1
|
Che X, Zhao Y, Xu Z, Hu Y, Ren A, Wu C, Yang J. Unlocking the Potential of l-α-Glycerylphosphorylcholine: From Metabolic Pathways to Therapeutic Applications. Nutr Rev 2025:nuaf008. [PMID: 40036805 DOI: 10.1093/nutrit/nuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
l-α-Glycerylphosphorylcholine (GPC), also known as choline alphoscerate or α-glycerophosphorylcholine, serves as both a pharmaceutical product and a dietary supplement. Through its metabolic pathways, GPC acts as the precursor not only of choline and acetylcholine but also of various phospholipids. Extensive preclinical and clinical evidence demonstrates that GPC effectively alleviates cognitive impairment associated with Alzheimer's disease, vascular dementia, cerebral ischemia, stress, and epilepsy, among other conditions. Additionally, GPC has beneficial effects on such conditions and measures as ischemic/hypoxic conditions, ionizing radiation-induced damage, exercise performance, growth hormone release, and liver damage. As well as facilitating cholinergic neurotransmission, evidence also indicates GPC, among other activities, also can promote γ-aminobutyric acid release, enhance protein kinase C activity, facilitate hippocampal neurogenesis, upregulate neurotrophic factors, and inhibit inflammation. In preclinical studies, results indicate that GPC is not genotoxic in vitro or in vivo. Extensive human studies indicate GPC causes no severe adverse effects. Possible risks of atherosclerosis and stroke await necessary validation. In this review, the GPC-related metabolic pathways, pharmacological effects, mechanisms of action, and safety evaluation are discussed with the aim of providing a comprehensive understanding of GPC.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongtian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aoxin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Kambli L, Raut D, Bhatt LK. Sulfamethizole Attenuates Pentylenetetrazole-Induced Seizures in Mice via mTOR Inhibition. Drug Dev Res 2025; 86:e70039. [PMID: 39723688 DOI: 10.1002/ddr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Epilepsy affects at least 1% of the global population of all socioeconomic backgrounds. Data obtained from previous studies suggest the role of mTOR signaling in epileptogenesis. The present study aimed to investigate the hypothesis that mTOR inhibitor sulfamethizole might produce antiepileptic effects in pentylenetetrazole (PTZ)-induced kindling seizures in mice. For induction of kindling, mice were administered 40 mg/kg PTZ on alternate days for 13 days. The severity of kindling was analyzed using a seizure intensity score. Rotarod performance, actophotometer, and chimney tests were performed to check muscle coordination and locomotor functions. mTOR and IL-6 levels were measured in the brain homogenate. Histological analyses were done using hematoxylin-eosin and cresyl violet stains. Sulfamethizole was administered daily at 10 and 50 mg/kg doses. PTZ administration resulted in kindling seizures in the PTZ-veh group. In addition, mice from the PTZ-veh group showed decreased fall time in rotarod performance, reduced locomotor activity, and failed chimney tests. mTOR and IL-6 levels were also increased in the brain, along with neuronal degeneration and a decreased layer of neuronal cells in the hippocampus. Treatment with sulfamethizole at 50 mg/kg significantly ameliorated seizure intensity score, seizure latency and duration, muscle coordination, and locomotor functions compared to the PTZ-veh group. It also downregulated brain mTOR and IL-6 expression significantly. In conclusion, sulfamethizole showed antiepileptic activity against PTZ-induced kindling seizure in mice via mTOR inhibition.
Collapse
Affiliation(s)
- Lazari Kambli
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Dezaree Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Wills C, Watts K, Houseman A, Maughan TS, Fisher D, Al-Tassan NA, Houlston RS, Escott-Price V, Cheadle JP. Relationship between inherited genetic variation and survival from colorectal cancer stratified by tumour location. Sci Rep 2025; 15:2423. [PMID: 39827162 PMCID: PMC11742712 DOI: 10.1038/s41598-024-77870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/25/2024] [Indexed: 01/22/2025] Open
Abstract
The location of a patient's colorectal cancer (CRC) influences their outcome but inherited factors may also be involved. We studied 1899 patients with advanced CRC (514 had proximal colonic, 493 distal colonic and 892 rectal tumours) and carried out genome-wide association studies for survival. Single nucleotide polymorphisms (SNPs) suggestive of association (P < 1.0 × 10-5) were tested for replication in 5078 CRC patients from the UK Biobank. We investigated the relationship between Phosphatidylinositol 4-Kinase Type 2 Beta (PI4K2B) expression in colorectal tumours and survival in 597 patients from The Human Protein Atlas (THPA). We also analysed 3 SNPs previously associated with survival by anatomical site. We found that SNPs at 54 independent loci were suggestive of an association with survival when stratified by tumour location. rs76011559 replicated in patients with proximal tumours (COIN, COIN-B and UK Biobank combined Hazard Ratio [HR] = 1.53, 95% Confidence Intervals [CI] = 1.19-1.86, P = 7.5 × 10-7) and rs12273047 replicated in patients with rectal tumours (combined HR = 1.27, 95% CI = 1.09-1.46, P = 4.1 × 10-7). In gene analyses, PI4K2B associated with survival in patients with distal cancers (P = 2.1 × 10-6) and increased PI4K2B expression in colorectal tumours was associated with improved survival (P = 9.6 × 10-5). No previously associated SNPs were replicated. Our data identify novel loci associated with survival when stratified by tumour location.
