1
|
Ducote MP, Cothern CR, Batdorf HM, Fontenot MS, Martin TM, Iftesum M, Gartia MR, Noland RC, Burk DH, Ghosh S, Burke SJ. Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion. J Biol Chem 2025; 301:108187. [PMID: 39814231 PMCID: PMC11849070 DOI: 10.1016/j.jbc.2025.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long-chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1aPdx1-/-) using C57BL/6J mice. Islet morphology, β-cell transcription factor abundance, islet ATP levels, glucose transporter 2 abundance, and expression of the dedifferentiation marker ALDH1A3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance were assessed to investigate the metabolic status of genetic reductions in Cpt1a. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Pancreatic deletion of Cpt1a reduced glucose tolerance but did not alter insulin sensitivity. Glucose-stimulated insulin secretion was reduced both in vivo and in islets isolated from Cpt1aPdx1-/- mice relative to control islets. Pancreatic islets from Cpt1aPdx1-/- mice displayed elevations in ALDH1A3, a marker of dedifferentiation, but no reduction in nuclear abundance of the β-cell transcription factors MafA and Nkx6.1 or the GLUT2 glucose transporter. However, intracellular ATP abundance was markedly decreased in islets isolated from Cpt1aPdx1-/- relative to littermate control mice. We conclude that there is an important physiological role for pancreatic CPT1A to maintain whole body glucose homeostasis by supporting glucose-stimulated insulin secretion and maintaining intracellular ATP levels in male mice.
Collapse
Affiliation(s)
- Maggie P Ducote
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Caroline R Cothern
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Molly S Fontenot
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas R Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - David H Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
2
|
Das AC, Nichols JM, Crelli CV, Liu L, Vichare R, Pham HV, Gaffney CM, Cherry FR, Grace PM, Shepherd AJ, Janjic JM. Injectable, reversibly thermoresponsive captopril-laden hydrogel for the local treatment of sensory loss in diabetic neuropathy. Sci Rep 2024; 14:18978. [PMID: 39152212 PMCID: PMC11329637 DOI: 10.1038/s41598-024-69437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
A major and irreversible complication of diabetes is diabetic peripheral neuropathy (DPN), which can lead to significant disability and decreased quality of life. Prior work demonstrates the peptide hormone Angiotensin II (Ang II) is released locally in neuropathy and drives inflammation and impaired endoneurial blood flow. Therefore, we proposed that by utilizing a local thermoresponsive hydrogel injection, we could deliver inhibitors of angiotensin-converting enzyme (ACE) to suppress Ang II production and reduce nerve dysfunction in DPN through local drug release. The ACE inhibitor captopril was encapsulated into a micelle, which was then embedded into a reversibly thermoresponsive pluronics-based hydrogel matrix. Drug-free and captopril-loaded hydrogels demonstrated excellent product stability and sterility. Rheology testing confirmed sol properties with low viscosity at ambient temperature and increased viscosity and gelation at 37 °C. Captopril-loaded hydrogels significantly inhibited Ang II production in comparison to drug-free hydrogels. DPN mice treated with captopril-loaded hydrogels displayed normalized mechanical sensitivity and reduced inflammation, without side-effects associated with systemic exposure. Our data demonstrate the feasibility of repurposing ACE inhibitors as locally delivered anti-inflammatories for the treatment of sensory deficits in DPN. To the best of our knowledge, this is the first example of a locally delivered ACE inhibitor for the treatment of DPN.
Collapse
Affiliation(s)
- Amit Chandra Das
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - James M Nichols
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Riddhi Vichare
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlyn M Gaffney
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Fisher R Cherry
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Peter M Grace
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Andrew J Shepherd
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| | - Jelena M Janjic
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| |
Collapse
|
3
|
Seaton WB, Burke SJ, Fisch AR, Schilletter WA, Beck MGA, Cassagne GA, Harvey I, Fontenot MS, Collier JJ, Campagna SR. Channel Expansion in the Ligand-Binding Domain of the Glucocorticoid Receptor Contributes to the Activity of Highly Potent Glucocorticoid Analogues. Molecules 2024; 29:1546. [PMID: 38611825 PMCID: PMC11013598 DOI: 10.3390/molecules29071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR) and are commonly used as anti-inflammatory and immunosuppressant medications. Chronic GC use has been linked with unwanted complications such as steroid-induced diabetes mellitus (SIDM), although the mechanisms for these effects are not completely understood. Modification of six GC parent molecules with 2-mercaptobenzothiazole resulted in consistently less promoter activity in transcriptional activation assays using a 3xGRE reporter construct while constantly reducing inflammatory pathway activity. The most selective candidate, DX1, demonstrated a significant reduction (87%) in transactivation compared to commercially available dexamethasone. DX1 also maintained 90% of the anti-inflammatory potential of dexamethasone while simultaneously displaying a reduced toxicity profile. Additionally, two novel and highly potent compounds, DX4 and PN4, were developed and shown to elicit similar mRNA expression at attomolar concentrations that dexamethasone exhibits at nanomolar dosages. To further explain these results, Molecular Dynamic (MD) simulations were performed to examine structural changes in the ligand-binding domain of the glucocorticoid receptor in response to docking with the top ligands. Differing interactions with the transcriptional activation function 2 (AF-2) region of the GR may be responsible for lower transactivation capacity in DX1. DX4 and PN4 lose contact with Arg611 due to a key interaction changing from a stronger hydrophilic to a weaker hydrophobic one, which leads to the formation of an unoccupied channel at the location of the deacylcortivazol (DAC)-expanded binding pocket. These findings provide insights into the structure-function relationships important for regulating anti-inflammatory activity, which has implications for clinical utility.
Collapse
Affiliation(s)
- Wesley B. Seaton
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (W.B.S.)
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (J.J.C.)
| | - Alexander R. Fisch
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (W.B.S.)
| | | | - Mary Grace A. Beck
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (J.J.C.)
| | | | - Innocence Harvey
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (J.J.C.)
| | - Molly S. Fontenot
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (J.J.C.)
| | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (J.J.C.)
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (W.B.S.)
| |
Collapse
|
4
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
5
|
Soret B, Hense J, Lüdtke S, Thale I, Schwab A, Düfer M. Pancreatic K Ca3.1 channels in health and disease. Biol Chem 2023; 404:339-353. [PMID: 36571487 DOI: 10.1515/hsz-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/24/2022] [Indexed: 12/27/2022]
Abstract
Ion channels play an important role for regulation of the exocrine and the endocrine pancreas. This review focuses on the Ca2+-regulated K+ channel KCa3.1, encoded by the KCNN4 gene, which is present in both parts of the pancreas. In the islets of Langerhans, KCa3.1 channels are involved in the regulation of membrane potential oscillations characterizing nutrient-stimulated islet activity. Channel upregulation is induced by gluco- or lipotoxic conditions and might contribute to micro-inflammation and impaired insulin release in type 2 diabetes mellitus as well as to diabetes-associated renal and vascular complications. In the exocrine pancreas KCa3.1 channels are expressed in acinar and ductal cells. They are thought to play a role for anion secretion during digestion but their physiological role has not been fully elucidated yet. Pancreatic carcinoma, especially pancreatic ductal adenocarcinoma (PDAC), is associated with drastic overexpression of KCa3.1. For pharmacological targeting of KCa3.1 channels, we are discussing the possible benefits KCa3.1 channel inhibitors might provide in the context of diabetes mellitus and pancreatic cancer, respectively. We are also giving a perspective for the use of a fluorescently labeled derivative of the KCa3.1 blocker senicapoc as a tool to monitor channel distribution in pancreatic tissue. In summary, modulating KCa3.1 channel activity is a useful strategy for exo-and endocrine pancreatic disease but further studies are needed to evaluate its clinical suitability.
