1
|
Huang YB, Tian LL, Zhu ZW, Zhou KG, Lai X, Peng YZ, Wu Z, Tong WF, Wang H, Wang XJ, Guan Q, Jin LJ, Feng Y, Weng WY, Zhang JX. Apigenin enhances Nrf2-induced chaperone-mediated autophagy and mitigates α-synuclein pathology: Implications for Parkinson's disease therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156652. [PMID: 40215824 DOI: 10.1016/j.phymed.2025.156652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The aggregation of α-synuclein (SNCA) in dopaminergic neurons of the substantia nigra is a key factor in the pathogenesis of Parkinson's disease (PD). Despite years of drug discovery efforts targeting SNCA aggregation, no disease-modifying drugs have been approved to date. The failure of numerous clinical trials can be attributed, at least in part, to the difficulty in identifying potent compounds during preclinical investigations. OBJECTIVE Establish a screening approach based on molecular docking and autophagic flux detection to identify natural compounds from new perspectives of SNCA clearance and to explore its mechanism. METHODS Molecular docking technique combined with autophagic flux detection was performed for preliminary screening of flavonoids in PubChem and CHEBI databases. Western blotting was utilized to detect the levels of SNCA, chaperone-mediated autophagy (CMA)-associated proteins, apoptosis-related proteins, and neuroinflammatory biomarkers, alongside the assessment of phosphorylation status of proteins implicated in signaling cascades. JC-1 staining was used to measure the mitochondrial transmembrane potential (MMP). RNA-sequencing and Kyoto encyclopedia of genes and genomes/gene ontology (KEGG/GO) analysis were optimized to detect gene expression. PD mouse motor function was assessed using rotarod, pole, open field, footprint, and gait analyses. Immunofluorescence staining was employed to detect the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), dopaminergic neuronal deficits, microglia activation, and production of inflammatory factors. LysoTracker Red staining and pSIN-PAmCherry-KFERQ-NE plasmid were used to evaluate the lysosomal activity. pHrodo™ Green E.coli BioParticles™ were employed to measure phagocytosis activity. RESULTS By molecular docking and autophagic flux detection, we evaluated the efficacy of flavone derivatives and identified apigenin (AP) as a candidate that activates CMA to promote SNCA clearance and thereby inhibits SNCA-induced neurotoxicity. AP inhibited apoptosis by promoting SNCA degradation through Nrf2-mediated CMA activation. Moreover, AP could also inhibit apoptosis via the Nrf2/extracellular regulated protein kinases (ERK) feedback loop that operates independently of CMA activation. Additionally, AP enhanced the phagocytosis capabilities of BV2 cells and inhibited SNCA-induced neuroinflammation, both in vitro and in vivo. CONCLUSIONS AP activates CMA to promote the clearance of SNCA, thereby inhibiting SNCA-induced neurotoxicity. Nrf2 and its role in AP-mediated neuroprotection may provide new insights that target degradation pathways to counteract SNCA pathology in PD.
Collapse
Affiliation(s)
- Yi-Bin Huang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China; Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lu-Lu Tian
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Zi-Wen Zhu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Kai-Ge Zhou
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Xue Lai
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan-Zi Peng
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhuang Wu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wei-Fang Tong
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Huan Wang
- Clinical Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Xi-Jin Wang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Qiang Guan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Ling-Jing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Wei-Yu Weng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jing-Xing Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Dong RF, Qin CJ, Yin Y, Han LL, Xiao CM, Wang KD, Wei RY, Xia YZ, Kong LY. Discovery of a potent inhibitor of chaperone-mediated autophagy that targets the HSC70-LAMP2A interaction in non-small cell lung cancer cells. Br J Pharmacol 2025; 182:2287-2309. [PMID: 37311689 DOI: 10.1111/bph.16165] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Chaperone-mediated autophagy (CMA) is a selective type of autophagy targeting protein degradation and maintains high activity in many malignancies. Inhibition of the combination of HSC70 and LAMP2A can potently block CMA. At present, knockdown of LAMP2A remains the most specific method for inhibiting CMA and chemical inhibitors against CMA have not yet been discovered. EXPERIMENTAL APPROACH Levels of CMA in non-small cell lung cancer (NSCLC) tissue samples were confirmed by tyramide signal amplification dual immunofluorescence assay. High-content screening was performed based on CMA activity, to identify potential inhibitors of CMA. Inhibitor targets were determined by drug affinity responsive target stability-mass spectrum and confirmed by protein mass spectrometry. CMA was inhibited and activated to elucidate the molecular mechanism of the CMA inhibitor. KEY RESULTS Suppression of interactions between HSC70 and LAMP2A blocked CMA in NSCLC, restraining tumour growth. Polyphyllin D (PPD) was identified as a targeted CMA small-molecule inhibitor through disrupting HSC70-LAMP2A interactions. The binding sites for PPD were E129 and T278 at the nucleotide-binding domain of HSC70 and C-terminal of LAMP2A, respectively. PPD accelerated unfolded protein generation to induce reactive oxygen species (ROS) accumulation by inhibiting HSC70-LAMP2A-eIF2α signalling axis. Also, PPD prevented regulatory compensation of macroautophagy induced by CMA inhibition via blocking the STX17-SNAP29-VAMP8 signalling axis. CONCLUSIONS AND IMPLICATIONS PPD is a targeted CMA inhibitor that blocked both HSC70-LAMP2A interactions and LAMP2A homo-multimerization. CMA suppression without increasing the regulatory compensation from macroautophagy is a good strategy for NSCLC therapy. LINKED ARTICLES This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang-Liang Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Chu J, Song J, Fan Z, Zhang R, Wang Q, Yi K, Gong Q, Liu B. Investigating the Effect and Mechanism of 3-Methyladenine Against Diabetic Encephalopathy by Network Pharmacology, Molecular Docking, and Experimental Validation. Pharmaceuticals (Basel) 2025; 18:605. [PMID: 40430426 PMCID: PMC12115123 DOI: 10.3390/ph18050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Diabetic encephalopathy (DE), a severe neurological complication of diabetes mellitus (DM), is characterized by cognitive dysfunction. 3-Methyladenine (3-MA), a methylated adenine derivative, acts as a biomarker for DNA methylation and exhibits hypoglycemic and neuroprotective properties. However, the pharmacological mechanisms underlying 3-MA's therapeutic effects on diabetic microvascular complications remain incompletely understood, owing to the intricate and multifactorial pathogenesis of DE. Methods: This study employed network pharmacology and molecular docking techniques to predict potential targets and signaling pathways of 3-MA against DE, with subsequent validation through animal experiments to elucidate the molecular mechanisms of 3-MA in DE treatment. Results: Network pharmacological analysis identified two key targets of 3-MA in DE modulation: AKT and GSK3β. Molecular docking confirmed a strong binding affinity between 3-MA and AKT/GSK3β. In animal experiments, 3-MA significantly reduced blood glucose levels in diabetic mice, ameliorated learning and memory deficits, and preserved hippocampal neuronal integrity. Furthermore, we found that 3-MA inhibited apoptosis by regulating the expression of Bax and BCL-2. Notably, 3-MA also downregulated the expression of amyloid precursor protein (APP) and Tau while enhancing the expression of phosphorylated AKT and GSK-3β. Conclusions: Our findings may contribute to elucidating the therapeutic mechanisms of 3-MA in diabetic microangiopathy and provide potential therapeutic targets through activation of the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Quan Gong
- Department of Medcine, Yangtze University, Jingzhou 434023, China; (J.C.)