Collapse
Affiliation(s)
- Christopher Wills
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Katie Watts
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Amy Houseman
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - David Fisher
- MRC Clinical Trials Unit, University College of London, 125 Kingsway, London, WC2B 6NH, UK
| | - Nada A Al-Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jeremy P Cheadle
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
Pelosi AC, Silva AAR, Fernandes AMAP, Scariot PPM, Oliveira MSP, Porcari AM, Priolli DG, Messias LHD. Metabolomics of 3D cell co-culture reveals alterations in energy metabolism at the cross-talk of colorectal cancer-adipocytes. Front Med (Lausanne) 2024; 11:1436866. [PMID: 39421865 PMCID: PMC11484090 DOI: 10.3389/fmed.2024.1436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most incident and the second most lethal malignant tumor. Despite the recognized association between obesity and CRC, further clarification is necessary regarding the lipids that are overexpressed during the development of CRC. In this scenario, the combination of metabolomics and a three-dimensional (3D) co-culture model involving CRC tumor cells and lipids can enhance the knowledge of energy metabolism modifications at the cross-talk between colorectal cancer and adipocytes. This study aimed to screen potential metabolites in the three dimensional (3D) co-culture of CRC and adipocytes by investigating the metabolome composition of this co-culture released into the extracellular space, which is known as the secretome. Methods Pre-adipocyte cells (3T3-L1), human colon carcinoma (HT-29), and the 3D co-culture (3T3-L1 + HT-29) were cultured for the secretome obtention. Then, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was employed to analyze the metabolomics of each secretome. Results Overall, 3.731 molecules were detected independent of the cell culture. When comparing the three cultures, 105 molecules presented a statistically significant difference in abundance between groups. Among these molecules, 16 were identified, with a particular emphasis on six lipids (PG 20:0, octadecenal, 3-Hydroxytetracosanoyl-CoA, 9,10-dihydroxy-octadecenoic acid, palmitoleic acid, and PA 18:4) and one amino acid derivative (acetylglutamic acid), which presented significant scores during the partial least-squares discriminant analysis (PLS-DA). Discussion Although it is too early to determine the possible impact of such molecules in a CRC microenvironment, these results open new avenues for further studies on the energy metabolism at the cross-talk of colorectal cancer adipocytes.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Anna Maria Alves Piloto Fernandes
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Manoela Stahl Parisotto Oliveira
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
5
|
Swaroop V, Ozkan E, Herrmann L, Thurman A, Kopasz-Gemmen O, Kunamneni A, Inoki K. mTORC1 signaling and diabetic kidney disease. Diabetol Int 2024; 15:707-718. [PMID: 39469564 PMCID: PMC11512951 DOI: 10.1007/s13340-024-00738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
Diabetic kidney disease (DKD) represents the most lethal complication in both type 1 and type 2 diabetes. The disease progresses without obvious symptoms and is often refractory when apparent symptoms have emerged. Although the molecular mechanisms underlying the onset/progression of DKD have been extensively studied, only a few effective therapies are currently available. Pathogenesis of DKD involves multifaced events caused by diabetes, which include alterations of metabolisms, signals, and hemodynamics. While the considerable efficacy of sodium/glucose cotransporter-2 (SGLT2) inhibitors or angiotensin II receptor blockers (ARBs) for DKD has been recognized, the ever-increasing number of patients with diabetes and DKD warrants additional practical therapeutic approaches that prevent DKD from diabetes. One plausible but promising target is the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, which senses cellular nutrients to control various anabolic and catabolic processes. This review introduces the current understanding of the mTOR signaling pathway and its roles in the development of DKD and other chronic kidney diseases (CKDs), and discusses potential therapeutic approaches targeting this pathway for the future treatment of DKD.
Collapse
Affiliation(s)
- Vinamra Swaroop
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Eden Ozkan
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Lydia Herrmann
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | | | | | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
6
|
Lim SH, Lee H, Lee HJ, Kim K, Choi J, Han JM, Min DS. PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways. Exp Mol Med 2024; 56:1479-1487. [PMID: 38945955 PMCID: PMC11297275 DOI: 10.1038/s12276-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance. Among the aberrantly activated pathways, the PI3K-Akt/Wnt/β-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance. Crosstalk involving the PLD and Wnt/β-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers. Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/β-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance.
Collapse
Affiliation(s)
- Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kuglae Kim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
7
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
9
|
Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Tumor-associated macrophage (TAM)-secreted CCL22 confers cisplatin resistance of esophageal squamous cell carcinoma (ESCC) cells via regulating the activity of diacylglycerol kinase α (DGKα)/NOX4 axis. Drug Resist Updat 2024; 73:101055. [PMID: 38387281 DOI: 10.1016/j.drup.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China; Soochow University Cancer Institute, Suzhou 215000, China.
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China; Soochow University Cancer Institute, Suzhou 215000, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
10
|
Dorado E, Doria ML, Nagelkerke A, McKenzie JS, Maneta‐Stavrakaki S, Whittaker TE, Nicholson JK, Coombes RC, Stevens MM, Takats Z. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J Extracell Vesicles 2024; 13:e12419. [PMID: 38443328 PMCID: PMC10914699 DOI: 10.1002/jev2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communication in cancer, from development to metastasis. EV-based liquid biopsy is a promising strategy for cancer diagnosis as EVs can be found in cancer patients' body fluids. In this study, the lipid composition of breast cancer-derived EVs was studied as well as the potential of blood plasma EVs for the identification of lipid biomarkers for breast cancer detection. Initially, an untargeted lipidomic analysis was carried out for a panel of cancerous and non-cancerous mammary epithelial cells and their secreted EVs. We found that breast cancer-derived EVs are enriched in sphingolipids and glycerophospholipids compared to their parental cells. The initial in vitro study showed that EVs and their parental cells can be correctly classified (100% accuracy) between cancerous and non-cancerous, as well as into their respective breast cancer subtypes, based on their lipid composition. Subsequently, an untargeted lipidomic analysis was carried out for blood plasma EVs from women diagnosed with breast cancer (primary or progressive metastatic breast cancer) as well as healthy women. Correspondingly, when blood plasma EVs were analysed, breast cancer patients and healthy women were correctly classified with an overall accuracy of 93.1%, based on the EVs' lipid composition. Similarly, the analysis of patients with primary breast cancer and healthy women showed an overall accuracy of 95% for their correct classification. Furthermore, primary and metastatic breast cancers were correctly classified with an overall accuracy of 89.5%. This reveals that the blood plasma EVs' lipids may be a promising source of biomarkers for detection of breast cancer. Additionally, this study demonstrates the usefulness of untargeted lipidomics in the study of EV lipid composition and EV-associated biomarker discovery studies. This is a proof-of-concept study and a starting point for further analysis on the identification of EV-based biomarkers for breast cancer.
Collapse
Affiliation(s)
- Erika Dorado
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Maria Luisa Doria
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Anika Nagelkerke
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - James S. McKenzie
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Stefania Maneta‐Stavrakaki
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Thomas E. Whittaker
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Jeremy K. Nicholson
- Institute of Global Health InnovationImperial College LondonLondonUnited Kingdom
| | - Raoul Charles Coombes
- Faculty of Medicine, Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
| | - Molly M. Stevens
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
- PRISM Inserm U1192University of LilleLilleFrance
- Deparment of ImmunomedicineUniversity of RegensburgRegensburgGermany
| |
Collapse
|
11
|
Liu BW, Sun N, Lin H, Zhou XJ, Ma HY, Wang X, Cao XC, Yu Y. The p53/ZEB1-PLD3 feedback loop regulates cell proliferation in breast cancer. Cell Death Dis 2023; 14:751. [PMID: 37978168 PMCID: PMC10656518 DOI: 10.1038/s41419-023-06271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer is the most prevalent cancer globally, endangering women's physical and mental health. Phospholipase D3 (PLD3) belongs to the phosphodiesterase family (PLD). PLD3 is related to insulin-mediated phosphorylation of the AKT pathway, suggesting that it may play a role in the occurrence and development of malignant tumors. This study may further explore the molecular mechanism of PLD3 inhibiting breast cancer cell proliferation. In this study, we demonstrated that PLD3 and miR-6796 are co-expressed in breast cancer. PLD3 can bind with CDK1 and inhibit its expression, leading to mitotic arrest and inhibiting breast cancer proliferation. Wild-type p53 regulates PLD3 and miR-6796 expression by competitively binding to the PLD3 promoter with ZEB1. DNMT3B, as the target gene of miR-6796, is recruited into the PLD3 promoter by combining with ZEB1 to regulate the DNA methylation of the PLD3 promoter and ultimately affect PLD3 and miR-6796 expression. In conclusion, we revealed the role and molecular mechanism of PLD3 and its embedded miR-6796 in breast cancer proliferation, providing clues and a theoretical foundation for future research and development of therapeutic targets and prognostic markers for breast cancer.
