov N, Hisamutdinov A, Garipov L, Mingaleev D, Ravilov R. Safety and Immunogenicity of Recombinant Adeno-Associated Virus-Vectored African Swine Fever Virus Antigens. Vet Med Int 2025; 2025:9191117. [PMID: 40224248 PMCID: PMC11986952 DOI: 10.1155/vmi/9191117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/29/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Despite the significant global economic damage caused by African swine fever (ASF) and ongoing developments in the field of specific prevention tools development, safe and effective vaccines are still missing. A critical factor hindering the development of ASF vaccines is the lack of sufficient data on the pathogenesis of the virus, as well as a deep understanding of the virus' evasion strategies from the innate immune system. Of particular interest in the design of candidate vaccines are viral vectors, especially-adeno-associated virus (AAV), which is widely used in gene therapy and is capable of long-term transgene expression in vivo. This study assessed the safety and immunogenicity of recombinant AAV serotype 2 (rAAV2), into the genome of which the ASF virus B646L (p72), E183L (p54), CP530R (pp60), and CP204L (p30) immunodominant genes are integrated. The study design included immunization of pigs with monocistronic and bicistronic constructs based on rAAV2 in different regimens, assessment of the safety and tolerability of a laboratory sample of the vaccine, the biochemical and hematological status of the animals, as well as indicators of humoral and cellular immunity. It was found that rAAV2s in immunizing doses no more than 10 × 1011 viral particles have satisfactory tolerability, promote the formation of virus-specific antibodies that remain at a high level at least until the 180 days of the experiment. It has been proven that the use of bicistronic constructs makes it possible to achieve a similar immune response as when introducing a cocktail of monocistronic constructs, which allows to reduce the vector load on the animal's body. Thus, rAAV2 is a promising platform for the construction of a candidate vaccine against ASF, as it is biologically safe and activates the humoral and cellular immune response, which is extremely important for the formation of a protective immunity.
Collapse
Affiliation(s)
- Antonina Galeeva
- Interdepartmental Laboratory of Immunology and Biotechnology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
- Laboratory of Viral Antropozoonoses, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Marina Efimova
- Laboratory of Viral Antropozoonoses, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Department of Epizootology and Parasitology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
| | - Gennadiy Frolov
- Department of Epizootology and Parasitology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
| | - Nail Khammadov
- Interdepartmental Laboratory of Immunology and Biotechnology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
- Laboratory of Molecular Genetics, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
| | - Almaz Hisamutdinov
- Ministry of Agriculture and Food of Republic of Tatarstan, Kazan, Russia
| | - Lenar Garipov
- Ministry of Agriculture and Food of Republic of Tatarstan, Kazan, Russia
| | - Danil Mingaleev
- Department of Epizootology and Parasitology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
- Administrative Department, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
| | - Rustam Ravilov
- Department of Epizootology and Parasitology, Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
| |
Collapse
|
3
|
Yang Y, Yuan H, Zhang Y, Luan J, Wang H. Progress in African Swine Fever Vector Vaccine Development. Int J Mol Sci 2025; 26:921. [PMID: 39940691 PMCID: PMC11816837 DOI: 10.3390/ijms26030921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
African swine fever (ASF) is a highly lethal, infectious, hemorrhagic fever disease, characterized by an acute mortality rate approaching 100%. It is highly contagious, and results in significant losses to the global hog industry as it spreads. Despite incremental progress in research on the African swine fever virus (ASFV), a safe and effective commercial vaccine has yet to be developed. Vector vaccines, a promising type of vaccine, offer unique advantages, and are a primary focus in ASFV vaccine research. This paper focuses on the characteristics of viral, bacterial, and yeast vector vaccines; elucidates the immunological mechanisms associated with antigens; lists the types of antigens that have significant potential; discusses the feasibility of using exogenously expressed cytokines to enhance the protective power of vector vaccines; and, finally, discusses the types of vectors that are commonly used and the latest advances in this field.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China; yangyue-@mail.sdu.edu.cn (Y.Y.); (H.Y.); (Y.Z.); (J.L.)
| |
Collapse
|
4
|
Zhang Y, Mei X, Zhang C, Wang H, Xie X, Zhang Z, Feng Z. ASFV subunit vaccines: Strategies and prospects for future development. Microb Pathog 2024; 197:107063. [PMID: 39442810 DOI: 10.1016/j.micpath.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
African Swine Fever (ASF) is an acute, highly contagious, and lethal disease caused by the African Swine Fever Virus (ASFV), posing a severe threat to the global pig farming industry. Although live vaccines are currently available, preventing and controlling ASF remains a considerable challenge. Several factors have impeded vaccine development, including the complexity of ASFV particles and the suppressive effects of its gene-encoded proteins on the host's immune system. This article delves into the immunological responses elicited by ASFV, encompassing both innate and adaptive immunity, and examines how ASFV evades host immune defenses. Special attention is given to the current progress in the development of ASFV subunit vaccines, including protein-based vaccines, DNA vaccines, and viral vector vaccines. The advantages, challenges, and future directions of different vaccine types are discussed, offering new perspectives and insights for the future of ASFV vaccine development.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Hui Wang
- Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China.
| |
Collapse
|
5
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
6
|
Chu X, Ge S, Zuo Y, Cui J, Sha Z, Han N, Wu B, Ni B, Zhang H, Lv Y, Wang Z, Xiao Y. Thoughts on the research of African swine fever live-attenuated vaccines. Vaccine 2024; 42:126052. [PMID: 38906762 DOI: 10.1016/j.vaccine.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
African swine fever (ASF) is a contagious and fatal disease caused by the African swine fever virus (ASFV), which can infect pigs of all breeds and ages. Most infected pigs have poor prognosis, leading to substantial economic losses for the global pig industry. Therefore, it is imperative to develop a safe and efficient commercial vaccine against ASF. The development of ASF vaccine can be traced back to 1960. However, because of its large genome, numerous encoded proteins, and complex virus particle structure, currently, no effective commercial vaccine is available. Several strategies have been applied in vaccine design, some of which are potential candidates for vaccine development. This review provides a comprehensive analysis on the safety and effectiveness, suboptimal immunization effects at high doses, absence of standardized evaluation criteria, notable variations among strains of the same genotype, and the substantial impact of animal health on the protective efficacy against viral challenge. All the information will be helpful to the ASF vaccine development.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China; Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao 266032, China; Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Jin Cui
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhou Sha
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China.
| | - Yihong Xiao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
7
|
Zhang T, Lu Z, Liu J, Tao Y, Si Y, Ye J, Cao S, Zhu B. Host Innate and Adaptive Immunity Against African Swine Fever Virus Infection. Vaccines (Basel) 2024; 12:1278. [PMID: 39591181 PMCID: PMC11599025 DOI: 10.3390/vaccines12111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Africa swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious hemorrhagic disease that can result in up to 100% lethality in both wild and domestic swine, regardless of breed or age. The ongoing ASF pandemic poses significant threats to the pork industry and food security, with serious implications for the sanitary and socioeconomic system. Due to the limited understanding of ASFV pathogenesis and immune protection mechanisms, there are currently no safe and effective vaccines or specific treatments available, complicating efforts for prevention and control. This review summarizes the current understanding of the intricate interplay between ASFV and the host immune system, encompassing both innate and adaptive immune responses to ASFV infection, as well as insights into ASFV pathogenesis and immunosuppression. We aim to provide comprehensive information to support fundamental research on ASFV, highlighting existing gaps and suggesting future research directions. This work may serve as a theoretical foundation for the rational design of protective vaccines against this devastating viral disease.
