1
|
Pagulayan KF, Rau HK, Sheppard DP, Shulein OM, Onstad-Hawes E, Hoffman JM, Williams RM. On-TRACC Pilot Study: A Novel Intervention for Persistent Post-Concussive Cognitive Symptoms. J Head Trauma Rehabil 2025:00001199-990000000-00227. [PMID: 39853212 DOI: 10.1097/htr.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
OBJECTIVE To present the results of a pilot study of On-TRACC (Tools for Recovery and Clinical Care), a novel intervention for individuals experiencing persistent cognitive difficulties after mild traumatic brain injury (mTBI). On-TRACC is a 5-session, 1:1 manualized treatment that integrates psychoeducation, cognitive rehabilitation strategies, and self-management skills to target symptoms and increase understanding of the interaction between cognitive difficulties, injury history, and comorbid medical and psychological conditions. The primary study goals were to evaluate the feasibility, acceptability, and preliminary effectiveness of On-TRACC. SETTING Veterans Affairs medical center and an academic medical center. PARTICIPANTS Veterans and civilian adults (n = 28) >3 months post-mTBI with current self-reported cognitive difficulties. DESIGN In this single-group, open-label pilot study, all participants received On-TRACC (5 sessions) via video-based telehealth. MAIN MEASURES Primary measures were feasibility (eg, session attendance and homework completion rate, dropout rate, and treatment fidelity) and acceptability (treatment satisfaction/helpfulness ratings). Preliminary effectiveness was explored by measuring pre- to post-intervention change in cognitive symptom level and attribution, perceived self-efficacy, use of compensatory strategies, daily functioning, quality of life, and planned future engagement in health care. RESULTS The On-TRACC completion rate for all enrolled participants was 79% (with 88% treatment completion rate for participants who started On-TRACC); homework was fully or partially completed for 98% of attended sessions. Treatment satisfaction ratings were high, with 95% satisfied with the information and skills learned. There were no adverse events. Positive pre- to posttreatment changes were seen in cognitive self-efficacy, symptom attribution, functional status, quality of life, and planned engagement in care for comorbid conditions. CONCLUSION On-TRACC was a feasible and acceptable intervention for individuals with chronic cognitive difficulties following mTBI. Additional research, including a randomized clinical trial, is needed to evaluate the efficacy of this intervention and its long-term impact on outcomes in this clinical population.
Collapse
Affiliation(s)
- Kathleen F Pagulayan
- Author Affiliations: VA Puget Sound Health Care System, Seattle, Washington (Drs Pagulayan, Rau, and Sheppard, and Ms Onstad-Hawes, and Dr Williams); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington (Drs Pagulayan and Sheppard); and Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington (Ms Shulein, and Drs Hoffman and Williams)
| | | | | | | | | | | | | |
Collapse
|
2
|
Videnovic A, Cai A. Irregular sleep-wake rhythm disorder: From the pathophysiologic perspective to the treatment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:71-87. [PMID: 39864933 DOI: 10.1016/b978-0-323-90918-1.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Irregular sleep-wake rhythm disorder (ISWRD) is an intrinsic circadian rhythm disorder caused by loss of the brain's circadian regulation, through changes of the input and/or output to the suprachiasmatic nucleus (SCN), or of the SCN itself. Although there are limited prevalence data for this rare disease, ISWRD is associated with neurodegenerative disorders, including the Alzheimer disease (AD) and the Parkinson disease (PD), which will become increasingly prevalent in an aging population. It additionally presents in childhood developmental disorders, psychiatric disorders, and traumatic brain injury (TBI). Patients present with unpredictable, short sleep periods over a 24-h period, with significant day-to-day and weekly variability. Symptoms manifest as insomnia and excessive daytime sleepiness. Sleep logs and actigraphy monitoring capture rest-activity patterns required for diagnosis. Treatment aims to enhance external circadian cues through timed light therapy, behavioral activity regimens, and melatonin, but efficacy remains quite limited. Pathophysiology of ISWRD in association with various diseases and their specific management are discussed. There is a need for further investigation of disease pathophysiology, development of widely applicable tools for diagnosis, and development of treatments.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Alice Cai
- Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
4
|
Kawata K, Rettke DJ, Thompson C, Mannix R, Bazarian JJ, Datta D. Effectiveness of biomedical interventions on the chronic stage of traumatic brain injury: a systematic review of randomized controlled trials. Front Neurol 2024; 15:1321239. [PMID: 38562423 PMCID: PMC10983769 DOI: 10.3389/fneur.2024.1321239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI), in any form and severity, can pose risks for developing chronic symptoms that can profoundly hinder patients' work/academic, social, and personal lives. In the past 3 decades, a multitude of pharmacological, stimulation, and exercise-based interventions have been proposed to ameliorate symptoms, memory impairment, mental fatigue, and/or sleep disturbances. However, most research is preliminary, thus limited influence on clinical practice. This review aims to systematically appraise the evidence derived from randomized controlled trials (RCT) regarding the effectiveness of pharmacological, stimulation, and exercise-based interventions in treating chronic symptoms due to TBI. Our search results indicate that despite the largest volume of literature, pharmacological interventions, especially using neurostimulant medications to treat physical, cognitive, and mental fatigue, as well as daytime sleepiness, have yielded inconsistent results, such that some studies found improvements in fatigue (e.g., Modafinil, Armodafinil) while others failed to yield the improvements after the intervention. Conversely, brain stimulation techniques (e.g., transcranial magnetic stimulation, blue light therapy) and exercise interventions were effective in ameliorating mental health symptoms and cognition. However, given that most RCTs are equipped with small sample sizes, more high-quality, larger-scale RCTs is needed.