Collapse
Affiliation(s)
- Bo-Wen Liu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ning Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thyroid and Breast Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hui Lin
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, 317099, China
| | - Xue-Jie Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hai-Yan Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
12
|
Zhao H, Brånalt J, Perry M, Tyrchan C. The Role of Allylic Strain for Conformational Control in Medicinal Chemistry. J Med Chem 2023. [PMID: 37285219 DOI: 10.1021/acs.jmedchem.3c00446] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is axiomatic in medicinal chemistry that optimization of the potency of a small molecule at a macromolecular target requires complementarity between the ligand and target. In order to minimize the conformational penalty on binding, both enthalpically and entropically, it is therefore preferred to have the ligand preorganized in the bound conformation. In this Perspective, we highlight the role of allylic strain in controlling conformational preferences. Allylic strain was originally described for carbon-based allylic systems, but the same principles apply to other types of structure with sp2 or pseudo-sp2 arrangements. These systems include benzylic (including heteroaryl methyl) positions, amides, N-aryl groups, aryl ethers, and nucleotides. We have derived torsion profiles from small molecule X-ray structures for these systems. Through multiple examples, we show how these effects have been applied in drug discovery and how they can be used prospectively to influence conformation in the design process.
Collapse
Affiliation(s)
- Hongtao Zhao
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Jonas Brånalt
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Matthew Perry
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| |
Collapse
|
13
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
14
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
16
|
Rabow Z, Laubach K, Kong X, Shen T, Mohibi S, Zhang J, Fiehn O, Chen X. p73α1, an Isoform of the p73 Tumor Suppressor, Modulates Lipid Metabolism and Cancer Cell Growth via Stearoyl-CoA Desaturase-1. Cells 2022; 11:2516. [PMID: 36010592 PMCID: PMC9406568 DOI: 10.3390/cells11162516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/26/2023] Open
Abstract
Altered lipid metabolism is a hallmark of cancer. p73, a p53 family member, regulates cellular processes and is expressed as multiple isoforms. However, the role of p73 in regulating lipid metabolism is not well-characterized. Previously, we found that loss of p73 exon 12 (E12) leads to an isoform switch from p73α to p73α1, the latter of which has strong tumor suppressive activity. In this study, comprehensive untargeted metabolomics was performed to determine whether p73α1 alters lipid metabolism in non-small cell lung carcinoma cells. RNA-seq and molecular biology approaches were combined to identify lipid metabolism genes altered upon loss of E12 and identify a direct target of p73α1. We found that loss of E12 leads to decreased levels of phosphatidylcholines, and this was due to decreased expression of genes involved in phosphatidylcholine synthesis. Additionally, we found that E12-knockout cells had increased levels of phosphatidylcholines containing saturated fatty acids (FAs) and decreased levels of phosphatidylcholines containing monounsaturated fatty acids (MUFAs). We then found that p73α1 inhibits cancer cell viability through direct transcriptional suppression of Stearoyl-CoA Desaturase-1 (SCD1), which converts saturated FAs to MUFAs. Finally, we showed that p73α1-mediated suppression of SCD1 leads to increased ratios of saturated FAs to MUFAs.
Collapse
Affiliation(s)
- Zachary Rabow
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Kyra Laubach
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tong Shen
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Shadyro O, Sosnovskaya A, Edimecheva I, Ihnatovich L, Dubovik B, Krasny S, Tzerkovsky D, Protopovich E. In Vivo Antitumoral Effects of Linseed Oil and Its Combination With Doxorubicin. Front Pharmacol 2022; 13:882197. [PMID: 35800445 PMCID: PMC9254224 DOI: 10.3389/fphar.2022.882197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Linseed oil (LO) is known for its exceptional nutritional value due to the high content of alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid; its anticarcinogenic effect has been established in several experimental and epidemiological studies. As an adjuvant of chemotherapeutic agents, LO and other ALA-rich vegetable oils have been studied in only a handful of studies at the experimental level. However, the efficacy of antitumoral therapy using doxorubicin (Dox) in combination with ALA and ALA-rich substrates has not yet been investigated. In this work, the antitumor activity of LO in a wide dose range was studied with monotherapy and combined with Dox in animal models with Pliss lymphosarcoma (PLS) and Lewis lung adenocarcinoma (LLC). It was founded the daily oral administration of LO (1, 3, and 10 ml per 1 kg) to rats (PLS) and 6 ml/kg to mice (LLC) for 11–12 days from 7 days after subcutaneous transplantation of tumors has a stable statistically significant effect on the dynamics of tumor growth, reducing the intensity of tumor growth and increasing the frequency of complete tumor regressions (CR) compared with the control. LO showed high antimetastatic activity in the LLC model. Furthermore, LO at a dose of 3 ml/kg potentiates the antitumor effect of Dox in the PLS model, reducing the volume of tumors at the end of treatment by 2.0 times (p = 0.013), the value of the tumor growth index by 1.6 times (p < 0.03) and increasing the frequency of CR 60 days after the start of therapy by 3.5 times (p = 0.019) compared with the use of Dox alone. The combination of Dox and LO or fish oil allows growing efficiency therapy of LLC in comparison with Dox alone, increasing the frequency of CR to 73.68% and 94.4%, respectively, and reducing the frequency of metastasis to zero.
Collapse
Affiliation(s)
- Oleg Shadyro
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
- *Correspondence: Oleg Shadyro,
| | - Anna Sosnovskaya
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Irina Edimecheva
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Lana Ihnatovich
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
| | - Boris Dubovik
- Department of Pharmacology, Belarusian State Medical University, Minsk, Belarus
| | - Sergei Krasny
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Dmitry Tzerkovsky
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Egor Protopovich
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| |
Collapse
|
18
|
Abstract
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
Collapse
Affiliation(s)
- Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: Nikos Koundouros, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: John Blenis, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| |
Collapse
|
19
|
Yao S, Peng S, Wang X. Phospholipase Dε interacts with autophagy-related protein 8 and promotes autophagy in Arabidopsis response to nitrogen deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1519-1534. [PMID: 34951493 DOI: 10.1111/tpj.15649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Shuming Peng
- College of Environment and Ecology, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
20
|
DGKZ promotes TGFβ signaling pathway and metastasis in triple-negative breast cancer by suppressing lipid raft-dependent endocytosis of TGFβR2. Cell Death Dis 2022; 13:105. [PMID: 35115500 PMCID: PMC8814002 DOI: 10.1038/s41419-022-04537-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Diacylglycerol kinase ζ (DGKZ) is a diacylglycerol kinase that metabolizes diacylglycerol to yield phosphatidic acid, and its function in breast cancer progression remains unclear. In this study, via screening of a CRISPR-Cas9 knockout library containing lipid metabolic genes, DGKZ was identified as a potential prometastatic gene. We first confirmed that high DGKZ expression correlated with tumor progression and poor prognosis in patients. Next, knockout of DGKZ in triple-negative breast cancer cell lines were found to significantly inhibit metastatic behaviors in vitro and in vivo, whereas its overexpression increased the metastatic potential of cell lines. Mechanistic studies based on RNA sequencing and bioinformatic analysis indicated that DGKZ might regulate cell metastasis by promoting epithelial–mesenchymal transition via the transforming growth factor β (TGFβ) signaling pathway. Furthermore, we found that overexpression of DGKZ activated the TGFβ/TGFβR2/Smad3 signaling pathway by inhibiting the degradation of TGFβR2 through suppression of caveolin/lipid raft-dependent endocytosis. Moreover, the caveolin/lipid raft-dependent endocytosis of TGFβR2 was regulated by the metabolite phosphatidic acid, which might alter TGFβR2 partitioning in lipid rafts and nonlipid rafts by affecting the fluidity of the plasma membrane. These findings suggested that DGKZ is a novel promoter of metastasis and that it could be a potential prognostic indicator in patients with triple-negative breast cancer.