Collapse
Affiliation(s)
- Tianqi Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixun Lu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (Z.L.); (J.L.); (Y.T.); (Y.S.); (J.Y.); (S.C.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Zhang SJ, Niu B, Liu SM, Bu ZG, Hua RH. Identification of linear B cell epitopes on the E146L protein of African swine fever virus with monoclonal antibodies. Virol J 2024; 21:286. [PMID: 39533386 PMCID: PMC11558817 DOI: 10.1186/s12985-024-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The outbreak and spread of African swine fever virus (ASFV) have caused considerable economic losses to the pig industry worldwide. Currently, to promote the development of effective ASF vaccines, especially subunit vaccines, more antigenic protein targets are urgently needed. In this work, six transmembrane proteins (I329L, E146L, C257L, EP153R, I177L, and F165R) were expressed in mammalian cell lines and screened with pig anti-ASFV serum. It was found that the E146L protein was an immunodominant protein antigen among the six selected proteins. Moreover, the E146L protein induced antibody responses in all immunized pigs. To gain insight into the antigenic characteristics of the E146L protein, three monoclonal antibodies (mAbs; 12H12, 15G1, and 15H10) were generated by immunizing BALB/c mice with the purified E146L protein. The epitopes of the mAbs were further finely mapped through a peptide fusion protein expression strategy. Finally, the epitopes of the mAbs were identified as 48PDESSIAYMRFRN61 of the mAb 12H12, 138TLTGLQRII146 of the mAb 15G1, and 30GWSPFKYSKGNT41 of the mAb 15H10. Furthermore, the epitope of mAb 15H10 was validated as the immunodominant epitope with ASFV-infected pig sera. The chemically synthesized mAb 15H10 epitope peptide (EP1) exhibited the most extensive immunoreactivity with artificially or naturally ASFV-infected pig sera. The epitope 15H10 is located on the surface of the E146L protein and is highly conserved. These findings provide insight into the structure and function of the E146L protein of ASFV.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Bei Niu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shi-Meng Liu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
9
|
Fan J, Yu H, Miao F, Ke J, Hu R. Attenuated African swine fever viruses and the live vaccine candidates: a comprehensive review. Microbiol Spectr 2024; 12:e0319923. [PMID: 39377589 PMCID: PMC11537121 DOI: 10.1128/spectrum.03199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/22/2024] [Indexed: 10/09/2024] Open
Abstract
The African swine fever virus (ASFV) is spreading worldwide and causing huge economic losses to the global pig industry. The ASFV genome is 170-193 kb in length, contains approximately 150 open reading frames, and encodes more than 200 proteins, most of which have unknown functions. Owing to the unique viral structure, replication strategy, large number of genes of unknown function, and complicated pathogenesis, vaccine development research is challenging. Several naturally attenuated ASFV isolates have been extensively investigated and many genetically manipulated, gene-deleted, and cell-adapted ASFVs have been reported. Currently, live attenuated viruses prepared from weakly virulent strains are an efficient method to provide effective protection in vaccinated pigs; however, these have seldom been widely approved for vaccine use, except in Vietnam. Herein, we summarize the attenuated isolates or vaccine candidates for live vaccines derived from different sources, including naturally mutated, attenuated, cell-adapted, and genetically modified recombinant ASFVs. This will help to understand the gene function and immunogenicity of attenuated live ASFV, as well as the shortcomings of these viruses as vaccine candidates, and provide clues to prepare live, efficient, and safe vaccines for African swine fever.IMPORTANCEOutbreaks of African swine fever (ASF) have caused devastating losses to the global pig industry. Pigs immunized with ASFV attenuated virus can resist the lethal challenge of a strongly virulent virus. Here, we summarize the virulence of naturally mutated, cell-adapted, and genetically recombinant ASFV for pigs, and the protective effect after facing an attack challenge. We also analyze the advantages and disadvantages of ASFV attenuated viruses as vaccine candidates to provide clues for the preparation of efficient and safe live African swine fever vaccines.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Haisheng Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Faming Miao
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junnan Ke
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
10
|
Li S, Gao Y, Zhai H, Guan X, Yang X, Hou Q, Zhang X, Li LF, Wang X, Huang S, Qiu HJ, Li Y. Immune responses induced by a recombinant C-strain of classical swine fever virus expressing the F317L protein of African swine fever virus. Vet Microbiol 2024; 298:110239. [PMID: 39243670 DOI: 10.1016/j.vetmic.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, owes its etiology to African swine fever virus (ASFV). ASFV encodes more than 165 proteins. However, novel immunogenic proteins remain unknown. This study aimed to determine the antigenicity of the F317L protein (pF317L) of ASFV. The results revealed that pF317L was able to react with convalescent pig sera, indicating that pF317L could be a candidate antigen. The antigenic potential of pF317L expressed by rHCLV-F317L, a recombinant virus in the backbone of C-strain (a lapinized live attenuated classical swine fever virus) was further investigated in rabbits and pigs. The results revealed that antibodies and cell-mediated immune responses against pF317L were induced in either rabbits or pigs inoculated with rHCLV-F317L. Importantly, anti-pF317L antibodies from rabbits or pigs immunized with rHCLV-F317L significantly inhibited ASFV replication in vitro. In conclusion, pF317L demonstrates favorable immunogenic properties, positioning it as a promising candidate for the development of protective antigens in the ongoing endeavor to formulate efficacious ASF vaccine strategies.
Collapse
Affiliation(s)
- Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Yuxuan Gao
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Qinghe Hou
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xinyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xiao Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264000, China.
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS, 678 Haping Road, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
11
|
Nguyen GT, Le TT, Vu SDT, Nguyen TT, Le MTT, Pham VT, Nguyen HTT, Ho TT, Hoang HTT, Tran HX, Chu HH, Pham NB. A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L. Med Microbiol Immunol 2024; 213:22. [PMID: 39412651 DOI: 10.1007/s00430-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the "green" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Son Duy Thai Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tra Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - My Thi Tra Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Van Thi Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hien Thi Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hang Thi Thu Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company - NAVETCO, Ho Chi Minh City, Viet Nam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
12
|
Yuan F, Cui J, Wang T, Qin J, Jeon JH, Ding H, Whittaker CA, Xu R, Cao H, Chen J. Selection, Design and Immunogenicity Studies of ASFV Antigens for Subunit mRNA Cocktail Vaccines with Specific Immune Response Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617156. [PMID: 39416081 PMCID: PMC11482780 DOI: 10.1101/2024.10.08.617156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Development of safe and effective subunit vaccines for controlling African Swine Fever Virus (ASFV) infection has been hampered by a lack of protective viral antigens, complex virion structures, and multiple mechanisms of infection. Here, we selected ASFV antigens based on their localization on the virion, known functions, and homologies to the subunits of the protective vaccinia virus vaccine. We also engineered viral capsid proteins for inducing optimal antibody responses and designed T cell-directed antigen for inducing broad and robust cellular immunity. The selected antigens in lipid nanoparticle-mRNA formulations were evaluated for immunogenicity in both mice and pigs with concordant results. Different antigens induced divergent immune response profiles, including the levels of IgG and T cell responses and effector functions of anti-sera. We further developed a computational approach to combine antigens into cocktails for inducing specific immune response profiles and validated candidate cocktail vaccines in mice. Our results provide a basis for further evaluating candidate subunit mRNA vaccines in challenge studies.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junru Cui
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianlei Wang
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane Qin
- ARV Technologies, Inc., North Bethesda, MD, USA
| | | | - Huiming Ding
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renhuan Xu
- ARV Technologies, Inc., North Bethesda, MD, USA
| | - Helen Cao
- InnovHope, Inc., Framingham, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Nguyen HT, Falzarano D, Gerdts V, Liu Q. Construction and immunogenicity of SARS-CoV-2 virus-like particle expressed by recombinant baculovirus BacMam. Microbiol Spectr 2024; 12:e0095924. [PMID: 38916311 PMCID: PMC11302303 DOI: 10.1128/spectrum.00959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve to give rise to variants of concern that can escape vaccine-induced immunity. As such, more effective vaccines are urgently needed. In this study, we evaluated virus-like particle (VLP) as a vaccine platform for SARS-CoV-2. The spike, envelope, and membrane proteins of the SARS-CoV-2 Wuhan strain were expressed by a single recombinant baculovirus BacMam and assembled into VLPs in cell culture. The morphology and size of the SARS-CoV-2 VLP as shown by transmission electron microscopy were similar to the authentic SARS-CoV-2 virus particle. In a mouse trial, two intramuscular immunizations of the VLP BacMam with no adjuvant elicited spike-specific binding antibodies in both sera and bronchoalveolar lavage fluids. Importantly, BacMam VLP-vaccinated mouse sera showed neutralization activity against SARS-CoV-2 spike pseudotyped lentivirus. Our results indicated that the SARS-CoV-2 VLP BacMam stimulated spike-specific immune responses with neutralization activity. IMPORTANCE Although existing vaccines have significantly mitigated the impact of the COVID-19 pandemic, none of the vaccines can induce sterilizing immunity. The spike protein is the main component of all approved vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due primarily to its ability to induce neutralizing antibodies. The conformation of the spike protein in the vaccine formulation should be critical for the efficacy of a vaccine. By way of closely resembling the authentic virions, virus-like particles (VLPs) should render the spike protein in its natural conformation. To this end, we utilized the baculovirus vector, BacMam, to express virus-like particles consisting of the spike, membrane, and envelope proteins of SARS-CoV-2. We demonstrated the immunogenicity of our VLP vaccine with neutralizing activity. Our data warrant further evaluation of the virus-like particles as a vaccine candidate in protecting against virus challenges.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Baculoviridae/genetics
- Baculoviridae/immunology
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Mice, Inbred BALB C
- Female
- Immunogenicity, Vaccine
- Coronavirus Envelope Proteins/immunology
- Coronavirus Envelope Proteins/genetics
- Coronavirus M Proteins
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Portugal R, Goldswain H, Moore R, Tully M, Harris K, Corla A, Flannery J, Dixon LK, Netherton CL. Six adenoviral vectored African swine fever virus genes protect against fatal disease caused by genotype I challenge. J Virol 2024; 98:e0062224. [PMID: 38953377 PMCID: PMC11264932 DOI: 10.1128/jvi.00622-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.