| | - Benju Liu
- Department of Medcine, Yangtze University, Jingzhou 434023, China; (J.C.)
| |
Collapse
|
5
|
Su W, Gong S, Luo Y, Ma X, Wei X, Song Y, Chen Q, Xu H, Ke C, He H, Shen F, Li J. Puerarin alleviates silicon dioxide-induced pulmonary inflammation and fibrosis via improving Autophagolysosomal dysfunction in alveolar macrophages of murine mice. Int Immunopharmacol 2025; 152:114375. [PMID: 40043356 DOI: 10.1016/j.intimp.2025.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Silicosis, caused by the inhalation of silicon dioxide (SiO2), is one of the most pressing public health problems. Nevertheless, there is currently no effective treatment. This study employed male C57BL/6 J mice and mouse alveolar macrophage cell line MH-S to investigate the biological mechanism in the development of silicosis, with a view to exploring the potential applications of puerarin (Pue) in the improvement of pulmonary inflammation and fibrosis in SiO2-exposed mice. This study elucidated that SiO2 could induce expression of inflammatory factors, accompanied by autophagy flux block, lysosome alkalization and membrane permeability in MH-S cells. Pue pretreatment could effectively inhibit expression of inflammatory factors in SiO2-exposed MH-S cells via alleviating autophagolysosomal dysfunction, and suppress TGF-β-induced myofibroblast differentiation. In addition, Pue was also been demonstrated to mitigate autophagolysosomal dysfunction, pulmonary inflammation and fibrosis in SiO2-exposed C57BL/6 J mice. Furthermore, the ingestion of Pue-enriched pueraria lobata tea (Plt), a traditional Chinese tea substitute that possesses anti-inflammatory, antioxidant, and cardiovascular benefits, was determined to improve imbalance of lysosome homeostasis, pulmonary inflammation and fibrosis in SiO2-exposed mice. This study illustrates the anti-inflammatory and antifibrotic properties of Pue and Plt by alleviating autophagolysosomal dysfunction and, consequently, reducing pulmonary inflammation and fibrosis. These findings provide insights into the pathogenesis mechanism of silicosis and indicate potential avenues for application of Pue and Plt in the mitigation of silicosis.
Collapse
Affiliation(s)
- Wei Su
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shuwen Gong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yi Luo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xinyu Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xiaoxi Wei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yining Song
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Qiuyi Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Changyong Ke
- Shanxi Qin Dashan Kudzu Industry Co., Qin Dashan Ecological Park, Baihe County, Ankang City, Shaanxi Province, PR China
| | - Hailan He
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| | - Fuhai Shen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Coordinated Innovation Center of Occupational Health and Safety, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| | - Jinlong Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Coordinated Innovation Center of Occupational Health and Safety, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| |
Collapse
|
6
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025; 41:676-690. [PMID: 39754628 PMCID: PMC11978575 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Li X, Li W, Xie X, Fang T, Yang J, Shen Y, Wang Y, Wang H, Tao L, Zhang H. ROS Regulate Rotenone-induced SH-SY5Y Dopamine Neuron Death Through Ferroptosis-mediated Autophagy and Apoptosis. Mol Neurobiol 2025:10.1007/s12035-025-04824-6. [PMID: 40097764 DOI: 10.1007/s12035-025-04824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Rotenone, a plant-derived natural insecticide, is widely used to induce Parkinson's disease (PD) models. However, the mechanisms of rotenone-induced cell death remain unclear. Here, we found that rotenone (0.01, 0.1, or 1 μmol/L) suppressed SH-SY5Y dopamine neuron viability and led to PD-like pathological changes, such as reduced tyrosine hydroxylase (TH) but increased α-synuclein. Rotenone increased the levels of intracellular reactive oxygen species (ROS) and mitochondrial ROS, as well as the levels of the antioxidants nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), ultimately resulting in oxidative stress. Moreover, rotenone significantly downregulated the expression of GPX4 and xCT but upregulated the expression of COX2 and NCOA4, which are markers of ferroptosis. Furthermore, rotenone decreased phosphorylated mTOR level but increased Beclin-1, ATG5, LC3 and p62 expression, suggesting that rotenone enhances autophagy and reduces autophagy flux. Additionally, rotenone reduced Bcl-2 levels and the mitochondrial membrane potential (MMP) while promoting BAX and Caspase-3 expression, thus initiating cell apoptosis. N-acetylcysteine (NAC), a ROS scavenger, and ferrostatin-1 (Fer-1) and deferoxamine (DFO), two ferroptosis inhibitors, significantly eliminated rotenone-induced autophagy and apoptosis. Moreover, ML385, a specific inhibitor of Nrf2, suppressed rotenone-induced ferroptosis. Our results demonstrated that ROS might mediate rotenone-induced PD-like pathological changes by regulating iron death, autophagy, and apoptosis. Inhibiting ferroptosis blocked the rotenone-induced increase in autophagy and apoptosis. Thus, the ability of ROS to regulate rotenone-induced death through autophagy and apoptosis is dependent on ferroptosis. The findings require validation in multiple neuronal cell lines and in vivo.
Collapse
Affiliation(s)
- Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Weiran Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Qinghai University, Xining, China
| | - Xinying Xie
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ting Fang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jingwen Yang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
9
|
Zhang H, Zhang J, Jing X, Huang K, Chen Y, Shen Q, Tao E, Lin D. Involvement of the STAT3/HIF-1α signaling pathway in α-synuclein-induced ferroptosis. Biochem Biophys Res Commun 2025; 752:151419. [PMID: 39946981 DOI: 10.1016/j.bbrc.2025.151419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Oligomeric α-synuclein (α-syn) aggregates, which are a critical pathological feature of Parkinson's disease (PD), can induce neuroinflammation and neurodegeneration. Our previous study revealed a decrease in IL6ST/JAK2/STAT3/HIF-1α pathway in α-syn-induced microglia. As we all know, the JAK2/STAT3 signaling pathway is essential for modulating inflammation, controlling cell growth and exhibiting antiapoptotic responses. However, the precise role of STAT3/HIF-1α in the ferroptosis of α-syn pathology has not been identified in vivo. In this study, above all, we successfully established α-syn-induced mouse models of Parkinson's disease. Our immunohistochemistry results demonstrated that α-syn could activate IL6ST/STAT3/HIF-1α pathway in a model of α-syn-induced PD. We further conducted transcriptomic analysis on a mouse model of α-syn-induced PD, and GSEA revealed an association with ferroptosis. Consequently, we focused on investigating how α-syn might regulate the transcriptional activation of HSPB1. In conclusion, we determined the relationship between ferroptosis and the STAT3/HIF-1α pathway in α-syn-related pathology in vivo. Oligomeric α-syn could induce ferroptosis via the STAT3/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Han Zhang
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jieli Zhang
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaixun Huang
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingyu Shen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China.
