1
|
Trischitta P, Tamburello MP, Venuti A, Pennisi R. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review. Int J Mol Sci 2024; 25:5188. [PMID: 38791226 PMCID: PMC11121416 DOI: 10.3390/ijms25105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Collapse
Affiliation(s)
- Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| |
Collapse
|
2
|
Ning N, Nan Y, Chen G, Huang S, Lu D, Yang Y, Meng F, Yuan L. Anti-Tumor Effects and Toxicity Reduction Mechanisms of Prunella vulgaris: A Comprehensive Review. Molecules 2024; 29:1843. [PMID: 38675663 PMCID: PMC11052495 DOI: 10.3390/molecules29081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Doudou Lu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Yating Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Fandi Meng
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| |
Collapse
|
3
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Choudhary P, Atri N. Promising role of Vitamin D and plant metabolites against COVID-19: Clinical trials review. Heliyon 2023; 9:e21205. [PMID: 37920525 PMCID: PMC10618788 DOI: 10.1016/j.heliyon.2023.e21205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Vitamin D possesses immunomodulatory qualities and is protective against respiratory infections. Additionally, it strengthens adaptive and cellular immunity and boosts the expression of genes involved in oxidation. Experts suggested taking vitamin D supplements to avoid and treat viral infection and also COVID-19, on the other hand, since the beginning of time, the use of plants as medicines have been vital to human wellbeing. The WHO estimates that 80 % of people worldwide use plants or herbs for therapeutic purposes. Secondary metabolites from medicinal plants are thought to be useful in lowering infections from pathogenic microorganisms due to their ability to inhibit viral protein and enzyme activity by binding with them. As a result, this manuscript seeks to describe the role of vitamin D and probable plant metabolites that have antiviral activities and may be complementary to the alternative strategy against COVID-19 in a single manuscript through reviewing various case studies.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | | | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Sharma R, Bhattu M, Tripathi A, Verma M, Acevedo R, Kumar P, Rajput VD, Singh J. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. ENVIRONMENTAL RESEARCH 2023; 227:115725. [PMID: 37001848 DOI: 10.1016/j.envres.2023.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The viral diseases encouraged scientific community to evaluate the natural antiviral bioactive components rather than protease inhibitors, harmful organic molecules or nucleic acid analogues. For this purpose, medicinal plants have been gaining tremendous importance in the field of attenuating the various kinds of infectious and non-infectious diseases. Most of the commonly used medicines contains the bioactive components/phytoconstituents that are generally extracted from medicinal plants. Moreover, the medicinal plants offer many advantages for the recovery applications of infectious disease especially in viral infections including HIV-1, HIV-2, Enterovirus, Japanese Encephalitis Virus, Hepatitis B virus, Herpes Virus, Respiratory syncytial virus, Chandipura virus and Influenza A/H1N1. Considering the lack of acceptable drug candidates and the growing antimicrobial resistance to existing drug molecules for many emerging viral diseases, medicinal plants may offer best platform to develop sustainable/efficient/economic alternatives against viral infections. In this regard, for exploring and analyzing large volume of scientific data, bibliometric analysis was done using VOS Viewer shedding light on the emerging areas in the field of medicinal plants and their antiviral activity. This review covers most of the plant species that have some novel bioactive compound like gnidicin, gniditrin, rutin, apigenin, quercetin, kaempferol, curcumin, tannin and oleuropin which showed high efficacy to inhibit the several disease causing virus and their mechanism of action in HIV, Covid-19, HBV and RSV were discussed. Moreover, it also delves the in-depth mechanism of medicinal with challenges and future prospective. Therefore, this work delves the key role of environment in the biological field.
Collapse
Affiliation(s)
- Rhydum Sharma
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Ashutosh Tripathi
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Roberto Acevedo
- San Sebastián University, Campus Bellavista 7, Santiago, Chile
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
6
|
Yang XL, Wang CX, Wang JX, Wu SM, Yong Q, Li K, Yang JR. In silico evidence implicating novel mechanisms of Prunella vulgaris L . as a potential botanical drug against COVID-19-associated acute kidney injury. Front Pharmacol 2023; 14:1188086. [PMID: 37274117 PMCID: PMC10232756 DOI: 10.3389/fphar.2023.1188086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-κB signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.
Collapse
Affiliation(s)
- Xue-Ling Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Xuan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shi-Min Wu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ju-Rong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Wu J, Huang W, Wang Y. Pseudotyped Viruses for the Alphavirus Chikungunya Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:299-312. [PMID: 36920704 DOI: 10.1007/978-981-99-0113-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Members of the genus Alphavirus are mostly mosquito-borne pathogens that cause disease in their vertebrate hosts. Chikungunya virus (CHIKV), which is one member of the genus Alphavirus [1], has been a major health problem in endemic areas since its re-emergence in 2006. CHIKV is transmitted to mammalian hosts by the Aedes mosquito, causing persistent debilitating symptoms in many cases. At present, there is no specific treatment or vaccine. Experiments involving live CHIKV need to be performed in BSL-3 facilities, which limits vaccine and drug research. The emergence of pseudotyped virus technology offered the potential for the development of a safe and effective evaluation method. In this chapter, we review the construction and application of pseudotyped CHIKVs, the findings from which have enhanced our understanding of CHIKV. This will, in turn, enable the exploration of promising therapeutic strategies in animal models, with the ultimate aim of developing effective treatments and vaccines against CHIKV and other related viruses.