Collapse
Affiliation(s)
| | | | - Rebecca Moore
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Matthew Tully
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katie Harris
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Amanda Corla
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - John Flannery
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
15
|
Fan R, Wei Z, Zhang M, Jia S, Jiang Z, Wang Y, Cai J, Chen G, Xiao H, Wei Y, Shi Y, Feng J, Shen B, Zheng Y, Huang Y, Wang J. Development of novel monoclonal antibodies for blocking NF-κB activation induced by CD2v protein in African swine fever virus. Front Immunol 2024; 15:1352404. [PMID: 38846950 PMCID: PMC11153791 DOI: 10.3389/fimmu.2024.1352404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background CD2v, a critical outer envelope glycoprotein of the African swine fever virus (ASFV), plays a central role in the hemadsorption phenomenon during ASFV infection and is recognized as an essential immunoprotective protein. Monoclonal antibodies (mAbs) targeting CD2v have demonstrated promise in both diagnosing and combating African swine fever (ASF). The objective of this study was to develop specific monoclonal antibodies against CD2v. Methods In this investigation, Recombinant CD2v was expressed in eukaryotic cells, and murine mAbs were generated through meticulous screening and hybridoma cloning. Various techniques, including indirect enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence assay (IFA), and bio-layer interferometry (BLI), were employed to characterize the mAbs. Epitope mapping was conducted using truncation mutants and epitope peptide mapping. Results An optimal antibody pair for a highly sensitive sandwich ELISA was identified, and the antigenic structures recognized by the mAbs were elucidated. Two linear epitopes highly conserved in ASFV genotype II strains, particularly in Chinese endemic strains, were identified, along with a unique glycosylated epitope. Three mAbs, 2B25, 3G25, and 8G1, effectively blocked CD2v-induced NF-κB activation. Conclusions This study provides valuable insights into the antigenic structure of ASFV CD2v. The mAbs obtained in this study hold great potential for use in the development of ASF diagnostic strategies, and the identified epitopes may contribute to vaccine development against ASFV.
Collapse
Affiliation(s)
- Rongrong Fan
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Zeliang Wei
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mengmeng Zhang
- BCA Bio-Breeding Center, Beijing Capital Agribusiness Co., Ltd., Beijing, China
| | - Shanshan Jia
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiyang Jiang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yao Wang
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
| | - Junyu Cai
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Guojiang Chen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Yanchun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
| | - Jiannan Feng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
| | - Yaojiang Huang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
16
|
Huang Y, Zhai W, Wang Z, He Y, Tao C, Chu Y, Pang Z, Zhu H, Jia H. Analysis of the Immunogenicity of African Swine Fever F317L Protein and Screening of T Cell Epitopes. Animals (Basel) 2024; 14:1331. [PMID: 38731330 PMCID: PMC11083013 DOI: 10.3390/ani14091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The African swine fever virus (ASFV) encodes numerous proteins characterized by complex immune escape mechanisms. At present, the structure and function of these proteins, including the F317L protein, have yet to be fully elucidated. In this study, we examined the immunogenicity of the F317L protein. Mice were subcutaneously immunized with the F317L protein using initial and subsequent booster doses, and, at the 28th day post-treatment, we assessed the humoral and cellular immune responses of mice. The F317L protein stimulated production of specific antibodies and activated humoral immune responses. In addition, F317L stimulated the production of large amounts of IFN-γ by splenic lymphocytes, thereby activating cellular immune responses. Using informatics technology, we predicted and synthesized 29 F317L protein T cell epitopes, which were screened using IFN-γ ELISpot. Among these, the F25 (246SRRSLVNPWT255) peptide was identified as having a stronger stimulatory effect than the full-length protein. Collectively, our findings revealed that the ASFV F317L protein can stimulate both strong humoral and cellular immunity in mice, and that the F25 (246SRRSLVNPWT255) peptide may be a potential active T cell epitope. These findings will provide a reference for further in-depth studies of the F317L protein and screening of antigenic epitopes.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Wenzhu Zhai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuheng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuanyuan Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Zhongbao Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| |
Collapse
|
17
|
Pedrera M, Soler A, Simón A, Casado N, Pérez C, García-Casado MA, Fernández-Pacheco P, Sánchez-Cordón PJ, Arias M, Gallardo C. Characterization of the Protective Cellular Immune Response in Pigs Immunized Intradermally with the Live Attenuated African Swine Fever Virus (ASFV) Lv17/WB/Rie1. Vaccines (Basel) 2024; 12:443. [PMID: 38675825 PMCID: PMC11054368 DOI: 10.3390/vaccines12040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Candidate vaccines against African swine fever virus (ASFV) based on naturally attenuated or genetically modified viruses have the potential to generate protective immune responses, although there is no consensus on what defines a protective immune response against ASFV. Studies, especially in sensitive host species and focused on unravelling protective mechanisms, will contribute to the development of safer and more effective vaccines. The present study provides a detailed analysis of phenotypic and functional data on cellular responses induced by intradermal immunization and subsequent boosting of domestic pigs with the naturally attenuated field strain Lv17/WB/Rie1, as well as the mechanisms underlying protection against intramuscular challenge with the virulent genotype II Armenia/07 strain. The transient increase in IL-8 and IL-10 in serum observed after immunization might be correlated with survival. Protection was also associated with a robust ASFV-specific polyfunctional memory T-cell response, where CD4CD8 and CD8 T cells were identified as the main cellular sources of virus-specific IFNγ and TNFα. In parallel with the cytokine response, these T-cell subsets also showed specific cytotoxic activity as evidenced by the increased expression of the CD107a degranulation marker. Along with virus-specific multifunctional CD4CD8 and CD8 T-cell responses, the increased levels of antigen experienced in cytotoxic CD4 T cells observed after the challenge in immunized pigs might also contribute to controlling virulent infection by killing mechanisms targeting infected antigen-presenting cells. Future studies should elucidate whether the memory T-cell responses evidenced in the present study persist and provide long-term protection against further ASFV infections.