Collapse
Affiliation(s)
- Benjamin Soret
- University of Münster, Institute of Physiology II, Robert-Koch-Straße 27b, D-48149 Münster, Germany
| | - Jurek Hense
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| | - Simon Lüdtke
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| | - Insa Thale
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Corrensstraße 48, D-48149 Münster, Germany
| | - Albrecht Schwab
- University of Münster, Institute of Physiology II, Robert-Koch-Straße 27b, D-48149 Münster, Germany
| | - Martina Düfer
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
6
|
Ekperikpe US, Poudel B, Shields CA, Mandal S, Cornelius DC, Williams JM. Neutralizing MIP3 α Reduces Renal Immune Cell Infiltration and Progressive Renal Injury in Young Obese Dahl Salt-Sensitive Rats. J Pharmacol Exp Ther 2023; 384:445-454. [PMID: 36507846 PMCID: PMC9976792 DOI: 10.1124/jpet.122.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sautan Mandal
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023; 12:cells12030348. [PMID: 36766689 PMCID: PMC9913687 DOI: 10.3390/cells12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ASCs) are adult stem cells, endowed with self-renewal, multipotent capacities, and immunomodulatory properties, as mesenchymal stem cells (MSCs) from other origins. However, in a pathological context, ASCs like MSCs can exhibit pro-inflammatory properties and attract inflammatory immune cells at their neighborhood. Subsequently, this creates an inflammatory microenvironment leading to ASCs' or MSCs' dysfunctions. One such example is given by obesity where adipogenesis is impaired and insulin resistance is initiated. These opposite properties have led to the classification of MSCs into two categories defined as pro-inflammatory ASC1 or anti-inflammatory ASC2, in which plasticity depends on the micro-environmental stimuli. The aim of this review is to (i) highlight the pathogenic role of ASCs during obesity and obesity-related inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and cancer; and (ii) describe some of the mechanisms leading to ASCs dysfunctions. Thus, the role of soluble factors, adhesion molecules; TLRs, Th17, and Th22 cells; γδ T cells; and immune checkpoint overexpression will be addressed.
Collapse
|
8
|
Antevska A, Long CC, Dupuy SD, Collier JJ, Karlstad MD, Do TD. Mouse Pancreatic Peptide Hormones Probed at the Sub-Single-Islet Level: The Effects of Acute Corticosterone Treatment. J Proteome Res 2023; 22:235-245. [PMID: 36412564 DOI: 10.1021/acs.jproteome.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with β-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana70808, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
9
|
Timasheva Y, Balkhiyarova Z, Avzaletdinova D, Rassoleeva I, Morugova TV, Korytina G, Prokopenko I, Kochetova O. Integrating Common Risk Factors with Polygenic Scores Improves the Prediction of Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24020984. [PMID: 36674502 PMCID: PMC9866792 DOI: 10.3390/ijms24020984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
We tested associations between 13 established genetic variants and type 2 diabetes (T2D) in 1371 study participants from the Volga-Ural region of the Eurasian continent, and evaluated the predictive ability of the model containing polygenic scores for the variants associated with T2D in our dataset, alone and in combination with other risk factors such as age and sex. Using logistic regression analysis, we found associations with T2D for the CCL20 rs6749704 (OR = 1.68, PFDR = 3.40 × 10-5), CCR5 rs333 (OR = 1.99, PFDR = 0.033), ADIPOQ rs17366743 (OR = 3.17, PFDR = 2.64 × 10-4), TCF7L2 rs114758349 (OR = 1.77, PFDR = 9.37 × 10-5), and CCL2 rs1024611 (OR = 1.38, PFDR = 0.033) polymorphisms. We showed that the most informative prognostic model included weighted polygenic scores for these five loci, and non-genetic factors such as age and sex (AUC 85.8%, 95%CI 83.7-87.8%). Compared to the model containing only non-genetic parameters, adding the polygenic score for the five T2D-associated loci showed improved net reclassification (NRI = 37.62%, 1.39 × 10-6). Inclusion of all 13 tested SNPs to the model with age and sex did not improve the predictive ability compared to the model containing five T2D-associated variants (NRI = -17.86, p = 0.093). The five variants associated with T2D in people from the Volga-Ural region are linked to inflammation (CCR5, CCL2, CCL20) and glucose metabolism regulation (TCF7L, ADIPOQ2). Further studies in independent groups of T2D patients should validate the prognostic value of the model and elucidate the molecular mechanisms of the disease development.
Collapse
Affiliation(s)
- Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Correspondence:
| | - Zhanna Balkhiyarova
- Section of Statistical Multi-Omics, Department of Clinical & Experimental Medicine, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK
- Department of Endocrinology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Diana Avzaletdinova
- Department of Endocrinology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Irina Rassoleeva
- Department of Endocrinology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Tatiana V. Morugova
- Department of Endocrinology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Inga Prokopenko
- Section of Statistical Multi-Omics, Department of Clinical & Experimental Medicine, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Olga Kochetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
10
|
Görtz GE, Philipp S, Bruderek K, Jesenek C, Horstmann M, Henning Y, Oeverhaus M, Daser A, Bechrakis NE, Eckstein A, Brandau S, Berchner-Pfannschmidt U. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Graves' Orbitopathy. Endocrinology 2022; 164:6881427. [PMID: 36477465 DOI: 10.1210/endocr/bqac203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The inflammatory eye disease Graves' orbitopathy (GO) is the main complication of autoimmune Graves' disease. In previous studies we have shown that hypoxia plays an important role for progression of GO. Hypoxia can maintain inflammation by attracting inflammatory cells such as macrophages (MQ). Herein, we investigated the interaction of MQ and orbital fibroblasts (OF) in context of inflammation and hypoxia. We detected elevated levels of the hypoxia marker HIF-1α, the MQ marker CD68, and inflammatory cytokines TNFα, CCL2, CCL5, and CCL20 in GO biopsies. Hypoxia stimulated GO tissues to release TNFα, CCL2, and CCL20 as measured by multiplex enzyme-linked immunosorbent assay (ELISA). Further, TNFα and hypoxia stimulated the expression of HIF-1α, CCL2, CCL5, and CCL20 in OF derived from GO tissues. Immunofluorescence confirmed that TNFα-positive MQ were present in the GO tissues. Thus, interaction of M1-MQ with OF under hypoxia also induced HIF-1α, CCL2, and CCL20 in OF. Inflammatory inhibitors etanercept or dexamethasone prevented the induction of HIF-1α and release of CCL2 and CCL20. Moreover, co-culture of M1-MQ/OF under hypoxia enhanced adipogenic differentiation and adiponectin secretion. Dexamethasone and HIF-1α inhibitor PX-478 reduced this effect. Our findings indicate that GO fat tissues are characterized by an inflammatory and hypoxic milieu where TNFα-positive MQ are present. Hypoxia and interaction of M1-MQ with OF led to enhanced secretion of chemokines, elevated hypoxic signaling, and adipogenesis. In consequence, M1-MQ/OF interaction results in constant inflammation and tissue remodeling. A combination of anti-inflammatory treatment and HIF-1α reduction could be an effective treatment option.
Collapse
Affiliation(s)
- Gina-Eva Görtz
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Svenja Philipp
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Jesenek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Mareike Horstmann
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, 45147 Essen, Germany
| | - Michael Oeverhaus
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anke Daser
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
11
|
Martin TM, Burke SJ, Batdorf HM, Burk DH, Ghosh S, Dupuy SD, Karlstad MD, Collier JJ. ICAM-1 Abundance Is Increased in Pancreatic Islets of Hyperglycemic Female NOD Mice and Is Rapidly Upregulated by NF-κB in Pancreatic β-Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:569-581. [PMID: 35851539 PMCID: PMC9845432 DOI: 10.4049/jimmunol.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes (T1D) is classified as an autoimmune disease where pancreatic β-cells are specifically targeted by cells of the immune system. The molecular mechanisms underlying this process are not completely understood. Herein, we identified that the Icam1 gene and ICAM-1 protein were selectively elevated in female NOD mice relative to male mice, fitting with the sexual dimorphism of diabetes onset in this key mouse model of T1D. In addition, ICAM-1 abundance was greater in hyperglycemic female NOD mice than in age-matched normoglycemic female NOD mice. Moreover, we discovered that the Icam1 gene was rapidly upregulated in response to IL-1β in mouse, rat, and human islets and in 832/13 rat insulinoma cells. This early temporal genetic regulation requires key components of the NF-κB pathway and was associated with rapid recruitment of the p65 transcriptional subunit of NF-κB to corresponding κB elements within the Icam1 gene promoter. In addition, RNA polymerase II recruitment to the Icam1 gene promoter in response to IL-1β was consistent with p65 occupancy at κB elements, histone chemical modifications, and increased mRNA abundance. Thus, we conclude that β-cells undergo rapid genetic reprogramming by IL-1β to enhance expression of the Icam1 gene and that elevations in ICAM-1 are associated with hyperglycemia in NOD mice. These findings are highly relevant to, and highlight the importance of, pancreatic β-cell communication with the immune system. Collectively, these observations reveal a portion of the complex molecular events associated with onset and progression of T1D.