Collapse
Affiliation(s)
- Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Devin J. Rettke
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Christopher Thompson
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
6
|
Cassimatis M, Browne G, Orr R. The Utility of Melatonin for the Treatment of Sleep Disturbance After Traumatic Brain Injury: A Scoping Review. Arch Phys Med Rehabil 2023; 104:340-349. [PMID: 36243124 DOI: 10.1016/j.apmr.2022.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the utility of melatonin supplementation as a treatment option for individuals with sleep disturbance after traumatic brain injury (TBI). DATA SOURCES A systematic search was conducted in 6 electronic databases (Medline, AMED, CINAHL, Embase, Scopus, and SPORTDiscus) from earliest records to April 2022. STUDY SELECTION Studies were eligible for inclusion if they met the following criteria: a) human participants with sleep disturbance after TBI, b) melatonin or melatonergic agent used as an intervention to treat sleep disturbance, and c) outcomes of melatonin administration reported. All TBI severity types (mild, moderate, and severe) were eligible. The initial search retrieved a total of 595 articles, with 9 studies meeting the eligibility criteria. DATA EXTRACTION Two reviewers independently extracted data from eligible studies and assessed methodological quality. Extracted data consisted of participant and injury characteristics, melatonin interventional properties, and sleep outcome. Methodological quality was assessed via the Downs and Black checklist. DATA SYNTHESIS A total of 251 participants with TBI-induced sleep disturbance (mean age range: 14.0-42.5 years) were included. Melatonin, Circadin (prolonged-release melatonin), or Ramelteon (melatonin receptor agonist) were administered. Dosages and intervention duration ranged from 2 to 10 mg and 3 to 12 weeks, respectively. Eight out of 9 studies reported positive outcomes after melatonin treatment. Significant improvements in subjective sleep quality, objective sleep efficiency, and total sleep time were found with melatonin. Reductions in self-reported fatigue, anxiety, and depressive symptoms were also observed with melatonin treatment. No serious adverse events were reported after melatonin administration. CONCLUSION Melatonin has good tolerability after short-term use and the potential to be a therapeutic agent for those with sleep disturbance after TBI. Melatonin was shown to be beneficial to sleep quality, sleep duration, and sleep efficiency. Additional clinically relevant outcomes of improved mental health suggest that melatonin use may be a promising treatment option for individuals experiencing co-occurring disorders of mood and sleep disturbance post-injury.
Collapse
Affiliation(s)
- Maree Cassimatis
- Discipline of Exercise and Sports Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Gary Browne
- Sydney Children's Hospital Network, Children's Hospital Institute of Sports Medicine, Children's Hospital Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Rhonda Orr
- Discipline of Exercise and Sports Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia; Sydney Children's Hospital Network, Children's Hospital Institute of Sports Medicine, Children's Hospital Westmead, Sydney, Australia.
| |
Collapse
|
7
|
Sanchez E, Blais H, Duclos C, Arbour C, Van Der Maren S, El-Khatib H, Baril AA, Bernard F, Carrier J, Gosselin N. Sleep from acute to chronic traumatic brain injury and cognitive outcomes. Sleep 2022; 45:zsac123. [PMID: 35640250 PMCID: PMC9366647 DOI: 10.1093/sleep/zsac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Indexed: 09/29/2023] Open
Abstract
STUDY OBJECTIVES Traumatic brain injuries (TBIs) cause persistent cerebral damage and cognitive deficits. Because sleep may be a critical factor for brain recovery, we characterized the sleep of patients with TBI from early hospitalization to years post-injury and explored the hypothesis that better sleep during hospitalization predicts more favorable long-term cognitive outcomes. METHODS We tested patients with moderate-to-severe TBI in the hospitalized (n = 11) and chronic (n = 43) stages using full-night polysomnography, with 82% of the hospitalized group being retested years post-injury. Hospitalized patients with severe orthopedic and/or spinal cord injury (n = 14) and healthy participants (n = 36) were tested as controls for the hospitalized and chronic TBI groups, respectively. Groups had similar age and sex and were compared for sleep characteristics, including slow waves and spindles. For patients with TBI, associations between sleep during hospitalization and long-term memory and executive function were assessed. RESULTS Hospitalized patients with TBI or orthopedic injuries had lower sleep efficiency, higher wake after sleep onset, and lower spindle density than the chronic TBI and healthy control groups, but only hospitalized patients with brain injury had an increased proportion of slow-wave sleep. During hospitalization for TBI, less fragmented sleep, more slow-wave sleep, and higher spindle density were associated to more favorable cognitive outcomes years post-injury, while injury severity markers were not associated with these outcomes. CONCLUSION These findings highlight the importance of sleep following TBI, as it could be a strong predictor of neurological recovery, either as a promoter or an early marker of cognitive outcomes.