Collapse
Affiliation(s)
- Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| |
Collapse
|
8
|
Ao Z, Ouyang MJ, Olukitibi TA, Yao X. SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory cytokine production. iScience 2022; 25:104759. [PMID: 35854977 PMCID: PMC9281453 DOI: 10.1016/j.isci.2022.104759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Delta variant had spread globally in 2021 and caused more serious disease than the original virus and Omicron variant. In this study, we investigated several virological features of Delta spike protein (SPDelta), including protein maturation, its impact on viral entry of pseudovirus and cell-cell fusion, and its induction of inflammatory cytokine production in human macrophages and dendritic cells. The results showed that SPΔCDelta exhibited enhanced S1/S2 cleavage in cells and pseudotyped virus-like particles (PVLPs). Further, SPΔCDelta elevated pseudovirus entry in human lung cell lines and significantly enhanced syncytia formation. Furthermore, we revealed that SPΔCDelta-PVLPs had stronger effects on stimulating NF-κB and AP-1 signaling in human monocytic THP1 cells and induced significantly higher levels of proinflammatory cytokine, such as TNF-α, IL-1β, and IL-6, released from human macrophages and dendritic cells. Overall, these studies provide evidence to support the important role of SPΔCDelta during virus infection, transmission, and pathogenesis.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|
10
|
Pan J, Wang H, Chen Y. Prunella vulgaris L. - A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front Pharmacol 2022; 13:903171. [PMID: 35814234 PMCID: PMC9261270 DOI: 10.3389/fphar.2022.903171] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Prunella vulgaris L. (PVL) is dried fruit spike of Lamiacea plant Prunella vulgaris L., which is a perennial herb with medicinal and edible homology used for thousands of years. PVL is bitter, acrid, cold, and belongs to the liver and gallbladder meridians. It clears the liver and dissipate fire, improve vision, disperse swelling, and has satisfactory clinical therapeutic effects on many diseases such as photophobia, dizziness, scrofula, goiter, breast cancer. The collection of information and data related to PVL comes from literatures retrieved and collated from various online scientific databases (such as CNKI, VIP, PubMed, Web of Science, Research Gate, Science Database), ancient books of traditional chinese medicine (Encyclopedia of Traditional Chinese Medicine, Classics of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine), and Doctoral and Master's Dissertations. Currently, the major chemical constituents isolated and identified from PVL are triterpenoids, steroids, flavonoids, phenylpropanoids, organic acids, volatile oils and polysaccharides. Modern pharmacological studies have shown that PVL has a wide range of pharmacological activities, including anti-inflammatory, anti-tumor, antibacterial and antiviral effects, as well as immune regulation, antihypertensive, hypoglycemic, lipid-lowering, antioxidant, free radical scavenging, liver protection, sedative and hypnotic effects. This paper reviewes the botany, ethnopharmacology, traditional application, phytochemistry, analytical methods, quality control, pharmacological effects of PVL. It can be used not only as medicine, but also gradually integrated into the "medicine and food homology" and "Chinese medicine health" boom. More importantly, it has great potential for drug resources development. This paper deeply discusses the shortcomings of current PVL research, and proposes corresponding solutions, in order to find a breakthrough point for PVL research in the future. At the same time, it is necessary to further strengthen the research on its medicinal chemistry, mechanism of action and clinical application efficacy in the future, and strive to extract, purify and synthesize effective components with high efficiency and low toxicity, so as to improve the safety and rationality of clinical medication.
Collapse
Affiliation(s)
| | | | - Yinghua Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Prunella vulgaris can improve the pregnancy outcomes of experimental autoimmune thyroiditis rats by inhibiting Th1/Th17 immune responses. J Reprod Immunol 2021; 149:103469. [PMID: 34979369 DOI: 10.1016/j.jri.2021.103469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Autoimmune thyroiditis (AIT), one of the most common autoimmune diseases among women of reproductive age, is closely associated with reproductive failure and other obstetric complications. However, effective clinical strategies for the management of pregnant women with AIT are limited. It has been shown that Prunella vulgaris (PV), a traditional herbal medicine, can ameliorate AIT and other common thyroid disorders. Therefore, using an experimental autoimmune thyroiditis (EAT) rat model, we investigated the potential effects of PV on AIT-related pregnancy outcomes. According to the administered dose of PV, EAT rats were randomly divided into the untreated EAT and PV-treated EAT groups. We found that thyroid peroxidase antibody and thyroglobulin antibody serum levels and the inflammatory infiltration of the thyroid were reduced in all PV-treated groups. Increased splenic Tgfb1 mRNA levels and Treg cell proportions were associated with decreased Th1/Th17 cell proportions, and Ifng mRNA levels were reduced in rats that received low and medium doses of PV. Moreover, in the low-dose PV group, fetal development retardation and placental injuries were reversed. Overall, our findings indicated that PV could alleviate AIT and improve pregnancy outcomes in EAT rats by downregulating Th1/Th17 immune responses and inducing Treg cell proliferation.