| | - Danyu Lin
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
10
|
Zheng M, Huang W, Wang D, Huang L, Ren Y, Gao Q, Huang Y, Lin W, Chen L. Prognostic assessment of cervical cancer based on biomarkers: the interaction of ERRα and immune microenvironment. Virol J 2025; 22:47. [PMID: 39994715 PMCID: PMC11852515 DOI: 10.1186/s12985-025-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Cervical cancer poses a substantial global health challenge. Estrogen-related receptor alpha (ERRα) is a central regulator of cellular energy metabolism associated with poor cancer prognosis. However, the effect of ERRα expression on cervical cancer prognosis and immune infiltration has not been explored. This study aims to clarify the expression pattern and role of ERRα in cervical cancer. METHODS We analyzed ERRα expression and its clinical prognosis in cervical cancer using multiple databases, including The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER). The results were further validated through immunohistochemistry (IHC) on 221 cervical cancer tissue samples. Furthermore, Kaplan-Meier and Cox regression analyses were used to assess the clinical significance of ERRα in cervical cancer patients. All calculations were performed using the R package. RESULTS ERRα expression was significantly higher in cervical cancer tissues compared to normal tissues. High ERRα expression was associated with poor overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS). Multivariate Cox regression analysis confirmed ERRα as an independent prognostic factor. Additionally, ERRα expression correlated with various immune cell types and immune checkpoints, indicating its role in the tumor immune microenvironment. CONCLUSIONS ERRα emerges as a promising prognostic biomarker in cervical cancer, influencing immune cell infiltration and potentially guiding personalized therapeutic approaches. Future investigations are warranted to delineate the mechanistic pathways through which ERRα contributes to cervical cancer progression and to assess its viability as a target for innovative immunotherapy strategies.
Collapse
Affiliation(s)
- Meijin Zheng
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Weifeng Huang
- Department of Radiation Oncology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Dingjie Wang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Leyi Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350001, Fujian, China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Qiao Gao
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yuxuan Huang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Wenyu Lin
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China.
| | - Lihua Chen
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China.
| |
Collapse
|
11
|
Wang ZP, You W, Peng J, Xu B, Yang X, Tang W, He Y, Yang A, Yu C, Nian W. Synthesis and structural modification of the natural product Ivesinol to discover novel autophagy activators. Eur J Med Chem 2025; 284:117180. [PMID: 39724726 DOI: 10.1016/j.ejmech.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a lysosome-dependent cellular degradation pathway that responds to a variety of environmental and cellular stresses, which is defective in aging and age-related diseases, therefore, targeting autophagy with small-molecule activators has potential therapeutic benefits. In this study, we successfully completed the first total synthesis of Ivesinol, an identified antibacterial natural product, and efficiently constructed a library of its analogs. To measure the effect of Ivesinol analogs on autophagic activity, we performed cell imaging-based screening approach, and observed that several Ivesinol analogs exhibited potent autophagy-regulating activity. Specifically, the derivative B2 significantly activated autophagy activity in concentration- and time-dependent manners, and even outperformed the commonly used activator Torin1 in activating autophagy in MCF-7 cells at 0.5 μM. Bioinformatics analysis showed that B2 treatment significantly impacted ubiquitin mediated proteolysis and AMPK signaling pathway, with functionally related gene sets displaying strong correlations. Based on these findings, we proposed that B2 activates autophagy by mechanisms involved in downregulation of key HSP70 family members, activation of the UPR, and ultimately leading to autophagy. In conclusion, we suggest that B2 could be a promising and valuable autophagy activator with significant potential for further development.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxin You
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jie Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Biao Xu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Wanyan Tang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Weiqi Nian
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
12
|
Hashemi P, Mardani P, Eghbali Raz Z, Saedi A, Fatahi E, Izapanah E, Ahmadi S. Alpha-Pinene Decreases the Elevated Levels of Astrogliosis, Pyroptosis, and Autophagy Markers in the Hippocampus Triggered by Kainate in a Rat Model of Temporal Lobe Epilepsy. Mol Neurobiol 2025; 62:2264-2276. [PMID: 39096444 DOI: 10.1007/s12035-024-04407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
The development and progression of temporal lobe epilepsy (TLE) are heavily influenced by inflammation, excessive activation of glial cells, and neuronal cell death. This study aimed to investigate the effects of treatment with alpha-pinene (APN) on pro-and anti-inflammatory cytokine levels, astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE induced by kainic acid (KA). Male Wistar rats were employed, and TLE was induced by intracerebroventricular injection of KA. APN (50 mg/kg) was intraperitoneally administered for 19 days, including two weeks before and five days after the administration of KA. After full recovery from anesthesia and KA injection, the seizure-related behavioral expressions were evaluated. On day 19, the hippocampal levels of IL-1β, TNF-α, progranulin, IL-10, ERK1/2, phospho-ERK1/2, NF-κB, GFAP, S100-B, NLRP1, NLRP3, caspase-1, and becline-1 were examined. The results revealed that treatment with APN significantly diminished the heightened levels of IL-1β, TNF-α, progranulin, ERK1/2, and NF-κB and reversed the reduced levels of the anti-inflammatory cytokine, IL-10, in the hippocampus caused by KA. Furthermore, administration of APN significantly reduced the levels of astrogliosis, pyroptosis, and autophagy markers in the hippocampus that were elevated by KA. It can be concluded that treatment with APN for 19 days alleviated neuroinflammation by inhibiting ERK1/2 and NF-κB signaling pathways and prevented increases in astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE.