Collapse
Affiliation(s)
- Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Caroline Arbour
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Francis Bernard
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Current and Potential Pharmacologic Therapies for Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15070838. [PMID: 35890136 PMCID: PMC9323622 DOI: 10.3390/ph15070838] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The present article reviewed the pharmacologic therapies of traumatic brain injury (TBI), including current and potential treatments. Pharmacologic therapies are an essential part of TBI care, and several agents have well-established effects in TBI care. In the acute phase, tranexamic acid, antiepileptics, hyperosmolar agents, and anesthetics are the mainstay of pharmacotherapy, which have proven efficacies. In the post-acute phase, SSRIs, SNRIs, antipsychotics, zolpidem and amantadine, as well as other drugs, have been used to manage neuropsychological problems, while muscle relaxants and botulinum toxin have been used to manage spasticity. In addition, increasing numbers of pre-clinical and clinical studies of pharmaceutical agents, including potential neuroprotective nutrients and natural therapies, are being carried out. In the present article, we classify the treatments into established and potential agents based on the level of clinical evidence and standard of practice. It is expected that many of the potential medicines under investigation will eventually be accepted as standard practice in the care of TBI patients.
Collapse
|
9
|
Ali A, Morfin J, Mills J, Pasipanodya EC, Maas YJ, Huang E, Dirlikov B, Englander J, Zedlitz A. Fatigue After Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2022; 37:E249-E257. [PMID: 34354018 DOI: 10.1097/htr.0000000000000710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To provide a systematic review of published interventions for posttraumatic brain injury fatigue (PTBIF). METHODS PubMed and OneSearch were systematically searched for PTBIF interventions published between January 1, 1989, and March 31, 2019. Search results were evaluated for inclusion based on an abstract and full-text review. Inclusion criteria were (1) an investigation of an intervention, (2) participant sample including individuals with traumatic brain injury (TBI), (3) report of fatigue outcome data among individuals with TBI, and (4) articles available in English, Spanish, French, German, Afrikaans, or Dutch. A risk of bias assessment was conducted on all included publications. RESULTS The search resulted in 2343 publications, with 37 meeting inclusion criteria for this review. Categories of PTBIF interventions were pharmacological ( n = 13), psychological ( n = 9), exercise-based ( n = 4), complementary alternative medicine ( n = 5), electrotherapeutic ( n = 3), and multimodal ( n = 3). Only methylphenidate, modafinil, and cognitive behavioral therapy interventions included multiple cohorts. Pharmacological and psychological interventions represented the groups with the lowest risk of bias. CONCLUSIONS This review includes 37 studies, with 21 studies published after 2014. Methylphenidate and melatonin were the only pharmacological agents found to reduce fatigue in randomized controlled trials. Creatine given to children prospectively at onset of injury reduced fatigue at follow-up. Walking and water aerobics were effective exercise interventions in isolated randomized controlled studies. One multimodal study of children after concussion was more effective at reducing fatigue and postconcussion symptoms than community standard of care. Other interventions had equivocal results. Overall, more work remains to understand and develop treatments for PTBIF.
