1
|
Li X, Pan Z, Zhang L. Tecovirimat: A journey from discovery to mechanistic insights in poxvirus inhibition. PLoS Pathog 2025; 21:e1013140. [PMID: 40378361 DOI: 10.1371/journal.ppat.1013140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Tecovirimat (ST-246 or TPOXX) is an antiviral agent developed as part of a U.S. biodefense initiative aimed at addressing Orthopoxvirus infections, including smallpox and mpox. Although smallpox was declared eradicated in 1980, the potential for its reemergence as a biothreat persists due to illegal stockpiling and the possibility of laboratory synthesis. The F13 protein, which plays a critical role in the formation of extracellular viral particles, serves as the primary target for tecovirimat, inhibiting the transition from intracellular mature viruses (IMVs) to intracellular enveloped viruses (IEVs). Recent research indicates that tecovirimat stabilizes F13 homodimers as a molecular glue, effectively disrupting viral wrapping processes. However, the identification of tecovirimat-resistant mutations, particularly in immunocompromised individuals, highlights the urgent need for ongoing monitoring and the development of next-generation antiviral therapies. Investigating the structural dynamics of F13 and its interactions with tecovirimat may provide crucial insights into overcoming resistance mechanisms and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhengyang Pan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Shannon A, Canard B. Nucleotide analogues and mpox: Repurposing the repurposable. Antiviral Res 2025; 234:106057. [PMID: 39694420 DOI: 10.1016/j.antiviral.2024.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
While the COVID-19 crisis is still ongoing, a new public health threat has emerged with recent outbreaks of monkeypox (mpox) infections in Africa. Mass vaccination is not currently recommended by the World Health Organization (WHO), and antiviral treatments are yet to be specifically approved for mpox, although existing FDA-approved drugs (Tecovirimat, Brincidofovir, and Cidofovir) may be used in severe cases or for immunocompromised patients. A first-line of defense is thus drug repurposing, which was heavily attempted against SARS-CoV-2 - albeit with limited success. This review focuses on nucleoside analogues as promising antiviral candidates for targeting of the viral DNA-dependent DNA polymerase. In contrast to broad-spectrum screening approaches employed for SARS-CoV-2, we emphasize the importance of understanding the structural specificity of viral polymerases for rational selection of potential candidates. By comparing DNA-dependent DNA polymerases with other viral polymerases, we highlight the unique features that influence the efficacy and selectivity of nucleoside analogues. These structural insights provide a framework for the preselection, repurposing, optimization, and design of nucleoside analogues, aiming to accelerate the development of targeted antiviral therapies for mpox and other viral infections.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France.
| |
Collapse
|
3
|
Hart R, Karnik S, Van Sickle K, Mullin M, Naderer O, Tippin T, Dunn J. Peripheral blood mononuclear cells isolation from mouse and rabbit blood to quantify active nucleotide and define brincidofovir dose for smallpox. Bioanalysis 2024; 16:1179-1187. [PMID: 39474814 PMCID: PMC11583588 DOI: 10.1080/17576180.2024.2418245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: Brincidofovir has been approved by the US FDA for the treatment of smallpox via the "Animal Rule". The active moiety, cidofovir diphosphate (CDV-PP), was measurable in human peripheral blood mononuclear cells (PBMCs), but quantitation in animals was challenging given their limited blood volume. The aim of this study was to optimize PBMC isolation from rabbit and mouse blood to allow quantitation of CDV-PP.Materials & methods: PBMC isolation methods using various separation media were evaluated using blood from naive and brincidofovir-dosed animals. CDV-PP was quantified using liquid chromatography tandem mass spectrometry.Results & conclusion: PBMC isolation yields were increased by >fourfold compared with yields obtained using human methods, allowing cross-species exposure comparisons.
Collapse
Affiliation(s)
- Robert Hart
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| | - Shane Karnik
- Laboratory operations, Colorado, Aliri Bioanalysis, Colorado Springs, CO 80907, USA
| | - Kathy Van Sickle
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| | - Mark Mullin
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| | - Odin Naderer
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| | - Tim Tippin
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| | - John Dunn
- Clinical Pharmacology and Translational Medicine, Chimerix, Inc., Durham, NC 27705, USA
| |
Collapse
|
4
|
Pashazadeh Azari P, Rezaei Zadeh Rukerd M, Charostad J, Bashash D, Farsiu N, Behzadi S, Mahdieh Khoshnazar S, Heydari S, Nakhaie M. Monkeypox (Mpox) vs. Innate immune responses: Insights into evasion mechanisms and potential therapeutic strategies. Cytokine 2024; 183:156751. [PMID: 39244831 DOI: 10.1016/j.cyto.2024.156751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Orthopoxviruses, a group of zoonotic viral infections, have emerged as a significant health emergency and global concern, particularly exemplified by the re-emergence of monkeypox (Mpox). Effectively addressing these viral infections necessitates a comprehensive understanding of the intricate interplay between the viruses and the host's immune response. In this review, we aim to elucidate the multifaceted aspects of innate immunity in the context of orthopoxviruses, with a specific focus on monkeypox virus (MPXV). We provide an in-depth analysis of the roles of key innate immune cells, including natural killer (NK) cells, dendritic cells (DCs), and granulocytes, in the host defense against MPXV. Furthermore, we explore the interferon (IFN) response, highlighting the involvement of toll-like receptors (TLRs) and cytosolic DNA/RNA sensors in detecting and responding to the viral presence. This review also examines the complement system's contribution to the immune response and provides a detailed analysis of the immune evasion strategies employed by MPXV to evade host defenses. Additionally, we discuss current prevention and treatment strategies for Mpox, including pre-exposure (PrEP) and post-exposure (PoEP) prophylaxis, supportive treatments, antivirals, and vaccinia immune globulin (VIG).
Collapse
Affiliation(s)
- Pouya Pashazadeh Azari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Farsiu
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Heydari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Zinnah MA, Uddin MB, Hasan T, Das S, Khatun F, Hasan MH, Udonsom R, Rahman MM, Ashour HM. The Re-Emergence of Mpox: Old Illness, Modern Challenges. Biomedicines 2024; 12:1457. [PMID: 39062032 PMCID: PMC11274818 DOI: 10.3390/biomedicines12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Mpox virus (MPXV) is known to cause zoonotic disease in humans. The virus belongs to the genus Orthopoxvirus, of the family Poxviridae, and was first reported in monkeys in 1959 in Denmark and in humans in 1970 in the Congo. MPXV first appeared in the U.S. in 2003, re-emerged in 2017, and spread globally within a few years. Wild African rodents are thought to be the reservoir of MPXV. The exotic trade of animals and international travel can contribute to the spread of the Mpox virus. A phylogenetic analysis of MPXV revealed two distinct clades (Central African clade and West African clade). The smallpox vaccine shows cross-protection against MPXV infections in humans. Those who have not previously been exposed to Orthopoxvirus infections are more vulnerable to MPXV infections. Clinical manifestations in humans include fever, muscle pain, headache, and vesicle formation on the skin of infected individuals. Pathognomonic lesions include ballooning degenerations with Guarnieri-like inclusions in vesicular epithelial cells. Alterations in viral genome through genetic mutations might favor the re-emergence of a version of MPXV with enhanced virulence. As of November 2023, 92,783 cases and 171 deaths have been reported in 116 countries, representing a global public health concern. Here, we provide insights on the re-emergence of MPXV in humans. This review covers the origin, emergence, re-emergence, transmission, pathology, diagnosis, control measures, and immunomodulation of the virus, as well as clinical manifestations. Concerted efforts of health professionals and scientists are needed to prevent the disease and stop its transmission in vulnerable populations.