Collapse
Affiliation(s)
- Paria Hashemi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | | | - Zabihollah Eghbali Raz
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ali Saedi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ehsan Fatahi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Esmael Izapanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| |
Collapse
|
13
|
Ren Y, Mao X, Lin W, Chen Y, Chen R, Sun P. Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism. Biochim Biophys Acta Rev Cancer 2025; 1880:189256. [PMID: 39743156 DOI: 10.1016/j.bbcan.2024.189256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Yuan Ren
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Xiaodan Mao
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Wenyu Lin
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, Beijing, 102308, China; NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing 102308, China
| | - Pengming Sun
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China; Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; School of Group Medicine and Public Health, Peking Union Medical College, Beijing 100091, China.
| |
Collapse
|
14
|
Lin H, Xu Y, Xiong H, Wang L, Shi Y, Wang D, Wang Z, Ren J, Wang S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118907. [PMID: 39389397 DOI: 10.1016/j.jep.2024.118907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C. A. Meyer. has been used extensively globally as a medicine. It has a therapeutic effect on sleep and is an attractive alternative for patients with insomnia. The United States Patent of Invention has approved the use of P. ginseng alcohol extract (GAE) in nutraceuticals or food to improve sleep. It has shown promise as an effective therapeutic agent for improving sleep and cognition. However, its mechanism of action is not yet fully understood. AIM OF THE STUDY To investigate the therapeutic benefits of GAE on sleep and cognition and its underlying mechanism in aged sleep-deprived rats, with a focus on orexin-mediated autophagy function. MATERIALS AND METHODS We conducted in vivo tests in an aged sleep-deprivation rat model produced using p-chlorophenylalanine (PCPA) coupled with modified multi-platform method to examine the therapeutic effects and mechanisms of GAE. A pentobarbital sodium-induced sleep test and water maze were used to assess sleep and cognitive performance, respectively. An enzyme-linked immunosorbent assay was used to determine orexin levels and aging and sleep markers in serum and hypothalamic tissues. Hematoxylin-eosin staining and Nissl staining were used to assess histopathological changes, and autophagy levels were assessed using transmission electron microscopy, immunofluorescence. Western blot and immunohistochemical staining were performed to detect the levels of orexin, orexin-receptor proteins, and autophagy-associated proteins to study the effects of GAE on hippocampal neurons, and the underlying mechanisms. RESULTS In aged sleep-deprived rats, GAE treatment prolonged sleep duration, improved cognitive function, prevented hippocampal neuronal damage, increased the number of Nissl bodies, improved aging and sleep markers, and enhanced the LC3A/B expression in autophagosomes and neurons. The amount of orexin in serum and hypothalamic tissue and OX1R, OX2R, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) proteins also reduced, which resulted in the inhibition of the PI3K/Akt/mTOR pathway and activation of the autophagy process. CONCLUSIONS GAE may reduce hypothalamic orexin secretion and interact with orexin receptors to inhibit the PI3K/Akt/mTOR signalling network and activate autophagy. This may be a potential mechanism of action of GAE in regulating sleep-related cognitive function.
Collapse
Affiliation(s)
- Haining Lin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunlong Xu
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huazhong Xiong
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lichao Wang
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuqing Shi
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyi Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zixu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jixiang Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Siming Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
15
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
16
|
Feng C, Kong D, Tong B, Liang Y, Xu F, Yang Y, Wu Y, Chi X, Wei P, Yang Y, Zhang G, Tian G, Xu Z. Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion. Cell Death Dis 2025; 16:23. [PMID: 39820331 PMCID: PMC11739407 DOI: 10.1038/s41419-025-07345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted. The results demonstrated that ERRα promoted the proliferation and tumorigenesis of RCC cells by maintaining lysosome-dependent autophagy flux. ERRα inhibition impaired the transcriptional expression of LAMP2 and VAMP8 and blocked the fusion of autophagosomes with lysosomes, causing the impairment of the autophagy-lysosome pathway and tumor repression in RCC. Moreover, VHL mutant-induced hyperactive hypoxia signaling in RCC triggered p300/CBP-mediated acetylation at the DNA-binding domain of ERRα, and this acetylation promoted its affinity toward targeting DNA and Parkin-mediated ubiquitination and proteasome-dependent degradation. This regulatory model enhanced ERRα transactivation on the expression of LAMP2 and VAMP8, which then maintained autophagy flux and RCC progression. Pharmaceutical inhibition on ERRα acetylation-mediated autophagy-lysosome pathway led to growth repression and sunitinib sensitivity of RCC cells. Taken together, this study uncovered a novel regulatory mechanism of acetylation contributing to the transcriptional performance and the oncogenic role of ERRα in RCC progression by modulating the autophagy-lysosome pathway. These findings might provide a novel approach for the clinical diagnosis and resolution of sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Chun Feng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
- The Second Medical College, Binzhou Medical University, Yantai, China
| | - Demin Kong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Binghua Tong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yonghui Liang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yangyang Yang
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Pengfei Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yang Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
17
|
Feng C, Wang ZR, Li CY, Zhang XY, Wang XX. 3-MA attenuates collagen-induced arthritis in vivo via anti-inflammatory effect and autophagy inhibition. BMC Musculoskelet Disord 2025; 26:44. [PMID: 39806324 PMCID: PMC11727732 DOI: 10.1186/s12891-025-08274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease which afflicts about nearly 1% of global population. RA results in synovitis and cartilage/bone damage, even disability which aggravates the health burden. Many drugs are used to relieve RA, such as glucocorticoids (GCs), non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs) in the clinical treatment. However, present clinical drugs have various disadvantages such as poor bioavailability and short biological half-life and drug resistance, or adverse effects. A recent study showed autophagy modulation may be a novel strategy in the treatment of RA. 3-Methylademine (3-MA), is the most widely used autophagy inhibitor, which blocks autophagy at the initiation and maturation stages. The aim of this study is to evaluate the effect of 3-MA in collagen-induced-arthritis (CIA) mice and further elucidate how 3-MA attenuated inflammation, and cartilage/bone damage in arthritis. METHODS An in-vivo mouse collagen-induced arthritis model was applied to compare differences in ankle destruction among control mice and CIA mice treated with or without 3-MA. Bone and cartilage destruction degree was evaluated by histology and micro-computed tomography (µCT). Further in-vivo assays utilized mouse serum samples to investigate inflammatory levels, oxidative levels, and bone resorption cytokines. At last, an immunofluorescence assay was applied to detect the autophagy level among the three groups. RESULTS The in-vivo mouse collagen-induced arthritis model showed that CIA mice revealed apparent hind paw and ankle swelling which was aggravated gradually along with time, while 3-MA treatment attenuated swelling gradually. µCT and histological results showed typical lesions in CIA group while 3-MA treatment alleviated arthritis-related destruction. Serum assay showed that 3-MA significantly reduced inflammatory cytokines levels, suppressed oxidative levels and bone resorption cytokines. Immunofluorescence assay revealed 3-MA significantly inhibited the abnormal autophagy level in CIA mouse ankle. CONCLUSIONS 3-MA protects bone destruction in CIA-induced mice arthritis by anti-inflammatory effect and autophagy inhibition.