Collapse
Affiliation(s)
- Arshad Ali
- Rehabilitation Research Center, Santa Clara Valley Medical Center, San Jose, California (Messrs Ali and Dirlikov, Ms Morfin, and Dr Pasipanodya); Medical Library, Santa Clara Valley Medical Center, San Jose, California (Ms Mills); SeneCure, GGZ-Breburg, Tilburg, the Netherlands (Ms Maas); Physical Medicine and Rehabilitation Department, Santa Clara Valley Medical Center, San Jose, California (Drs Huang and Englander); Department of Orthopedic Surgery, Stanford University School of Medicine, Palo Alto, California (Dr Englander); and Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands (Dr Zedlitz)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sleep Disturbances Following Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Treating sleep disorders following traumatic brain injury in adults: time for renewed effort? Sleep Med Rev 2022; 63:101631. [DOI: 10.1016/j.smrv.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
|
12
|
Falco C, Barton C. Melatonin administration for sleep disorders in traumatic brain injury: A review of the literature. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Daily Morning Blue Light Therapy Improves Daytime Sleepiness, Sleep Quality, and Quality of Life Following a Mild Traumatic Brain Injury. J Head Trauma Rehabil 2021; 35:E405-E421. [PMID: 32472836 DOI: 10.1097/htr.0000000000000579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Identify the treatment effects of 6 weeks of daily 30-minute sessions of morning blue light therapy compared with placebo amber light therapy in the treatment of sleep disruption following mild traumatic brain injury. DESIGN Placebo-controlled randomized trial. PARTICIPANTS Adults aged 18 to 45 years with a mild traumatic brain injury within the past 18 months (n = 35). MAIN OUTCOME MEASURES Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index, Beck Depression Inventory II, Rivermead Post-concussion Symptom Questionnaire, Functional Outcomes of Sleep Questionnaire, and actigraphy-derived sleep measures. RESULTS Following treatment, moderate to large improvements were observed with individuals in the blue light therapy group reporting lower Epworth Sleepiness Scale (Hedges' g = 0.882), Beck Depression Inventory II (g = 0.684), Rivermead Post-concussion Symptom Questionnaire chronic (g = 0.611), and somatic (g = 0.597) symptoms, and experiencing lower normalized wake after sleep onset (g = 0.667) than those in the amber light therapy group. In addition, individuals in the blue light therapy group experienced greater total sleep time (g = 0.529) and reported improved Functional Outcomes of Sleep Questionnaire scores (g = 0.929) than those in the amber light therapy group. CONCLUSION Daytime sleepiness, fatigue, and sleep disruption are common following a mild traumatic brain injury. These findings further substantiate blue light therapy as a promising nonpharmacological approach to improve these sleep-related complaints with the added benefit of improved postconcussion symptoms and depression severity.
Collapse
|
14
|
Grima NA, Rajaratnam SMW, Mansfield D, McKenzie D, Ponsford JL. Poorer sleep quality predicts melatonin response in TBI patients: findings from a randomized controlled trial. J Clin Sleep Med 2021; 17:1545-1551. [PMID: 33704046 DOI: 10.5664/jcsm.9234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES A recent clinical trial demonstrated that melatonin treatment was effective in improving self-perceived sleep quality in patients with TBI; however, it remains unclear which patients benefited from melatonin treatment. To that end, findings from the clinical trial were re-examined to identify possible predictors of treatment response. METHODS Hierarchical multiple regression was utilized to identify patient characteristics, TBI injury characteristics, and self-report measures assessing sleep, fatigue, mood, and anxiety symptomatology that may uniquely explain a change in self-reported sleep quality scores (follow-up minus baseline score) as assessed by the Pittsburgh Sleep Quality Index(PSQI). RESULTS After controlling for patient demographic and TBI injury-related variables, baseline self-report measures of sleep, fatigue, mood, and anxiety explained an additional 32% of the variance in change in PSQI scores. However, only baseline PSQI score made a unique and statistically significant contribution (β = -.56, p = .006). After controlling for patient and TBI characteristics, baseline PSQI scores further explained 27% of the variance in change in PSQI scores, R squared change = .27, F change (1, 27) = 11.79, p = .002). The standardized beta for baseline PSQI score revealed a statistically significant negative relationship with change in PSQI score (β = -.54, p = .002) revealing that higher PSQI score at baseline was associated with better sleep outcomes. CONCLUSIONS In a sample comprising predominately severe TBI and comorbid insomnia, participants who report poorer sleep quality have the most to gain from melatonin treatment irrespective of time since injury, demographics, fatigue, daytimes sleepiness, mood, and anxiety symptomology. CLINICAL TRIAL REGISTRATION The manuscript reports on a clinical trial which was prospectively registered with the Australian New Zealand Clinical Trials Registry on the 13th of July, 2011. Identifier: ACTRN12611000734965 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=343083&showOriginal=true&isReview=true.