Collapse
Affiliation(s)
- Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Soler
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Alicia Simón
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Nadia Casado
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Covadonga Pérez
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - María A. García-Casado
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Marisa Arias
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
18
|
Simbulan AM, Banico EC, Sira EMJS, Odchimar NMO, Orosco FL. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci Rep 2024; 14:1354. [PMID: 38228670 DOI: 10.1038/s41598-023-51005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Despite being identified over a hundred years ago, there is still no commercially available vaccine for the highly contagious and deadly African swine fever virus (ASFV). This study used immunoinformatics for the rapid and inexpensive designing of a safe and effective multi-epitope subunit vaccine for ASFV. A total of 18,858 proteins from 100 well-annotated ASFV proteomes were screened using various computational tools to identify potential epitopes, or peptides capable of triggering an immune response in swine. Proteins from genotypes I and II were prioritized for their involvement in the recent global ASFV outbreaks. The screened epitopes exhibited promising qualities that positioned them as effective components of the ASFV vaccine. They demonstrated antigenicity, immunogenicity, and cytokine-inducing properties indicating their ability to induce potent immune responses. They have strong binding affinities to multiple swine allele receptors suggesting a high likelihood of yielding more amplified responses. Moreover, they were non-allergenic and non-toxic, a crucial prerequisite for ensuring safety and minimizing any potential adverse effects when the vaccine is processed within the host. Integrated with an immunogenic 50S ribosomal protein adjuvant and linkers, the epitopes formed a 364-amino acid multi-epitope subunit vaccine. The ASFV vaccine construct exhibited notable immunogenicity in immune simulation and molecular docking analyses, and stable profiles in secondary and tertiary structure assessments. Moreover, this study designed an optimized codon for efficient translation of the ASFV vaccine construct into the Escherichia coli K-12 expression system using the pET28a(+) vector. Overall, both sequence and structural evaluations suggested the potential of the ASFV vaccine construct as a candidate for controlling and eradicating outbreaks caused by the pathogen.
Collapse
Affiliation(s)
- Alea Maurice Simbulan
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Edward C Banico
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Ella Mae Joy S Sira
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Nyzar Mabeth O Odchimar
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Science and Technology, S&T Fellows Program, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Biology, University of the Philippines Manila, 1000, Manila, Philippines.
| |
Collapse
|
19
|
Zhang X, Guan X, Wang Q, Wang X, Yang X, Li S, Zhao XT, Yuan M, Liu X, Qiu HJ, Li Y. Identification of the p34 Protein of African Swine Fever Virus as a Novel Viral Antigen with Protection Potential. Viruses 2023; 16:38. [PMID: 38257738 PMCID: PMC10818326 DOI: 10.3390/v16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
African swine fever (ASF) is a highly contagious disease caused by African swine fever virus (ASFV), affecting domestic and wild boars. The polyprotein pp220 of ASFV is responsible for producing the major structural proteins p150, p37, p14, p34, and p5 via proteolytic processing. The p34 protein is the main component of the ASFV core shell. However, the immunologic properties of the p34 protein in vitro and in vivo remain unclear. The results showed that the recombinant p34 protein expressed in prokaryotes and eukaryotes could react with convalescent swine sera to ASFV, suggesting that p34 is an immunogenic protein. Significantly, anti-p34 antibodies were found to inhibit the replication of ASFV in target cells. Furthermore, rabbits immunized with the recombinant C-strain of classical swine fever virus containing p34 produced both anti-p34 humoral and cellular immune responses. In addition, the p34 protein could induce a cell-mediated immune response, and a T-cell epitope on the p34 protein was identified using immunoinformatics and enzyme-linked immunospot (ELIspot) assay. Our study demonstrates that the p34 protein is a novel antigen of ASFV with protective potential.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Xiao Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China;
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Xiao-Tian Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Mengqi Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| |
Collapse
|
20
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Hua RH, Liu J, Zhang SJ, Liu RQ, Zhang XF, He XJ, Zhao DM, Bu ZG. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses 2023; 15:1467. [PMID: 37515155 PMCID: PMC10383863 DOI: 10.3390/v15071467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
A cell line expressing the CD2v protein of ASFV was generated. The efficient expression of CD2v protein was determined by immunofluorescence and Western blotting. The CD2v protein was Ni-affinity purified from the supernatant of cell cultures. The CD2v-expressing cells showed properties of hemadsorption, and the secreted CD2v protein exhibited hemagglutinating activity. The antigenicity and immunoprotection ability of CD2v were evaluated by immunizing pigs alone, combined with a cell-line-expressed p30 protein or triple combined with p30 and K205R protein. Immunized pigs were challenged with the highly virulent ASFV strain HLJ/18. Virus challenge results showed that CD2v immunization alone could provide partial protection at the early infection stage. Protein p30 did not show synergistic protection effects in immunization combined with CD2v. Interestingly, immunization with the triple combination of CD2V, p30 and K205R reversed the protection effect. The viremia onset time was delayed, and one pig out of three recovered after the challenge. The pig recovered from ASFV clinical symptoms, the rectal temperature returned to normal levels and the viremia was cleared. The mechanism of this protection effect warrants further investigation.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ren-Qiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xian-Feng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dong-Ming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
22
|
Zajac MD, Trujillo JD, Yao J, Kumar R, Sangewar N, Lokhandwala S, Sang H, Mallen K, McCall J, Burton L, Kumar D, Heitmann E, Burnum T, Waghela SD, Almes K, Richt J, Kim T, Mwangi W. Immunization of pigs with replication-incompetent adenovirus-vectored African swine fever virus multi-antigens induced humoral immune responses but no protection following contact challenge. Front Vet Sci 2023; 10:1208275. [PMID: 37404778 PMCID: PMC10316028 DOI: 10.3389/fvets.2023.1208275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Kylynn Mallen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Leeanna Burton
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Emily Heitmann
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tristan Burnum
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Kelli Almes
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
23
|
Lu W, Bai Y, Zhang S, Zhao X, Jin J, Zhu X, Wang R, Wu Y, Zhang A, Zhang G, Zhuang G, Sun A. An Intracellular Epitope of ASFV CD2v Protein Elicits Humoral and Cellular Immune Responses. Animals (Basel) 2023; 13:1967. [PMID: 37370477 DOI: 10.3390/ani13121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The African swine fever virus (ASFV) causes high mortality in domestic pigs. ASFV encodes an important protein target for subunit vaccine development, CD2v, but its most effective immunological regions are not known. Herein, we generated a monoclonal antibody (mAb) named IF3 by immunizing mice against the intracellular region of the CD2v protein (CD2v-IR). 1F3 specifically recognized CD2v, which is expressed transiently in transfected Sf9 cells and also in inactivated ASFV-infected porcine alveolar macrophage (PAM) cells. The epitope recognized by 1F3 is 264EPSPREP270, which is highly conserved in ASFV genotypes. Immunization of mice with this epitope elicited an increased IgG response, including IgG1 and IgG2a subtypes, and also increased CD8+ T cells and cytokine expression. Overall, these results indicate that this epitope induces both humoral and cellular immune responses that may be used for ASFV-related subunit vaccine design and development.
Collapse
Affiliation(s)
- Wenlong Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiaxin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
24
|
Sereda AD, Kazakova AS, Namsrayn SG, Vlasov ME, Sindryakova IP, Kolbasov DV. Subsequent Immunization of Pigs with African Swine Fever Virus (ASFV) Seroimmunotype IV Vaccine Strain FK-32/135 and by Recombinant Plasmid DNA Containing the CD2v Derived from MK-200 ASFV Seroimmunotype III Strain Does Not Protect from Challenge with ASFV Seroimmunotype III. Vaccines (Basel) 2023; 11:vaccines11051007. [PMID: 37243111 DOI: 10.3390/vaccines11051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.