Collapse
|
12
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
13
|
Ao Z, Chan M, Ouyang MJ, Olukitibi TA, Mahmoudi M, Kobasa D, Yao X. Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry. PLoS One 2021; 16:e0251649. [PMID: 34106944 PMCID: PMC8189562 DOI: 10.1371/journal.pone.0251649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Until now, antiviral therapeutic agents are still urgently required for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a sensitive SCoV-2 Spike glycoprotein (SP), including an SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. Based on this system, we have demonstrated that an aqueous extract from the Natural herb Prunella vulgaris (NhPV) displayed potent inhibitory effects on SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) mediated infections. Moreover, we have compared NhPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both NhPV and Suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, the inhibitory effects of NhPV and Suramin were confirmed by the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of NhPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, by using SARS-CoV-2 SP-pseudotyped HIV-1-based entry system, we provide strong evidence that NhPV and Suramin have anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhujun Ao
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public
Health Agency of Canada, Winnipeg, Canada
| | - Maggie Jing Ouyang
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Titus Abiola Olukitibi
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Mona Mahmoudi
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public
Health Agency of Canada, Winnipeg, Canada
| | - Xiaojian Yao
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
IgY antibodies against Ebola virus possess post-exposure protection in a murine pseudovirus challenge model and excellent thermostability. PLoS Negl Trop Dis 2021; 15:e0008403. [PMID: 33711011 PMCID: PMC7990235 DOI: 10.1371/journal.pntd.0008403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/24/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023] Open
Abstract
Ebola virus (EBOV) is one of the most virulent pathogens that causes hemorrhagic fever and displays high mortality rates and low prognosis rates in both humans and nonhuman primates. The post-exposure antibody therapies to prevent EBOV infection are considered effective as of yet. However, owing to the poor thermal stability of mammalian antibodies, their application in the tropics has remained limited. Therefore, a thermostable therapeutic antibody against EBOV was developed modelled on the poultry(chicken) immunoglobulin Y (IgY). The IgY antibodies retaining their neutralising activity at 25°C for one year, displayed excellent thermal stability, opposed to conventional polyclonal antibodies (pAbs) or monoclonal antibodies (mAbs). Laying hens were immunised with a variety of EBOV vaccine candidates and it was confirmed that VSVΔG/EBOVGP encoding the EBOV glycoprotein could induce high titer neutralising antibodies against EBOV. The therapeutic efficacy of immune IgY antibodies in vivo was evaluated in the newborn Balb/c mice who have been challenged with the VSVΔG/EBOVGP model. Mice that have been challenged with a lethal dose of the pseudovirus were treated 2 or 24 h post-infection with different doses of anti-EBOV IgY. The group receiving a high dose of 106 NAU/kg (neutralising antibody units/kilogram) showed complete protection with no symptoms of a disease, while the low-dose group was only partially protected. Conversely, all mice receiving naive IgY died within 10 days. In conclusion, the anti-EBOV IgY exhibits excellent thermostability and protective efficacy. Anti-EBOV IgY shows a lot of promise in entering the realm of efficient Ebola virus treatment regimens. Despite the amount of efficient Ebola virus therapeutic antibodies reported in recent years, their application in tropical endemic areas has remained limited due to the low thermal stability of mammalian antibodies. A highly thermostable therapeutic polyclonal antibody against EBOV was developed based on chicken immunoglobulin Y (IgY). The EBOV specific IgY antibodies displayed excellent thermal stability, retaining their neutralising activity at 25°C for one year. The newborn mice receiving the passive transfer of IgY achieved complete protection against a lethal dose of virus challenge proving that the anti-EBOV IgY provides a promising recourse to solve some of the current clinical application hindrances of Ebola antibody-based treatments in Africa due to thermal stability.
Collapse
|
15
|
microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP. Mol Cell 2021; 81:1187-1199.e5. [PMID: 33581076 DOI: 10.1016/j.molcel.2021.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-β production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-β induction, prompting a negative feedback regulatory mechanism that represses IFN-β expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.
Collapse
|
16
|
The Antitumour Effect of Prunella vulgaris Extract on Thyroid Cancer Cells In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8869323. [PMID: 33505511 PMCID: PMC7811421 DOI: 10.1155/2021/8869323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Prunella vulgaris, a traditional Chinese medicine, has been used to treat various benign and malignant tumours for centuries in China. In our previous studies, Prunella vulgaris extract (PVE) was shown to promote apoptosis in differentiated thyroid cancer (DTC) cells. However, whether other mechanisms are involved in the antitumour effect of PVE in thyroid cancer (TC) cells remains unclear. The present study aimed to investigate the antiproliferative and antimigratory effects of PVE on TC cell lines both in vitro and in vivo. First, the TPC-1 and SW579 human TC cell lines were screened by MTT assay for their high level of sensitivity to PVE. Then, the results of cell growth curve and colony formation assay and cell cycle analyses, wound healing, and migration assays demonstrated that PVE inhibited the proliferation and migration of TPC-1 and SW579 cells. Moreover, the antitumour effect of PVE was verified in a subcutaneous xenotransplanted tumour model. Next, MKI67, PCNA, CTNNB1, and CDH1 were screened by qRT-PCR for their significantly differential expression levels in xenograft tissue with and without PVE treatment, and expression of MKI67, PCNA, and CDH1 was verified by Western blot. Finally, an integrated bioinformatics analysis containing protein-protein interaction network, KEGG pathway, and GO analysis was conducted to explore more potential antitumour mechanisms of PVE. In summary, PVE could inhibit the proliferation and migration of TC cells both in vitro and in vivo, which may have been achieved by modulation of the expression of MKI67, PCNA, and CDH1. These data suggest that PVE has the potential to be developed into a new anticancer drug for the treatment of TC.