Collapse
Affiliation(s)
- Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanjila Hasan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Shobhan Das
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| | - Fahima Khatun
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Hasibul Hasan
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| |
Collapse
|
6
|
Branda F, Romano C, Ciccozzi M, Scarpa F. The emergence of Alaskapox: exploring an unprecedented viral threat and implications for public health. Infect Dis (Lond) 2024; 56:496-498. [PMID: 38520677 DOI: 10.1080/23744235.2024.2332463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Olivencia GR, García MV, Arribas MV, Casabona J, Martínez M, De Novales FM, on behalf of the CEME-22 Study Group. Study Group team members are listed in the Acknowledgments. Hospitalization determinants in patients with Mpox disease: The CEME-22 Project. Heliyon 2024; 10:e30564. [PMID: 38756609 PMCID: PMC11096956 DOI: 10.1016/j.heliyon.2024.e30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Objectives This sub-analysis seeks to delineate and characterize factors influencing hospitalization in individuals diagnosed with Mpox disease amidst the initial outbreak in Spain in the onset of 2022. Methods Employing a non-probabilistic convenience sampling approach, a retrospective multicenter investigation was carried out to examine Monkeypox virus infection within Spanish healthcare facilities. Results The median duration of the disease was 16 days, with 4.2 % of cases resulting in hospitalization. There was a single ICU admission leading to fatality. Sequelae were observed in 2.3 % of cases. Multivariate analysis revealed that hospitalization decisions were influenced by immunosuppression and severe symptoms, including gastrointestinal, neurological, ear-nose-throat, and respiratory manifestations. Significant analytical parameter differences were restricted to hemoglobin levels at diagnosis. Conclusions This study elucidates factors influencing hospitalization decisions for Monkeypox patients in Spain, emphasizing the importance of immunosuppression and extracutaneous symptoms involving the gastrointestinal, ear-nose-throat, and respiratory pathways. In summary, hospitalization determinations arise from the interplay of these crucial dimensions.
Collapse
Affiliation(s)
| | | | | | - J. Casabona
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | | | | | | |
Collapse
|
8
|
Allan-Blitz LT, Khan T, Elangovan K, Smith K, Multani A, Mayer KH. Addressing mpox at a Frontline Community Health Center: Lessons for the Next Outbreak. Public Health Rep 2024; 139:294-300. [PMID: 37846528 PMCID: PMC11037218 DOI: 10.1177/00333549231201682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
The 2022 mpox (formerly monkeypox) outbreak affected predominantly men who have sex with men (MSM), likely through sexual transmission, which resulted in institutions specializing in sexual health being at the frontlines of the mpox outbreak. Fenway Health in Boston serves close to 10 000 MSM annually, which includes more than 2400 MSM who are living with HIV and 3320 MSM with active HIV preexposure prophylaxis (PrEP) prescriptions. We report on the programs implemented and changes to clinical practice at Fenway Health during the mpox outbreak. Fenway Health diagnosed its first case of mpox in June 2022 and treated this patient with tecovirimat. In early July 2022, Fenway Health administered its first dose of the Jynneos vaccine under the Emergency Use Authorization for protection against mpox. As of October 6, 2022, 69 people had tested positive for the mpox virus at Fenway Health. Among the 69 people who tested positive, 43 (62.3%) self-identified as male, with the remaining not reporting a sex or gender identity, and 40 (58.0%) reported their sexual orientation as gay or bisexual. Twenty-five people (36.2%) were treated with tecovirimat. As of October 30, 2022, Fenway Health had administered 6376 doses of the Jynneos vaccine. The programmatic changes involved in rollout and scale-up of vaccination, treatment, and community outreach services at Fenway Health during the 2022 mpox outbreak that we describe here could inform strategies to address subsequent outbreaks.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | | | - Kenneth H. Mayer
- Fenway Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Piparva KG, Fichadiya N, Joshi T, Malek S. Monkeypox: From Emerging Trends to Therapeutic Concerns. Cureus 2024; 16:e58866. [PMID: 38800170 PMCID: PMC11116278 DOI: 10.7759/cureus.58866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Monkeypox is a zoonotic viral disease. Monkeypox was first reported in humans about 54 years ago. Prior to the global outbreak, monkeypox was endemic to the rainforests of central and western African countries. In the last three years, increasing numbers of human monkeypox have been reported from various countries. Responding to the severity, monkeypox was declared a Public Health Emergency of International Concern by the World Health Organization. In the absence of approved drugs or clinical studies, repurposed drugs and therapeutic medical countermeasures effective against other orthopoxviruses have been utilized to treat severe human monkeypox cases. Currently, clinical trials are underway exploring the potential therapeutic effectiveness of tecovirimate in human monkeypox cases. Monoclonal antibodies, IFN-β, resveratrol, and 15 triple-targeting FDA-approved drugs represent potential new drug targets for human monkeypox, necessitating further research.
Collapse
Affiliation(s)
- Kiran G Piparva
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rajkot, Rajkot, IND
| | - Nilesh Fichadiya
- Department of Preventive and Social Medicine, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Tejal Joshi
- Department of Microbiology, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Shahenaz Malek
- Department of Pharmacology, Government Medical College, Surat, IND
| |
Collapse
|
10
|
Bell TM, Facemire P, Bearss JJ, Raymond JL, Chapman J, Zeng X, Shamblin JD, Williams JA, Grosenbach DW, Hruby DE, Damon IK, Goff AJ, Mucker EM. Smallpox lesion characterization in placebo-treated and tecovirimat-treated macaques using traditional and novel methods. PLoS Pathog 2024; 20:e1012007. [PMID: 38386661 PMCID: PMC10883539 DOI: 10.1371/journal.ppat.1012007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.
Collapse
Affiliation(s)
- Todd M. Bell
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Paul Facemire
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jeremy J. Bearss
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jo Lynne Raymond
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jennifer Chapman
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Xiankun Zeng
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Joshua D. Shamblin
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Janice A. Williams
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | | | - Dennis E. Hruby
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Inger K. Damon
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC) Atlanta, Georgia, United States of America
| | - Arthur J. Goff
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Eric M. Mucker
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| |
Collapse
|
11
|
Kumar S. The Overview of Potential Antiviral Bioactive Compounds in Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:331-336. [PMID: 38801588 DOI: 10.1007/978-3-031-57165-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Sant Kavi Baba Baijnath Government P.G. College Harakh, Barabanki (UP), 225121, India.
- Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
12
|
Sarra H, Salim B, Hocine A. Modeling the Antiviral Activity of Ginkgo biloba Polyphenols against Variola: In Silico Exploration of Inhibitory Candidates for VarTMPK and HssTMPK Enzymes. Curr Drug Discov Technol 2024; 21:e101023221938. [PMID: 37861017 DOI: 10.2174/0115701638261541230922095853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The aim of this study is to use modeling methods to estimate the antiviral activity of natural molecules extracted from Ginkgo biloba for the treatment of variola which is a zoonotic disease posing a growing threat to human survival. The recent spread of variola in nonendemic countries and the possibility of its use as a bioterrorism weapon have made it a global threat once again. Therefore, the search for new antiviral therapies with reduced side effects is necessary. METHODS In this study, we examined the interactions between polyphenolic compounds from Ginkgo biloba, a plant known for its antiviral activity, and two enzymes involved in variola treatment, VarTMPK and HssTMPK, using molecular docking. RESULTS The obtained docking scores showed that among the 152 selected polyphenolic compounds; many ligands had high inhibitory potential according to the energy affinity. By considering Lipinski's rules, we found that Liquiritin and Olivil molecules are the best candidates to be developed into drugs that inhibit VarTMPK because of their high obtained scores compared to reference ligands, and zero violations of Lipinski's rules. We also found that ginkgolic acids have good affinities with HssTMPK and acceptable physicochemical properties to be developed into drugs administered orally. CONCLUSION Based on the obtained scores and Lipinski's rules, Liquiritin, Olivil, and ginkgolic acids molecules showed interesting results for both studied enzymes, indicating the existence of promising and moderate activity of these polyphenols for the treatment of variola and for possible multi-targeting. Liquiritin has been shown to exhibit anti-inflammatory effects on various inflammation- related diseases such as skin injury, hepatic inflammatory injury, and rheumatoid arthritis. Olivil has been shown to have antioxidant activity. Olivil derivatives have also been studied for their potential use as anticancer agents. Ginkgolic acids have been shown to have antimicrobial and antifungal properties. However, ginkgolic acids are also known to cause allergic reactions in some people. Therefore, future studies should consider these results and explore the potential of these compounds as antiviral agents. Further experimental studies in-vitro and in-vivo are required to validate and scale up these findings.