Collapse
Affiliation(s)
- Natalie A Grima
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Richmond, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton Campus, Clayton, VIC, Australia
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton Campus, Clayton, VIC, Australia
| | - Darren Mansfield
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton Campus, Clayton, VIC, Australia.,Monash Lung and Sleep, Monash Health, Clayton, VIC, Australia
| | - Dean McKenzie
- Epworth HealthCare, Richmond, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, St. Kilda, VIC, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Richmond, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton Campus, Clayton, VIC, Australia
| |
Collapse
|
15
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Barlow KM, Kirk V, Brooks B, Esser MJ, Yeates KO, Zemek R, Kirton A, Mikrogianakis A, MacMaster F, Nettel-Aguirre A, Hutchison J, Turley B, Cameron C, Hill M, Boyd R, Dewey D. Efficacy of Melatonin for Sleep Disturbance in Children with Persistent Post-Concussion Symptoms: Secondary Analysis of a Randomized Controlled Trial. J Neurotrauma 2020; 38:950-959. [PMID: 32988292 DOI: 10.1089/neu.2020.7154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sleep disturbances are commonly reported in children with persistent post-concussion symptoms (PPCS). Melatonin treatment is often recommended, yet supporting evidence is scarce. We aimed to evaluate the efficacy of treatment with melatonin for sleep disturbance in youth with PPCS following mild traumatic brain injury (mTBI). This article is a secondary analysis of a clinical trial of melatonin compared with placebo to treat PPCS. Youth (8-18 years of age) with PPCS and significant sleep-related problems (SRPs) at 4-6 weeks post-injury were eligible. Exclusion criteria: significant medical/psychiatric history; previous concussion/mTBI within 3 months. Treatment groups were: placebo, melatonin 3 mg, or melatonin 10 mg. Primary outcome was change in SRPs measured using the Post-Concussion Symptom Inventory (PCSI) after 2 weeks of treatment. Secondary outcomes included change in actigraphy sleep efficiency, duration, onset latency, and wake-after-sleep-onset. Behavior was measured using Behaviour Assessment for Children (2nd edition). Seventy-two participants (mean age 14.0, standard deviation [SD] = 2.6) years; 60% female) with PPCS and significant sleep disturbance were included in the secondary analysis: placebo (n = 22); melatonin 3 mg (n = 25); melatonin 10 mg (n = 25). Sixty-four participants had actigraphy data. SRPs decreased across all groups over time with a significant effect of melatonin 3 mg (3.7; 95% confidence interval [CI]: 2.1, 5.4) compared with placebo (7.4; 95% CI: 4.2, 10.6) and melatonin 10 mg (6.4; 95% CI: 3.6, 9.2). Sleep duration increased in the melatonin 3 mg (43 min; 95% CI: 6, 93) and melatonin 10 mg groups (55 min; 95% CI: 5, 104) compared with placebo. A per protocol analysis demonstrated improved sleep efficiency in the melatonin 10 mg group (p = 0.029). No serious adverse events were reported. Depressive symptoms significantly decreased with melatonin 3 mg (-4.7; 95% CI: -9.2, -.2) but not with melatonin 10 mg (-1.4, 95% CI: -5.9, 3.2) treatment compared with placebo. Changes in cognition or behavior were otherwise not significantly different between treatment groups. Short-term melatonin is a well-tolerated treatment for sleep disturbance in youth with PPCS following mTBI. In this context, it may also be associated with a reduction in depressive symptoms.
Collapse
Affiliation(s)
- Karen Maria Barlow
- Child Health Research Centre, University of Queensland Faculty of Medicine and Biomedical Sciences, South Brisbane, Queensland, Australia.,Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Valerie Kirk
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Brian Brooks
- Department of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada
| | | | - Keith Owen Yeates
- Department of Psychology and University of Calgary, Calgary, Alberta, Canada
| | - Roger Zemek
- Clinical Research Unit, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Adam Kirton
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | | | - Frank MacMaster
- Department of Psychiatry and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Alberto Nettel-Aguirre
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - James Hutchison
- Critical Care Medicine and Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brenda Turley
- Department of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada
| | - Candice Cameron
- Research Pharmacy, Alberta Health Services, Calgary, Alberta, Canada
| | - Michael Hill
- Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Roslyn Boyd
- Children's Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| | - Deborah Dewey
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Sivandzade F, Alqahtani F, Cucullo L. Traumatic Brain Injury and Blood-Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition. Int J Mol Sci 2020; 21:E2721. [PMID: 32295258 PMCID: PMC7215684 DOI: 10.3390/ijms21082721] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood-brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
18
|
Barlow KM, Brooks BL, Esser MJ, Kirton A, Mikrogianakis A, Zemek RL, MacMaster FP, Nettel-Aguirre A, Yeates KO, Kirk V, Hutchison JS, Crawford S, Turley B, Cameron C, Hill MD, Samuel T, Buchhalter J, Richer L, Platt R, Boyd R, Dewey D. Efficacy of Melatonin in Children With Postconcussive Symptoms: A Randomized Clinical Trial. Pediatrics 2020; 145:peds.2019-2812. [PMID: 32217739 DOI: 10.1542/peds.2019-2812] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Approximately 25% of children with concussion have persistent postconcussive symptoms (PPCS) with resultant significant impacts on quality of life. Melatonin has significant neuroprotective properties, and promising preclinical data suggest its potential to improve outcomes after traumatic brain injury. We hypothesized that treatment with melatonin would result in a greater decrease in PPCS symptoms when compared with a placebo. METHODS We conducted a randomized, double-blind trial of 3 or 10 mg of melatonin compared with a placebo (NCT01874847). We included