Collapse
|
21
|
Kwon JW, Im JH, Lee KY, Yoo BC, Lee JH, Kim KH, Kim JH, Shin SH, Yoo H, Gwak HS. Different Metabolomic and Proteomic Profiles of Cerebrospinal Fluid in Ventricular and Lumbar Compartments in Relation to Leptomeningeal Metastases. Metabolites 2022; 12:80. [PMID: 35050202 PMCID: PMC8778711 DOI: 10.3390/metabo12010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022] Open
Abstract
The different molecular profiles of cerebrospinal fluid (CSF) between ventricular and lumbar compartments remain elusive, especially in the context of leptomeningeal metastasis (LM), which affects CSF flow. We evaluated CSF metabolomic and proteomic profiles based on the compartments and the diagnosis of spinal LM, proved by MRI from 20 paired ventricular and lumbar CSF samples of LM patients, including 12 spinal LM (+) samples. In metabolome analysis, 9512 low-mass ions (LMIs) were identified-7 LMIs were abundant in all lumbar versus paired ventricular CSF samples, and 3 LMIs were significantly abundant in all ventricular CSF. In comparisons between spinal LM (+) CSF and LM (-) CSF, 105 LMIs were discriminative for spinal LM (+) CSF. In proteome analysis, a total of 1536 proteins were measured. A total of 18 proteins, including complement C3, were more highly expressed in all lumbar CSF, compared with paired ventricular CSF, while 82 proteins, including coagulation factor V, were higher in the ventricular CSF. Of 37 discriminative proteins, including uteroglobin and complement component C8 gamma chain, 4 were higher in all spinal LM (+) CSF versus spinal LM (-) CSF. We further evaluated metabolic pathways associated with these discriminative proteins using the Gene Ontology database. We found that 16/17 spinal LM (+) pathways, including complement activation, were associated with lumbar discriminative proteins, whereas only 2 pathways were associated with ventricular-discriminative proteins. In conclusion, we determined that metabolite and protein profiles differed between paired lumbar and ventricular CSF samples. The protein profiles of spinal LM (+) CSF showed more similarity with the lumbar CSF than the ventricular CSF. Thus, we suggest that CSF LMIs and proteins could reflect LM disease activity and that LM-associated differences in CSF are more likely to be present in the lumbar compartment.
Collapse
Affiliation(s)
- Ji-Woong Kwon
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Ji Hye Im
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| | - Kyue-Yim Lee
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| | - Byong Chul Yoo
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
| | - Jun Hwa Lee
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
| | - Kyung-Hee Kim
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
- Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Sang Hoon Shin
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| |
Collapse
|
22
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
23
|
Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven by Acyl Chain Structure and Cholesterol. Cells 2021; 11:cells11010119. [PMID: 35011681 PMCID: PMC8750377 DOI: 10.3390/cells11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.
Collapse
|
24
|
Manigat LC, Granade ME, Taori S, Miller CA, Vass LR, Zhong XP, Harris TE, Purow BW. Loss of Diacylglycerol Kinase α Enhances Macrophage Responsiveness. Front Immunol 2021; 12:722469. [PMID: 34804012 PMCID: PMC8603347 DOI: 10.3389/fimmu.2021.722469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.
Collapse
Affiliation(s)
- Laryssa C. Manigat
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mitchell E. Granade
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suchet Taori
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Charlotte Anne Miller
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Luke R. Vass
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Thurl E. Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin W. Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms222111682. [PMID: 34769112 PMCID: PMC8584226 DOI: 10.3390/ijms222111682] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.
Collapse
|
26
|
Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA. PLoS Pathog 2021; 17:e1009414. [PMID: 33735319 PMCID: PMC8009392 DOI: 10.1371/journal.ppat.1009414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/30/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor. Vibrio cholerae is the cause of cholera, an infectious disease causing watery diarrhea that can lead to fatal dehydration. The bacteria can readily adapt to different environments, such as from its natural aquatic habitats to the human digestive system. Recently, we reported a novel V. cholerae cytotoxin, MakA that functions as a potent virulence factor in C. elegans and zebrafish. Here we identified phosphatidic acid as a lipid target for MakA interaction with mammalian cells. This interaction promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate in intoxicated cells that ultimately lead to activation of autophagy. Importantly, data from bacterial colonization in a mouse infection model suggested that MakA might act as an anti-colonization factor of V. cholerae, presumably expressed during later stage(s) of infection. MakA might be explored as a new target for diagnostics and therapeutic developments against V. cholerae infections. Our findings will contribute to further understanding of the virulence, colonization and post-infection spread of V. cholerae.
Collapse
|
27
|
Tsuji T, Morita SY, Nakamura Y, Ikeda Y, Kambe T, Terada T. Alterations in cellular and organellar phospholipid compositions of HepG2 cells during cell growth. Sci Rep 2021; 11:2731. [PMID: 33526799 PMCID: PMC7851136 DOI: 10.1038/s41598-021-81733-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The human hepatoblastoma cell line, HepG2, has been used for investigating a wide variety of physiological and pathophysiological processes. However, less information is available about the phospholipid metabolism in HepG2 cells. In the present report, to clarify the relationship between cell growth and phospholipid metabolism in HepG2 cells, we examined the phospholipid class compositions of the cells and their intracellular organelles by using enzymatic fluorometric methods. In HepG2 cells, the ratios of all phospholipid classes, but not the ratio of cholesterol, markedly changed with cell growth. Of note, depending on cell growth, the phosphatidic acid (PA) ratio increased and phosphatidylcholine (PC) ratio decreased in the nuclear membranes, the sphingomyelin (SM) ratio increased in the microsomal membranes, and the phosphatidylethanolamine (PE) ratio increased and the phosphatidylserine (PS) ratio decreased in the mitochondrial membranes. Moreover, the mRNA expression levels of enzymes related to PC, PE, PS, PA, SM and cardiolipin syntheses changed during cell growth. We suggest that the phospholipid class compositions of organellar membranes are tightly regulated by cell growth. These findings provide a basis for future investigations of cancer cell growth and lipid metabolism.