Collapse
Affiliation(s)
- Hamdani Sarra
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| | - Bouchentouf Salim
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Department of Process Engineering, Faculty of Technology, Doctor Tahar Moulay University of Saida, Algeria, Saïda 20000, BP 138 cité EN-NASR, Algeria
| | - Allali Hocine
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| |
Collapse
|
13
|
Hoffman SA, Maldonado YA. Emerging and re-emerging pediatric viral diseases: a continuing global challenge. Pediatr Res 2024; 95:480-487. [PMID: 37940663 PMCID: PMC10837080 DOI: 10.1038/s41390-023-02878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The twenty-first century has been marked by a surge in viral epidemics and pandemics, highlighting the global health challenge posed by emerging and re-emerging pediatric viral diseases. This review article explores the complex dynamics contributing to this challenge, including climate change, globalization, socio-economic interconnectedness, geopolitical tensions, vaccine hesitancy, misinformation, and disparities in access to healthcare resources. Understanding the interactions between the environment, socioeconomics, and health is crucial for effectively addressing current and future outbreaks. This scoping review focuses on emerging and re-emerging viral infectious diseases, with an emphasis on pediatric vulnerability. It highlights the urgent need for prevention, preparedness, and response efforts, particularly in resource-limited communities disproportionately affected by climate change and spillover events. Adopting a One Health/Planetary Health approach, which integrates human, animal, and ecosystem health, can enhance equity and resilience in global communities. IMPACT: We provide a scoping review of emerging and re-emerging viral threats to global pediatric populations This review provides an update on current pediatric viral threats in the context of the COVID-19 pandemic This review aims to sensitize clinicians, epidemiologists, public health practitioners, and policy stakeholders/decision-makers to the role these viral diseases have in persistent pediatric morbidity and mortality.
Collapse
Affiliation(s)
- Seth A Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yvonne A Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Saalbach KP. Treatment and Vaccination for Smallpox and Monkeypox. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:301-316. [PMID: 38801586 DOI: 10.1007/978-3-031-57165-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.
Collapse
Affiliation(s)
- Klaus P Saalbach
- Biosecurity Research at Section Political Science of the Department of Cultural and Social Sciences, University of Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
15
|
Mazur-Melewska K. Poxviruses in Children. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:205-217. [PMID: 38801580 DOI: 10.1007/978-3-031-57165-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The family Poxviridae is a large family of viruses with a ubiquitous distribution, subdivided into two subfamilies: Chordopoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae (poxviruses of insects). Only three species from the first subfamily, Orthopoxvirus (OPV), Molluscipoxvirus and Parapoxvirus, can infect the human being. In the paediatric population, viruses belonging to the first two subfamilies have the greatest importance. Following the eradication of smallpox in 1980, vaccination of the general population was discontinued after careful consideration of the risks and benefits. However, nearly all children and most of the world's population had little to no protection against OPV. The aim of this chapter is to review the current evidence on the aetiology, clinical manifestations, diagnosis and management of Poxviridae infections in children.
Collapse
Affiliation(s)
- Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
16
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
17
|
Alagarsamy V, Shyam Sundar P, Raja Solomon V, Narendhar B, Sulthana MT, Rohitha K, Dhanwar S, Dharshini Aishwarya A, Murugesan S. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics. J Biomol Struct Dyn 2023; 41:10678-10689. [PMID: 36905675 DOI: 10.1080/07391102.2023.2188428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 03/13/2023]
Abstract
Monkeypox is a zoonotic viral disease that mainly affects tropical rainforest regions of central and west Africa, with sporadic exportations to other places. Since there is no cure, treating monkeypox with an antiviral drug developed for smallpox is currently acceptable. Our study mainly focused on finding new therapeutics to target monkeypox from existing compounds or medications. It is a successful method for discovering or developing medicinal compounds with novel pharmacological or therapeutic applications. In this study, homology modelling developed the Monkeypox VarTMPK (IMNR) structure. Ligand-based pharmacophore was generated using the best docking pose of standard ticovirimat. Further, molecular docking analysis showed compounds, tetrahydroxycurcumin, procyanidin, rutin, vicenin-2, kaempferol 3-(6''-malonylglucoside) were the top five binding energy compounds against VarTMPK (1MNR). Furthermore, we carried out MD simulations for 100 ns for the six compounds, including reference based on the binding energies and interactions. MD studies revealed that as ticovirimat interacted with residues Lys17, Ser18, and Arg45, all the above five compounds interacted with the same amino acids at the active site during docking and simulation studies. Among all the compounds, ZINC4649679 (Tetrahydroxycurcumin) was shown to have the highest binding energy -9.7 kcal/mol and also observed stable protein-ligand complex during MD studies. ADMET profile estimation showed that the docked phytochemicals were safe. However, further biological assessment through a wet lab is essential to measure the efficacy and safety of the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Kotha Rohitha
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Sangeeta Dhanwar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - S Murugesan
- Department of Pharmacy, BITS, Pilani, Pilani, Rajasthan, India
| |
Collapse
|
18
|
Patiño LH, Guerra S, Muñoz M, Luna N, Farrugia K, van de Guchte A, Khalil Z, Gonzalez-Reiche AS, Hernandez MM, Banu R, Shrestha P, Liggayu B, Firpo Betancourt A, Reich D, Cordon-Cardo C, Albrecht R, Pearl R, Simon V, Rooker A, Sordillo EM, van Bakel H, García-Sastre A, Bogunovic D, Palacios G, Paniz Mondolfi A, Ramírez JD. Phylogenetic landscape of Monkeypox Virus (MPV) during the early outbreak in New York City, 2022. Emerg Microbes Infect 2023; 12:e2192830. [PMID: 36927408 PMCID: PMC10114986 DOI: 10.1080/22221751.2023.2192830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Monkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC.
Collapse
Affiliation(s)
- Luz H. Patiño
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Muñoz
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| | - Nicolas Luna
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zain Khalil
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Matthew M. Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernadette Liggayu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Firpo Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Reich
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Pearl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aria Rooker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Department of Microbiology, Centre for Inborn Errors of Immunity, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Palacios
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alberto Paniz Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Smith TG, Gigante CM, Wynn NT, Matheny A, Davidson W, Yang Y, Condori RE, O'Connell K, Kovar L, Williams TL, Yu YC, Petersen BW, Baird N, Lowe D, Li Y, Satheshkumar PS, Hutson CL. Tecovirimat Resistance in Mpox Patients, United States, 2022-2023. Emerg Infect Dis 2023; 29:2426-2432. [PMID: 37856204 PMCID: PMC10683829 DOI: 10.3201/eid2912.231146] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
During the 2022 multinational outbreak of monkeypox virus (MPXV) infection, the antiviral drug tecovirimat (TPOXX; SIGA Technologies, Inc., https://www.siga.com) was deployed in the United States on a large scale for the first time. The MPXV F13L gene homologue encodes the target of tecovirimat, and single amino acid changes in F13 are known to cause resistance to tecovirimat. Genomic sequencing identified 11 mutations previously reported to cause resistance, along with 13 novel mutations. Resistant phenotype was determined using a viral cytopathic effect assay. We tested 124 isolates from 68 patients; 96 isolates from 46 patients were found to have a resistant phenotype. Most resistant isolates were associated with severely immunocompromised mpox patients on multiple courses of tecovirimat treatment, whereas most isolates identified by routine surveillance of patients not treated with tecovirimat remained sensitive. The frequency of resistant viruses remains relatively low (<1%) compared with the total number of patients treated with tecovirimat.
Collapse
|
20
|
Li V, Lee Y, Lee C, Kim H. Repurposing existing drugs for monkeypox: applications of virtual screening methods. Genes Genomics 2023; 45:1347-1355. [PMID: 37713070 PMCID: PMC10587275 DOI: 10.1007/s13258-023-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Monkeypox is endemic to African region and has become of Global concern recently due to its outbreaks in non-endemic countries. Although, the disease was first recorded in 1970, no monkeypox specific drug or vaccine exists as of now. METHODS We applied drug repositioning method, testing effectiveness of currently approved drugs against emerging disease, as one of the most affordable approaches for discovering novel treatment measures. Techniques such as virtual ligand-based and structure-based screening were applied to identify potential drug candidates against monkeypox. RESULTS We narrowed down our results to 6 antiviral and 20 anti-tumor drugs that exhibit theoretically higher potency than tecovirimat, the currently approved drug for monkeypox disease. CONCLUSIONS Our results indicated that selected drug compounds displayed strong binding affinity for p37 receptor of monkeypox virus and therefore can potentially be used in future studies to confirm their effectiveness against the disease.