youth (ages 8-18 years) with PPCS at 4 to 6 weeks after mild traumatic brain injury. Those with significant medical or psychiatric histories or a previous concussion within the last 3 months were excluded. The primary outcome was change in the total youth self-reported Post-Concussion Symptom Inventory score measured after 28 days of treatment. Secondary outcomes included change in health-related quality of life, cognition, and sleep. RESULTS Ninety-nine children (mean age: 13.8 years; SD = 2.6 years; 58% girls) were randomly assigned. Symptoms improved over time with a median Post-Concussion Symptom Inventory change score of -21 (95% confidence interval [CI]: -16 to -27). There was no significant effect of melatonin when compared with a placebo in the intention-to-treat analysis (3 mg melatonin, -2 [95% CI: -13 to 6]; 10 mg melatonin, 4 [95% CI: -7 to 14]). No significant group differences in secondary outcomes were observed. Side effects were mild and similar to the placebo. CONCLUSIONS Children with PPCS had significant impairment in their quality of life. Seventy-eight percent demonstrated significant recovery between 1 and 3 months postinjury. This clinical trial does not support the use of melatonin for the treatment of pediatric PPCS.
Collapse
Affiliation(s)
- Karen M Barlow
- Department of Pediatrics, Alberta Children's Hospital Research Institute and .,Clinical Neurosciences, Cumming School of Medicine and.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Brian L Brooks
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada.,Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Radiology.,Clinical Neurosciences, Cumming School of Medicine and
| | - Angelo Mikrogianakis
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Emergency Medicine, and
| | - Roger L Zemek
- Departments of Pediatrics and Emergency Medicine and Research Institute, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Frank P MacMaster
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Psychiatry, Paediatrics, and
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| | - Keith Owen Yeates
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Valerie Kirk
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - James S Hutchison
- Neurosciences and Mental Health Research Program, Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Susan Crawford
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Brenda Turley
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Candice Cameron
- Research Pharmacy, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | | | - Tina Samuel
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Jeffrey Buchhalter
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - Lawrence Richer
- Department of Pediatrics and Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Platt
- McGill University, Montreal, Québec, Canada; and
| | - Roslyn Boyd
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Deborah Dewey
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| |
Collapse
|
19
|
Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 36:802-814. [PMID: 30136622 PMCID: PMC6387567 DOI: 10.1089/neu.2018.5810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- Hannah E. Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Wang J, Jiang C, Zhang K, Lan X, Chen X, Zang W, Wang Z, Guan F, Zhu C, Yang X, Lu H, Wang J. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med 2019; 131:345-355. [PMID: 30553970 DOI: 10.1016/j.freeradbiomed.2018.12.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1β, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Edema/drug therapy
- Brain Edema/genetics
- Brain Edema/metabolism
- Brain Edema/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/pathology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Indenes/pharmacology
- Inflammation
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress/drug effects
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Junmin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Weidong Zang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhongyu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Fangxia Guan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; School of Life Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Changlian Zhu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Lowe A, Neligan A, Greenwood R. Sleep disturbance and recovery during rehabilitation after traumatic brain injury: a systematic review. Disabil Rehabil 2019; 42:1041-1054. [DOI: 10.1080/09638288.2018.1516819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alex Lowe
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Aidan Neligan
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Richard Greenwood
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| |
Collapse
|
22
|
Aoun R, Rawal H, Attarian H, Sahni A. Impact of traumatic brain injury on sleep: an overview. Nat Sci Sleep 2019; 11:131-140. [PMID: 31692507 PMCID: PMC6707934 DOI: 10.2147/nss.s182158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health problem that affects millions of civilians, athletes, and military personnel yearly. Sleeping disorders are one of the underrecognized sequalae even though they affect 46% of individuals with TBI. After a mild TBI, 29% of patients have insomnia, 25% have sleep apnea, 28% have hypersomnia, and 4% have narcolepsy. The type of sleep disturbance may also vary according to the number of TBIs sustained. Diffuse axonal injury within the sleep regulation system, disruption of hormones involved in sleep, and insults to the hypothalamus, brain stem, and reticular activating system are some of the proposed theories for the pathophysiology of sleep disorders after TBI. Genetic and anatomical factors also come to play in the development and severity of these sleeping disorders. Untreated sleep disturbances following TBI can lead to serious consequences with respect to an individual's cognitive functioning. Initial management focuses on conservative measures with progression to more aggressive options if necessary. Future research should attempt to establish the effectiveness of the treatments currently used, as well as identify manageable co-existing factors that could be exacerbating sleep disorders.