Collapse
|
17
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
18
|
Liu Z, Hua Y, Wang S, Liu X, Zou L, Chen C, Zhao H, Yan Y. Analysis of the Prunellae Spica transcriptome under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:314-322. [PMID: 32998098 DOI: 10.1016/j.plaphy.2020.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Prunella vulgaris L. is a moderately salt tolerant plant commonly found in China and Europe, whose spica (Prunellae Spica) has been used as a traditional medicine. The scant transcriptomic and genomic resources of Prunellae Spica have greatly hindered further exploration of the underlying salt tolerance mechanism of this species. To clarify the genetic basis of its salt tolerance, high-throughput sequencing of mRNAs was employed for de novo transcriptome assembly differential expression analysis of Prunellae Spica under salt stress. 118,664 unigenes were obtained by assembling pooled reads from all libraries with 68,119 sequences annotated. A total of 3857 unigenes were differentially expressed under low, medium and high salt stress, including 2456 up-regulated and 1401 down-regulated DEGs, respectively. Gene ontology analysis revealed that salt stress-related categories involving 'catalytic activity', 'binding', 'metabolic process' and 'cellular process' were highly enriched. KEGG pathway annotation showed that the DEGs from different salt stress treatment groups were mainly enriched in the pathways of translation, signal transduction, carbohydrate metabolism, energy metabolism, lipid metabolism and amino acid metabolism, accounting for over 60% of all DEGs. Finally, it showed that the results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis for 10 unigenes that randomly selected were significantly consistent with RNA-seq data, which further assisted in the selection of salt stress-responsive candidate genes in Prunellae Spica. This study represents a significant step forward in understanding the salt tolerance mechanism of Prunellae Spica, and also provides a significant transcriptomic resource for future work.
Collapse
Affiliation(s)
- Zixiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China; Department of Pharmacy, Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Yujiao Hua
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Shengnan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Hui Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Ying Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| |
Collapse
|
19
|
Coronaviruses and Nature's Pharmacy for the Relief of Coronavirus Disease 2019. ACTA ACUST UNITED AC 2020; 30:603-621. [PMID: 33041391 PMCID: PMC7537782 DOI: 10.1007/s43450-020-00104-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Current challenges to the treatment of coronavirus disease 2019 should open new prospects in the search for novel drugs from medicinal plants and other natural products. This paper provides details of natural agents that inhibit human coronavirus entry into cells, general replication, and specific chymotrypsin-like protease (3CLpro)-mediated replication. Medicinal plants, fungi, and marine organisms as remedies for human coronaviruses in China, Lebanon, Malaysia, Singapore, and South Africa are described. Common species include Alnus japonica (Thunb.) Steud., Artemisia annua L., Artemisia apiacea Hance, Astragalus membranaceus (Fisch.) Bunge, Cinnamomum cassia (L.) J.Presl, edible brown algae Ecklonia cava Kjellman, Euphorbia neriifolia L., Glycyrrhiza glabra L., Lonicera japonica Thunb., Pelargonium sidoides DC., Polygonum cuspidatum Siebold & Zucc., Sanguisorba officinalis L., Scutellaria baicalensis Georgi, Toona sinensis (Juss.) M.Roem., and Torreya nucifera (L.) Siebold & Zucc. At least fifty natural compounds, including alkaloids, flavonoids, glycosides, anthraquinones, lignins, and tannins, which inhibit various strains of human coronaviruses, are presented. Given the scarcity of efficacious and safe vaccines or drugs for coronavirus disease 2019, natural products are low-hanging fruits that should be harnessed as the new global frontier against severe acute respiratory syndrome coronavirus 2.
Collapse
|
20
|
Shahzad F, Anderson D, Najafzadeh M. The Antiviral, Anti-Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients 2020; 12:E2573. [PMID: 32854262 PMCID: PMC7551890 DOI: 10.3390/nu12092573] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The 2019 novel coronavirus, SARS-CoV-2, producing the disease COVID-19 is a pathogenic virus that targets mostly the human respiratory system and also other organs. SARS-CoV-2 is a new strain that has not been previously identified in humans, however there have been previous outbreaks of different versions of the beta coronavirus including severe acute respiratory syndrome (SARS-CoV1) from 2002 to 2003 and the most recent Middle East respiratory syndrome (MERS-CoV) which was first identified in 2012. All of the above have been recognised as major pathogens that are a great threat to public health and global economies. Currently, no specific treatment for SARS-CoV-2 infection has been identified; however, certain drugs have shown apparent efficacy in viral inhibition of the disease. Natural substances such as herbs and mushrooms have previously demonstrated both great antiviral and anti-inflammatory activity. Thus, the possibilities of natural substances as effective treatments against COVID-19 may seem promising. One of the potential candidates against the SARS-CoV-2 virus may be Inonotus obliquus (IO), also known as chaga mushroom. IO commonly grows in Asia, Europe and North America and is widely used as a raw material in various medical conditions. In this review, we have evaluated the most effective herbs and mushrooms, in terms of the antiviral and anti-inflammatory effects which have been assessed in laboratory conditions.