Collapse
Affiliation(s)
- Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanak-gu 1, Gwanak-ro, Seoul, 08826, Republic of Korea.
- eGnome, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Bunin DI, Javitz HS, Gahagen J, Bakke J, Lane JH, Andrews DA, Chang PY. Survival and Hematologic Benefits of Romiplostim After Acute Radiation Exposure Supported FDA Approval Under the Animal Rule. Int J Radiat Oncol Biol Phys 2023; 117:705-717. [PMID: 37224926 DOI: 10.1016/j.ijrobp.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Patients exposed to acute high doses of ionizing radiation are susceptible to dose-dependent bone marrow depression with resultant pancytopenia. Romiplostim (RP; Nplate) is a recombinant thrombopoietin receptor agonist protein that promotes progenitor megakaryocyte proliferation and platelet production and is an approved treatment for patients with chronic immune thrombocytopenia. The goal of our study was to evaluate the postirradiation survival and hematologic benefits of a single dose of RP with or without pegfilgrastim (PF; Neulasta, granulocyte colony stimulating factor) by conducting a well-controlled, treatment-concealed, good laboratory practice-compliant study in rhesus macaques that was compliant with the United States Food and Drug Administration Animal Rule regulatory approval pathway. METHODS AND MATERIALS Irradiated male and female rhesus macaques (20/sex in each of 3 groups: control, RP, and RP + PF) were subcutaneously administered vehicle or RP (5 mg/kg, 10 mL/kg) on day 1 in the presence or absence of 2 doses of PF (0.3 mg/kg, 0.03 mL/kg, days 1 and 8). Total body radiation (680 cGy, 50 cGy/min from cobalt-60 gamma ray source) occurred 24 ± 2 hours previously at a dose targeting 70% lethality for the control cohort over 60 days. The study examined 60-day survival postirradiation as the primary endpoint. Secondary endpoints included incidence, severity, and duration of thrombocytopenia and neutropenia, other hematology parameters, coagulation parameters, and body weight change to provide insights into potential mechanisms of action. RESULTS Compared with sham-treated controls, treated animals demonstrated a 40% to 55% survival benefit compared with controls, less severe clinical signs, reduced incidence of thrombocytopenia and/or neutropenia, earlier hematologic recovery, and reduced morbidity from bacterial infection. CONCLUSIONS These results were pivotal in obtaining Food and Drug Administration approval in January 2021 for RP's new indication as a single administration therapy to increase survival in adults and pediatric patients acutely exposed to myelosuppressive doses of radiation.
Collapse
Affiliation(s)
| | | | - Janet Gahagen
- SRI Biosciences, SRI International, Menlo Park, California
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, California
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, California.
| |
Collapse
|
22
|
Momin ZK, Lee A, Vandergriff TW, Bowling JE, Chamseddin B, Dominguez A, Hosler GA, Wang RC, Kitchell E. A plague passing over: Clinical features of the 2022 mpox outbreak in patients of color living with HIV. HIV Med 2023; 24:1056-1065. [PMID: 37336551 PMCID: PMC10592586 DOI: 10.1111/hiv.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Compared with previous geographically localized outbreaks of monkeypox (MPOX), the scale of the 2022 global mpox outbreak has been unprecedented, yet the clinical features of this outbreak remain incompletely characterized. METHODS We identified patients diagnosed with mpox by polymerase chain reaction (PCR; n = 36) from July to September 2022 at a single, tertiary care institution in the USA. Demographics, clinical presentation, infection course, and histopathologic features were reviewed. RESULTS AND CONCLUSION Men who have sex with men (89%) and people living with HIV (97%) were disproportionately affected. While fever and chills (56%) were common, some patients (23%) denied any prodromal symptoms. Skin lesions showed a wide range of morphologies, including papules and pustules, and lesions showed localized, not generalized, spread. Erythema was also less appreciable in skin of colour patients (74%). Atypical clinical features and intercurrent skin diseases masked the clinical recognition of several cases, which were ultimately diagnosed by PCR. Biopsies showed viral cytopathic changes consistent with Orthopoxvirus infections. All patients in this case series recovered without complications, although six patients (17%) with severe symptoms were treated with tecovirimat without complication.
Collapse
Affiliation(s)
- Zoha K. Momin
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Aleuna Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Travis W. Vandergriff
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Jason E. Bowling
- Department of Internal Medicine, UT Health Science Center, San Antonio, TX, U.S.A
| | - Bahir Chamseddin
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Arturo Dominguez
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Gregory A. Hosler
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, U.S.A
- ProPath Dermatopathology, Dallas, TX, U.S.A
| | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, U.S.A
| | - Ellen Kitchell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, U.S.A
| |
Collapse
|
23
|
Hermanussen L, Brehm TT, Wolf T, Boesecke C, Schlabe S, Borgans F, Monin MB, Jensen BEO, Windhaber S, Scholten S, Jordan S, Lütgehetmann M, Wiesch JSZ, Addo MM, Mikolajewska A, Niebank M, Schmiedel S. Tecovirimat for the treatment of severe Mpox in Germany. Infection 2023; 51:1563-1568. [PMID: 37273167 PMCID: PMC10240449 DOI: 10.1007/s15010-023-02049-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND In May 2022, a multi-national mpox outbreak was reported in several non-endemic countries. The only licensed treatment for mpox in the European Union is the orally available small molecule tecovirimat, which in Orthopox viruses inhibits the function of a major envelope protein required for the production of extracellular virus. METHODS We identified presumably all patients with mpox that were treated with tecovirimat in Germany between the onset of the outbreak in May 2022 and March 2023 and obtained demographic and clinical characteristics by standardized case report forms. RESULTS A total of twelve patients with mpox were treated with tecovirimat in Germany in the study period. All but one patient identified as men who have sex with men (MSM) who were most likely infected with mpox virus (MPXV) through sexual contact. Eight of them were people living with HIV (PLWH), one of whom was newly diagnosed with HIV at the time of mpox, and four had CD4+ counts below 200/µl. Criteria for treatment with tecovirimat included severe immunosuppression, severe generalized and/or protracted symptoms, a high or increasing number of lesions, and the type and location of lesions (e.g., facial or oral soft tissue involvement, imminent epiglottitis, or tonsillar swelling). Patients were treated with tecovirimat for between six and 28 days. Therapy was generally well-tolerated, and all patients showed clinical resolution. CONCLUSIONS In this cohort of twelve patients with severe mpox, treatment with tecovirimat was well tolerated and all individuals showed clinical improvement.