Collapse
Affiliation(s)
- Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - David H. Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke NUS Medical School, Singapore
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| |
Collapse
|
12
|
Smoak P, Burke SJ, Martin TM, Batdorf HM, Floyd ZE, Collier JJ. Artemisia dracunculus L. Ethanolic Extract and an Isolated Component, DMC2, Ameliorate Inflammatory Signaling in Pancreatic β-Cells via Inhibition of p38 MAPK. Biomolecules 2022; 12:biom12050708. [PMID: 35625635 PMCID: PMC9139089 DOI: 10.3390/biom12050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Non-resolving pancreatic islet inflammation is widely viewed as a contributor to decreases in β-cell mass and function that occur in both Type 1 and Type 2 diabetes. Therefore, strategies aimed at reducing or eliminating pathological inflammation would be useful to protect islet β-cells. Herein, we described the use of 2′,4′-dihydroxy-4-methoxydihydrochalcone (DMC2), a bioactive molecule isolated from an ethanolic extract of Artemisia dracunculus L., as a novel anti-inflammatory agent. The ethanolic extract, termed PMI 5011, reduced IL-1β-mediated NF-κB activity. DMC2 retained this ability, indicating this compound as the likely source of anti-inflammatory activity within the overall PMI 5011 extract. We further examined NF-κB activity using promoter-luciferase reporter constructs, Western blots, mRNA abundance, and protein secretion. Specifically, we found that PMI 5011 and DMC2 each reduced the ability of IL-1β to promote increases in the expression of the Ccl2 and Ccl20 genes. These genes encode proteins that promote immune cell recruitment and are secreted by β-cells in response to IL-1β. Phosphorylation of IκBα and the p65 subunit of NF-κB were not reduced by either PMI 5011 or DMC2; however, phosphorylation of p38 MAPK was blunted in the presence of DMC2. Finally, we observed that while PMI 5011 impaired glucose-stimulated insulin secretion, insulin output was preserved in the presence of DMC2. In conclusion, PMI 5011 and DMC2 reduced inflammation, but only DMC2 did so with the preservation of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Z. Elizabeth Floyd
- Laboratory of Ubitquitin Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
- Correspondence:
| |
Collapse
|
13
|
Kennedy BJ, Lato AM, Fisch AR, Burke SJ, Kirkland JK, Prevatte CW, Dunlap LE, Smith RT, Vogiatzis KD, Collier JJ, Campagna SR. Potent Anti-Inflammatory, Arylpyrazole-Based Glucocorticoid Receptor Agonists That Do Not Impair Insulin Secretion. ACS Med Chem Lett 2021; 12:1568-1577. [PMID: 34676039 DOI: 10.1021/acsmedchemlett.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids (GCs) are widely used in medicine for their role in the treatment of autoimmune-mediated conditions, certain cancers, and organ transplantation. The transcriptional activities GCs elicit include transrepression, postulated to be responsible for the anti-inflammatory activity, and transactivation, proposed to underlie the undesirable side effects associated with long-term use. A GC analogue that could elicit only transrepression and beneficial transactivation properties would be of great medicinal value and is highly sought after. In this study, a series of 1-(4-substituted phenyl)pyrazole-based GC analogues were synthesized, biologically screened, and evaluated for SARs leading to the desired activity. Activity observed in compounds bearing an electron deficient arylpyrazole moiety showed promise toward a dissociated steroid, displaying transrepression while having limited transactivation activity. In addition, compounds 11aa and 11ab were found to have anti-inflammatory efficacy comparable to that of dexamethasone at 10 nM, with minimal transactivation activity and no reduction of insulin secretion in cultured rat 832/13 beta cells.
Collapse
Affiliation(s)
- Brandon J. Kennedy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M. Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexander R. Fisch
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Justin K. Kirkland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carson W. Prevatte
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lee E. Dunlap
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Russell T. Smith
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Pioglitazone Reverses Markers of Islet Beta-Cell De-Differentiation in db/db Mice While Modulating Expression of Genes Controlling Inflammation and Browning in White Adipose Tissue from Insulin-Resistant Mice and Humans. Biomedicines 2021; 9:biomedicines9091189. [PMID: 34572374 PMCID: PMC8470788 DOI: 10.3390/biomedicines9091189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet β-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic β-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.
Collapse
|
15
|
Islam MB, Chowdhury UN, Nain Z, Uddin S, Ahmed MB, Moni MA. Identifying molecular insight of synergistic complexities for SARS-CoV-2 infection with pre-existing type 2 diabetes. Comput Biol Med 2021; 136:104668. [PMID: 34340124 PMCID: PMC8299293 DOI: 10.1016/j.compbiomed.2021.104668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 01/07/2023]
Abstract
The ongoing COVID-19 outbreak, caused by SARS-CoV-2, has posed a massive threat to global public health, especially to people with underlying health conditions. Type 2 diabetes (T2D) is lethal comorbidity of COVID-19. However, its pathogenetic link remains unclear. This research aims to determine the genetic factors and processes contributing to the synergistic severity of SARS-CoV-2 infection among T2D patients through bioinformatics approaches. We analyzed two sets of transcriptomic data of SARS-CoV-2 infection obtained from lung epithelium cells and PBMCs, and two sets of T2D data from pancreatic islet cells and PBMCs to identify the associated differentially expressed genes (DEGs) followed by their functional enrichment analyses in terms of protein-protein interaction (PPI) to detect hub-proteins and associated comorbidities, transcription factors (TFs), microRNAs (miRNAs) as well as the potential drug candidates. In PPI analysis, four potential hub-proteins (i.e., BIRC3, C3, MME, and IL1B) were identified among 25 DEGs shared between the disease pair. Enrichment analyses using the mutually overlapped DEGs revealed the most prevalent GO and cell signalling pathways, including TNF signalling, cytokine-cytokine receptor interaction, and IL-17 signalling, which are related to cytokine activities. Furthermore, as significant TFs, we identified IRF1, KLF11, FOSL1, and CREB3L1 while miRNAs including miR-1-3p, 34a-5p, 16–5p, 155–5p, 20a-5p, and let-7b-5p were found to be noteworthy. The findings illustrated the significant association between COVID-19 and T2D at the molecular level. These genetic determinants can further be explored for their specific roles in disease progression and therapeutic intervention, while significant pathways can also be studied as molecular checkpoints. Finally, the identified drug candidates may be evaluated for their potency to minimize the severity of COVID-19 patients with pre-existing T2D.