Collapse
Affiliation(s)
- Alexey D Sereda
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Anna S Kazakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Sanzhi G Namsrayn
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Mikhail E Vlasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Irina P Sindryakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Denis V Kolbasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| |
Collapse
|
25
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
Bhilare KD, Jawalagatti V, Alam MJ, Chen B, Kim B, Lee JH, Kim JH. Immune response following safer administration of recombinant Salmonella Typhimurium harboring ASFV antigens in pigs. Vet Immunol Immunopathol 2023; 259:110596. [PMID: 37119725 DOI: 10.1016/j.vetimm.2023.110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
African swine fever virus (ASFV) is a contagious epizootic pathogen adversely affecting porcine industry in Asian and European countries. Till date, 8 serotypes and 24 genotypes of the virus have been reported. Few live attenuated virus vaccine studies have reported to provide complete protection against ASFV infection but biohazard concern still remain. Recombinant subunit antigens are capable of providing cellular and humoral immunity in porcine, but not a single vaccine has hit the market yet. In the present study, we attempted to use recombinant Salmonella Typhimurium JOL912 strain harboring ASFV antigens (rSal-ASFV) to investigate its immunostimulant effect in porcine. Post intramuscular administration, we observed significant increment in the levels of helper T cells, cytotoxic T cells, natural killer (NK) cells, and immunoglobulin (i.e. IgG, IgA, and IgM) levels in rSal-ASFV treated groups. Further RT-PCR analysis indicated the increased expression of MHC-I, MHC-II, CD80/86, NK cell receptors (NKp30, NKp44, and NKp46) and cytokines while ELIspot analysis revealed significant production of IFN-γ in rSal-ASFV treated groups. Taken together, we are able to demonstrate that rSal-ASFV could elicit a non-specific cellular as well as humoral immune response. However, additional antigen specific immunity data is needed to evaluate its efficacy. Intramuscular administration of rSal-ASFV was found to be safe and immunostimulant in nature without any side-effects and may serve as an excellent option for in-vivo antigen delivery in pigs.
Collapse
Affiliation(s)
- Kiran D Bhilare
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - Vijay Jawalagatti
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - Md Jahangir Alam
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - Baicheng Chen
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - John-Hwa Lee
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 79 Gobong-ro, Iksan-city Pincode-54596, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
27
|
Song J, Wang M, Du Y, Wan B, Zhang A, Zhang Y, Zhuang G, Ji P, Wu Y, Zhang G. Identification of a linear B-cell epitope on the African swine fever virus CD2v protein. Int J Biol Macromol 2023; 232:123264. [PMID: 36706875 DOI: 10.1016/j.ijbiomac.2023.123264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
African swine fever virus (ASFV) poses a serious threat to domestic pigs and wild boars, which is responsible for substantial production and economic losses. A dominant ASFV specific linear B cell epitope that reacted with the convalescent serum was explored and identified with the help of immune informatics techniques. It is essential in understanding the host immunity and in developing diagnostic technical guidelines and vaccine design. The confirmation of dominant epitopes with a positive serological matrix is feasible. To improve the immunogenicity of the epitope, we designed the dominant epitope of CD2v in the form of 2 branch Multiple-Antigen peptide (MAPs-2), CD2v-MAPs-2. Notably, CD2v peptide can be taken up by dendritic cells (DCs) to activate T lymphocytes and induce highly effective valence antibodies in BALB/c mice. The specific CD8+ T cell response were observed. The dominant epitope peptide identified in this study was able to effectively activate humoral and cellular immunity in mice model.
Collapse
Affiliation(s)
- Jinxing Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Henan Engineering Laboratory of Animal Biological Products, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center for National Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory, Zhengzhou 450046, China; Henan Engineering Laboratory of Animal Biological Products, China.
| |
Collapse
|
28
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
29
|
Abstract
African swine fever (ASF) is a lethal and highly contagious viral disease of domestic and wild pigs, listed as a notifiable disease reported to the World Organization for Animal Health (OIE). Despite its limited host range and absent zoonotic potential, the socio-economic and environmental impact of ASF is very high, representing a serious threat to the global swine industry and the many stakeholders involved. Currently, only control and eradication measures based mainly on early detection and strict stamping-out policies are available, however, the rapid spread of the disease in new countries, and in new regions in countries already affected, show these strategies to be lacking. In this review, we discuss approaches to ASF vaccinology, with emphasis on the advances made over the last decade, including the development of virulence-associated gene deleted strains such as the very promising ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine epithelial cell line, and the cross-protecting BA71ΔCD2 capable of stably growing in the commercial COS-1 cell line, or the naturally attenuated Lv17/WB/Rie1 which shows solid protection in wild boar. We also consider the key constraints involved in the scale-up and commercialization of promising live attenuated and virus-vectored vaccine candidates, namely cross-protection, safety, lack of suitable animal models, compatibility with wildlife immunization, availability of established and licensed cell lines, and differentiating infected from vaccinated animals (DIVA) strategy.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| | - Fernando Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| |
Collapse
|
30
|
Zhou X, Lu H, Wu Z, Zhang X, Zhang Q, Zhu S, Zhu H, Sun H. Comparison of mucosal immune responses to African swine fever virus antigens intranasally delivered with two different viral vectors. Res Vet Sci 2022; 150:204-212. [DOI: 10.1016/j.rvsc.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
31
|
BacMam Expressing Highly Glycosylated Porcine Interferon Alpha Induces Robust Antiviral and Adjuvant Effects against Foot-and-Mouth Disease Virus in Pigs. J Virol 2022; 96:e0052822. [PMID: 35604219 DOI: 10.1128/jvi.00528-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.
Collapse
|
32
|
Jia R, Zhang G, Bai Y, Liu H, Chen Y, Ding P, Zhou J, Feng H, Li M, Tian Y, Wang A. Identification of Linear B Cell Epitopes on CD2V Protein of African Swine Fever Virus by Monoclonal Antibodies. Microbiol Spectr 2022; 10:e0105221. [PMID: 35311572 PMCID: PMC9045250 DOI: 10.1128/spectrum.01052-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
The CD2-like (CD2V) protein is a crucial antigen of African swine fever virus (ASFV). CD2V interacts with the cellular AP-1 protein, participates in intracellular transport of virus, and induces neutralizing antibodies to partly protect swine from virus attack. In this study, a specific CD2V dimeric protein was designed to enhance antigenicity and immunogenicity, expressed in a Bac-to-Bac baculovirus expression vector system and purified by Ni-affinity chromatography. After animal immunization, five monoclonal antibodies (mAbs) (7E12, 22B3, 18A3, 13G11, and 43C2) against CD2V were developed. The variable regions of heavy chains and light chains of the mAbs were sequenced to prove that the five mAbs differed from one another. The mAbs of CD2V could combine with ASFV by immunoperoxidase monolayer assay (IPMA). B cell epitopes of CD2V were screened using the five mAbs by indirect enzyme-linked immunosorbent assay (ELISA) and Dot-ELISA. Therefore, three B cell epitopes (147FVKYT151, 157EYNWN161, and 195SSNY198) were identified. This is the first time that mAbs of the ASFV CD2V protein have been developed and the sequencing of heavy chains and light chains of mAbs has been completed. Linear B cell epitopes, which were core targets of immunoprotection of the CD2V protein, were identified by mAbs for the first time. This study provides efficient epitopes for the development of ASFV subunit vaccines. IMPORTANCE The ASFV CD2V protein is a crucial antigen on the outer envelopes of virus particles. A modified ASFV CD2V dimeric protein was expressed in the Bac-to-Bac baculovirus expression vector system. Five monoclonal antibodies (mAbs) against CD2V were developed, sequenced, and applied to identify CD2V protein B cell epitopes. Three B cell epitopes, 147FVKYT151, 157EYNWN161, and 195SSNY198, were identified. This is the first time CD2V mAbs have been developed, the sequencing of heavy chains and light chains of CD2V mAbs have been completed, and CD2V B cell epitopes have been identified by using scanning peptide method and bioinformatics methods.
Collapse
Affiliation(s)
- Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Peking University, Beijing, China
- Longhu Modern Immunity Labrotary, Zhengzhou, Henan, China
| | - Yilin Bai
- Northwest Agriculture Forestry University, Yanglin, Shanxi, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Feng
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Mingyang Li
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| |
Collapse
|
33
|
Transduction of HEK293 Cells with BacMam Baculovirus Is an Efficient System for the Production of HIV-1 Virus-like Particles. Viruses 2022; 14:v14030636. [PMID: 35337043 PMCID: PMC8954388 DOI: 10.3390/v14030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100–200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.