Collapse
Affiliation(s)
- Lennart Hermanussen
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner-Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Timo Wolf
- Internal Medicine II, Department of Infectious Diseases, University Hospital, Frankfurt, Germany
| | - Christoph Boesecke
- Department of Medicine I, Bonn University Hospital, Bonn, Germany
- German Center for Infection Research (DZIF), Partner-Site Cologne-Bonn, Bonn, Germany
| | - Stefan Schlabe
- Department of Medicine I, Bonn University Hospital, Bonn, Germany
| | - Frauke Borgans
- Internal Medicine II, Department of Infectious Diseases, University Hospital, Frankfurt, Germany
| | - Malte B Monin
- Department of Medicine I, Bonn University Hospital, Bonn, Germany
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Windhaber
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Scholten
- Praxis Hohenstaufenring in den RingColonnaden, Cologne, Germany
| | - Sabine Jordan
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner-Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner-Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agata Mikolajewska
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Berlin, Germany
| | - Michaela Niebank
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Berlin, Germany
| | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
24
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
25
|
Nisar H, Saleem O, Sapna F, Sham S, Perkash RS, Kiran N, Anjali F, Mehreen A, Ram B. A Narrative Review on the Monkeypox Virus: An Ongoing Global Outbreak Hitting the Non-Endemic Countries. Cureus 2023; 15:e43322. [PMID: 37700987 PMCID: PMC10493466 DOI: 10.7759/cureus.43322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Monkeypox is a rare zoonotic DNA with lineage from the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. With a previous history of controlled and contained occasional outbreaks of the virus, currently, a widely erupted outbreak of monkeypox with progressively rising numbers has been reported since May 2022 in multiple countries of the western hemisphere that are not historically endemic for this infection, particularly the United Kingdom and European Union countries. We have written a comprehensive review article to help clinicians better understand the disease. The global cessation of smallpox vaccination has been hypothesized to cause the rise in monkeypox infections in recent years. Monkeypox, like any other viral infection, commences with prodromal symptoms; a maculopapular rash with centrifugal distribution usually follows. Polymerase chain reaction (PCR) confirms the diagnosis. Transmission in humans is possible through infected animals or humans. In the ongoing 2022 outbreak, the monkeypox virus has been undergoing novel mutations at an alarming rate. Treatment options for monkeypox are an area that still requires extensive research, and the utility of certain antiviral medications in treating monkeypox infection is currently being explored but is still controversial and debatable.
Collapse
Affiliation(s)
- Hira Nisar
- Nephrology, Sindh Institute of Urology and Transplantation, Karachi, PAK
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Omer Saleem
- Otolaryngology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Fnu Sapna
- Pathology, Montefiore Medical Center, Wakefield Campus, New York, USA
| | - Sunder Sham
- Pathology and Laboratory Medicine, Lenox Hill Hospital, New York City, USA
| | | | - Nfn Kiran
- Pathology, Staten Island University Hospital, New York, USA
| | - Fnu Anjali
- Internal Medicine, Sakhi Baba General Hospital, Pano Akil, PAK
| | - Ansa Mehreen
- Pathology and Laboratory Medicine, University of Chicago Pritzker School of Medicine, Evanston, USA
| | - Bebu Ram
- Pathology, University at Buffalo, Buffalo, USA
| |
Collapse
|
26
|
Taouk ML, Steinig E, Taiaroa G, Savic I, Tran T, Higgins N, Tran S, Lee A, Braddick M, Moso MA, Chow EPF, Fairley CK, Towns J, Chen MY, Caly L, Lim CK, Williamson DA. Intra- and interhost genomic diversity of monkeypox virus. J Med Virol 2023; 95:e29029. [PMID: 37565686 PMCID: PMC10952654 DOI: 10.1002/jmv.29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
The impact and frequency of infectious disease outbreaks demonstrate the need for timely genomic surveillance to inform public health responses. In the largest known outbreak of mpox, genomic surveillance efforts have primarily focused on high-incidence nations in Europe and the Americas, with a paucity of data from South-East Asia and the Western Pacific. Here we analyzed 102 monkeypox virus (MPXV) genomes sampled from 56 individuals in Melbourne, Australia. All genomes fell within the 2022 MPXV outbreak lineage (B.1), with likely onward local transmission detected. We observed within-host diversity and instances of co-infection, and highlight further examples of structural variation and apolipoprotein B editing complex-driven micro-evolution in the current MPXV outbreak. Updating our understanding of MPXV emergence and diversification will inform public health measures and enable monitoring of the virus' evolutionary trajectory throughout the mpox outbreak.
Collapse
Affiliation(s)
- Mona L. Taouk
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Eike Steinig
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - George Taiaroa
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Ivana Savic
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Thomas Tran
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Nasra Higgins
- Victorian Department of HealthMelbourneVictoriaAustralia
| | - Stephanie Tran
- Victorian Department of HealthMelbourneVictoriaAustralia
| | - Alvin Lee
- Victorian Department of HealthMelbourneVictoriaAustralia
| | | | - Michael A. Moso
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Eric P. F. Chow
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
- Central Clinical School, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Christopher K. Fairley
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
- Central Clinical School, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Janet Towns
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
| | - Marcus Y. Chen
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
| | - Leon Caly
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Chuan K. Lim
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Deborah A. Williamson
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
27
|
Temrikar ZH, Golden JE, Jonsson CB, Meibohm B. Clinical and Translational Pharmacology Considerations for Anti-infectives Approved Under the FDA Animal Rule. Clin Pharmacokinet 2023; 62:943-953. [PMID: 37326917 PMCID: PMC10471120 DOI: 10.1007/s40262-023-01267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
The US Food and Drug Administration's Animal Rule provides a pathway for approval of drugs and biologics aimed to treat serious or life-threatening conditions wherein traditional clinical trials are either not ethical or feasible. In such a scenario, determination of safety and efficacy are based on integration of data on drug disposition and drug action collected from in vitro models, infected animals, and healthy volunteer human studies. The demonstration of clinical efficacy and safety in humans based on robust, well-controlled animal studies is filled with challenges. This review elaborates on the challenges in the translation of data from in vitro and animal models to human dosing for antimicrobials. In this context, it discusses precedents of drugs approved under the Animal Rule, along with the approaches and guidance undertaken by sponsors.
Collapse
Affiliation(s)
- Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Colleen B Jonsson
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
- Department of Microbiology, Immunology, Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Chenchula S, Ghanta MK, Amerneni KC, Rajakarunakaran P, Chandra MB, Chavan M, Gupta R. A systematic review to identify novel clinical characteristics of monkeypox virus infection and therapeutic and preventive strategies to combat the virus. Arch Virol 2023; 168:195. [PMID: 37386209 DOI: 10.1007/s00705-023-05808-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Since May 2022, there has been a global increase in the number of Mpox virus (MPXV) cases in countries that were previously considered non-endemic. In July 2022, the World Health Organization (WHO) declared this outbreak a public health emergency of international concern. The objective of this systematic review is to examine the novel clinical features of Mpox and to assess the available treatment options for managing the disease in patients who are afflicted with it. We conducted a systematic search in several databases, including PubMed, Google Scholar, Cochrane Library, and the grey literature, from May 2022 to February 2023. We identified 21 eligible studies, which included 18,275 Mpox cases, for final qualitative analysis. The majority of cases were reported in men who have sex with men (MSM) and immunocompromised individuals with HIV (36.1%). The median incubation period was 7 days (IQR: 3-21). The novel clinical manifestations include severe skin lesions on the palms, oral and anogenital regions, as well as proctitis, penile edema, tonsillitis, ocular disease, myalgia, lethargy, and sore throat, without any preceding prodromal symptoms or systemic illness. In addition, fully asymptomatic cases were documented, and various complications, including encephalomyelitis and angina, were noted. Clinicians must be familiar with these novel clinical characteristics, as they can aid in testing and tracing such patients, as well as asymptomatic high-risk populations such as heterosexuals and MSM. In addition to supportive care, currently, there are several effective prophylactic and treatment strategies available to combat Mpox, including the vaccines ACAM2000 and MVA-BN7, as well as the immunoglobulin VIGIV and the antivirals tecovirimat, brincidofovir, and cidofovir against severe Mpox infection.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, India.
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, Karnataka, India
| | | | | | | | - Madhavrao Chavan
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Rupesh Gupta
- Department of Internal Medicine, Government Medical College, Shahdol, Madhya Pradesh, India
| |
Collapse
|
29
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
30
|
Russo AT, Grosenbach DW, Honeychurch KM, Long PG, Hruby DE. Overview of the regulatory approval of tecovirimat intravenous formulation for treatment of smallpox: potential impact on smallpox outbreak response capabilities, and future tecovirimat development potential. Expert Rev Anti Infect Ther 2023; 21:235-242. [PMID: 36728515 PMCID: PMC10054055 DOI: 10.1080/14787210.2023.2170350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Tecovirimat oral capsule formulation is approved in the US and Canada for treatment of smallpox and in the United Kingdom (UK) and European Union (EU) for treatment of multiple human orthopoxvirus diseases, including mpox. Smallpox is considered a serious threat, and there is currently an unprecedented global mpox outbreak. AREAS COVERED A brief summary of the threat of smallpox, the threat of increasing mpox spread in endemic regions, and the unprecedented emergence of mpox into non-endemic regions is presented. The tecovirimat intravenous formulation clinical development program leading to USFDA approval for smallpox treatment is discussed. EXPERT OPINION As of January 2023 tecovirimat is approved to treat mpox in the UK and EU. However, published clinical trial data evaluating tecovirimat efficacy and safety in mpox patients is pending. Increasing global prevalence of mpox highlights the potential benefits of a well-characterized, effective, and safe antiviral treatment for mpox infection. Ongoing trials in mpox patients may provide results supporting the use of tecovirimat to treat this disease. USFDA approval of tecovirimat for post-exposure prophylaxis in the event of a smallpox release, and the development of pediatric liquid formulations for patients under 13 kg, could provide additional public health benefits.