Collapse
Affiliation(s)
- M Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Shahadat Uddin
- Complex Systems Research Group & Project Management Program, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Mohammad Ali Moni
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Gray ALH, Antevska A, Link BA, Bogin B, Burke SJ, Dupuy SD, Collier JJ, Levine ZA, Karlstad MD, Do TD. α-CGRP disrupts amylin fibrillization and regulates insulin secretion: implications on diabetes and migraine. Chem Sci 2021; 12:5853-5864. [PMID: 34168810 PMCID: PMC8179678 DOI: 10.1039/d1sc01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization. Furthermore, while CGRP and/or amylin monomers reduce the secretion of both mouse Ins1 and Ins2 proteins, CGRP oligomers have a reverse effect on Ins1. Genetically reduced Ins2, the orthologous version of human insulin, has been shown to enhance insulin sensitivity and extend the life-span in old female mice. Beyond the mechanistic insights, our data suggest that CGRP regulates insulin secretion and lowers the risk of T2DM. Our result rationalizes how migraine might be protective against T2DM. We envision the new paradigm of CGRP : amylin interactions as a pivotal aspect for T2DM diagnostics and therapeutics. Maintaining a low level of amylin while increasing the level of CGRP could become a viable approach toward T2DM prevention and treatment.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | | | - Benjamin A Link
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Bryan Bogin
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Zachary A Levine
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
17
|
Collier JJ, Batdorf HM, Martin TM, Rohli KE, Burk DH, Lu D, Cooley CR, Karlstad MD, Jackson JW, Sparer TE, Zhang J, Mynatt RL, Burke SJ. Pancreatic, but not myeloid-cell, expression of interleukin-1alpha is required for maintenance of insulin secretion and whole body glucose homeostasis. Mol Metab 2021; 44:101140. [PMID: 33285301 PMCID: PMC7772372 DOI: 10.1016/j.molmet.2020.101140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The expression of the interleukin-1 receptor type I (IL-1R) is enriched in pancreatic islet β-cells, signifying that ligands activating this pathway are important for the health and function of the insulin-secreting cell. Using isolated mouse, rat, and human islets, we identified the cytokine IL-1α as a highly inducible gene in response to IL-1R activation. In addition, IL-1α is elevated in mouse and rat models of obesity and Type 2 diabetes. Since less is known about the biology of IL-1α relative to IL-1β in pancreatic tissue, our objective was to investigate the contribution of IL-1α to pancreatic β-cell function and overall glucose homeostasis in vivo. METHODS We generated a novel mouse line with conditional IL-1α alleles and subsequently produced mice with either pancreatic- or myeloid lineage-specific deletion of IL-1α. RESULTS Using this in vivo approach, we discovered that pancreatic (IL-1αPdx1-/-), but not myeloid-cell, expression of IL-1α (IL-1αLysM-/-) was required for the maintenance of whole body glucose homeostasis in both male and female mice. Moreover, pancreatic deletion of IL-1α led to impaired glucose tolerance with no change in insulin sensitivity. This observation was consistent with our finding that glucose-stimulated insulin secretion was reduced in islets isolated from IL-1αPdx1-/- mice. Alternatively, IL-1αLysM-/- mice (male and female) did not have any detectable changes in glucose tolerance, respiratory quotient, physical activity, or food intake when compared with littermate controls. CONCLUSIONS Taken together, we conclude that there is an important physiological role for pancreatic IL-1α to promote glucose homeostasis by supporting glucose-stimulated insulin secretion and islet β-cell mass in vivo.
Collapse
Affiliation(s)
- J Jason Collier
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Thomas M Martin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kristen E Rohli
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - David H Burk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27704, USA
| | - Chris R Cooley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tim E Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jingying Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
18
|
Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes. Metabolites 2020; 10:metabo10110452. [PMID: 33182622 PMCID: PMC7697558 DOI: 10.3390/metabo10110452] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Beta cells adapt their function to respond to fluctuating glucose concentrations and variable insulin demand. The highly specialized beta cells have well-established endoplasmic reticulum to handle their high metabolic load for insulin biosynthesis and secretion. Beta cell endoplasmic reticulum therefore recognize and remove misfolded proteins thereby limiting their accumulation. Beta cells function optimally when they sense glucose and, in response, biosynthesize and secrete sufficient insulin. Overnutrition drives the pathogenesis of obesity and diabetes, with adverse effects on beta cells. The interleukin signaling system maintains beta cell physiology and plays a role in beta cell inflammation. In pre-diabetes and compromised metabolic states such as obesity, insulin resistance, and glucose intolerance, beta cells biosynthesize and secrete more insulin, i.e., hyperfunction. Obesity is entwined with inflammation, characterized by compensatory hyperinsulinemia, for a defined period, to normalize glycemia. However, with chronic hyperglycemia and diabetes, there is a perpetual high demand for insulin, and beta cells become exhausted resulting in insufficient insulin biosynthesis and secretion, i.e., they hypofunction in response to elevated glycemia. Therefore, beta cell hyperfunction progresses to hypofunction, and may progressively worsen towards failure. Preserving beta cell physiology, through healthy nutrition and lifestyles, and therapies that are aligned with beta cell functional transitions, is key for diabetes prevention and management.
Collapse
|
19
|
El Shamieh S, Stathopoulou MG, Bonnefond A, Ndiaye NC, Lecoeur C, Meyre D, Dadé S, Chedid P, Salami A, Shahabi P, Dedoussis GV, Froguel P, Visvikis-Siest S. Obesity status modifies the association between rs7556897T>C in the intergenic region SLC19A3-CCL20 and blood pressure in French children. Clin Chem Lab Med 2020; 58:1819-1827. [PMID: 32238601 DOI: 10.1515/cclm-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Background Growing evidence reports an association between inflammatory markers, obesity and blood pressure (BP). Specifically, the intergenic single nucleotide polymorphism (SNP) rs7556897T > C (MAF = 0.34) located between SLC19A3 and the CCL20 was shown to be associated with chronic inflammatory diseases. In addition, CCL20 expression was found increased in pancreatic islets of obese rodents and human pancreatic β cells under the influence of inflammation. In this study, we hypothesized that SNP rs7556897 could affect BP levels, thus providing a link between inflammation, BP and obesity. Methods BP was measured under supine position with a manual sphygmomanometer; values reported were the means of three readings. We analyzed rs7556897 in 577 normal weight and 689 obese French children. Using real-time polymerase chain reaction (PCR), we quantified CCL20 and SLC19A3 expression in adipose tissue and peripheral blood mononuclear cells (PBMCs) of normal weight and overweight children. Results The rs7556897C allele was negatively associated with diastolic BP in normal weight children (β = -0.012 ± 0.004, p = 0.006) but positively associated in obese children (β = 2.178 ± 0.71, p = 0.002). A significant interaction between rs7556897T > C and the obesity status (obese or normal weight) was detected (β = 3.49, p = 9.79 × 10-5) for BP in a combined population analysis. CCL20 mRNA was only expressed in the adipose tissue of overweight children, and its expression levels were 10.7× higher in PBMCs of overweight children than normal weight children. Finally, CCL20 mRNA levels were positively associated with rs7556897T > C in PBMCs of 58 normal weight children (β = 0.43, p = 0.002). SLC19A3 was not expressed in PBMCs, and in adipose tissue, it showed same levels of expression in normal weight and overweight children. The gene expression results may highlight a specific involvement of CCL20 via communicating obesity/inflammation pathways that regulate BP. Conclusions Childhood obesity reverses the effect of rs7556897T > C on diastolic BP, possibly via the modulation of CCL20 expression levels.