Collapse
Affiliation(s)
- Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chen-Yu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiang-Yu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
18
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
19
|
Kale MB, Wankhede NL, Goyanka BK, Gupta R, Bishoyi AK, Nathiya D, Kaur P, Shanno K, Taksande BG, Khalid M, Upaganlawar AB, Umekar MJ, Gulati M, Sachdeva M, Behl T, Gasmi A. Unveiling the Neurotransmitter Symphony: Dynamic Shifts in Neurotransmitter Levels during Menstruation. Reprod Sci 2025; 32:26-40. [PMID: 39562466 DOI: 10.1007/s43032-024-01740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The menstrual cycle is an intricate biological process governed by hormonal changes that affect different facets of a woman's reproductive system. This review provides an overview of neurotransmitter alterations during different menstrual cycle phases and their effects on physiology and psychology. During the follicular phase, rising estrogen levels increase serotonin synthesis, enhancing mood, cognition, and pain tolerance. Estrogen may also influence dopamine levels, promoting motivation and reward sensitivity. GABA, involved in anxiety regulation, may be modulated by estrogen, inducing relaxation. Ovulation involves fluctuating dopamine and serotonin levels, potentially affecting motivation and positive mood. In the luteal phase, rising estrogen and progesterone may reduce serotonin availability, contributing to mood dysregulation, while enhanced GABAergic neurotransmission promotes sedation. Menstruation is characterized by declining estrogen and progesterone, potentially leading to mood disturbances, fluctuating GABAergic and dopaminergic neurotransmitter systems, relaxation, fatigue, motivation, and pleasure variations. Understanding neurotransmitter alterations during the menstrual cycle unveils the neurobiological mechanisms behind menstrual-related symptoms and disorders, facilitating targeted interventions. Pharmacological approaches targeting neurotransmitter systems, nutritional interventions, and lifestyle modifications show promise in managing menstrual symptoms. Future research should focus on further understanding neurotransmitter dynamics, personalized medicine, unexplored neurotransmitter roles, and integrating psychosocial factors. This knowledge will enhance well-being and quality of life for individuals experiencing menstrual-related challenges.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Barkha K Goyanka
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Centre, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjheri, Mohali, 140307, Punjab, India
| | - Kumari Shanno
- Department of Pharmacy, Banasthali Vidyapeeth, Tonk, Rajasthan, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France
- International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
20
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
21
|
Liu SJ, Cai C, Zhu HP, Li X, Han B. Autophagy degradation: a promising dimension in drug discovery for neurodegenerative diseases. Future Med Chem 2024; 16:2563-2565. [PMID: 39601364 PMCID: PMC11730869 DOI: 10.1080/17568919.2024.2431477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Chenxi Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Hong-Ping Zhu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, PR China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
22
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
23
|
Zhong J, Yu X, Zhong Y, Tan L, Yang F, Xu J, Wu J, Lin Z. GSK-3β inhibitor amplifies autophagy-lysosomal pathways by regulating TFEB in Parkinson's disease models. Exp Neurol 2024; 383:115033. [PMID: 39490621 DOI: 10.1016/j.expneurol.2024.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the substantia nigra and a marked increase in Lewy bodies in the brain, primarily manifests as motor dysfunction. Glycogen synthase kinase-3 beta (GSK-3β) is known to play a critical role in various pathological processes of neurodegenerative diseases. However, the impact of GSK-3β inhibitors on PD progression and the underlying molecular mechanisms responsible for the effects have not been fully elucidated. Using in vitro and mouse models of 1-methyl-4-phenylpyridine (MPP+)-or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, we found that inhibition of GSK-3β activity alleviated mitochondrial damage, cell apoptosis, and neuronal cell loss by promoting the nuclear translocation of transcription factor EB (TFEB), thereby amplifying the autophagy-lysosomal pathway (ALP). Importantly, siRNA silencing of the TFEB gene impaired the GSK-3β inhibitor-mediated activation of the ALP pathway, thus negating the metabolic support required for neuronal functional improvement. Short-term treatment with the GSK-3β inhibitor significantly ameliorated motor dysfunction and improved motor coordination in model mice with MPTP-induced PD. GSK-3β inhibition increased the ALP and TFEB activities in the mice, thereby reducing α-synuclein aggregation and neuronal damage. In conclusion, our study demonstrates that inhibition of GSK-3β activity can delay the pathological processes of PD via promotion of the TFEB-ALP pathway, potentially providing a novel therapeutic target for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Yunming Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Liya Tan
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Fayou Yang
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Jialan Xu
- Department of Pharmacy, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Jianlin Wu
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| |
Collapse
|
24
|
Filippone A, Mannino D, Cucinotta L, Calapai F, Crupi L, Paterniti I, Esposito E. Rebalance of mitophagy by inhibiting LRRK2 improves colon alterations in an MPTP in vivo model. iScience 2024; 27:110980. [PMID: 39635134 PMCID: PMC11615202 DOI: 10.1016/j.isci.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system. CD1 mice received four intraperitoneal injections of MPTP (20 mg/kg, total dose of 80 mg/kg) at 2 h intervals (day 1). After 24 h PF-475 was administered intraperitoneally at the doses of 2.5, 5, and 10 mg/kg for seven days. LRRK2 inhibition reduced brain α-synuclein and modulated mitophagy pathway and reduced pro-inflammatory markers and α-synuclein aggregates in colonic tissues through the modulation of mitophagy proteins. LRRK2 inhibition suppressed MPTP-induced enteric dopaminergic neuronal injury and protected tight junction in the colon. Results suggested that PF-475 may attenuate gastrointestinal dysfunction associated to PD.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Fabrizio Calapai
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
25
|
Lin TH, Chen WL, Hsu SF, Chen IC, Lin CH, Chang KH, Wu YR, Chen YR, Yao CF, Lin W, Lee-Chen GJ, Chen CM. Small Molecules Inducing Autophagic Degradation of Expanded Polyglutamine Protein through Interaction with Both Mutant ATXN3 and LC3. Int J Mol Sci 2024; 25:10707. [PMID: 39409036 PMCID: PMC11477298 DOI: 10.3390/ijms251910707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival. In this study, we tested the effects of synthetic indole (NC009-1, -2, -3, -6) and coumarin (LM-022, -031) derivatives as chemical chaperones to assist mutant ATXN3-Q75 folding, as well as autophagy inducers to clear aggregated protein. Among the tested compounds, NC009-1, -2, and -6 and LM-031 interfered with Escherichia coli-derived ATXN3-Q75 aggregation in thioflavin T binding and filter trap assays. In SH-SY5Y cells expressing GFP-fused ATXN3-Q75, these compounds displayed aggregation-inhibitory and neurite growth-promoting potentials compared to untreated cells. Furthermore, these compounds activated autophagy by increasing the phosphatidylethanolamine-conjugated LC3 (microtubule associated protein 1 light chain 3)-II:cytosolic LC3-I ratio in these cells. A biochemical co-immunoprecipitation assay by using a mixture of HEK 293T cell lysates containing recombinant ATXN3-Q75-Venus-C-terminus (VC) or Venus-N-terminus (VN)-LC3 protein indicated that NC009-1 and -2 and LM-031 served as an autophagosome-tethering compound (ATTEC) to interact with ATXN3-Q75 and LC3, and the interaction was further confirmed by bimolecular fluorescence complementation analysis in cells co-expressing both ATXN3-Q75-VC and VN-LC3 proteins. The study results suggest the potential of NC009-1 and -2 and LM-031 as an ATTEC in treating SCA3 and, probably, other polyQ diseases.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Shao-Fan Hsu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - I-Cheng Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - Chih-Hsin Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| |
Collapse
|
26
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
27
|