Collapse
Affiliation(s)
| | | | - Mojgan Najafzadeh
- School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (F.S.); (D.A.)
| |
Collapse
|
21
|
Petrova NV, Sazanova KV, Medvedeva NA, Shavarda AL. Features of Metabolomic Profiles in Different Stages of Ontogenesis in Prunella vulgaris (Lamiaceae) Grown in a Climate Chamber. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shen T, Xing G, Zhu J, Cai Y, Zhang S, Xu G, Feng Y, Li D, Rao J, Shi R. Effects of 12-Week Supplementation of a Polyherbal Formulation in Old Adults with Prehypertension/Hypertension: A Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7056872. [PMID: 31391860 PMCID: PMC6662493 DOI: 10.1155/2019/7056872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Uncontrolled blood pressure is the leading cause of mortality and disability due to associated cerebral and cardiovascular diseases and kidney failure. More than one-third of the old adult population have hypertension or prehypertension and many of their blood pressure are poorly controlled. OBJECTIVE We hypothesized that plant extracts-based antioxidants may benefit those with prehypertension/hypertension. METHOD One hundred age- and gender-matched healthy older adults were randomly assigned to receive HyperBalance capsules (n=50) or placebo (n=50) at Tang-Qiao Community Health Service Center, Shanghai. Blood pressure and severity scores of hypertension treatment-related symptoms (dizziness, headache, ringing/buzzing in ears, rapid heart rate, and chest tightness) were evaluated before and after the 12-week intervention. RESULTS Ninety-eight people completed the study, with 2 dropouts in the placebo group before the end of the study. Forty-one subjects (82%) of the HyperBalance group and 40 subjects (83.3%) of the placebo group had prehypertension (systolic blood pressures (SBP) between 130-139 and diastolic blood pressure (DBP) between 85-89mmHg), and 9 subjects (18%) in the HyperBalance group and 8 subjects (16.7%) in the placebo group had hypertension (≥140/90mmHg) before the intervention. HyperBalance significantly (P<0.01) reduced SBP from 136.18±4.38 to 124.14±3.96 mmHg and reduced DBP from 82.45±2.91 to 80.24±2.41mmHg, respectively, and reversed all 9 hypertension people to normotension or prehypertension state, whereas the placebo moderately reduced SBP from 135.79±4.22 to 132.35±4.656mmHg and reduced DBP from 82.90±3.07 to 82.27±3.01mmHg. All symptom severity scores became significantly lower in the HyperBalance group than in the placebo group after HyperBalance intervention: dizziness (0.82±0.44; vs 2.02±0.64, P<0.01); headache (0.46±0.50; vs 1.81±0.61, P<0.01); ringing/buzzing in ears (0.44±0.50; vs 1.04±0.29, P<0.01); and rapid heart rate and chest tightness (0.30±0.46; vs 0.92±0.28, P<0.01). CONCLUSION Polyherbal supplementation such as HyperBalance could benefit old adults with prehypertension/hypertension and improve treatment-related symptoms. Further studies are needed to validate the current findings.