Collapse
Affiliation(s)
- Said El Shamieh
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Maria G Stathopoulou
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Amélie Bonnefond
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - Ndeye Coumba Ndiaye
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Cécile Lecoeur
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - David Meyre
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Sébastien Dadé
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Pia Chedid
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Ali Salami
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Payman Shahabi
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - George V Dedoussis
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Philippe Froguel
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Sophie Visvikis-Siest
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| |
Collapse
|
20
|
Rodgers LC, Cole J, Rattigan KM, Barrett MP, Kurian N, McInnes IB, Goodyear CS. The rheumatoid synovial environment alters fatty acid metabolism in human monocytes and enhances CCL20 secretion. Rheumatology (Oxford) 2020; 59:869-878. [PMID: 31497857 DOI: 10.1093/rheumatology/kez378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/05/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Fatty acid oxidation (FAO) and glycolysis have been implicated in immune regulation and activation of macrophages. However, investigation of human monocyte intracellular metabolism in the context of the hypoxic and inflammatory rheumatoid arthritis (RA) synovium is lacking. We hypothesized that exposure of monocytes to the hypoxic and inflammatory RA environment would have a profound impact on their metabolic state, and potential to contribute to disease pathology. METHODS Human monocytes were isolated from buffy coats and exposed to hypoxia. Metabolic profiling of monocytes was carried out by LC-MS metabolomics. Inflammatory mediator release after LPS or RA-synovial fluid (RA-SF) stimulation was analysed by ELISA. FAO was inhibited by etomoxir or enhanced with exogenous carnitine supplementation. Transcriptomics of RA blood monocytes and RA-SF macrophages was carried out by microarray. RESULTS Hypoxia exacerbated monocyte-derived CCL20 and IL-1β release in response to LPS, and increased glycolytic intermediates at the expense of carnitines. Modulation of carnitine identified a novel role for FAO in the production of CCL20 in response to LPS. Transcriptional analysis of RA blood monocytes and RA-SF macrophages revealed that fatty acid metabolism was altered and CCL20 increased when monocytes enter the synovial environment. In vitro analysis of monocytes showed that RA-SF increases carnitine abundance and CCL20 production in hypoxia, which was exacerbated by exogenous carnitine. CONCLUSION This work has revealed a novel inflammatory mechanism in RA that links FAO to CCL20 production in human monocytes, which could subsequently contribute to RA disease pathogenesis by promoting the recruitment of Th17 cells and osteoclastogenesis.
Collapse
Affiliation(s)
- Lewis C Rodgers
- Centre of Immunobiology, University of Glasgow, Glasgow, UK.,GLAZgo Discovery Centre, Glasgow, UK
| | - John Cole
- GLAZgo Discovery Centre, Glasgow, UK
| | - Kevin M Rattigan
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Michael P Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow, UK.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nisha Kurian
- Respiratory Inflammation and Autoimmune (RIA) Precision Medicine Unit, Precision Medicine, Oncology R&D, AstraZeneca, Gothenburg, Sweden
| | - Iain B McInnes
- Centre of Immunobiology, University of Glasgow, Glasgow, UK
| | - Carl S Goodyear
- Centre of Immunobiology, University of Glasgow, Glasgow, UK.,GLAZgo Discovery Centre, Glasgow, UK
| |
Collapse
|
21
|
Chemokine Expression in Neutrophils and Subcutaneous Adipose Tissue Cells Obtained during Abdominoplasty from Patients with Obesity and Normal Body Weight. Bull Exp Biol Med 2019; 167:728-731. [PMID: 31655991 DOI: 10.1007/s10517-019-04609-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 10/25/2022]
Abstract
The study was aimed at assessing the role of chemokines in inflammatory changes in tissue following abdominoplasty. The levels of neutrophil-coupled chemokines and their receptors in the serum and blood cells, as well as in cells isolated from the subcutaneous adipose tissue sampled during abdominoplasty were compared in patients with obesity and normal body weight. The levels of chemokines CCL3, CCL3, and CCL5 in blood serum and expression of chemokine receptor CXCR2 and CXCR6 on blood neutrophils were significantly higher (p<0.05) in obese patients in comparison with patients with normal body weight. Elevated expression of chemokines CCL2, CCL3, CCL4, CCL5, CCL18, and CCL20 (p<0.05) was detected in subcutaneous adipose tissue cells isolated obese patients in comparisons with persons with normal body weight. These findings attest to favorable conditions for enhanced neutrophil migration to the adipose tissue in patients with obesity, which can promote leukocyte infiltration of the suture site after abdominoplasty and serves as additional risk factor for the development of postoperative complications associated with activity of neutrophil-derived proteolytic enzymes.
Collapse
|
22
|
Augimeri G, Plastina P, Gionfriddo G, Rovito D, Giordano C, Fazio A, Barone I, Catalano S, Andò S, Bonofiglio D, Meijerink J, Witkamp R. N-Eicosapentaenoyl Dopamine, A Conjugate of Dopamine and Eicosapentaenoic Acid (EPA), Exerts Anti-inflammatory Properties in Mouse and Human Macrophages. Nutrients 2019; 11:nu11092247. [PMID: 31540502 PMCID: PMC6769480 DOI: 10.3390/nu11092247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
A large body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), contribute to a reduced inflammatory tone thereby lowering the risk for several chronic and degenerative diseases. Different mechanisms have been proposed to explain these anti-inflammatory effects, including those involving endocannabinoids and endocannabinoid-like molecules. In this context, fatty acid amides (FAAs), conjugates of fatty acids with amines or amino acids, are an emerging class of compounds. Dopamine conjugates of DHA (N-docosahexaenoyl dopamine, DHDA) and EPA (N-eicosapentaenoyl dopamine, EPDA) have previously been shown to induce autophagy, apoptosis, and cell death in different tumor lines. Additionally, DHDA has displayed anti-inflammatory properties in vitro. Here, we tested the immune-modulatory properties of EPDA in mouse RAW 264.7 and human THP-1 macrophages stimulated with lipopolysaccharide (LPS). EPDA suppressed the production of monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in both cell lines, and nitric oxide (NO), and macrophage-inflammatory protein-3α (MIP3A) in RAW 264.7 macrophages. At a transcriptional level, EPDA attenuated cyclooxygenase-2 (COX-2) expression in both cell lines and that of MCP-1, IL-6, and interleukin-1β (IL-1β) in THP-1 macrophages. Although further research is needed to reveal whether EPDA is an endogenous metabolite, our data suggest that this EPA-derived conjugate possesses interesting immune-modulating properties.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Giulia Gionfriddo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Daniela Rovito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (G.G.); (D.R.); (C.G.); (A.F.); (I.B.); (S.C.); (S.A.)
- Correspondence: (D.B.); (R.W.); Tel.: +39-0984-496208 (D.B.); +31-0317-485136 (R.W.)
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands;
- Correspondence: (D.B.); (R.W.); Tel.: +39-0984-496208 (D.B.); +31-0317-485136 (R.W.)
| |
Collapse
|
23
|
Zhang Y, Sun Q, Li Z, Wang H, Li J, Wan X. Fermented soybean powder containing Bacillus subtilis SJLH001 protects against obesity in mice by improving transport function and inhibiting angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Cione E, Plastina P, Pingitore A, Perri M, Caroleo MC, Fazio A, Witkamp R, Meijerink J. Capsaicin Analogues Derived from n-3 Polyunsaturated Fatty Acids (PUFAs) Reduce Inflammatory Activity of Macrophages and Stimulate Insulin Secretion by β-Cells In Vitro. Nutrients 2019; 11:E915. [PMID: 31022842 PMCID: PMC6520993 DOI: 10.3390/nu11040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, two capsaicin analogues, N-eicosapentaenoyl vanillylamine (EPVA) and N-docosahexaenoyl vanillylamine (DHVA), were enzymatically synthesized from their corresponding n-3 long chain polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both dietary relevant components. The compounds significantly reduced the production of some lipopolysaccharide (LPS)-induced inflammatory mediators, including nitric oxide (NO), macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1 or CCL2), by RAW264.7 macrophages. Next to this, only EPVA increased insulin secretion by pancreatic INS-1 832/13 β-cells, while raising intracellular Ca2+ and ATP concentrations. This suggests that the stimulation of insulin release occurs through an increase in the intracellular ATP/ADP ratio in the first phase, while is calcium-mediated in the second phase. Although it is not yet known whether EPVA is endogenously produced, its potential therapeutic value for diabetes treatment merits further investigation.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Attilio Pingitore
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
25
|
Li P, Chen X, Qin G, Yue D, Zhang Z, Ping Y, Wang D, Zhao X, Song M, Zhao Q, Li J, Liu S, Wang D, Zhang C, Lian J, Cao L, Li F, Huang L, Wang L, Yang L, Huang J, Li H, Zhang B, Zhang Y. Maelstrom Directs Myeloid-Derived Suppressor Cells to Promote Esophageal Squamous Cell Carcinoma Progression via Activation of the Akt1/RelA/IL8 Signaling Pathway. Cancer Immunol Res 2018; 6:1246-1259. [PMID: 30082413 DOI: 10.1158/2326-6066.cir-17-0415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Maelstrom (MAEL) is a novel cancer/testis-associated gene, which is not only expressed in the male testicular germ cells among human normal tissues, but is also aberrantly expressed in various cancer tissues. In our study, MAEL was characterized as a tumor-promoting gene and was significantly associated with esophageal squamous cell carcinoma (ESCC) recurrence and unfavorable prognosis. Kaplan-Meier analysis showed that patients with high MAEL expression had a shorter survival time. Functional experiments showed that MAEL promoted tumor cell growth and inhibited cell apoptosis. These results prompted us to investigate the factors affecting the tumorigenicity of MAEL Further experimentation demonstrated that MAEL enhanced the expression of phosphorylated Akt1, with subsequent phosphorylation of nuclear factor kappa B (NF-κB) subunit RelA in tumor cells, and chemoattracted myeloid-derived suppressor cells (MDSCs) by upregulating interleukin-8 (IL8) to accelerate tumor progression in the tumor microenvironment. We also found that TGFβ secreted by MDSCs could upregulate MAEL by inducing Smad2/Smad3 phosphorylation. In summary, this study revealed a mechanism by which MAEL could upregulate IL8 through Akt1/RelA to direct MDSCs homing into the tumor, suggesting that MAEL could be an attractive therapeutic target and a prognostic marker against ESCC. Cancer Immunol Res; 6(10); 1246-59. ©2018 AACR.