Lazzeri G, Lenzi P, Busceti CL, Puglisi-Allegra S, Ferrucci M, Fornai F. Methamphetamine Increases Tubulo-Vesicular Areas While Dissipating Proteins from Vesicles Involved in Cell Clearance. Int J Mol Sci 2024; 25:9601. [PMID: 39273545 PMCID: PMC11395429 DOI: 10.3390/ijms25179601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cytopathology induced by methamphetamine (METH) is reminiscent of degenerative disorders such as Parkinson's disease, and it is characterized by membrane organelles arranged in tubulo-vesicular structures. These areas, appearing as clusters of vesicles, have never been defined concerning the presence of specific organelles. Therefore, the present study aimed to identify the relative and absolute area of specific membrane-bound organelles following a moderate dose (100 µM) of METH administered to catecholamine-containing PC12 cells. Organelles and antigens were detected by immunofluorescence, and they were further quantified by plain electron microscopy and in situ stoichiometry. This analysis indicated an increase in autophagosomes and damaged mitochondria along with a decrease in lysosomes and healthy mitochondria. Following METH, a severe dissipation of hallmark proteins from their own vesicles was measured. In fact, the amounts of LC3 and p62 were reduced within autophagy vacuoles compared with the whole cytosol. Similarly, LAMP1 and Cathepsin-D within lysosomes were reduced. These findings suggest a loss of compartmentalization and confirm a decrease in the competence of cell clearing organelles during catecholamine degeneration. Such cell entropy is consistent with a loss of energy stores, which routinely govern appropriate subcellular compartmentalization.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carla L Busceti
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
28
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
29
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
30
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Ye J, Wu J, Ai L, Zhu M, Li Y, Yin D, Huang Q. Geniposide effectively safeguards HT22 cells against Aβ-induced damage by activating mitophagy via the PINK1/Parkin signaling pathway. Biochem Pharmacol 2024; 226:116296. [PMID: 38762146 DOI: 10.1016/j.bcp.2024.116296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the significant involvement of amyloid-beta (Aβ) peptide in its pathogenesis. Geniposide, derived from the versatile medicinal of Gardenia jasminoides, is one of the active compounds studied extensively. The objective was to explore the impact of geniposide on Aβ25-35-induced damage in HT22 cells, specifically focusing on its modulation of PINK1/Parkin-mediated mitophagy. In our investigation, geniposide exhibited remarkable restorative effects by enhancing cell viability and preserving the mitochondrial membrane potential. Moreover, it effectively reduced and mitigated the oxidative stress and apoptosis rates induced by Aβ25-35. Notably, geniposide exhibited the capacity to enhance autophagic flux, upregulate LC3II and Beclin-1 expression, and downregulate the expression of p62. Furthermore, geniposide positively influenced the expression of PINK1 and Parkin proteins, with molecular docking substantiating a strong interaction between geniposide and PINK1/Parkin proteins. Intriguingly, the beneficial outcomes of geniposide on alleviating the pronounced apoptosis rates, the overproduction of reactive oxygen species, and diminished the PINK1 and Parkin expression induced by Aβ25-35 were compromised by the mitophagy inhibitor cyclosporine A (CsA). Collectively, these findings suggested that geniposide potentially shields HT22 cells against neurodegenerative damage triggered by Aβ25-35 through the activation of mitophagy. The insights contribute valuable references to the defensive consequences against neurological damage of geniposide, thereby highlighting its potential as a therapeutic intervention in AD.
Collapse
Affiliation(s)
- Jiaxi Ye
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, PR China
| | - Jiaying Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, PR China
| | - Liang Ai
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, PR China
| | - Min Zhu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, PR China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Qihui Huang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, PR China.
| |
Collapse
|
32
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Srivastava T, Tyagi D, Fatima S, Sathyan MTV, Raj R, Sharma A, Chaturvedi M, Sinha M, Shishodia SK, Kumar D, Sharma SK, Shankar J, Satish A, Priya S. A natural small molecule-mediated inhibition of alpha-synuclein aggregation leads to neuroprotection in Caenorhabditis elegans. J Neurochem 2024; 168:1640-1654. [PMID: 37429595 DOI: 10.1111/jnc.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malur Thirumalesh Vishnu Sathyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Aniket Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Animal Science, College of Agriculture and Natural Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, Lucknow, India
| | - Sonia Kumari Shishodia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Aruna Satish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
35
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Gao S, Li N, Lin Z, Zhong Y, Wang Y, Shen X. Inhibition of NLRP3 inflammasome by MCC950 under hypoxia alleviates photoreceptor apoptosis via inducing autophagy in Müller glia. FASEB J 2024; 38:e23671. [PMID: 38752538 DOI: 10.1096/fj.202301922rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Espargaró A, Sabate R. Phosphorylation-driven aggregative proteins in neurodegenerative diseases: implications and therapeutics. Neural Regen Res 2024; 19:966-968. [PMID: 37862191 PMCID: PMC10749613 DOI: 10.4103/1673-5374.382250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Yu L, Hu X, Xu R, Zhao Y, Xiong L, Ai J, Wang X, Chen X, Ba Y, Xing Z, Guo C, Mi S, Wu X. Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-Synuclein in Parkinson's disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117628. [PMID: 38158101 DOI: 10.1016/j.jep.2023.117628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper longum L., a medicinal and food homologous herb, has a traditional history of use in treating gastrointestinal and neurological disorders. Piperine (PIP) the main alkaloid of P. longum, exists neuroprotective effects on various animal models of Parkinson's disease (PD). Nevertheless, the underlying mechanism, particularly the role of PIP in promoting gut-brain autophagy for α-Synuclein (α-Syn) degradation in PD, remains incompletely understood. AIM OF THE STUDY To explore the role of PIP in regulating the gut-brain autophagy signaling pathway to reduce α-Syn levels in both the colon and substantia nigra (SN) of PD model rats. MATERIALS AND METHODS Behavioral experiments were conducted to assess the impact of PIP on 6-hydroxydopamine (6-OHDA)-induced PD rats. The intestinal microbiome composition and intestinal metabolites were analyzed by metagenomics and GC-MS/MS. The auto-phagosomes were visualized by transmission electron microscopy. Immunohistochemistry, immunofluorescence, and western blotting were performed to assess the levels of tyrosine hydroxylase (TH), α-Syn, LC3II/LC3I, p62, and the PI3K/AKT/mTOR pathway in both the SN and colon of the rats. The pathway-related inhibitor and agonist were used to verify the autophagy mechanism in the SH-SY5Y cells overexpressing A53T mutant α-Syn (A53T-α-Syn). RESULTS PIP improved autonomic movement and gastrointestinal dysfunctions, reduced α-Syn aggregation and attenuated the loss of dopaminergic neurons in 6-OHDA-induced PD rats. After oral administration of PIP, the radio of LC3II/LC3I increased and the expression of p62 was degraded, as well as the phosphorylation levels of PI3K, AKT and mTOR decreased in the SN and colon of rats. The effect of PIP on reducing A53T-α-Syn through the activation of the PI3K/AKT/mTOR-mediated autophagy pathway was further confirmed in A53T-α-Syn transgenic SH-SY5Y cells. This effect could be inhibited by the autophagy inhibitor bafilomycin A1 and the PI3K agonist 740 Y-P. CONCLUSIONS Our findings suggested that PIP could protect neurons by activating autophagy to degrade α-Syn in the SN and colon, which were related to the suppression of PIP on the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Rongrong Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jiaxuan Ai
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
39
|
Bertran-Mostazo A, Putriūtė G, Álvarez-Berbel I, Busquets MA, Galdeano C, Espargaró A, Sabate R. Proximity-Induced Pharmacology for Amyloid-Related Diseases. Cells 2024; 13:449. [PMID: 38474412 PMCID: PMC10930901 DOI: 10.3390/cells13050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Proximity-induced pharmacology (PIP) for amyloid-related diseases is a cutting-edge approach to treating conditions such as Alzheimer's disease and other forms of dementia. By bringing small molecules close to amyloid-related proteins, these molecules can induce a plethora of effects that can break down pathogenic proteins and reduce the buildup of plaques. One of the most promising aspects of this drug discovery modality is that it can be used to target specific types of amyloid proteins, such as the beta-amyloid protein that is commonly associated with Alzheimer's disease. This level of specificity could allow for more targeted and effective treatments. With ongoing research and development, it is hoped that these treatments can be refined and optimized to provide even greater benefits to patients. As our understanding of the underlying mechanisms of these diseases continues to grow, proximity-induced pharmacology treatments may become an increasingly important tool in the fight against dementia and other related conditions.