Collapse
|
31
|
Roychoudhury P, Sereewit J, Xie H, Nunley E, Bakhash SM, Lieberman NA, Greninger AL. Genomic Analysis of Early Monkeypox Virus Outbreak Strains, Washington, USA. Emerg Infect Dis 2023; 29:644-646. [PMID: 36732066 PMCID: PMC9973680 DOI: 10.3201/eid2903.221446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We conducted a genomic analysis of monkeypox virus sequences collected early in the 2022 outbreak, during July-August , in Washington, USA. Using 109 viral genomes, we found low overall genetic diversity, multiple introductions into the state, ongoing community transmission, and potential for co-infections by multiple strains.
Collapse
|
32
|
Khattak S, Rauf MA, Ali Y, Yousaf MT, Liu Z, Wu DD, Ji XY. The monkeypox diagnosis, treatments and prevention: A review. Front Cell Infect Microbiol 2023; 12:1088471. [PMID: 36814644 PMCID: PMC9939471 DOI: 10.3389/fcimb.2022.1088471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023] Open
Abstract
The world is currently dealing with a second viral outbreak, monkeypox, which has the potential to become an epidemic after the COVID-19 pandemic. People who reside in or close to forest might be exposed indirectly or at a low level, resulting in subclinical disease. However, the disease has lately emerged in shipped African wild mice in the United States. Smallpox can cause similar signs and symptoms to monkeypox, such as malaise, fever, flu-like signs, headache, distinctive rash, and back pain. Because Smallpox has been eliminated, similar symptoms in a monkeypox endemic zone should be treated cautiously. Monkeypox is transmitted to humans primarily via interaction with diseased animals. Infection through inoculation via interaction with skin or scratches and mucosal lesions on the animals is conceivable significantly once the skin barrier is disrupted by scratches, bites, or other disturbances or trauma. Even though it is clinically unclear from other pox-like infections, laboratory diagnosis is essential. There is no approved treatment for human monkeypox virus infection, however, smallpox vaccination can defend counter to the disease. Human sensitivity to monkeypox virus infection has grown after mass vaccination was discontinued in the 1980s. Infection may be prevented by reducing interaction with sick patients or animals and reducing respiratory exposure among people who are infected.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Mohd Ahmar Rauf
- School of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Muhammad Tufail Yousaf
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Zhihui Liu
- Department of General Practice, Henan Provincial Peoples Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,School of Stomatology, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
33
|
Hermanussen L, Grewe I, Tang HT, Nörz D, Bal LC, Pfefferle S, Unger S, Hoffmann C, Berzow D, Kohsar M, Aepfelbacher M, Lohse AW, Addo MM, Lütgehetmann M, Schulze Zur Wiesch J, Schmiedel S. Tecovirimat therapy for severe monkeypox infection: Longitudinal assessment of viral titers and clinical response pattern-A first case-series experience. J Med Virol 2023; 95:e28181. [PMID: 36177717 DOI: 10.1002/jmv.28181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Lennart Hermanussen
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Grewe
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Ting Tang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lukas C Bal
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Unger
- Institute for interdisciplinary medicine (ifi), Hamburg, Germany
| | | | | | - Matin Kohsar
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tropical Medicine Berhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ansgar W Lohse
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany.,Institute for Infection research and Vaccine development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| | - Stefan Schmiedel
- Department of Internal Medicine, Gastroenterology and Hepatology, Sections of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Sharma V, Aggarwal D, Sharma AK, Chandran D, Sharma A, Chopra H, Emran TB, Dey A, Dhama K. An overview on Monkeypox, Current Paradigms and Advances in its Vaccination, Treatment and Clinical Management: Trends, Scope, Promise and Challenges. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3000-3012. [DOI: 10.22207/jpam.16.spl1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox virus is an orthopoxvirus sharing the common genus with variola and vaccinia virus. Most of the monkeypox (MPX) cases had been reported from the central and west African region (the main endemic areas) prior to 2022 but there was a sudden outbreak in May, 2022 disseminating the infections to thousands of people even in non-endemic countries, posing a global public health emergency. MPX was considered a rae and neglected disease, however the 2022 MPX outbreaks in multiple countries attracted attention of worldwide researchers to pace up for carrying out researches on various aspects of MPXV including attempts to design and develop diagnostics, vaccines, drugs and therapeutics counteract MPX. Apart from being a zoonotic disease, the current outbreaks highlighted rapid human-to-human transmission of MPXV, besides the reverse zoonosis has also been documented with recent first report of human-to-dog transmission, urging a call for the importance of one health approach. Atypical and unusual disease manifestations as well asymptomatic MPXV infections have also been observed during 2022 MPX outbreak. The affected patients typically develop a rash resulting in a mild disease followed by recovery with some supportive care and use of antivirals such as tecovirimat, cidofovir and brincidofovir in severe disease cases. Modified vaccinia Ankara (MVA) vaccine with an excellent safety profile has been recommended to patients with higher risk exposure and immunocompromised individuals. Moreover, another vaccine the replication-competent vaccine (ACAM2000) could be a suitable alternative to MVA’s non-availability to some selective immunocompetent individuals. Current review highlights the salient aspects of management and treatment of monkeypox along with underlying promises in terms of therapeutics and a variety of challenges posed due to current global public health emergency situation to counteract MPX.
Collapse
|
35
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Brown LE, Seitz S, Kondas AV, Marcyk PT, Filone CM, Hossain MM, Schaus SE, Olson VA, Connor JH. Identification of Small Molecules with Improved Potency against Orthopoxviruses from Vaccinia to Smallpox. Antimicrob Agents Chemother 2022; 66:e0084122. [PMID: 36222522 PMCID: PMC9664851 DOI: 10.1128/aac.00841-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 μM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.