Collapse
Affiliation(s)
- Pupu Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjia Song
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyao Lian
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Cao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianmin Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, Illinois
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Ranasinghe R, Eri R. Pleiotropic Immune Functions of Chemokine Receptor 6 in Health and Disease. MEDICINES 2018; 5:medicines5030069. [PMID: 30004409 PMCID: PMC6164274 DOI: 10.3390/medicines5030069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) and its exclusive binding molecule CCL20 is an extremely important chemokine receptor-ligand pair which controls cell migration and immune induction during inflammatory disease. Not many scientific studies have been undertaken to study its immune mechanisms in detail, but its unique contribution to steady state cell chemotaxis in upholding immune tolerance and regulating immune homeostasis during inflammation is evident in multiple systems in the human body, including skin, liver, lung, kidney, brain, eye, joints, gonads and the gut. The role of CCR6 is constitutively expressed as a series of much debilitating severe inflammatory and autoimmune diseases, Human Immunodeficiency Virus (HIV) and cancer metastasis. CD4+ T cells, the central organizers of adaptive immunity, are stringently mobilized by the CCR6/CCL20 axis also induced by cytokines and a host of other factors in a carefully executed immune modulation scenario, to bring about a delicate balance between inflammation inducing TH17 cells and regulatory Treg cells. Although the exact immune regulatory role is not elucidated as yet, the CCR6/CCL20 axis is implicated as a front runner which determines the polarization of TH17 and regulatory Treg cells, upon which depends the resolution or progression of many debilitating disorders. This review therefore aims at emphasizing the pleiotropic significance of the chemokines CCR6 and CCL20 in immunologic function in multiple organ systems, thereby hoping to accentuate its value in future therapeutic modalities.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
27
|
Burke SJ, Batdorf HM, Burk DH, Martin TM, Mendoza T, Stadler K, Alami W, Karlstad MD, Robson MJ, Blakely RD, Mynatt RL, Collier JJ. Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet β-cell de-differentiation. Mol Metab 2018; 14:95-107. [PMID: 29914854 PMCID: PMC6034063 DOI: 10.1016/j.molmet.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet β-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1β, suggesting that signaling through this pathway regulates health and function of islet β-cells. Methods Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1−/−) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, β-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Results Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1−/− with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1−/− mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1−/− relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1−/− mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1−/− mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the β-cell transcription factor MafA. Nkx6.1 abundance was unaltered. Conclusions There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo. Pancreatic deletion of IL-1R impairs glucose tolerance in young and old male mice. Pancreatic deletion of IL-1R worsens glucose tolerance in obese db/db mice. Deletion of IL-1R triggers expression of the de-differentiation marker Aldh1a3. IL-1 signaling in pancreatic tissue influences islet health and function.
Collapse
Affiliation(s)
- Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H Burk
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Thomas M Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Wateen Alami
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter FL, 33458, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
28
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhang H, Hinkle CC, O’Neill SM, Shi J, Caughey J, Lynch E, Lynch G, Gerelus M, Tsai ASD, Shah R, Ferguson JF, Ahima RS, Reilly MP. Synergistic Modulation of Inflammatory but not Metabolic Effects of High-Fat Feeding by CCR2 and CX3CR1. Obesity (Silver Spring) 2017; 25. [PMID: 28650582 PMCID: PMC5610963 DOI: 10.1002/oby.21900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The purpose of the study was to explore the impact of dual targeting of C-C motif chemokine receptor-2 (CCR2) and fractalkine receptor (CX3CR1) on the metabolic and inflammatory consequences of obesity induced by a high-fat diet (HFD). METHODS C57BL/6J wild-type, Cx3cr1-/- , Ccr2-/- , and Cx3cr1-/- Ccr2-/- double-knockout male and female mice were fed a 45% HFD for up to 25 weeks starting at 12 weeks of age. RESULTS All groups gained weight at a similar rate and developed a similar degree of adiposity, hyperglycemia, glucose intolerance, and impairment of insulin sensitivity in response to HFD. As expected, the circulating monocyte count was decreased in Ccr2-/- and Cx3cr1-/- Ccr2-/- mice but not in Cx3cr1-/- mice. Flow cytometric analysis of perigonadal adipose tissue of male, but not female, mice revealed trends to lower CD11c+MGL1- M1-like macrophages and higher CD11c-MGL1+ M2-like macrophages as a percentage of CD45+F4/80+CD11b+ macrophages in Cx3cr1-/- Ccr2-/- mice versus wild-type mice, suggesting reduced adipose tissue macrophage activation. In contrast, single knockout of Ccr2 or Cx3cr1 did not differ in their adipose macrophage phenotypes. CONCLUSIONS Although CCR2 and CX3CR1 may synergistically impact inflammatory phenotypes, their joint deficiency did not influence the metabolic effects of a 45% HFD-induced obesity in these model conditions.