Collapse
Affiliation(s)
- Tian Shen
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD 20850, USA
| | - Jingfen Zhu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yong Cai
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shuxian Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Gang Xu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Feng
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Donghua Li
- Tang Qiao Community Health Service Center, Pudong New District, Shanghai 200127, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rong Shi
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Ao Z, Wang L, Mendoza EJ, Cheng K, Zhu W, Cohen EA, Fowke K, Qiu X, Kobinger G, Yao X. Incorporation of Ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses. PLoS One 2019; 14:e0216949. [PMID: 31100082 PMCID: PMC6524799 DOI: 10.1371/journal.pone.0216949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
The development of an effective vaccine against HIV infection remains a global priority. Dendritic cell (DC)-based HIV immunotherapeutic vaccine is a promising approach which aims at optimizing the HIV-specific immune response using primed DCs to promote and enhance both the cellular and humoral arms of immunity. Since the Ebola virus envelope glycoprotein (EboGP) has strong DC-targeting ability, we investigated whether EboGP is able to direct HIV particles towards DCs efficiently and promote potent HIV-specific immune responses. Our results indicate that the incorporation of EboGP into non-replicating virus-like particles (VLPs) enhances their ability to target human monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). Also, a mucin-like domain deleted EboGP (EboGPΔM) can further enhanced the MDDCs and MDMs-targeting ability. Furthermore, we investigated the effect of EboGP on HIV immunogenicity in mice, and the results revealed a significantly stronger HIV-specific humoral immune response when immunized with EboGP-pseudotyped HIV VLPs compared with those immunized with HIV VLPs. Splenocytes harvested from mice immunized with EboGP-pseudotyped HIV VLPs secreted increased levels of macrophage inflammatory proteins-1α (MIP-1α) and IL-4 upon stimulation with HIV Env and/or Gag peptides compared with those harvested from mice immunized with HIV VLPs. Collectively, this study provides evidence for the first time that the incorporation of EboGP in HIV VLPs can facilitate DC and macrophage targeting and induce more potent immune responses against HIV.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Chemokine CCL3/genetics
- Chemokine CCL3/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Ebolavirus/chemistry
- Female
- Gene Expression
- HEK293 Cells
- HIV Antibodies/biosynthesis
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Primary Cell Culture
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lijun Wang
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Histology and Embryology, Zunyi Medical College, Zunyi, Guizhou, China
| | - Emelissa J. Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Keding Cheng
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Wenjun Zhu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Keith Fowke
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval/Centre Hospitalier de l’Université Laval (CHUL), Québec, Quebec, Canada
- * E-mail: (XJY); (GK)
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (XJY); (GK)
| |
Collapse
|
24
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Cui Q, Du R, Anantpadma M, Schafer A, Hou L, Tian J, Davey RA, Cheng H, Rong L. Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor. Viruses 2018; 10:v10040152. [PMID: 29584652 PMCID: PMC5923446 DOI: 10.3390/v10040152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022] Open
Abstract
The recent 2014-2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment.
Collapse
Affiliation(s)
- Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Lin Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 2018; 28:e1963. [PMID: 29218769 PMCID: PMC7169153 DOI: 10.1002/rmv.1963] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Emerging and reemerging infectious diseases have a strong negative impact on public health. However, because many of these pathogens must be handled in biosafety level, 3 or 4 containment laboratories, research and development of antivirals or vaccines against these diseases are often impeded. Alternative approaches to address this issue have been vigorously pursued, particularly the use of pseudoviruses in place of wild-type viruses. As pseudoviruses have been deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level 2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational structures to those of the wild-type viruses, making it feasible to conduct mechanistic investigation on viral entry and to evaluate potential neutralizing antibodies. However, a variety of challenging issues remain, including the production of a sufficient pseudovirus yield and the inability to produce an appropriate pseudotype of certain viruses. This review discusses current progress in the development of pseudoviruses and dissects the factors that contribute to low viral yields.
Collapse
Affiliation(s)
- Qianqian Li
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Qiang Liu
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Xuguang Li
- Division of Regulatory ResearchCentre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health CanadaOttawaCanada
| | - Youchun Wang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
27
|
Oluwagbemi O, Awe O. A comparative computational genomics of Ebola Virus Disease strains: In-silico Insight for Ebola control. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
28
|
Bekut M, Brkić S, Kladar N, Dragović G, Gavarić N, Božin B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol Res 2017; 133:301-314. [PMID: 29258916 PMCID: PMC7129285 DOI: 10.1016/j.phrs.2017.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023]
Abstract
Constant search for new drugs with antiviral properties often extends to products of natural origin. Lamiaceae is one of the most important herbal families, well known for various biological and medicinal effects of a variety of aromatic spices, including thyme, mint, oregano, basil, sage, savory, rosemary, self-heal, hyssop, lemon balm and many others. The paper provides a review of antiviral potential of previously mentioned plants which has been demonstrated so far, with special emphasis on anti-HIV properties. Relevant articles were compiled by searching plant names combined with keywords describing antiviral activity. The antiviral effect is direct, with prominent activity against enveloped viral species. Initial stages of the viral life cycle are the most affected, as these plants appear to be targeting mainly viral structures responsible for attachment to target cells. In case of HIV, there is some activity against key enzymes in the viral life cycle. Even in the case of drug resistance, there is an equal susceptibility to applied herbal preparations. Some in vivo experiments suggest that use of Lamiaceae representatives could help in prevention and treatment of some viral diseases. A possible reduction of side effects of diseases and conventional drug therapy are also some aspects worth further investigations.
Collapse
Affiliation(s)
- Maja Bekut
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Snežana Brkić
- University of Novi Sad, Faculty of Medicine, Department of Infectious Diseases, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Clinical Centre of Vojvodina, Clinic for Infectious Diseases, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Gordana Dragović
- University of Belgrade, School of Medicine, Department of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1/III, 11000 Belgrade, Serbia
| | - Neda Gavarić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Biljana Božin
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
29
|
HIV-1 envelope glycoprotein stimulates viral transcription and increases the infectivity of the progeny virus through the manipulation of cellular machinery. Sci Rep 2017; 7:9487. [PMID: 28842659 PMCID: PMC5573355 DOI: 10.1038/s41598-017-10272-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
During HIV infection, large amounts of progeny viral particles, including infectious virus and a large proportion of defective viral particles, are produced. Despite of the critical role of the infectious viruses in infection and pathogenesis in vivo, whether and how those defective viral particles, especially the virus-associated envelope glycoprotein (vEnv), would impact viral infection remains elusive. In this study, we investigated the effect of vEnv on HIV-infected T cells and demonstrated that the vEnv was able to stimulate HIV transcription in HIV-infected cells, including peripheral blood mononuclear cells (PBMCs) isolated from HIV patients. This vEnv-mediated HIV transcription activation is mediated primarily through the interaction between vEnv and CD4/coreceptors (CCR5 or CXCR4). Through transcriptome analysis, we found that numerous cellular gene products involved in various signaling pathways were modulated by vEnv. Among them, we have further identified a cellular microRNA miR181A2, which is downregulated upon vEnv treatment, resulting in increased HIV LTR histone H3 acetylation and HIV transcription. Furthermore, we also found a vEnv-modulated cellular histone deacetylase, HDAC10, whose downregulation is associated with the increased infectivity of progeny viruses. Altogether, these findings provide evidence of the important role vEnv plays in modulating cellular environments and facilitating HIV expression and infection.