Collapse
Affiliation(s)
- Raissa Aoun
- Department of Neurology, Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon
| | - Himanshu Rawal
- Department of Medicine, Medstar Union Memorial Hospital, Baltimore, MD, USA
| | - Hrayr Attarian
- Department of Neurology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Ashima Sahni
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL, Chicago, USA
| |
Collapse
|
23
|
Zhou Y, Greenwald BD. Update on Insomnia after Mild Traumatic Brain Injury. Brain Sci 2018; 8:brainsci8120223. [PMID: 30551607 PMCID: PMC6315624 DOI: 10.3390/brainsci8120223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Sleep disturbance after traumatic brain injury (TBI) has received growing interest in recent years, garnering many publications. Insomnia is highly prevalent within the mild traumatic brain injury (mTBI) population and is a subtle, frequently persistent complaint that often goes undiagnosed. For individuals with mTBI, problems with sleep can compromise the recovery process and impede social reintegration. This article updates the evidence on etiology, epidemiology, prognosis, consequences, differential diagnosis, and treatment of insomnia in the context of mild TBI. This article aims to increase awareness about insomnia following mTBI in the hopes that it may improve diagnosis, evaluation, and treatment of sleeping disturbance in this population while revealing areas for future research.
Collapse
Affiliation(s)
- Yi Zhou
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
24
|
Driver S, Stork R. Pharmacological management of sleep after traumatic brain injury. NeuroRehabilitation 2018; 43:347-353. [DOI: 10.3233/nre-182536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sangeeta Driver
- Brain Injury Medicine and Rehabilitation Program, Shirley Ryan Abilitylab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ryan Stork
- Department of Physical Medicine & Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Factors Associated with Sport-Related Post-concussion Headache and Opportunities for Treatment. Curr Pain Headache Rep 2018; 22:75. [DOI: 10.1007/s11916-018-0724-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Wickwire EM, Schnyer DM, Germain A, Williams SG, Lettieri CJ, McKeon AB, Scharf SM, Stocker R, Albrecht J, Badjatia N, Markowitz AJ, Manley GT. Sleep, Sleep Disorders, and Circadian Health following Mild Traumatic Brain Injury in Adults: Review and Research Agenda. J Neurotrauma 2018; 35:2615-2631. [PMID: 29877132 DOI: 10.1089/neu.2017.5243] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapidly expanding scientific literature supports the frequent co-occurrence of sleep and circadian disturbances following mild traumatic brain injury (mTBI). Although many questions remain unanswered, the preponderance of evidence suggests that sleep and circadian disorders can result from mTBI. Among those with mTBI, sleep disturbances and clinical sleep and circadian disorders contribute to the morbidity and long-term sequelae across domains of functional outcomes and quality of life. Specifically, along with deterioration of neurocognitive performance, insufficient and disturbed sleep can precede, exacerbate, or perpetuate many of the other common sequelae of mTBI, including depression, post-traumatic stress disorder, and chronic pain. Further, sleep and mTBI share neurophysiologic and neuroanatomic mechanisms that likely bear directly on success of rehabilitation following mTBI. For these reasons, focus on disturbed sleep as a modifiable treatment target has high likelihood of improving outcomes in mTBI. Here, we review relevant literature and present a research agenda to 1) advance understanding of the reciprocal relationships between sleep and circadian factors and mTBI sequelae and 2) advance rapidly the development of sleep-related treatments in this population.
Collapse
Affiliation(s)
- Emerson M Wickwire
- 1 Department of Psychiatry, University of Maryland School of Medicine , Baltimore, Maryland.,2 Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - David M Schnyer
- 3 Department of Psychology, University of Texas , Austin, Texas
| | - Anne Germain
- 4 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Scott G Williams
- 5 Sleep Disorders Center, Department of Medicine, Walter Reed National Military Medical Center , Bethesda, Maryland.,6 Department of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Christopher J Lettieri
- 5 Sleep Disorders Center, Department of Medicine, Walter Reed National Military Medical Center , Bethesda, Maryland.,6 Department of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Ashlee B McKeon
- 4 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Steven M Scharf
- 2 Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ryan Stocker
- 7 University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jennifer Albrecht
- 8 Department of Epidemiology and Public Health, University of Maryland School of Medicine , Baltimore, Maryland
| | - Neeraj Badjatia
- 9 Department of Neurology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Amy J Markowitz
- 10 UCSF Brain and Spinal Injury Center , San Francisco, California
| | - Geoffrey T Manley
- 11 Department of Neurosurgery, University of California , San Francisco, California
| |
Collapse
|
27
|
Wylie GR, Flashman LA. Understanding the interplay between mild traumatic brain injury and cognitive fatigue: models and treatments. Concussion 2017; 2:CNC50. [PMID: 30202591 PMCID: PMC6122693 DOI: 10.2217/cnc-2017-0003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Nearly 2 million traumatic brain injuries occur annually, most of which are mild (mTBI). One debilitating sequela of mTBI is cognitive fatigue: fatigue following cognitive work. Cognitive fatigue has proven difficult to quantify and study, but this is changing, allowing models to be proposed and tested. Here, we review evidence for four models of cognitive fatigue, and relate them to specific treatments following mTBI. The evidence supports two models: cognitive fatigue results from the increased work/effort required for the brain to process information after trauma-induced damage; and cognitive fatigue results from sleep disturbances. While there are no evidence-based treatments for fatigue after mTBI, some pharmacological and nonpharmacological treatments show promise for treating this debilitating problem. Future work may target the role of genetics, neuroinflammation and the microbiome and their role in complex cognitive responses such as fatigue.