Collapse
|
34
|
Ravilov RK, Rizvanov AA, Mingaleev DN, Galeeva AG, Zakirova EY, Shuralev EA, Rutland CS, Khammadov NI, Efimova MA. Viral Vector Vaccines Against ASF: Problems and Prospectives. Front Vet Sci 2022; 9:830244. [PMID: 35359666 PMCID: PMC8963494 DOI: 10.3389/fvets.2022.830244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly contagious viral disease affecting pigs, with mortality rates a primary focus as they can reach up to 100%. The widespread and colossal economic losses from ASF have impacts on the development of animal husbandry practices in most countries within Africa, Asia, and Europe. Currently, a variety of approaches toward the development of vaccines against ASF are being employed. A promising new concept centered around more economical and time-consuming vaccine production is based on the use of viral vectors to deliver selected immunogens. This review discusses the results obtained from testing various viral vectors as carriers of targeted ASF virus genes. The safety and prospects of viral vectors, the possibilities around modulating cellular and humoral immune responses by choosing genes expressing immunodominant antigens, and the degree of protection in experimental animals from infection with a lethal dose of virulent ASF virus strains have been shown and discussed.
Collapse
Affiliation(s)
- Rustam Kh. Ravilov
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
| | - Albert A. Rizvanov
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
- Kazan (Volga Region) Federal University, Kazan, Russia
| | - Danil N. Mingaleev
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
| | - Antonina G. Galeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- *Correspondence: Antonina G. Galeeva
| | - Elena Yu. Zakirova
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
- Kazan (Volga Region) Federal University, Kazan, Russia
| | - Eduard A. Shuralev
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
- Kazan (Volga Region) Federal University, Kazan, Russia
- Kazan State Medical Academy, Kazan, Russia
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Nail I. Khammadov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
| | - Marina A. Efimova
- Kazan State Academy of Veterinary Medicine named after N. E. Bauman, Kazan, Russia
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Kazan State Medical Academy, Kazan, Russia
| |
Collapse
|
35
|
A systematic review of genotypes and serogroups of African swine fever virus. Virus Genes 2022; 58:77-87. [PMID: 35061204 PMCID: PMC8778497 DOI: 10.1007/s11262-021-01879-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/20/2021] [Indexed: 11/04/2022]
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF). The virus causes an acute highly hemorrhagic disease in domestic pigs, with high mortality. Although the overall genome mutation rate of ASFV, a large DNA virus, is relatively low, ASFV exhibits genetic and antigenic diversity. ASFV can be classified into 24 genotypes on the basis of the B646L gene. Cross-protected ASFV strains can be divided into eight serogroups on the basis of antibody-mediated hemadsorption inhibition. Here, we review research progress on ASFV genotyping and serogrouping, and explain how this information assists in the rapid identification of virus origin during ASF outbreaks and will aid in the development of ASF vaccines.
Collapse
|
36
|
Kord E, Roohvand F, Dubuisson J, Vausselin T, Nasr Azadani H, Keshavarz A, Nejati A, Samimi-Rad K. BacMam virus-based surface display for HCV E2 glycoprotein induces strong cross-neutralizing antibodies and cellular immune responses in vaccinated mice. Infect Agent Cancer 2021; 16:69. [PMID: 34922563 PMCID: PMC8684228 DOI: 10.1186/s13027-021-00407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022] Open
Abstract
Background Despite recent advancements, limitations in the treatment and control of hepatitis C virus (HCV) infection reprioritized the studies for invention of an efficient HCV vaccine to elicit strong neutralizing antibodies (NAbs) and cellular responses. Methods Herein, we report molecular construction of a BacMam virus-based surface display for a subtype-1a HCV gpE2 (Bac-CMV-E2-gp64; Bac) that both expressed and displayed gpE2 in mammalian cells and bacouloviral envelope, respectively. Results Assessments by western blotting, Immunofluorescence and Immunogold-electron microscopy indicated the proper expression and incorporation in insect cell and baculovirus envelope, respectively. Mice immunized in three different prime-boost immunization groups of: Bac/Bac, Bac/Pro (bacoulovirus-derived gpE2) and Bac/DNA (plasmid DNA (pCDNA)-encoding gpE2) developed high levels of IgG and IFN-γ (highest for Bac/Bac group) indicating the induction of both humeral and cellular immune responses. Calculation of the IgG2a/IgG1 and IFN-γ/IL-4 ratios indicated a Th1 polarization of immune responses in the Bac/Bac and Bac/DNA groups but a balanced Th1-Th2 phenotype in the Bac/Pro group. Sera of the mice in the Bac/Bac group provided the highest percentage of cross-NAbs against a subtype-2a HCVcc (JFH1) compared to Bac/Pro and Bac/DNA groups (62% versus 41% and 6%). Conclusions Results indicated that BacMam virus-based surface display for gpE2 might act as both subunit and DNA vaccine and offers a promising strategy for development of HCV vaccine for concurrent induction of strong humoral and cellular immune responses. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00407-x.
Collapse
Affiliation(s)
- Ebrahim Kord
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran.,Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, P.O. Box 1316943551, Tehran, Iran
| | - Jean Dubuisson
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Batiment, IBL, CS50477, Molecular & Cellular Virology, U1019 - UMR 8204 - CIIL- Center for Infection and Immunity of Lille, University Lille, 59021, Lille Cedex, France
| | - Thibaut Vausselin
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Batiment, IBL, CS50477, Molecular & Cellular Virology, U1019 - UMR 8204 - CIIL- Center for Infection and Immunity of Lille, University Lille, 59021, Lille Cedex, France
| | - Hosein Nasr Azadani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran.
| |
Collapse
|
37
|
Baculovirus Vectors Induce the Production of Interferons in Swine: Their Potential in the Development of Antiviral Strategies. Vet Sci 2021; 8:vetsci8110278. [PMID: 34822651 PMCID: PMC8617851 DOI: 10.3390/vetsci8110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The huge variety of viruses affecting swine represents a global threat. Since vaccines against highly contagious viruses last several days to induce protective immune responses, antiviral strategies for rapid control of outbreak situations are needed. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an insect virus, has been demonstrated to be an effective vaccine vector for mammals. Besides the ability to display or transduce heterologous antigens, it also induces strong innate immune responses and provides IFN-mediated protection against lethal challenges with viruses like foot-and-mouth disease virus (FMDV) in mice. Thus, the aim of this study was to evaluate the ability of AcMNPV to induce IFN production and elicit antiviral activity in porcine peripheral blood mononuclear cells (PBMCs). Our results demonstrated that AcMNPV induced an IFN-α-mediated antiviral activity in PBMCs in vitro. Moreover, the inoculation of AcMNPV in piglets led to the production of type I and II IFNs in sera from inoculated animals and antiviral activities against vesicular stomatitis virus (VSV) and FMDV measured by in vitro assays. Finally, it was demonstrated that the pseudotyping of AcMNPV with VSV-G protein, but not the enrichment of the AcMNPV genome with specific immunostimulatory CpG motifs for the porcine TLR9, improved the ability to induce IFN-α production in PBMCs in vitro. Together, these results suggest that AcMNPV is a promising tool for the induction of IFNs in antiviral strategies, with the potential to be biotechnologically improved.
Collapse
|
38
|
Muñoz-Pérez C, Jurado C, Sánchez-Vizcaíno JM. African swine fever vaccine: Turning a dream into reality. Transbound Emerg Dis 2021; 68:2657-2668. [PMID: 34137198 DOI: 10.1111/tbed.14191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
African swine fever (ASF) is currently threatening the swine industry at a global level. The disease originated in Africa has spread to Europe, Asia and Oceania, since 2007, reaching a pandemic dimension. Currently, the spread of ASF is unstoppable and that the development of a safe and effective vaccine is urgently required. The objective of this paper is to review the vaccine candidates tested during the 20th and 21st centuries, to identify the strengths and weaknesses of these studies and to highlight what we should learn. Several strategies have been explored to date, some of which have shown positive and negative results. Inactivated preparations and subunit vaccines are not a viable option. The most promising strategy would appear to be live attenuated vaccines, because these vaccine candidates are able to induce variable percentages of protection against certain homologous and heterologous virus isolates. The number of studies on live attenuated vaccine candidates has steadily increased in the 21st century thanks to advances in molecular biology and an in-depth knowledge of ASF virus, which have allowed the development of vaccines based on deletion mutants. The deletion of virulence-related genes has proved to be a useful tool for attenuation, although attenuation does not always mean protection and even less, cross protection. Therefore, ASF vaccine development has proved to be one of the top priorities in ASF research. Efforts are still being made to fill the gaps in the knowledge regarding immune response, safety and cross protection, and these efforts will hopefully help to find a safe and effective vaccine that could be commercialised soon, thus making it possible to turn a dream into reality.