Collapse
Affiliation(s)
- Tokuji Tsuji
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Shin-ya Morita
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshinobu Nakamura
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshito Ikeda
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Taiho Kambe
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Tomohiro Terada
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
28
|
Borel M, Lollo G, Magne D, Buchet R, Brizuela L, Mebarek S. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165919. [PMID: 32800947 DOI: 10.1016/j.bbadis.2020.165919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (-40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.
Collapse
Affiliation(s)
- Mathieu Borel
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5007, LAGEPP, F-69622 Lyon, France
| | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - René Buchet
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
29
|
Huang K, Deng Y, Yuan W, Geng J, Wang G, Zou F. Phospholipase D1 Ameliorates Apoptosis in Chronic Renal Toxicity Caused by Low-Dose Cadmium Exposure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7091053. [PMID: 32337269 PMCID: PMC7150706 DOI: 10.1155/2020/7091053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022]
Abstract
Exposure to cadmium (Cd), a common heavy metal used in industry, can result in long-term chronic toxicity. It has been well characterized that kidneys are the main organs that are targeted by toxicity, which can cause apoptosis, necrosis, and atrophy of renal tubular epithelial cells. However, the molecular mechanisms associated with Cd toxicity remain unclear. In this study, the expression of renal proteins in Sprague-Dawley rats exposed to chronic Cd was analyzed with iTRAQ proteomics. Bioinformatics analysis indicated that phospholipase D1 (PLD1) was significantly underexpressed and may correlate strongly with Cd-induced chronic kidney impairment. Previous studies have shown that PLD1 promotes cell proliferation and inhibits apoptosis, indicating that PLD1 may be implicated in the pathogenesis of kidney injury induced by Cd. Studies in vivo and in vitro all demonstrate that the mRNA and protein levels of PLD1 decrease significantly both in kidney tissue and in proximal tubular cell lines exposed to Cd. Overexpression of PLD1 and its downstream product PA could ameliorate Cd-induced apoptosis. Moreover, we identified that miR-122-5p was a regulatory miRNA of PLD1. miR-122-5p was overexpressed after Cd exposure and promoted cell apoptosis by downregulating PLD1 through binding the 3'UTR of the locus at 1761-1784 nt. In conclusion, our results indicated that PLD1 and its downstream PA were strongly implicated in Cd-induced chronic kidney impairment and could be a novel player in the defense against Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ke Huang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
- The First People's Hospital of Zhaoqing City, Zhaoqing 526000, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenya Yuan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jian Geng
- Department of Pathology, Southern Medical University, Guangzhou 510515, China
| | - Guanghai Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Koutoulogenis GS, Kokotou MG, Hayashi D, Mouchlis VD, Dennis EA, Kokotos G. 2-Oxoester Phospholipase A 2 Inhibitors with Enhanced Metabolic Stability. Biomolecules 2020; 10:biom10030491. [PMID: 32213911 PMCID: PMC7175278 DOI: 10.3390/biom10030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
2-Oxoesters constitute an important class of potent and selective inhibitors of human cytosolic phospholipase A2 (GIVA cPLA2) combining an aromatic scaffold or a long aliphatic chain with a short aliphatic chain containing a free carboxylic acid. Although highly potent 2-oxoester inhibitors of GIVA cPLA2 have been developed, their rapid degradation in human plasma limits their pharmaceutical utility. In an effort to address this problem, we designed and synthesized two new 2-oxoesters introducing a methyl group either on the α-carbon to the oxoester functionality or on the carbon carrying the ester oxygen. We studied the in vitro plasma stability of both derivatives and their in vitro inhibitory activity on GIVA cPLA2. Both derivatives exhibited higher plasma stability in comparison with the unsubstituted compound and both derivatives inhibited GIVA cPLA2, however to different degrees. The 2-oxoester containing a methyl group on the α-carbon atom to the oxoester functionality exhibits enhancement of the metabolic stability and retains considerable inhibitory potency.
Collapse
Affiliation(s)
- Giorgos S. Koutoulogenis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; (G.S.K.); (M.G.K.)
| | - Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; (G.S.K.); (M.G.K.)
| | - Daiki Hayashi
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA; (D.H.); (V.D.M.)
| | - Varnavas D. Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA; (D.H.); (V.D.M.)
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA; (D.H.); (V.D.M.)
- Correspondence: (E.A.D.); (G.K.); Tel.: +1-858-534-3055 (E.A.D.); +30-210-7274462 (G.K.)
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; (G.S.K.); (M.G.K.)
- Correspondence: (E.A.D.); (G.K.); Tel.: +1-858-534-3055 (E.A.D.); +30-210-7274462 (G.K.)
| |
Collapse
|
31
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
SCD1 activity promotes cell migration via a PLD-mTOR pathway in the MDA-MB-231 triple-negative breast cancer cell line. Breast Cancer 2020; 27:594-606. [PMID: 31993937 DOI: 10.1007/s12282-020-01053-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breast cancer is the most common cancer in women. Despite high survival rates in Western countries, treatments are less effective in metastatic cases and triple-negative breast cancer (TNBC) patient survival is the shortest across breast cancer subtypes. High expression levels of stearoyl-CoA desaturase-1 (SCD1) have been reported in breast cancer. The SCD1 enzyme catalyzes the formation of oleic acid (OA), a lipid stimulating the migration of metastatic breast cancer cells. Phospholipase activity is also implicated in breast cancer metastasis, notably phospholipase D (PLD). METHODS Kaplan-Meier survival plots generated from gene expression databases were used to analyze the involvement of SCD1 and PLD in several cancer subtypes. SCD1 enzymatic activity was modulated with a pharmaceutical inhibitor or by OA treatment (to mimic SCD1 over-activity) in three breast cancer cell lines: TNBC-derived MDA-MB-231 cells as well as non-TNBC MCF-7 and T47D cells. Cell morphology and migration properties were characterized by various complementary methods. RESULTS Our survival analyses suggest that SCD1 and PLD2 expression in the primary tumor are both associated to metastasis-related morbid outcomes in breast cancer patients. We show that modulation of SCD1 activity is associated with the modification of TNBC cell migration properties, including changes in speed, direction and cell morphology. Cell migration properties are regulated by SCD1 activity through a PLD-mTOR/p70S6K signaling pathway. These effects are not observed in non-TNBC cell lines. CONCLUSION Our results establish a key role for the lipid desaturase SCD1 and delineate an OA-PLD-mTOR/p70S6K signaling pathway in TNBC-derived MDA-MB-231 cell migration.