Collapse
Affiliation(s)
- Lauren E. Brown
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Scott Seitz
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul T. Marcyk
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Claire Marie Filone
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Mohammad M. Hossain
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Scott E. Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John H. Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Wong K, Chaudhary M, Magadia R. A Case of Monkeypox Infection in an Unvaccinated HIV-Positive Male in Rural Alabama. Cureus 2022; 14:e31383. [DOI: 10.7759/cureus.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
|
38
|
Singh S, Kumar R, Singh SK. All That We Need to Know About the Current and Past Outbreaks of Monkeypox: A Narrative Review. Cureus 2022; 14:e31109. [DOI: 10.7759/cureus.31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
|
39
|
Jeyaraman M, Selvaraj P, Halesh MB, Jeyaraman N, Nallakumarasamy A, Gupta M, Maffulli N, Gupta A. Monkeypox: An Emerging Global Public Health Emergency. Life (Basel) 2022; 12:1590. [PMID: 36295025 PMCID: PMC9604746 DOI: 10.3390/life12101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The virus causing monkeypox, a rare zoonotic viral disease, belongs to the Poxviridae family and the Orthopoxvirus genus. On 23 July 2022, the World Health Organization (WHO) declared the monkeypox outbreak as a Public Health Emergency of International Concern (PHEIC). From May to July 2022, a multi-country outbreak of monkeypox was reported in both endemic and non-endemic regions. Major goals of managing monkeypox are to identify the suspected cases, detect generic orthopoxvirus DNA at a state or commercial laboratory, and establish the Centers for Disease Control and Prevention real-time polymerase chain reaction testing. Currently, there are no approved treatments for monkeypox virus infection. However, a variety of antiviral medications originally designed for the treatment of smallpox and other viral infections could be considered. Pre-exposure prophylaxis for laboratory and health care employees and post-exposure prophylaxis for individuals with high-risk or intermediate-risk exposures are to be considered. The CDC Emergency Operations Center is available for advice on the appropriate use of medical countermeasures, and can help in obtaining antiviral drugs and vaccines from the National Strategic Stockpile. This review gives an overview of the global scenario, clinical presentation, and management of monkeypox in the light of a global public health emergency.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Preethi Selvaraj
- Department of Community Medicine, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | | | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manu Gupta
- Polar Aesthetics Dental & Cosmetic Center, Noida 201301, Uttar Pradesh, India
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
| | - Ashim Gupta
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
40
|
Harapan H, Ophinni Y, Megawati D, Frediansyah A, Mamada SS, Salampe M, Bin Emran T, Winardi W, Fathima R, Sirinam S, Sittikul P, Stoian AM, Nainu F, Sallam M. Monkeypox: A Comprehensive Review. Viruses 2022; 14:2155. [PMID: 36298710 PMCID: PMC9612348 DOI: 10.3390/v14102155] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The 2022 multi-country monkeypox outbreak in humans has brought new public health adversity on top of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The disease has spread to 104 countries throughout six continents of the world, with the highest burden in North America and Europe. The etiologic agent, monkeypox virus (MPXV), has been known since 1959 after isolation from infected monkeys, and virulence among humans has been reported since the 1970s, mainly in endemic countries in West and Central Africa. However, the disease has re-emerged in 2022 at an unprecedented pace, with particular concern on its human-to-human transmissibility and community spread in non-endemic regions. As a mitigation effort, healthcare workers, public health policymakers, and the general public worldwide need to be well-informed on this relatively neglected viral disease. Here, we provide a comprehensive and up-to-date overview of monkeypox, including the following aspects: epidemiology, etiology, pathogenesis, clinical features, diagnosis, and management. In addition, the current review discusses the preventive and control measures, the latest vaccine developments, and the future research areas in this re-emerging viral disease that was declared as a public health emergency of international concern.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tsunami and Disaster Mitigation Research Center (TDMRC), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan
| | - Dewi Megawati
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Department of Microbiology and Parasitology, School of Medicine, Universitas Warmadewa, Bali 80239, Indonesia
| | - Andri Frediansyah
- Research Group for Food Microbiology and Biotechnology, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Wira Winardi
- Department of Pulmonology and Respiratory Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Raisha Fathima
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Salin Sirinam
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pichamon Sittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Ana M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| |
Collapse
|
41
|
O'Laughlin K, Tobolowsky FA, Elmor R, Overton R, O'Connor SM, Damon IK, Petersen BW, Rao AK, Chatham-Stephens K, Yu P, Yu Y. Clinical Use of Tecovirimat (Tpoxx) for Treatment of Monkeypox Under an Investigational New Drug Protocol — United States, May–August 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1190-1195. [PMID: 36107794 PMCID: PMC9484807 DOI: 10.15585/mmwr.mm7137e1] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Chakraborty S, Chandran D, Mohapatra RK, Alagawany M, El-Shall NA, Sharma AK, Chakraborty C, Dhama K. Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. Int J Surg 2022; 105:106847. [PMID: 35995352 PMCID: PMC9533875 DOI: 10.1016/j.ijsu.2022.106847] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, 799008, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, 642109, Tamil Nadu, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University (Deemed to be University) Mullana-Ambala, 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| |
Collapse
|
43
|
A brief on new waves of monkeypox and vaccines and antiviral drugs for monkeypox. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY AND INFECTION 2022; 55:795-802. [PMID: 36115792 PMCID: PMC9521168 DOI: 10.1016/j.jmii.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
Monkeypox virus (MPXV), genetic closely linked to the notorious variola (smallpox) virus, currently causes several clusters and outbreaks in the areas outside Africa and is noted to be phylogenetically related to the West African clade. To prepare for the upsurge of the cases of monkeypox in the Europe and North America, two vaccines, Jynneos® in the U.S. (Imvamune® in Canada or Imvanex® in the Europe) and ACAM2000® (Acambis, Inc.) initially developed in the smallpox eradication program, can provide protective immunity to monkeypox, and their production and availability are rapidly scaled up in the response to the emerging threat. So far, these two vaccines are recommended for people at a high risk for monkeypox, instead of universal vaccination. Tecovirimat, an inhibitor of extracellular virus formation, and brincidofovir, a lipid conjugate of cidofovir, both are in vitro and in vivo active against MPXV, and are suggested for immunocompromised persons, who are at risk to develop severe diseases. However, current general consensus in the response to the monkeypox outbreak among public health systems is early identification and isolation of infected patients to prevent its spread.
Collapse
|
44
|
Abstract
Recently, monkeypox has become a global concern amid the ongoing COVID-19 pandemic. Monkeypox is an acute rash zoonosis caused by the monkeypox virus, which was previously concentrated in Africa. The re-emergence of this pathogen seems unusual on account of outbreaks in multiple nonendemic countries and the incline to spread from person to person. We need to revisit this virus to prevent the epidemic from getting worse. In this review, we comprehensively summarize studies on monkeypox, including its epidemiology, biological characteristics, pathogenesis, and clinical characteristics, as well as therapeutics and vaccines, highlighting its unusual outbreak attributed to the transformation of transmission. We also analyze the present situation and put forward countermeasures from both clinical and scientific research to address it.
Collapse
|
45
|
Mucker EM, Shamblin JD, Raymond JL, Twenhafel NA, Garry RF, Hensley LE. Effect of Monkeypox Virus Preparation on the Lethality of the Intravenous Cynomolgus Macaque Model. Viruses 2022; 14:1741. [PMID: 36016363 PMCID: PMC9413320 DOI: 10.3390/v14081741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures.
Collapse
Affiliation(s)
- Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Josh D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- Zoonotic and Emerging Disease Unit, United States Department of Agriculture, Manhattan, KS 66505, USA
| |
Collapse
|
46
|
Monkeypox outbreak—Nine states, May 2022. Am J Transplant 2022. [DOI: 10.1111/ajt.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Matias WR, Koshy JM, Nagami EH, Kovac V, Moeng LR, Shenoy ES, Hooper DC, Madoff LC, Barshak MB, Johnson JA, Rowley CF, Julg B, Hohmann EL, Lazarus JE. Tecovirimat for the treatment of human monkeypox: an initial series from Massachusetts, United States. Open Forum Infect Dis 2022; 9:ofac377. [PMID: 35949403 PMCID: PMC9356679 DOI: 10.1093/ofid/ofac377] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
A large, ongoing multicountry outbreak of human monkeypox has the potential to cause considerable morbidity and mortality. Therapeutics for the treatment of smallpox, a related Orthopoxvirus, may be used and affect the natural history of monkeypox. We present 3 patients from our hospitals treated with tecovirimat, a pan-Orthopoxvirus inhibitor currently available under an expanded access investigational new drug protocol for monkeypox.