Collapse
Affiliation(s)
- Carolina Muñoz-Pérez
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
39
|
Koltsova G, Koltsov A, Krutko S, Kholod N, Tulman ER, Kolbasov D. Growth Kinetics and Protective Efficacy of Attenuated ASFV Strain Congo with Deletion of the EP402 Gene. Viruses 2021; 13:v13071259. [PMID: 34203302 PMCID: PMC8309992 DOI: 10.3390/v13071259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is an emerging disease threat to the swine industry worldwide. There is no vaccine against ASF, and progress is hindered by a lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. We have previously demonstrated that homologous ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin are required for protection against challenge with the virulent ASFV strain Congo (Genotype I, Serogroup 2), and we have identified T-cell epitopes on CD2v which may be associated with serotype-specific protection. Here, using a cell-culture adapted derivative of the ASFV strain Congo (Congo-a) with specific deletion of the EP402R gene (ΔCongoCD2v) in swine vaccination/challenge experiments, we demonstrated that deletion of the EP402R gene results in the failure of ΔCongoCD2v to induce protection against challenge with the virulent strain Congo (Congo-v). While ΔCongoCD2v growth kinetics in COS-1 cells and primary swine macrophage culture were almost identical to parental Congo-a, replication of ΔCongoCD2v in vivo was significantly reduced compared with parental Congo-a. Our data support the idea that the CD2v protein is important for the ability of homologous live-attenuated vaccines to induce protective immunity against the ASFV strain Congo challenge in vivo.
Collapse
Affiliation(s)
- Galina Koltsova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia; (A.K.); (S.K.); (N.K.); (D.K.)
- Correspondence:
| | - Andrey Koltsov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia; (A.K.); (S.K.); (N.K.); (D.K.)
| | - Sergey Krutko
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia; (A.K.); (S.K.); (N.K.); (D.K.)
| | - Natalia Kholod
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia; (A.K.); (S.K.); (N.K.); (D.K.)
| | - Edan R. Tulman
- Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA;
| | - Denis Kolbasov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia; (A.K.); (S.K.); (N.K.); (D.K.)
| |
Collapse
|
40
|
African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine-Current Data. Viruses 2021; 13:v13071212. [PMID: 34201761 PMCID: PMC8310326 DOI: 10.3390/v13071212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prevention and control of African swine fever virus (ASFV) in Europe, Asia, and Africa seem to be extremely difficult in view of the ease with which it spreads, its high resistance to environmental conditions, and the many obstacles related to the introduction of effective specific immunoprophylaxis. Biological properties of ASFV indicate that the African swine fever (ASF) pandemic will continue to develop and that only the implementation of an effective and safe vaccine will ensure a reduction in the spread of ASFV. At present, vaccines against ASF are not available. The latest approaches to the ASFV vaccine’s design concentrate on the development of either modified live vaccines by targeted gene deletion from different isolates or subunit vaccines. The construction of an effective vaccine is hindered by the complex structure of the virus, the lack of an effective continuous cell line for the isolation and propagation of ASFV, unpredictable and stain-specific phenotypes after the genetic modification of ASFV, a risk of reversion to virulence, and our current inability to differentiate infected animals from vaccinated ones. Moreover, the design of vaccines intended for wild boars and oral administration is desirable. Despite several obstacles, the design of a safe and effective vaccine against ASFV seems to be achievable.
Collapse
|
41
|
Research progress on live attenuated vaccine against African swine fever virus. Microb Pathog 2021; 158:105024. [PMID: 34089790 DOI: 10.1016/j.micpath.2021.105024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
African swine fever (ASF) is an acute, hemorrhagic and severe infectious disease caused by African swine fever virus (ASFV) in domestic pigs and various wild boars, with a mortality rate up to 100%. ASF was first discovered in 1921 in Kenya. ASFV has a large genome and complex immune escape mechanism creating difficulties in the production of vaccines. Recently, remarkable advances have been made in vaccine development all over the world especially in live-attenuated vaccine. This article aims to review the research progress of ASF attenuated live vaccines in order to provide a reference for the development of vaccines for this disease.
Collapse
|
42
|
Thoughts on African Swine Fever Vaccines. Viruses 2021; 13:v13050943. [PMID: 34065425 PMCID: PMC8161283 DOI: 10.3390/v13050943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is an acute viral hemorrhagic disease of domestic swine with mortality rates approaching 100%. Devastating ASF outbreaks and continuing epidemics starting in the Caucasus region and now in the Russian Federation, Europe, China, and other parts of Southeast Asia (2007 to date) highlight its significance. ASF strain Georgia-07 and its derivatives are now endemic in extensive regions of Europe and Asia and are "out of Africa" forever, a situation that poses a grave if not an existential threat to the swine industry worldwide. While our current concern is Georgia-07, other emerging ASFV strains will threaten for the indefinite future. Economic analysis indicates that an ASF outbreak in the U.S. would result in approximately $15 billion USD in losses, assuming the disease is rapidly controlled and the U.S. is able to reenter export markets within two years. ASF's potential to spread and become endemic in new regions, its rapid and efficient transmission among pigs, and the relative stability of the causative agent ASF virus (ASFV) in the environment all provide significant challenges for disease control. Effective and robust methods, including vaccines for ASF response and recovery, are needed immediately.
Collapse
|
43
|
High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9030242. [PMID: 33802021 PMCID: PMC7999564 DOI: 10.3390/vaccines9030242] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/29/2022] Open
Abstract
African swine fever (ASF) is currently the major concern of the global swine industry, as a consequence of which a reconsideration of the containment and prevention measures taken to date is urgently required. A great interest in developing an effective and safe vaccine against ASF virus (ASFV) infection has, therefore, recently appeared. The objective of the present study is to test an inactivated ASFV preparation under a vaccination strategy that has not previously been tested in order to improve its protective effect. The following have been considered: (i) virus inactivation by using a low binary ethyleneimine (BEI) concentration at a low temperature, (ii) the use of new and strong adjuvants; (iii) the use of very high doses (6 × 109 haemadsorption in 50% of infected cultures (HAD50)), and (iv) simultaneous double inoculation by two different routes of administration: intradermal and intramuscular. Five groups of pigs were, therefore, inoculated with BEI- Pol16/DP/OUT21 in different adjuvant formulations, twice with a 4-week interval. Six weeks later, all groups were intramuscularly challenged with 10 HAD50 of the virulent Pol16/DP/OUT21 ASFV isolate. All the animals had clinical signs and pathological findings consistent with ASF. This lack of effectiveness supports the claim that an inactivated virus strategy may not be a viable vaccine option with which to fight ASF.