Collapse
|
33
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
34
|
Shadyro O, Samovich S, Edimecheva I. Free-radical and biochemical reactions involving polar part of glycerophospholipids. Free Radic Biol Med 2019; 144:6-15. [PMID: 30849488 DOI: 10.1016/j.freeradbiomed.2019.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
The review summarizes and critically discusses data on biochemical and free-radical transformations of glycerophospholipids. The results presented therein demonstrate that hydroxyl-containing glycerophospholipids, such as cardiolipin, lyso-lipids and others, can undergo fragmentation upon interaction with radical agents forming the biologically active products. Hydrolysis of glycerophospholipids catalyzed by different phospholipases was shown to yield compounds, which can be involved in the free-radical fragmentation leading to significant changes in structures of original lipids.
Collapse
Affiliation(s)
- Oleg Shadyro
- Department of Chemistry of the Belarusian State University, Nezavisimosti av., 4, 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus.
| | - Svetlana Samovich
- Department of Chemistry of the Belarusian State University, Nezavisimosti av., 4, 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus
| | - Irina Edimecheva
- Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus
| |
Collapse
|
35
|
Kim Y, Kim HS, Sohn J, Ji JD. 1,25-Dihydroxyvitamin D 3 induces human myeloid cell differentiation via the mTOR signaling pathway. Biochem Biophys Res Commun 2019; 519:909-915. [PMID: 31563324 DOI: 10.1016/j.bbrc.2019.09.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
1,25-Dihydroxyvitamin D3 or 1,25(OH)2D3 is known to play an important role in the differentiation of human myeloid cells. However, the molecular mechanism underlying the 1,25(OH)2D3-mediated differentiation of human myeloid cells is incompletely understood. Here, we report that 1,25(OH)2D3 induces differentiation of human myeloid cell lines such as U937 and THP-1 cells via the mammalian target of rapamycin (mTOR) signaling pathway. Both the expression of the differentiation marker CD14 and activation of the mTOR signaling pathway were induced by 1,25(OH)2D3 in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 and THP-1 cells. The 1,25(OH)2D3-induced expression of CD14 in PMA-differentiated U937 and THP-1 cells was prevented by mTOR inhibitors, PP242 and Torin1. The 1,25(OH)2D3-induced morphological changes as characteristics of differentiated myeloid cells were also reversed after PP242 and Torin1 treatment. Silencing of either regulatory-associated protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) in PMA-differentiated THP-1 cells with small-interfering RNA resulted in the inhibition of CD14 expression and morphological changes induced by 1,25(OH)2D3, indicating that both mTORC1 and mTORC2 were important for the differentiation of myeloid THP-1 cells. Previous studies have shown that phosphatidic acid (PA) maintains the stability of the mTOR complex. Here we found that the attenuation of PA production with 1-butanol or a PLD inhibitor prevented the 1,25(OH)2D3-induced upregulation of CD14. Taken together, our results show that 1,25(OH)2D3 enhances the differentiation of human myeloid cells through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yongjin Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Suk Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Jeongwon Sohn
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea.
| | - Jong Dae Ji
- Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
36
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
37
|
Shadyro O, Lisovskaya A. ROS-induced lipid transformations without oxygen participation. Chem Phys Lipids 2019; 221:176-183. [DOI: 10.1016/j.chemphyslip.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/18/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022]
|
38
|
Abumanhal-Masarweh H, da Silva D, Poley M, Zinger A, Goldman E, Krinsky N, Kleiner R, Shenbach G, Schroeder JE, Shklover J, Shainsky-Roitman J, Schroeder A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control Release 2019; 307:331-341. [PMID: 31238049 DOI: 10.1016/j.jconrel.2019.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Lipid nanoparticles are used widely as anticancer drug and gene delivery systems. Internalizing into the target cell is a prerequisite for the proper activity of many nanoparticulate drugs. We show here, that the lipid composition of a nanoparticle affects its ability to internalize into triple-negative breast cancer cells. The lipid headgroup had the greatest effect on enhancing cellular uptake compared to other segments of the molecule. Having a receptor-targeted headgroup induced the greatest increase in cellular uptake, followed by cationic amine headgroups, both being superior to neutral (zwitterion) phosphatidylcholine or to negatively-charged headgroups. The lipid tails also affected the magnitude of cellular uptake. Longer acyl chains facilitated greater liposomal cellular uptake compared to shorter tails, 18:0 > 16:0 > 14:0. When having the same lipid tail length, unsaturated lipids were superior to saturated ones, 18:1 > 18:0. Interestingly, liposomes composed of phospholipids having 14:0 or 12:0-carbon-long-tails, such as DMPC and DLPC, decreased cell viability in a concertation dependent manner, due to a destabilizing effect these lipids had on the cancer cell membrane. Contrarily, liposomes composed of phospholipids having longer carbon tails (16:0 and 18:0), such as DPPC and HSPC, enhanced cancer cell proliferation. This effect is attributed to the integration of the exogenous liposomal lipids into the cancer-cell membrane, supporting the proliferation process. Cholesterol is a common lipid additive in nanoscale formulations, rigidifying the membrane and stabilizing its structure. Liposomes composed of DMPC (14:0) showed increased cellular uptake when enriched with cholesterol, both by endocytosis and by fusion. Contrarily, the effect of cholesterol on HSPC (18:0) liposomal uptake was minimal. Furthermore, the concentration of nanoparticles in solution affected their cellular uptake. The higher the concentration of nanoparticles the greater the absolute number of nanoparticles taken up per cell. However, the efficiency of nanoparticle uptake, i.e. the percent of nanoparticles taken up by cells, decreased as the concentration of nanoparticles increased. This study demonstrates that tuning the lipid composition and concentration of nanoscale drug delivery systems can be leveraged to modulate their cellular uptake.
Collapse
Affiliation(s)
- Hanan Abumanhal-Masarweh
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, The Norman Seiden Multidisciplinary Graduate program, Technion-Israel Institute of Technology, Haifa 3200, Israel
| | - Dana da Silva
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Evgenya Goldman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ron Kleiner
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Shenbach
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Josh E Schroeder
- Department of Orthopedic Surgery, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
39
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
40
|
Lin SS, Liu YW. Mechanical Stretch Induces mTOR Recruitment and Activation at the Phosphatidic Acid-Enriched Macropinosome in Muscle Cell. Front Cell Dev Biol 2019; 7:78. [PMID: 31139627 PMCID: PMC6518962 DOI: 10.3389/fcell.2019.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved kinase which assembles a signaling network that integrates diverse biochemical and mechanical cues to coordinate cell growth and proliferation. Mechanical load has been well-appreciated to induce mTOR activation that leads to skeletal muscle growth through phospholipase D (PLD) activity and phosphatidic acid (PA) production. While PA produced by PLD1 is critical for mTOR activation upon mitogenic stimulation at the lysosome, it is unclear where PA is produced upon mechanical stimulation in skeletal muscle. Here we report that membrane tension fluctuation induces the formation of PA-enriched macropinosome in mouse C2C12-derived myotube by either mechanical stretch or osmotic shock. The tension oscillation-induced PA is accumulated at the membrane of macropinosome, not the lysosome. Furthermore, mTOR is recruited to the PA-enriched macropinosome, and its downstream signaling is activated. Our findings reveal the underpinning of mechanical activation of mTOR signaling, and more importantly, the stretch-induced PA-macropinosome as a new platform for mTOR activation.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Samovich SN, Sladkova AA, Sverdlov RL, Edimecheva IP, Shadyro OI. Effects of quinones and nitroazoles on free-radical fragmentation of glycerol-1-phosphate and 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol. Chem Phys Lipids 2019; 222:8-14. [PMID: 31005671 DOI: 10.1016/j.chemphyslip.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 01/22/2023]
Abstract
Effects of quinones and azoles on the formation of steady-state radiolysis products in aqueous solutions of glycerol-1-phosphate and aqueous dispersions of 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol has been investigated. The data obtained by LC-MS-ESI and spectrophotometric measurements shows that the compounds having quinoid structures, including the antitumor agent doxorubicin, and azoles having nitro groups effectively inhibit free-radical fragmentation of glycerol-1-phosphate and 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol, decreasing the radiation-chemical yields of either inorganic phosphate or phosphatidic acid respectively. The observed effects of blocking free-radical processes are believed to be related to the ability of the tested compounds to oxidize α-hydroxyl-containing carbon-centered radicals of starting substrates, which give rise to fragmentation reaction. The possibility of using the discovered properties of quinones, doxorubicin and nitroazoles to provide practical solutions in oncological radiotherapy and pathophysiology is discussed.