Collapse
Affiliation(s)
- Wilfredo R Matias
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Brigham and Women’s Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
- Mass General Center for Global Health , Boston, Massachusetts , USA
| | - Jacob M Koshy
- Harvard Medical School , Boston, Massachusetts , USA
- Beth Israel Deaconess Medical Center, Boston , Massachusetts , USA
| | - Ellen H Nagami
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Brigham and Women’s Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Victor Kovac
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Brigham and Women’s Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Letumile R Moeng
- Harvard Medical School , Boston, Massachusetts , USA
- Beth Israel Deaconess Medical Center, Boston , Massachusetts , USA
| | - Erica S Shenoy
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - David C Hooper
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Lawrence C Madoff
- Massachusetts Department of Public Health, Boston, and University of Massachusetts Chan Medical School , Worcester, Massachusetts , USA
| | - Miriam B Barshak
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Jennifer A Johnson
- Brigham and Women’s Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Christopher F Rowley
- Harvard Medical School , Boston, Massachusetts , USA
- Beth Israel Deaconess Medical Center, Boston , Massachusetts , USA
| | - Boris Julg
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts , USA
| | - Elizabeth L Hohmann
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Jacob E Lazarus
- Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| |
Collapse
|
48
|
Minhaj FS, Ogale YP, Whitehill F, Schultz J, Foote M, Davidson W, Hughes CM, Wilkins K, Bachmann L, Chatelain R, Donnelly MA, Mendoza R, Downes BL, Roskosky M, Barnes M, Gallagher GR, Basgoz N, Ruiz V, Kyaw NTT, Feldpausch A, Valderrama A, Alvarado-Ramy F, Dowell CH, Chow CC, Li Y, Quilter L, Brooks J, Daskalakis DC, McClung RP, Petersen BW, Damon I, Hutson C, McQuiston J, Rao AK, Belay E, McCollum AM, Monkeypox Response Team 2022. Monkeypox Outbreak - Nine States, May 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:764-769. [PMID: 35679181 PMCID: PMC9181052 DOI: 10.15585/mmwr.mm7123e1] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident. Orthopoxviruses include Monkeypox virus, the causative agent of monkeypox. Subsequent real-time PCR testing at CDC on May 18 confirmed that the patient was infected with the West African clade of Monkeypox virus. Since then, confirmed cases* have been reported by nine states. In addition, 28 countries and territories,† none of which has endemic monkeypox, have reported laboratory-confirmed cases. On May 17, CDC, in coordination with state and local jurisdictions, initiated an emergency response to identify, monitor, and investigate additional monkeypox cases in the United States. This response has included releasing a Health Alert Network (HAN) Health Advisory, developing interim public health and clinical recommendations, releasing guidance for LRN testing, hosting clinician and public health partner outreach calls, disseminating health communication messages to the public, developing protocols for use and release of medical countermeasures, and facilitating delivery of vaccine postexposure prophylaxis (PEP) and antivirals that have been stockpiled by the U.S. government for preparedness and response purposes. On May 19, a call center was established to provide guidance to states for the evaluation of possible cases of monkeypox, including recommendations for clinical diagnosis and orthopoxvirus testing. The call center also gathers information about possible cases to identify interjurisdictional linkages. As of May 31, this investigation has identified 17§ cases in the United States; most cases (16) were diagnosed in persons who identify as gay, bisexual, or men who have sex with men (MSM). Ongoing investigation suggests person-to-person community transmission, and CDC urges health departments, clinicians, and the public to remain vigilant, institute appropriate infection prevention and control measures, and notify public health authorities of suspected cases to reduce disease spread. Public health authorities are identifying cases and conducting investigations to determine possible sources and prevent further spread. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.¶.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Monkeypox Response Team 2022
- Epidemic Intelligence Service, CDC; Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, CDC; Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, CDC; Massachusetts Department of Public Health; New York City Department of Health and Mental Hygiene, New York, New York; Salt Lake County Health Department, Salt Lake City, Utah; Florida Department of Health; Fairfax County Health Department, Fairfax, Virginia; Public Health - Seattle & King County, Seattle, Washington; Colorado Department of Public Health and Environment; Massachusetts General Hospital, Boston Massachusetts; Georgia Department of Health; Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, CDC; Division of Global Migration and Quarantine, National Center of Emerging Zoonotic Infectious Diseases, CDC; National Institute for Occupational Safety and Health; Division of Global Health Protection, Center for Global Health, CDC; Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, CDC
| |
Collapse
|
49
|
Zhang Z, Fu S, Wang F, Yang C, Wang L, Yang M, Zhang W, Zhong W, Zhuang X. A PBPK Model of Ternary Cyclodextrin Complex of ST-246 Was Built to Achieve a Reasonable IV Infusion Regimen for the Treatment of Human Severe Smallpox. Front Pharmacol 2022; 13:836356. [PMID: 35370741 PMCID: PMC8966223 DOI: 10.3389/fphar.2022.836356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
ST-246 is an oral drug against pathogenic orthopoxvirus infections. An intravenous formulation is required for some critical patients. A ternary complex of ST-246/meglumine/hydroxypropyl-β-cyclodextrin with well-improved solubility was successfully developed in our institute. The aim of this study was to achieve a reasonable intravenous infusion regimen of this novel formulation by a robust PBPK model based on preclinical pharmacokinetic studies. The pharmacokinetics of ST-246 after intravenous injection at different doses in rats, dogs, and monkeys were conducted to obtain clearances. The clearance of humans was generated by using the allometric scaling approach. Tissue distribution of ST-246 was conducted in rats to obtain tissue partition coefficients (Kp). The PBPK model of the rat was first built using in vivo clearance and Kp combined with in vitro physicochemical properties, unbound fraction, and cyclodextrin effect parameters of ST-246. Then the PBPK model was transferred to a dog and monkey and validated simultaneously. Finally, pharmacokinetic profiles after IV infusion at different dosages utilizing the human PBPK model were compared to the observed oral PK profile of ST-246 at therapeutic dosage (600 mg). The mechanistic PBPK model described the animal PK behaviors of ST-246 via intravenous injection and infusion with fold errors within 1.2. It appeared that 6h-IV infusion at 5 mg/kg BID produced similar Cmax and AUC as oral administration at 600 mg. A PBPK model of ST-246 was built to achieve a reasonable regimen of IV infusion for the treatment of severe smallpox, which will facilitate the clinical translation of this novel formulation.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shuang Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunmiao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
50
|
Hickman MR, Saunders DL, Bigger CA, Kane CD, Iversen PL. The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections. PLoS Negl Trop Dis 2022; 16:e0010220. [PMID: 35259154 PMCID: PMC8903284 DOI: 10.1371/journal.pntd.0010220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) began development of a broad-spectrum antiviral countermeasure against deliberate use of high-consequence viral hemorrhagic fevers (VHFs) in 2016. The effort featured comprehensive preclinical research, including laboratory testing and rapid advancement of lead molecules into nonhuman primate (NHP) models of Ebola virus disease (EVD). Remdesivir (GS-5734, Veklury, Gilead Sciences) was the first small molecule therapeutic to successfully emerge from this effort. Remdesivir is an inhibitor of RNA-dependent RNA polymerase, a viral enzyme that is essential for viral replication. Its robust potency and broad-spectrum antiviral activity against certain RNA viruses including Ebola virus and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) led to its clinical evaluation in randomized, controlled trials (RCTs) in human patients during the 2018 EVD outbreak in the Democratic Republic of the Congo (DRC) and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic today. Remdesivir was recently approved by the US Food and Drug Administration (FDA) for the treatment of COVID-19 requiring hospitalization. Substantial gaps remain in improving the outcomes of acute viral infections for patients afflicted with both EVD and COVID-19, including how to increase therapeutic breadth and strategies for the prevention and treatment of severe disease. Combination therapy that joins therapeutics with complimentary mechanisms of action appear promising, both preclinically and in RCTs. Importantly, significant programmatic challenges endure pertaining to a clear drug and biological product development pathway for therapeutics targeting biodefense and emerging pathogens when human efficacy studies are not ethical or feasible. For example, remdesivir's clinical development was facilitated by outbreaks of Ebola and SARS-CoV-2; as such, the development pathway employed for remdesivir is likely to be the exception rather than the rule. The current regulatory licensure pathway for therapeutics targeting rare, weaponizable VHF agents is likely to require use of FDA's established Animal Rule (21 CFR 314.600-650 for drugs; 21 CFR 601.90-95 for biologics). The FDA may grant marketing approval based on adequate and well-controlled animal efficacy studies when the results of those studies establish that the drug is safe and likely to produce clinical benefit in humans. In practical terms, this is anticipated to include a series of rigorous, well-documented, animal challenge studies, to include aerosol challenge, combined with human safety data. While small clinical studies against naturally occurring, high-consequence pathogens are typically performed where possible, approval for the therapeutics currently under development against biodefense pathogens will likely require the Animal Rule pathway utilizing studies in NHPs. We review the development of remdesivir as illustrative of the effort that will be needed to field future therapeutics against highly lethal, infectious agents.
Collapse
Affiliation(s)
- Mark R. Hickman
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, United States of America
| | - David L. Saunders
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Catherine A. Bigger
- Logistics Management International Inc, Tysons Corner, Virginia, United States of America
| | | | | |
Collapse
|