Collapse
Affiliation(s)
- Glenn R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
- Department of Physical Medicine & Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
- The Department of Veterans’ Affairs, The War Related Illness & Injury Center, New Jersey Healthcare System, East Orange Campus, East Orange, NJ 07018, USA
| | - Laura A Flashman
- Dartmouth Hitchcock Medical Center, Dartmouth College, Geisel School of Medicine, Lebanon, NH 03756, USA
| |
Collapse
|
28
|
Minen MT, Boubour A, Walia H, Barr W. Post-Concussive Syndrome: a Focus on Post-Traumatic Headache and Related Cognitive, Psychiatric, and Sleep Issues. Curr Neurol Neurosci Rep 2017; 16:100. [PMID: 27709555 DOI: 10.1007/s11910-016-0697-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Post-traumatic headache (PTH) is a secondary headache disorder following traumatic brain injury. We sought to examine the recent literature on PTH and associated cognitive, psychiatric, and sleep conditions to understand the latest findings about the associated conditions and available screening tools, and to understand the available treatment options for PTH. RECENT FINDINGS Up to one third of PTH patients may have depression and about one quarter may have insomnia. Anxiety and cognitive issues are also common. While there are few studies examining abortive medications for PTH, recent studies of preventive medications examine the efficacy of topiramate, and topiramate may be better than other oral preventive medications. Other currently investigated treatments include nerve blocks, onabotulinum toxin A, transmagnetic stimulation, and behavioral therapy (biofeedback). Due to an expanded focus on and knowledge of concussion and PTH, comorbid psychiatric, cognitive, and sleep issues have become more widely acknowledged and studied. However, more high-quality studies must be conducted to examine the underlying pathophysiology of PTH and associated symptoms and to determine the most effective abortive and preventive treatment options.
Collapse
Affiliation(s)
- Mia T Minen
- Department of Neurology, NYU Langone Medical Center, 240 East 38th Street 20th floor, New York, NY, 10016, USA.
| | | | - Harjasleen Walia
- Department of Neurology, NYU Langone Medical Center, 240 East 38th Street 20th floor, New York, NY, 10016, USA
| | - William Barr
- Department of Neuropsychology, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
30
|
Bhatnagar S, Iaccarino MA, Zafonte R. Pharmacotherapy in rehabilitation of post-acute traumatic brain injury. Brain Res 2016; 1640:164-179. [DOI: 10.1016/j.brainres.2016.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
|
31
|
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, Motamedi GK, Morgan GW, Mysliwiec V, Germain A, Pazdan RM, Ferziger R, Balkin TJ, MacDonald ME, Macek TA, Yochelson MR, Scharf SM, Lettieri CJ. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group. Neurotherapeutics 2016; 13:403-17. [PMID: 27002812 PMCID: PMC4824019 DOI: 10.1007/s13311-016-0429-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders.
Collapse
Affiliation(s)
- Emerson M Wickwire
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Scott G Williams
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, MI, USA
| | - Vincent F Capaldi
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Michael Jaffe
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Concussion and Sports Program, University of Florida Trauma, Gainesville, FL, USA
- UF Health Sleep Disorders Center, Gainesville, FL, USA
| | | | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | - Gregory W Morgan
- Sleep Disorders Center, National Intrepid Center of Excellence, Bethesda, MD, USA
| | - Vincent Mysliwiec
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Sleep Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Thomas J Balkin
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Margaret E MacDonald
- Defense and Veterans Brain Injury Center, (Contractor, General Dynamics Health Solutions), Evans Army Community Hospital, Fort Carson, CO, USA
| | - Thomas A Macek
- Department of Clinical Science, CNS, Takeda Development Center - Americas, Deerfield, IL, USA
| | - Michael R Yochelson
- Medstar National Rehabilitation Network, Washington, DC, USA
- Departments of Neurology and Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Steven M Scharf
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher J Lettieri
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|