Collapse
Affiliation(s)
- Svetlana N Samovich
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Anastasia A Sladkova
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Roman L Sverdlov
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Irina P Edimecheva
- Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Oleg I Shadyro
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus.
| |
Collapse
|
42
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
43
|
Tanguy E, Wang Q, Moine H, Vitale N. Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology. Front Cell Neurosci 2019; 13:2. [PMID: 30728767 PMCID: PMC6351798 DOI: 10.3389/fncel.2019.00002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial. These pleiotropic cellular functions of PA, including phospholipid synthesis and homeostasis together with important signaling activity, imply that perturbations of PA metabolism could lead to serious pathological conditions. In this mini-review article, after outlining the main cellular functions of PA, we highlight the different neurological diseases that could, at least in part, be attributed to an alteration in PA synthesis and/or catabolism.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, Kuwabara Y, Nishiga M, Ide Y, Baba O, Nishi H, Nakao T, Nishino T, Nakazeki F, Koyama S, Hanada R, Randolph RR, Endo J, Kimura T, Ono K. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep 2018; 8:16749. [PMID: 30425314 PMCID: PMC6233179 DOI: 10.1038/s41598-018-35194-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Acute cardiac rupture and adverse left ventricular (LV) remodeling causing heart failure are serious complications of acute myocardial infarction (MI). While cardio-hepatic interactions have been recognized, their role in MI remains unknown. We treated cultured cardiomyocytes with conditioned media from various cell types and analyzed the media by mass spectrometry to identify α1-microglobulin (AM) as an Akt-activating hepatokine. In mouse MI model, AM protein transiently distributed in the infarct and border zones during the acute phase, reflecting infiltration of AM-bound macrophages. AM stimulation activated Akt, NFκB, and ERK signaling and enhanced inflammation as well as macrophage migration and polarization, while inhibited fibrogenesis-related mRNA expression in cultured macrophages and cardiac fibroblasts. Intramyocardial AM administration exacerbated macrophage infiltration, inflammation, and matrix metalloproteinase 9 mRNA expression in the infarct and border zones, whereas disturbed fibrotic repair, then provoked acute cardiac rupture in MI. Shotgun proteomics and lipid pull-down analysis found that AM partly binds to phosphatidic acid (PA) for its signaling and function. Furthermore, systemic delivery of a selective inhibitor of diacylglycerol kinase α-mediated PA synthesis notably reduced macrophage infiltration, inflammation, matrix metalloproteinase activity, and adverse LV remodeling in MI. Therefore, targeting AM signaling could be a novel pharmacological option to mitigate adverse LV remodeling in MI.
Collapse
Affiliation(s)
- Daihiko Hakuno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ritsuko Hanada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ruiz R Randolph
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jin Endo
- Cardiovascular Division, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
45
|
Saudemont P, Quanico J, Robin YM, Baud A, Balog J, Fatou B, Tierny D, Pascal Q, Minier K, Pottier M, Focsa C, Ziskind M, Takats Z, Salzet M, Fournier I. Real-Time Molecular Diagnosis of Tumors Using Water-Assisted Laser Desorption/Ionization Mass Spectrometry Technology. Cancer Cell 2018; 34:840-851.e4. [PMID: 30344004 DOI: 10.1016/j.ccell.2018.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/08/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022]
Abstract
Histopathological diagnosis of biopsy samples and margin assessment of surgical specimens are challenging aspects in sarcoma. Using dog patient tissues, we assessed the performance of a recently developed technology for fast ex vivo molecular lipid-based diagnosis of sarcomas. The instrument is based on mass spectrometry (MS) molecular analysis through a laser microprobe operating under ambient conditions using excitation of endogenous water molecules. Classification models based on cancer/normal/necrotic, tumor grade, and subtypes showed a minimum of 97.63% correct classification. Specific markers of normal, cancer, and necrotic regions were identified by tandem MS and validated by MS imaging. Real-time detection capabilities were demonstrated by ex vivo analysis with direct interrogation of classification models.
Collapse
Affiliation(s)
- Philippe Saudemont
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; SATT-Nord, Immeuble Central Gare, 4(ème) étage, 25 Avenue Charles St Venant, 59800 Lille, France
| | - Jusal Quanico
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Yves-Marie Robin
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, 3 Rue Frédéric Combemale, 59020 Lille Cedex, France
| | - Anna Baud
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France
| | - Julia Balog
- European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, Praed Street, London, NW1 1SQ, UK
| | - Benoit Fatou
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France
| | - Dominique Tierny
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 Rue du Dr Yersin, 59120 Loos, France
| | - Quentin Pascal
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 Rue du Dr Yersin, 59120 Loos, France
| | - Kevin Minier
- Oncovet, Avenue Paul Langevin, 59650 Villeneuve d'Ascq, France
| | - Mélissa Pottier
- Oncovet, Avenue Paul Langevin, 59650 Villeneuve d'Ascq, France
| | - Cristian Focsa
- Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Michael Ziskind
- Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Zoltan Takats
- European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, Praed Street, London, NW1 1SQ, UK.
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France.