Collapse
Affiliation(s)
- Andrea Bertran-Mostazo
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
- Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Gabrielė Putriūtė
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
| | - Irene Álvarez-Berbel
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, 08028 Barcelona, Spain
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
- Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, 08028 Barcelona, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (A.B.-M.); (G.P.); (I.Á.-B.); (M.A.B.); (A.E.)
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller BL, Castruita PA, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci 2024; 18:1258996. [PMID: 38469573 PMCID: PMC10925697 DOI: 10.3389/fnins.2024.1258996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Zhou K, Tan Y, Zhang G, Li J, Xing S, Chen X, Wen J, Li G, Fan Y, Zeng J, Zhang J. Loss of SARM1 ameliorates secondary thalamic neurodegeneration after cerebral infarction. J Cereb Blood Flow Metab 2024; 44:224-238. [PMID: 37898107 PMCID: PMC10993876 DOI: 10.1177/0271678x231210694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023]
Abstract
Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Yan Tan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Guofen Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Xinran Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jiali Wen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| |
Collapse
|
42
|
Wu Z, Jin M, Xin P, Zhang H. Leveraging diverse cell-death related signature predicts the prognosis and immunotherapy response in renal clear cell carcinoma. Front Immunol 2023; 14:1293729. [PMID: 38146369 PMCID: PMC10749459 DOI: 10.3389/fimmu.2023.1293729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Background Modulation of programmed cell death in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. Methods We downloaded the data of clear cell renal cell carcinoma samples from The Cancer Genome Atlas and used a machine learning approach to build a new programmed cell death index (PCDI) through 13 programmed cell death-related genes. Based on PCDI, clinical features, tumor immune microenvironment, chemotherapy response and immunotherapy response were systematically analyzed. Results PCDI consists of eight programmed cell death-related genes (TBX3, BID, TCIRG1, IDUA, KDR, PYCARD, IFNG and LRRK2). PCDI is a reliable predictor of survival in clear cell renal cell carcinoma patients and has been validated in multiple external datasets. We found that the high PCDI group showed higher levels of immune cell infiltration and better response to immunotherapy compared to the low PCDI group, and PCDI can also be used for prognostic prediction in a variety of cancers other than clear cell renal cell carcinoma. In vitro experiments demonstrated that knockdown of IDUA inhibited the proliferation and migration of clear cell renal cell carcinoma. Conclusions The PCDI identified in this study provides valuable insights into the clinical management of clear cell renal cell carcinoma by accurately evaluating the prognosis of patients with clear cell renal carcinoma and identifying the patient population that would benefit from immunotherapy.
Collapse
Affiliation(s)
- Zhengqi Wu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyue Jin
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Pan Z, Yu CW, Zhao C, Shao M, Yang X, Liang X, Li H, Lu Y, Ye Q, Chern JW, Lu J, Zhou H, Lee SMY. Antagonizing pathological α-synuclein-mediated neurodegeneration by J24335 via the activation of immunoproteasome. Toxicol Appl Pharmacol 2023; 480:116745. [PMID: 37931757 DOI: 10.1016/j.taap.2023.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Biology, South University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yucong Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao.
| |
Collapse
|
44
|
Zhao Z, Li Z, Du F, Wang Y, Wu Y, Lim KL, Li L, Yang N, Yu C, Zhang C. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease. Mol Neurobiol 2023; 60:7044-7059. [PMID: 37526897 DOI: 10.1007/s12035-023-03481-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.
Collapse
Affiliation(s)
- Zhongting Zhao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117054, Singapore
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yixin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Lin Li
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
45
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
46
|
Yang B, Yang Z, Liu H, Qi H. Dynamic modelling and tristability analysis of misfolded α-synuclein degraded via autophagy in Parkinson's disease. Biosystems 2023; 233:105036. [PMID: 37726073 DOI: 10.1016/j.biosystems.2023.105036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The widely-accepted hallmark pathology of Parkinson's disease (PD) is the presence of Lewy bodies with characteristic abnormal aggregated α-synuclein (αSyn). Growing physiological evidence suggests that there is a pivotal role for the autophagy-lysosome pathway (ALP) in the clearance of misfolded αSyn (αSyn∗). This work establishes a mathematical model for αSyn∗ degradation through the ALP. Qualitative simulations are used to uncover the tristable behavior of αSyn∗, i.e., the lower, medium, and upper steady states, which correspond to the healthy, critical, and disease stages of PD, respectively. Time series and codimension-1 bifurcation analysis suggest that the system shows tristability dynamics. Furthermore, variations in the key parameters influence the tristable dynamic behavior, and the distribution of tristable regions is exhibited more comprehensively in codimension-2 bifurcation diagrams. In addition, robustness analysis demonstrates that tristability is a robust property of the system. These results may be valuable in therapeutic strategies for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Bojie Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Zhuoqin Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China.