Collapse
Affiliation(s)
- Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Corresponding authors: Hanrui Zhang, MB PhD, Division of Cardiology, Department of Medicine, Columbia University Medical Center, 630 West 168th Street, PS11-420, New York, NY 10032, Tel: (212) 305-3508, Fax: (212) 305-3213, ; Muredach P. Reilly MBBCh MSCE, Irving Institute for Clinical and Translational Research, Columbia University Medical Center, 622 West 168th Street, PH10-305, New York, NY 10032, Tel: (212) 305-9453, Fax: (212) 305-3213,
| | - Christine C. Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sean M. O’Neill
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianting Shi
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jennifer Caughey
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Lynch
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gina Lynch
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Gerelus
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew S. D. Tsai
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachana Shah
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jane F. Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, New York, USA
- Corresponding authors: Hanrui Zhang, MB PhD, Division of Cardiology, Department of Medicine, Columbia University Medical Center, 630 West 168th Street, PS11-420, New York, NY 10032, Tel: (212) 305-3508, Fax: (212) 305-3213, ; Muredach P. Reilly MBBCh MSCE, Irving Institute for Clinical and Translational Research, Columbia University Medical Center, 622 West 168th Street, PH10-305, New York, NY 10032, Tel: (212) 305-9453, Fax: (212) 305-3213,
| |
Collapse
|
30
|
Wang M. miR‑433 protects pancreatic β cell growth in high‑glucose conditions. Mol Med Rep 2017; 16:2604-2610. [PMID: 28713945 PMCID: PMC5548008 DOI: 10.3892/mmr.2017.6925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Pancreatic β cell dysfunction is a key characteristic in the pathogenesis of diabetes mellitus (DM). MicroRNAs (miRNAs) have been identified to serve a role in DM pathogenesis, but how specific miRNAs regulate glucose-stimulated β cell functions remain unclear. The present study aimed to explore the effects of miR-433 on cell growth under high-glucose culture conditions and to determine the possible mechanisms involved. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the expression levels of miRNAs in Min-6 pancreatic β cells cultured in high-glucose medium, which revealed that miR-433 was significantly downregulated. Results from in vitro Cell Counting Kit-8, colony formation and flow cytometry analyses indicated that overexpression of miR-433 may enhance cell viability and proliferation by promoting cell cycle progression and suppressing apoptosis. Furthermore, bioinformatics prediction and luciferase analysis demonstrated that miR-433 was able to inhibit the expression of cyclooxygenase 2 (COX2) through targeting its 3′-UTR. Moreover, knockdown of COX2 expression alleviated the inhibition of cell growth induced by high glucose, similar to overexpression of miR-433. In conclusion, the present results suggested that miR-433 may protect pancreatic β cells cultured in high glucose, which suggests that miR-433 may have beneficial effects in preventing and treating DM.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
31
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
32
|
Geismann C, Grohmann F, Dreher A, Häsler R, Rosenstiel P, Legler K, Hauser C, Egberts JH, Sipos B, Schreiber S, Linkermann A, Hassan Z, Schneider G, Schäfer H, Arlt A. Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:782-796. [PMID: 28188806 DOI: 10.1016/j.bbamcr.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers. From a clinical view, the transcription factor NF-κB is of particular importance, since this pathway confers apoptosis resistance and limits drug efficacy. Whereas the role of the most abundant NF-κB subunit p65/RelA in therapeutic resistance is well documented, only little knowledge of the RelA downstream targets and their functional relevance in TRAIL mediated apoptosis in PDAC is available. In the present study TRAIL resistant and sensitive PDAC cell lines were analyzed for differentially expressed RelA target genes, to define RelA downstream targets mediating TRAIL resistance. The most upregulated target gene was then further functionally characterized. Unbiased genome-wide expression analysis demonstrated that the chemokine CCL20 represents the strongest TRAIL inducible direct RelA target gene in resistant PDAC cells. Unexpectedly, targeting CCL20 by siRNA, blocking antibodies or by downregulation of the sole CCL20 receptor CCR6 had no effect on PDAC cell death or cancer cell migration, arguing against an autocrine role of CCL20 in PDAC. However, by using an ex vivo indirect co-culture system we were able to show that CCL20 acts paracrine to recruit immune cells. Importantly, CCL20-recruited immune cells further increase TRAIL resistance of CCL20-producing PDAC cells. In conclusion, our data show a functional role of a RelA-CCL20 pathway in PDAC TRAIL resistance. We demonstrate how the therapy-induced cross-talk of cancer cells with immune cells affects treatment responses, knowledge needed to tailor novel bi-specific treatments, which target tumor cell as well as immune cells.
Collapse
Affiliation(s)
- Claudia Geismann
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Frauke Grohmann
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Anita Dreher
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, UKSH Campus Kiel, Germany
| | | | - Karen Legler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, UKSH Campus Kiel, Kiel, Germany
| | | | | | - Bence Sipos
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany; Institute of Clinical Molecular Biology, UKSH Campus Kiel, Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Zonera Hassan
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Munich, Germany
| | - Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Munich, Germany
| | - Heiner Schäfer
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany; Institute of Experimental Cancer Research, UKSH Campus Kiel, Germany
| | - Alexander Arlt
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany.
| |
Collapse
|
33
|
Oral Corticosterone Administration Reduces Insulitis but Promotes Insulin Resistance and Hyperglycemia in Male Nonobese Diabetic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:614-626. [PMID: 28061324 DOI: 10.1016/j.ajpath.2016.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Steroid-induced diabetes is the most common form of drug-induced hyperglycemia. Therefore, metabolic and immunological alterations associated with chronic oral corticosterone were investigated using male nonobese diabetic mice. Three weeks after corticosterone delivery, there was reduced sensitivity to insulin action measured by insulin tolerance test. Body composition measurements revealed increased fat mass and decreased lean mass. Overt hyperglycemia (>250 mg/dL) manifested 6 weeks after the start of glucocorticoid administration, whereas 100% of the mice receiving the vehicle control remained normoglycemic. This phenotype was fully reversed during the washout phase and readily reproducible across institutions. Relative to the vehicle control group, mice receiving corticosterone had a significant enhancement in pancreatic insulin-positive area, but a marked decrease in CD3+ cell infiltration. In addition, there were striking increases in both citrate synthase gene expression and enzymatic activity in skeletal muscle of mice in the corticosterone group relative to vehicle control. Moreover, glycogen synthase expression was greatly enhanced, consistent with elevations in muscle glycogen storage in mice receiving corticosterone. Corticosterone-induced hyperglycemia, insulin resistance, and changes in muscle gene expression were all reversed by the end of the washout phase, indicating that the metabolic alterations were not permanent. Thus, male nonobese diabetic mice allow for translational studies on the metabolic and immunological consequences of glucocorticoid-associated interventions in a mouse model with genetic susceptibility to autoimmune disease.
Collapse
|
34
|
Burke SJ, Batdorf HM, Burk DH, Noland RC, Eder AE, Boulos MS, Karlstad MD, Collier JJ. db/ db Mice Exhibit Features of Human Type 2 Diabetes That Are Not Present in Weight-Matched C57BL/6J Mice Fed a Western Diet. J Diabetes Res 2017; 2017:8503754. [PMID: 29038790 PMCID: PMC5606106 DOI: 10.1155/2017/8503754] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
To understand features of human obesity and type 2 diabetes mellitus (T2D) that can be recapitulated in the mouse, we compared C57BL/6J mice fed a Western-style diet (WD) to weight-matched genetically obese leptin receptor-deficient mice (db/db). All mice were monitored for changes in body composition, glycemia, and total body mass. To objectively compare diet-induced and genetic models of obesity, tissue analyses were conducted using mice with similar body mass. We found that adipose tissue inflammation was present in both models of obesity. In addition, distinct alterations in metabolic flexibility were evident between WD-fed mice and db/db mice. Circulating insulin levels are elevated in each model of obesity, while glucagon was increased only in the db/db mice. Although both WD-fed and db/db mice exhibited adaptive increases in islet size, the db/db mice also displayed augmented islet expression of the dedifferentiation marker Aldh1a3 and reduced nuclear presence of the transcription factor Nkx6.1. Based on the collective results put forth herein, we conclude that db/db mice capture key features of human T2D that do not occur in WD-fed C57BL/6J mice of comparable body mass.
Collapse
Affiliation(s)
- Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - David H. Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Adrianna E. Eder
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - Matthew S. Boulos
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
35
|
Ryu R, Jeong TS, Kim YJ, Choi JY, Cho SJ, Kwon EY, Jung UJ, Ji HS, Shin DH, Choi MS. Beneficial Effects of Pterocarpan-High Soybean Leaf Extract on Metabolic Syndrome in Overweight and Obese Korean Subjects: Randomized Controlled Trial. Nutrients 2016; 8:E734. [PMID: 27869712 PMCID: PMC5133118 DOI: 10.3390/nu8110734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
Abstract
Pterocarpans are known to have antifungal and anti-inflammatory properties. However, little is known about the changes in transcriptional profiles in response to a pterocarpan-high soybean leaf extract (PT). Therefore, this study investigated the effects of PT on blood glucose and lipid levels, as well as on the inflammation-related gene expression based on a peripheral blood mononuclear cells (PBMCs) mRNA sequencing analysis in Korean overweight and obese subjects with mild metabolic syndrome. The participants were randomly assigned to two groups and were administered either placebo (starch, 3 g/day) or PT (2 g/day) for 12 weeks. The PT intervention did not change body weight, body fat percentage and body mass index (BMI). However, PT significantly decreased the glycosylated hemoglobin (HbA1c), plasma glucose, free fatty acid, total cholesterol, and non-HDL cholesterol levels after 12 weeks. Furthermore, PT supplementation significantly lowered the homeostatic index of insulin resistance, as well as the plasma levels of inflammatory markers. Finally, the mRNA sequencing analysis revealed that PT downregulated genes related to immune responses. PT supplementation is beneficial for the improvement of metabolic syndrome by altering the fasting blood and plasma glucose, HbA1c, plasma lipid levels and inflammation-related gene expression in PBMCs.