Collapse
|
30
|
Di Petrillo A, Fais A, Pintus F, Santos-Buelga C, González-Paramás AM, Piras V, Orrù G, Mameli A, Tramontano E, Frau A. Broad-range potential of Asphodelus microcarpus leaves extract for drug development. BMC Microbiol 2017; 17:159. [PMID: 28709400 PMCID: PMC5513112 DOI: 10.1186/s12866-017-1068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background Many plants have been used in traditional medicine for their antibacterial, antifungal, antiprotozoal, antiviral, antidiarrhoeal, analgesic, antimalarial, antioxidant, anti-inflammatory and anticancer activities. In order to find novel antimicrobial and antiviral agents, the aim of the present study was the evaluation of the antibacterial and antibiofilm susceptibility of Asphodelus microcarpus leaves extract. Moreover, the antiviral activity and the phytochemical composition of the active extract were also determined. Methods Antimicrobial and antibiofilm activities of leaves ethanol extract of A. microcarpus were evaluated on 13 different microbial strains. We selected three different sets of microorganisms: (i) Gram-positive bacteria, (ii) Gram-negative bacteria and (iii) yeasts. The potential antiviral activity of A. microcarpus leaves ethanol extract was evaluated with a luciferase reporter gene assay in which the dsRNA-dependent RIG-I-mediated IFN-β activation was inducted or inhibited by the Ebola virus VP35 protein. HPLC-DAD-MS was used to identify phenolic profile of the active extract. Results A. microcarpus leaves extract showed a potent inhibitory activity on Gram-positive bacteria while only a reduced inhibition was observed on Gram-negative bacteria. No activity was detected against Yeasts. The extract also showed an interesting antibiofilm motif on various bacterial strains (E. coli, S. aureus, S. haemolyticus and B. clausii). Moreover, this extract significantly affected the Ebola virus VP35 inhibition of the viral RNA (vRNA) induced IFN response. Conclusions The overall results provide supportive data on the use of A. microcarpus as antimicrobial agent and a potential source of anti-viral natural products. Data collected set the bases for further studies for the identification of single active components and the development of new pharmaceuticals.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Bivio per Sestu, I-09042, Cagliari, Monserrato, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Bivio per Sestu, I-09042, Cagliari, Monserrato, Italy.
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Bivio per Sestu, I-09042, Cagliari, Monserrato, Italy
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Vincenzo Piras
- Department of Surgical Science, University of Cagliari, 09124, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, University of Cagliari, 09124, Cagliari, Italy
| | - Antonello Mameli
- Department of Surgical Science, University of Cagliari, 09124, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Bivio per Sestu, I-09042, Cagliari, Monserrato, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Bivio per Sestu, I-09042, Cagliari, Monserrato, Italy
| |
Collapse
|
31
|
Liu ZX, Hua YJ, Wang SN, Zou LS, Liu XH, Zhao H, Yan Y. Quality Evaluation of Prunellae Spica Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Grey Relational Analysis. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prunellae Spica (PS) is an important traditional Chinese herbal medicine (TCM) with massive consumption because of its therapeutical and seasoning effects. However, little attention has been paid to simultaneous analyze its bioactive components for quality control of PS based on its different growing habitats and different growth periods. In this study, the quality of PS was evaluated based on simultaneous determination of multiple bioactive components combined with grey relational analysis (GRA). A reliable method based on high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-QTRAP-MS/MS) was established to simultaneously determine the contents of 21 components in PS, including 9 phenolic acids, 3 coumarins, 8 flavonoids and 1 pentacyclic triterpene. Furthermore, GRA was performed to evaluate the quality of PS samples according to the contents of these 21 components. The results showed that the quality of PS harvested on withering period, cultivated in Anhui was better than that of other PS samples. The proposed method is useful for the overall assessment on the quality of PS, and this study provides valuable information for revealing the dynamic change laws of metabolite accumulation in PS and choosing the most suitable harvesting time and genuine producing area of PS to obtain the best quality.