| | - Heng Liu
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
47
|
Wang X, Hu W, Qu L, Wang J, Wu A, Lo HH, Ng JPL, Tang Y, Yun X, Wu J, Wong VKW, Chung SK, Wang L, Luo W, Ji X, Law BYK. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson's disease. Pharmacol Res 2023; 196:106874. [PMID: 37586619 DOI: 10.1016/j.phrs.2023.106874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Tricin, a natural nontoxic flavonoid distributed in grasses and euphorbia plants, has been reported to scavenge free radicals, possess anti-inflammatory and antioxidative effects. However, its autophagic effect on Parkinson's disease (PD) has not been elucidated. By adopting cellular and C. elegans models of PD, the autophagic effect of tricin was identified based on the level of autophagy markers (LC3-II and p62). Besides, the pharmacological effects on neurotransmitters (dopamine), inflammatory cytokines (IFN γ, TNFα, MCP-1, IL-10, IL-6 and IL-17A), histology (hematoxylin & eosin and Nissl staining) and behavioural pathology (open-field test, hindlimb clasping, Y-maze, Morris water-maze and nest building test) were also confirmed in the A53T-α-synuclein transgenic PD mouse model. Further experiments demonstrated that tricin induced autophagic flux and lowered the level of α-synuclein through AMPK-p70s6K- and ATG7-dependent mechanism. Compared to the existing clinical PD drugs, tricin mitigated pathogenesis and symptoms of PD with no observable side effects. In summary, tricin is proposed as a potential adjuvant remedy or nutraceutical for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xingxia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Hu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jian Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Yong Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jianhui Wu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Linna Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Weidan Luo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China.
| |
Collapse
|
48
|
Wang H, He D, Li Z, Gao X, Yang S, Cui M, Ye B, Huang B, Fu S, Liu D. Oral administration of sophoricoside (SOP) inhibits neuronal damage and neuroinflammation to curb neurodegeneration in Parkinson's disease. Chem Biol Interact 2023; 384:110726. [PMID: 37741537 DOI: 10.1016/j.cbi.2023.110726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Neuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported. In this experiment, we found that oral administration of SOP alleviated weight loss and motor symptoms in 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-injected mice. Further studies revealed that SOP inhibited inflammatory responses and neuronal apoptosis in the midbrain region of MPTP-injected mice. In vitro mechanistic study, we found that SOP exerts neuroprotective effects through a two-sided action. On the one hand, SOP inhibits Lipopolysaccharide (LPS)-induced inflammatory responses in microglia by inhibiting the Nuclear factor kappa-B(NF-κB) pathway. On the other hand, SOP inhibits 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Thus SOP is expected to be a potential therapeutic agent for PD by targeting neuroinflammation and neuronal apoptosis.
Collapse
MESH Headings
- Mice
- Animals
- Parkinson Disease/metabolism
- Neuroinflammatory Diseases
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- NF-kappa B/metabolism
- 1-Methyl-4-phenylpyridinium
- Administration, Oral
- Mice, Inbred C57BL
- Disease Models, Animal
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- Microglia
- Dopaminergic Neurons
- Mammals/metabolism
Collapse
Affiliation(s)
- Hefei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- College of Animal Science, Jilin University, Changchun, China.
| | - Zhe Li
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xiyu Gao
- College of Animal Science, Jilin University, Changchun, China.
| | - Shuo Yang
- College of Animal Science, Jilin University, Changchun, China.
| | - Mingchi Cui
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Bojian Ye
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Bingxu Huang
- College of Animal Science, Jilin University, Changchun, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
49
|
Yang Z, Shi H, Cai G, Jiang S, Hu Z, Wang Z. A Reactive Oxygen Species-Responsive Targeted Nanoscavenger to Promote Mitophagy for the Treatment of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302284. [PMID: 37322535 DOI: 10.1002/smll.202302284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Mitophagy modulators are proposed as potential therapeutic intervention that enhance neuronal health and brain homeostasis in Alzheimer's disease (AD). Nevertheless, the lack of specific mitophagy inducers, low efficacies, and the severe side effects of nonselective autophagy during AD treatment have hindered their application. In this study, the P@NB nanoscavenger is designed with a reactive-oxygen-species-responsive (ROS-responsive) poly(l-lactide-co-glycolide) core and a surface modified with the Beclin1 and angiopoietin-2 peptides. Notably, nicotinamide adenine dinucleotide (NAD+ ) and Beclin1, which act as mitophagy promoters, are quickly released from P@NB in the presence of high ROS levels in lesions to restore mitochondrial homeostasis and induce microglia polarization toward the M2-type, thereby enabling it to phagocytose amyloid-peptide (Aβ). These studies demonstrate that P@NB accelerates Aβ degradation and alleviates excessive inflammatory responses by restoring autophagic flux, which ameliorates cognitive impairment in AD mice. This multitarget strategy induces autophagy/mitophagy through synergy, thereby normalizing mitochondrial dysfunction. Therefore, the developed method provides a promising AD-therapy strategy.
Collapse
Affiliation(s)
- Zhimin Yang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haoyuan Shi
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiyuan Hu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
50
|
Yu J, Jing Z, Shen D, Yang M, Liu K, Xiang K, Zhou C, Gong X, Deng Y, Li Y, Yang S. Quercetin promotes autophagy to alleviate cigarette smoke-related periodontitis. J Periodontal Res 2023; 58:1082-1095. [PMID: 37533377 DOI: 10.1111/jre.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Cigarette smoking has been reported as an independent risk factor for periodontitis. Tobacco toxins affect periodontal tissue not only locally but also systemically, leading to the deterioration and recurrence of periodontitis. However, the mechanism of cigarette smoke-related periodontitis (CSRP) is unclear and thus lacks targeted treatment strategies. Quercetin, a plant-derived polyphenolic flavonoid, has been reported to have therapeutic effects on periodontitis due to its documented antioxidant activity. This study aimed to evaluate the effects of quercetin on CSRP and elucidated the underlying mechanism. METHODS The cigarette smoke-related ligature-induced periodontitis mouse model was established by intraperitoneal injection of cigarette smoke extract (CSE) and silk ligation of bilateral maxillary second molars. Quercetin was adopted by gavage as a therapeutic strategy. Micro-computed tomography was used to evaluate the alveolar bone resorption. Immunohistochemistry detected the oxidative stress and autophagy markers in vivo. Cell viability was determined by Cell Counting Kit-8, and oxidative stress levels were tested by 2,7-dichlorodihydrofluorescein diacetate probe and lipid peroxidation malondialdehyde assay kit. Alkaline phosphatase and alizarin red staining were used to determine osteogenic differentiation. Network pharmacology analysis, molecular docking, and western blot were utilized to elucidate the underlying molecular mechanism. RESULTS Alveolar bone resorption was exacerbated and oxidative stress products were accumulated during CSE exposure in vivo. Oxidative stress damage induced by CSE caused inhibition of osteogenic differentiation in vitro. Quercetin effectively protected the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and periodontal tissue by upregulating the expression of Beclin-1 thus to promote autophagy and reduce oxidative stress damage. CONCLUSION Our results established a role of oxidative stress damage and autophagy dysfunction in the mechanism of CSE-induced destruction of periodontal tissue and hPDLCs, and provided a potential application value of quercetin to ameliorate CSRP.
Collapse
Affiliation(s)
- Jinrui Yu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Danfeng Shen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mingcong Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kehao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chongjing Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yangjia Deng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|