Collapse
|
44
|
Feng Z, Chen J, Liang W, Chen W, Li Z, Chen Q, Cai S. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice. Virol J 2020; 17:180. [PMID: 33198749 PMCID: PMC7668019 DOI: 10.1186/s12985-020-01450-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background African swine fever (ASF) leads to high mortality in domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). Currently, no vaccine is commercially available for prevention, and the epidemic is still spreading. Here, we constructed a recombinant pseudorabies virus (PRV) (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) that expresses the CD2v protein of ASFV and evaluated its effectiveness and safety as a vaccine candidate in mice. Methods A homologous recombination fragment containing ASFV CD2v was synthesized and co-transfected into HEK 293 T cells, a knockout vector targeting the PRV TK gene. The transfected cells were infected with PRV-ΔgE/ΔgI, and the recombinant strain (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) was obtained by plaque purification in Vero cells. The expression of ASFV CD2v in the recombinant virus was confirmed by sequencing, Western blotting, and immunofluorescence analysis, and the genetic stability was tested in Vero cells over 20 passages. The virulence, immunogenicity and protective ability of the recombinant virus were further tested in a mouse model. Results The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain is stable in Vero cells, and the processing of CD2v does not depend on ASFV infection. The vaccination of PRV-ΔgE/ΔgI/ΔTK-(CD2v) causes neither pruritus, not a systemic infection and inflammation (with the high expression of interleukin-6 (IL6)). Besides, the virus vaccination can produce anti-CD2v specific antibody and activate a specific cellular immune response, and 100% protect mice from the challenge of the virulent strain (PRV-Fa). The detoxification occurs much earlier upon the recombinant virus vaccination and the amount of detoxification is much lower as well. Conclusions The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity, is safe and effective, and maybe a potential vaccine candidate for the prevention of ASF and Pseudorabies.
Collapse
Affiliation(s)
- Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Jianghua Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Zhaolong Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China. .,Institute of Animal Husbandry and Veterinary Medicine, Fujian Province, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350117, People's Republic of China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| | - Shaoli Cai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| |
Collapse
|
45
|
Yoo D, Kim H, Lee JY, Yoo HS. African swine fever: Etiology, epidemiological status in Korea, and perspective on control. J Vet Sci 2020; 21:e38. [PMID: 32233141 PMCID: PMC7113569 DOI: 10.4142/jvs.2020.21.e38] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF), caused by the ASF virus, a member of the Asfarviridae family, is one of the most important diseases in the swine industry due to its clinical and economic impacts. Since the first report of ASF a century ago, ample information has become available, but prevention and treatment measures are still inadequate. Two waves of epizootic outbreaks have occurred worldwide. While the first wave of the epizootic outbreak was controlled in most of the infected areas, the second wave is currently active in the European and Asian continents, causing severe economic losses to the pig industry. There are different patterns of spreading in the outbreaks between those in European and Asian countries. Prevention and control of ASF are very difficult due to the lack of available vaccines and effective therapeutic measures. However, recent outbreaks in South Korea have been successfully controlled on swine farms, although feral pigs are periodically being found to be positive for the ASF virus. Therefore, we would like to share our story regarding the preparation and application of control measures. The success in controlling ASF on farms in South Korea is largely due to the awareness and education of swine farmers and practitioners, the early detection of infected animals, the implementation of strict control policies by the government, and widespread sharing of information among stakeholders. Based on the experience gained from the outbreaks in South Korea, this review describes the current understanding of the ASF virus and its pathogenic mechanisms, epidemiology, and control.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois-Urbana-Champaign, Urbana, IL 61802, USA.,Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | | | - Joo Young Lee
- Choong Ang Vaccine Laboratories Co. (Ltd.), Daejeon 34055, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
46
|
Wu K, Liu J, Wang L, Fan S, Li Z, Li Y, Yi L, Ding H, Zhao M, Chen J. Current State of Global African Swine Fever Vaccine Development under the Prevalence and Transmission of ASF in China. Vaccines (Basel) 2020; 8:vaccines8030531. [PMID: 32942741 PMCID: PMC7564663 DOI: 10.3390/vaccines8030531] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). At present, it is listed as a notifiable disease reported to the World Organization for Animal Health (OIE) and a class one animal disease ruled by Chinese government. ASF has brought significant economic losses to the pig industry since its outbreak in China in August 2018. In this review, we recapitulated the epidemic situation of ASF in China as of July 2020 and analyzed the influencing factors during its transmission. Since the situation facing the prevention, control, and eradication of ASF in China is not optimistic, safe and effective vaccines are urgently needed. In light of the continuous development of ASF vaccines in the world, the current scenarios and evolving trends of ASF vaccines are emphatically analyzed in the latter part of the review. The latest research outcomes showed that attempts on ASF gene-deleted vaccines and virus-vectored vaccines have proven to provide complete homologous protection with promising efficacy. Moreover, gaps and future research directions of ASF vaccine are also discussed.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiameng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianxiang Wang
- Hog Production Division, Guangdong Wen2019s Foodstuffs Group Co, Ltd., Xinxing 527439, China;
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Fax: +86-20-8528-0245
| |
Collapse
|
47
|
Chen C, Hua D, Shi J, Tan Z, Zhu M, Tan K, Zhang L, Huang J. Porcine Immunoglobulin Fc Fused P30/P54 Protein of African Swine Fever Virus Displaying on Surface of S. cerevisiae Elicit Strong Antibody Production in Swine. Virol Sin 2020; 36:207-219. [PMID: 32915442 DOI: 10.1007/s12250-020-00278-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
African swine fever virus (ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease. In this study, three recombinant Saccharomyces cerevisiae (S. cerevisiae) strains expressing fused ASFV proteins-porcine Ig heavy chains were constructed and the immunogenicity of the S. cerevisiae-vectored cocktail ASFV feeding vaccine was further evaluated. To be specific, the P30-Fcγ and P54-Fcα fusion proteins displaying on surface of S. cerevisiae cells were produced by fusing the Fc fragment of porcine immunoglobulin IgG1 or IgA1 with p30 or p54 gene of ASFV respectively. The recombinant P30-Fcγ and P54-Fcα fusion proteins expressed by S. cerevisiae were verified by Western blotting, flow cytometry and immunofluorescence assay. Porcine immunoglobulin Fc fragment fused P30/P54 proteins elicited P30/P54-specific antibody production and induced higher mucosal immunity in swine. The absorption and phagocytosis of recombinant S. cerevisiae strains in IPEC-J2 cells or porcine alveolar macrophage (PAM) cells were significantly enhanced, too. Here, we introduce a kind of cheap and safe oral S. cerevisiae-vectored vaccine, which could activate the specific mucosal immunity for controlling ASFV infection.
Collapse
Affiliation(s)
- Chen Chen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Kun Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
48
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020. [PMID: 32626597 DOI: 10.1186/s40813‐020‐00154‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. Main body In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. Conclusion Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
49
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020; 6:17. [PMID: 32626597 PMCID: PMC7329361 DOI: 10.1186/s40813-020-00154-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. MAIN BODY In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. CONCLUSION Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
50
|
Absence of Long-Term Protection in Domestic Pigs Immunized with Attenuated African Swine Fever Virus Isolate OURT88/3 or BeninΔMGF Correlates with Increased Levels of Regulatory T Cells and Interleukin-10. J Virol 2020; 94:JVI.00350-20. [PMID: 32376618 PMCID: PMC7343209 DOI: 10.1128/jvi.00350-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Following short immunization protocols, naturally attenuated African swine fever virus (ASFV) isolate OURT88/3 and deletion mutant BeninΔMGF have previously been shown to induce high percentages of protection in domestic pigs against challenge with virulent virus. The results obtained in the present study show that a single intramuscular immunization of domestic pigs with OURT88/3 or BeninΔMGF followed by a challenge with the virulent Benin 97/1 isolate at day 130 postimmunization did not trigger the mechanisms necessary to generate immunological memory able to induce long-term protection against disease. All pigs developed acute forms of acute swine fever (ASF). Gamma interferon-producing cells peaked at day 24 postimmunization, declining thereafter. Surprisingly, the levels of regulatory T cells (Tregs) and interleukin-10 (IL-10) were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.IMPORTANCE The duration of immunity for any vaccine candidate is crucial. In the case of African swine fever virus vaccine candidates, this issue has received little attention. Attenuated viruses have proven protective following short immunization protocols in which pigs were challenged a few weeks after the first immunization. Here, the duration of immunity and the immune responses induced over a duration of 130 days were studied during prechallenge and after challenge of pigs immunized with the naturally attenuated isolate OURT88/3 and an attenuated gene-deleted isolate, BeninΔMGF. After a single intramuscular immunization of domestic pigs with the OURT88/3 isolate or BeninΔMGF virus, animals were not protected against challenge with the virulent Benin 97/1 ASFV genotype I isolate at day 130 postimmunization. The levels of regulatory T cells and IL-10 were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.
Collapse
|