Collapse
Affiliation(s)
- Zi-Xiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- No. 454 Hospital of PLA, Nanjing 210002, PR China
| | - Yu-Jiao Hua
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng-Nan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Li-Si Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xun-Hong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hui Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ying Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
32
|
Dewanjee S, Dua TK, Bhattacharjee N, Das A, Gangopadhyay M, Khanra R, Joardar S, Riaz M, Feo VD, Zia-Ul-Haq M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017; 22:molecules22060871. [PMID: 28587082 PMCID: PMC6152721 DOI: 10.3390/molecules22060871] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc. Due to its diverse tissue distribution, P-gp is a novel protective barrier to stop the intake of xenobiotics into the human body. Over-expression of P-gp leads to decreased intracellular accretion of many chemotherapeutic agents thus assisting in the development of MDR. Eventually, the effectiveness of these drugs is decreased. P-gp inhibitors act by altering intracellular ATP levels which are the source of energy and/or by affecting membrane contours to increase permeability. However, the use of synthetic inhibitors is known to cause serious toxicities. For this reason, the search for more potent and less toxic P-gp inhibitors of natural origin is underway. The present review aims to recapitulate the research findings on bioactive constituents of natural origin with P-gp inhibition characteristics. Natural bioactive constituents with P-gp modulating effects offer great potential for semi-synthetic modification to produce new scaffolds which could serve as valuable investigative tools to recognize the function of complex ABC transporters apart from evading the systemic toxicities shown by synthetic counterparts. Despite the many published scientific findings encompassing P-gp inhibitors, however, this article stand alones because it provides a vivid picture to the readers pertaining to Pgp inhibitors obtained from natural sources coupled with their mode of action and structures. It provides first-hand information to the scientists working in the field of drug discovery to further synthesise and discover new P-gp inhibitors with less toxicity and more efficacies.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Anup Das
- Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India.
| | | | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan.
| | - Vincenzo De Feo
- Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy.
| | - Muhammad Zia-Ul-Haq
- Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan.
| |
Collapse
|
33
|
Liu Q, Fan C, Li Q, Zhou S, Huang W, Wang L, Sun C, Wang M, Wu X, Ma J, Li B, Xie L, Wang Y. Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci Rep 2017; 7:45552. [PMID: 28358050 PMCID: PMC5372081 DOI: 10.1038/srep45552] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 01/11/2023] Open
Abstract
Passive immunotherapy with monoclonal antibodies (mAbs) is an efficacious treatment for Ebola virus (EBOV) infections in animal models and humans. Understanding what constitutes a protective response is critical for the development of novel therapeutic strategies. We generated an EBOV-glycoprotein-pseudotyped Human immunodeficiency virus to develop sensitive neutralizing and antibody-dependent cellular cytotoxicity (ADCC) assays as well as a bioluminescent-imaging-based mouse infection model that does not require biosafety level 4 containment. The in vivo treatment efficiencies of three novel anti-EBOV mAbs at 12 h post-infection correlated with their in vitro anti-EBOV ADCC activities, without neutralizing activity. When they were treated with these mAbs, natural killer cell (NK)-deficient mice had lower viral clearance than WT mice, indicating that the anti-EBOV mechanism of the ADCC activity of these mAbs is predominantly mediated by NK cells. One potent anti-EBOV mAb (M318) displayed unprecedented neutralizing and ADCC activities (neutralization IC50, 0.018 μg/ml; ADCC EC50, 0.095 μg/ml). These results have important implications for the efficacy of antiviral drugs and vaccines as well as for pathogenicity studies of EBOV.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Viral/administration & dosage
- Antibody-Dependent Cell Cytotoxicity
- Disease Models, Animal
- Female
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Humans
- Killer Cells, Natural/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lan Wang
- Division of Monoclonal Antibody, National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jian Ma
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Baowen Li
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
34
|
Yang Y, Cheng H, Yan H, Wang PZ, Rong R, Zhang YY, Zhang CB, Du RK, Rong LJ. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J Med Virol 2016; 89:908-916. [PMID: 27704591 PMCID: PMC7167059 DOI: 10.1002/jmv.24705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/03/2022]
Abstract
Emerging viruses such as Ebola virus (EBOV), Lassa virus (LASV), and avian influenza virus H5N1 (AIV) are global health concerns. Since there is very limited options (either vaccine or specific therapy) approved for humans against these viruses, there is an urgent need to develop prophylactic and therapeutic treatments. Previously we reported a high‐throughput screening (HTS) protocol to identify entry inhibitors for three highly pathogenic viruses (EBOV, LASV, and AIV) using a human immunodeficiency virus–based pseudotyping platform which allows us to perform the screening in a BSL‐2 facility. In this report, we have adopted this screening protocol to evaluate traditional Chinese Medicines (TCMs) in an effort to discover entry inhibitors against these viruses. Here we show that extracts of the following Chinese medicinal herbs exhibit potent anti‐Ebola viral activities: Gardenia jasminoides Ellis, Citrus aurantium L., Viola yedoensis Makino, Prunella vulgaris L., Coix lacryma‐jobi L. var. mayuen (Roman.) Stapf, Pinellia ternata (Thunb.) Breit., and Morus alba L. This study represents a proof‐of‐principle investigation supporting the suitability of this assay for rapid screening TCMs and identifying putative entry inhibitors for these viruses. J. Med. Virol. 89:908–916, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng-Zhan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Bo Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Kun Du
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Li-Jun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|