Collapse
Affiliation(s)
- Ri Ryu
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Tae-Sook Jeong
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
| | - Ye Jin Kim
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Ji-Young Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Su-Jung Cho
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Hyeon-Seon Ji
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Dong-Ha Shin
- Insect Biotech Co., Ltd., Daejeon 305-811, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
36
|
Burke SJ, Karlstad MD, Eder AE, Regal KM, Lu D, Burk DH, Collier JJ. Pancreatic β-Cell production of CXCR3 ligands precedes diabetes onset. Biofactors 2016; 42:703-715. [PMID: 27325565 PMCID: PMC5177512 DOI: 10.1002/biof.1304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from immune cell-mediated reductions in function and mass of the insulin-producing β-cells within the pancreatic islets. While the initial trigger(s) that initiates the autoimmune process is unknown, there is a leukocytic infiltration that precedes islet β-cell death and dysfunction. Herein, we demonstrate that genes encoding the chemokines CXCL9, 10, and 11 are primary response genes in pancreatic β-cells and are also elevated as part of the inflammatory response in mouse, rat, and human islets. We further established that STAT1 participates in the transcriptional control of these genes in response to the pro-inflammatory cytokines IL-1β and IFN-γ. STAT1 is phosphorylated within five minutes after β-cell exposure to IFN-γ, with subsequent occupancy at proximal and distal response elements within the Cxcl9 and Cxcl11 gene promoters. This increase in STAT1 binding is coupled to the rapid appearance of chemokine transcript. Moreover, circulating levels of chemokines that activate CXCR3 are elevated in non-obese diabetic (NOD) mice, consistent with clinical findings in human diabetes. We also report herein that mice with genetic deletion of CXCR3 (receptor for ligands CXCL9, 10, and 11) exhibit a delay in diabetes development after being injected with multiple low doses of streptozotocin. Therefore, we conclude that production of CXCL9, 10, and 11 from islet β-cells controls leukocyte migration and activity into pancreatic tissue, which ultimately influences islet β-cell mass and function. © 2016 BioFactors, 42(6):703-715, 2016.
Collapse
Affiliation(s)
- Susan J. Burke
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Michael D. Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN
| | - Adrianna E. Eder
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN
| | - Kellie M. Regal
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - David H. Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, LA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
37
|
Cao T, Shao S, Li B, Jin L, Lei J, Qiao H, Wang G. Up-regulation of Interferon-inducible protein 16 contributes to psoriasis by modulating chemokine production in keratinocytes. Sci Rep 2016; 6:25381. [PMID: 27137868 PMCID: PMC4853747 DOI: 10.1038/srep25381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by epidermal hyperplasia and dermal inflammation. Keratinocyte activation is known to play a critical role in psoriasis, but the underlying mechanism remains unclear. Interferon-inducible protein 16 (IFI16), an innate immune system sensor, is reported to affect keratinocyte function. We therefore hypothesized that IFI16 promotes psoriasis by modulating keratinocyte activation. In the present study, we cinfirmed that IFI16 was overexpressed in epidermal keratinocytes of psoriasis patients. In addition, psoriasis-related cytokines, including IFN-γ, TNF-α, IL-17 and IL-22, induced IFI16 up-regulation in keratinocytes via activation of STAT3 signaling. We also observed that IFI16 activated the TBK1-NF-κB signaling, leading to the production of CXCL10 and CCL20. Importantly, knocking down p204, which is reported as the mouse orthologous of human IFI16, inhibited epidermal hyperplasia in mice with imiquimod-induced psoriasiform dermatitis. These findings indicate that IFI16 plays a critical role in the pathogenesis of psoriasis and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Tianyu Cao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liang Jin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jie Lei
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
38
|
Tsuruyama T, Hiratsuka T, Aini W, Nakamura T. STAT5A Modulates Chemokine Receptor CCR6 Expression and Enhances Pre-B Cell Growth in a CCL20-Dependent Manner. J Cell Biochem 2016; 117:2630-42. [PMID: 27018255 DOI: 10.1002/jcb.25558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/24/2016] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 5A (STAT5A) contributes to B-cell responses to cytokines through suppressor of cytokine signaling (Socs) genes in innate immunity. However, its direct roles in B-cell responses to chemokines are poorly understood. In this study, we examined the role of STAT5A in the innate immune response. We found that STAT5A upregulated the transcription of C-C motif receptor 6 (Ccr6) to induce responses to its ligand, CCL20. STAT5A transcriptional activity proceeded through binding to the interferon-γ activation site (GAS) element in the CCR6 promoter in the genome of pre-B cells. High levels of STAT5A and CCR6 increased CCL20-dependent colony growth of pre-B cells. In human B-lymphoblastic lymphoma with inflammation, STAT5A phosphorylation was correlated with CCR6 expression (P > 0.05 compared with that in cases without inflammation). In conclusion, our data supported our hypothesis that STAT5A enhanced the response of pre-B cells to CCL20 to promote their growth. J. Cell. Biochem. 117: 2630-2642, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Chemokine CCL20/genetics
- Chemokine CCL20/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Humans
- Immunoenzyme Techniques
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Mice
- Phosphorylation
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, CCR6/genetics
- Receptors, CCR6/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8397, Japan.
- Center for Anatomical, Pathological, Forensic Medical Research, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Takuya Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wulamujiang Aini
- Center for Anatomical, Pathological, Forensic Medical Research, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takuro Nakamura
- Cancer Institute, Laboratory of Carcinogenesis, Ariake 3-8021, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
39
|
Burke SJ, Stadler K, Lu D, Gleason E, Han A, Donohoe DR, Rogers RC, Hermann GE, Karlstad MD, Collier JJ. IL-1β reciprocally regulates chemokine and insulin secretion in pancreatic β-cells via NF-κB. Am J Physiol Endocrinol Metab 2015; 309:E715-26. [PMID: 26306596 PMCID: PMC4609876 DOI: 10.1152/ajpendo.00153.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023]
Abstract
Proinflammatory cytokines impact islet β-cell mass and function by altering the transcriptional activity within pancreatic β-cells, producing increases in intracellular nitric oxide abundance and the synthesis and secretion of immunomodulatory proteins such as chemokines. Herein, we report that IL-1β, a major mediator of inflammatory responses associated with diabetes development, coordinately and reciprocally regulates chemokine and insulin secretion. We discovered that NF-κB controls the increase in chemokine transcription and secretion as well as the decrease in both insulin secretion and proliferation in response to IL-1β. Nitric oxide production, which is markedly elevated in pancreatic β-cells exposed to IL-1β, is a negative regulator of both glucose-stimulated insulin secretion and glucose-induced increases in intracellular calcium levels. By contrast, the IL-1β-mediated production of the chemokines CCL2 and CCL20 was not influenced by either nitric oxide levels or glucose concentration. Instead, the synthesis and secretion of CCL2 and CCL20 in response to IL-1β were dependent on NF-κB transcriptional activity. We conclude that IL-1β-induced transcriptional reprogramming via NF-κB reciprocally regulates chemokine and insulin secretion while also negatively regulating β-cell proliferation. These findings are consistent with NF-κB as a major regulatory node controlling inflammation-associated alterations in islet β-cell function and mass.
Collapse
Affiliation(s)
- Susan J Burke
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Krisztian Stadler
- Laboratory of Oxidative Stress and Disease, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Danhong Lu
- Duke Molecular Physiology Institute, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Anna Han
- Department of Nutrition, University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Richard C Rogers
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Gerlinda E Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana;
| |
Collapse
|
40
|
Transcriptional regulation of chemokine genes: a link to pancreatic islet inflammation? Biomolecules 2015; 5:1020-34. [PMID: 26018641 PMCID: PMC4496708 DOI: 10.3390/biom5021020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Enhanced expression of chemotactic cytokines (aka chemokines) within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.
Collapse
|