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
46
|
Urbahn MA, Kaup SC, Reusswig F, Krüger I, Spelleken M, Jurk K, Klier M, Lang PA, Elvers M. Phospholipase D1 regulation of TNF-alpha protects against responses to LPS. Sci Rep 2018; 8:10006. [PMID: 29968773 PMCID: PMC6030188 DOI: 10.1038/s41598-018-28331-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder with organ dysfunction and represents the leading cause of mortality in non-coronary intensive care units. A key player in septic shock is Tumor Necrosis Factor-alpha (TNF-α). Phospholipase (PL)D1 is involved in the regulation of TNF-α upon ischemia/reperfusion injury in mice. In this study we analyzed the impact of PLD1 in the regulation of TNF-α, inflammation and organ damage in experimental sepsis. PLD1 deficiency increased survival of mice and decreased vital organ damage after LPS injections. Decreased TNF-α plasma levels and reduced migration of leukocytes and platelets into lungs was associated with reduced apoptosis in lung and liver tissue of PLD1 deficient mice. PLD1 deficient platelets contribute to preserved outcome after LPS-induced sepsis because platelets exhibit an integrin activation defect suggesting reduced platelet activation in PLD1 deficient mice. Furthermore, reduced thrombin generation of PLD1 deficient platelets might be responsible for reduced fibrin formation in lungs suggesting reduced disseminated intravascular coagulation (DIC). The analysis of Pld1fl/fl-PF4-Cre mice revealed that migration of neutrophils and cell apoptosis in septic animals is not due to platelet-mediated processes. The present study has identified PLD1 as a regulator of innate immunity that may be a new target to modulate sepsis.
Collapse
Affiliation(s)
- Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Sonja Charlotte Kaup
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Friedrich Reusswig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
47
|
Hofbauer HF, Gecht M, Fischer SC, Seybert A, Frangakis AS, Stelzer EHK, Covino R, Hummer G, Ernst R. The molecular recognition of phosphatidic acid by an amphipathic helix in Opi1. J Cell Biol 2018; 217:3109-3126. [PMID: 29941475 PMCID: PMC6122994 DOI: 10.1083/jcb.201802027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023] Open
Abstract
Phosphatidic acid (PA) lipids have a dual role as building blocks for membrane biogenesis and as active signaling molecules. This study establishes the molecular details of selective PA recognition by the transcriptional regulator Opi1 from baker’s yeast. A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important intermediate at the branch point of these pathways and is continuously monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. In this study, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for selective binding of PA over phosphatidylserine (PS). The insertion of the AH into the membrane core renders Opi1 sensitive to the lipid acyl chain composition and provides a means to adjust membrane biogenesis. By rational design of the AH, we tune the membrane-binding properties of Opi1 and control its responsiveness in vivo. Using extensive molecular dynamics simulations, we identify two PA-selective three-finger grips that tightly bind the PA phosphate headgroup while interacting less intimately with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
Collapse
Affiliation(s)
- Harald F Hofbauer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany .,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| | - Michael Gecht
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sabine C Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Ernst
- Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
48
|
Utter M, Chakraborty S, Goren L, Feuser L, Zhu YS, Foster DA. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes. Cancer Lett 2018; 423:28-35. [PMID: 29524555 PMCID: PMC5901760 DOI: 10.1016/j.canlet.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination.
Collapse
Affiliation(s)
- Matthew Utter
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Sohag Chakraborty
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Limor Goren
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biology Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Lucas Feuser
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA
| | - Yuan-Shan Zhu
- Department of Medicine, Weill-Cornell Medicine, New York, NY, 10065, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA; Biology Program, Graduate Center of the City University of New York, New York, NY, 10016, USA; Department of Pharmacology, Weill-Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
49
|
Guo T, Li L, Zhong Q, Rupp NJ, Charmpi K, Wong CE, Wagner U, Rueschoff JH, Jochum W, Fankhauser CD, Saba K, Poyet C, Wild PJ, Aebersold R, Beyer A. Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life Sci Alliance 2018; 1. [PMID: 30090875 PMCID: PMC6078179 DOI: 10.26508/lsa.201800042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Application of pressure cycling technology and Sequential Windowed Acquisition of all THeoretical mass spectrometry allows quantifying the degree of intra-tumor heterogeneity of protein expression in prostate tumors. The data show that protein intra-tumor heterogeneity, if not characterized, may distort protein biomarker suitability in tumor tissues. It remains unclear to what extent tumor heterogeneity impacts on protein biomarker discovery. Here, we quantified proteome intra-tissue heterogeneity (ITH) based on a multi-region analysis of prostate tissues using pressure cycling technology and Sequential Windowed Acquisition of all THeoretical fragment ion mass spectrometry. We quantified 6,873 proteins and analyzed the ITH of 3,700 proteins. The level of ITH varied depending on proteins and tissue types. Benign tissues exhibited more complex ITH patterns than malignant tissues. Spatial variability of 10 prostate biomarkers was validated by immunohistochemistry in an independent cohort (n = 83) using tissue microarrays. Prostate-specific antigen was preferentially variable in benign prostatic hyperplasia, whereas growth/differentiation factor 15 substantially varied in prostate adenocarcinomas. Furthermore, we found that DNA repair pathways exhibited a high degree of variability in tumorous tissues, which may contribute to the genetic heterogeneity of tumors. This study conceptually adds a new perspective to protein biomarker discovery: it suggests that recent technological progress should be exploited to quantify and account for spatial proteome variation to complement biomarker identification and utilization.
Collapse
Affiliation(s)
- Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland.,Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Li Li
- CECAD, University of Cologne, Cologne, Germany
| | - Qing Zhong
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Cancer Data Science Group, ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Christine E Wong
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ulrich Wagner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Jan H Rueschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Karim Saba
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Andreas Beyer
- CECAD, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
50
|
Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, El-Bahrawy MA, Speller AV, Rosini F, Kudo H, McKenzie JS, Brown R, Takáts Z, Ghaem-Maghami S. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br J Cancer 2018; 118:1349-1358. [PMID: 29670294 PMCID: PMC5959892 DOI: 10.1038/s41416-018-0048-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Survival from ovarian cancer (OC) is improved with surgery, but surgery can be complex and tumour identification, especially for borderline ovarian tumours (BOT), is challenging. The Rapid Evaporative Ionisation Mass Spectrometric (REIMS) technique reports tissue histology in real-time by analysing aerosolised tissue during electrosurgical dissection. Methods Aerosol produced during diathermy of tissues was sampled with the REIMS interface. Histological diagnosis and mass spectra featuring complex lipid species populated a reference database on which principal component, linear discriminant and leave-one-patient-out cross-validation analyses were performed. Results A total of 198 patients provided 335 tissue samples, yielding 3384 spectra. Cross-validated OC classification vs separate normal tissues was high (97·4% sensitivity, 100% specificity). BOT were readily distinguishable from OC (sensitivity 90.5%, specificity 89.7%). Validation with fresh tissue lead to excellent OC detection (100% accuracy). Histological agreement between iKnife and histopathologist was very good (kappa 0.84, P < 0.001, z = 3.3). Five predominantly phosphatidic acid (PA(36:2)) and phosphatidyl-ethanolamine (PE(34:2)) lipid species were identified as being significantly more abundant in OC compared to normal tissue or BOT (P < 0.001, q < 0.001). Conclusions The REIMS iKnife distinguishes gynaecological tissues by analysing mass-spectrometry-derived lipidomes from tissue diathermy aerosols. Rapid intra-operative gynaecological tissue diagnosis may improve surgical care when histology is unknown, leading to personalised operations tailored to the individual.
Collapse
Affiliation(s)
| | - Júlia Balog
- Imperial College, London, UK.,Waters Research Centre, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|