1
|
Zhu WG, Thomas ACQ, Wilson GM, McGlory C, Hibbert JE, Flynn CG, Sayed RKA, Paez HG, Meinhold M, Jorgenson KW, You JS, Steinert ND, Lin KH, MacInnis MJ, Coon JJ, Phillips SM, Hornberger TA. Identification of a resistance-exercise-specific signalling pathway that drives skeletal muscle growth. Nat Metab 2025:10.1038/s42255-025-01298-7. [PMID: 40374925 DOI: 10.1038/s42255-025-01298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025]
Abstract
Endurance and resistance exercise lead to distinct functional adaptations: the former increases aerobic capacity and the latter increases muscle mass. However, the signalling pathways that drive these adaptations are not well understood. Here we identify phosphorylation events that are differentially regulated by endurance and resistance exercise. Using a model of unilateral exercise in male participants and deep phosphoproteomic analyses, we find that a prolonged activation of a signalling pathway involving MKK3b/6, p38, MK2 and mTORC1 occurs specifically in response to resistance exercise. Follow-up studies in both male and female participants reveal that the resistance-exercise-induced activation of MKK3b is highly correlated with the induction of protein synthesis (R = 0.87). Additionally, we show that in mice, genetic activation of MKK3b is sufficient to induce signalling through p38, MK2 and mTORC1, along with an increase in protein synthesis and muscle fibre size. Overall, we identify core components of a signalling pathway that drives the growth-promoting effects of resistance exercise.
Collapse
Affiliation(s)
- Wenyuan G Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron C Q Thomas
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jamie E Hibbert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Corey Gk Flynn
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ramy K A Sayed
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hector G Paez
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marius Meinhold
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kent W Jorgenson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Ma YT, Li C, Shen Y, You WH, Han MX, Mu YF, Han FJ. Mechanisms of the JNK/p38 MAPK signaling pathway in drug resistance in ovarian cancer. Front Oncol 2025; 15:1533352. [PMID: 40352594 PMCID: PMC12063130 DOI: 10.3389/fonc.2025.1533352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system, and chemotherapy drug resistance is the main cause of treatment failure. The Mitogen-Activated Protein Kinases (MAPK) pathway plays a pivotal role in regulating cell proliferation, migration, and invasive capacity in response to extracellular stimuli. This review focuses on the mechanisms and therapeutic strategies related to the JNK/p38 MAPK signaling pathway in OC resistance. The JNK/p38 MAPK pathway plays a dual role in OC chemoresistance. This review examines its role in mediating OC treatment resistance by exploring the mechanisms of action of the JNK/p38 MAPK signaling pathway, particularly its involvement in several key biological processes, including apoptosis, autophagy, DNA damage response, the tumor microenvironment (TME), and drug efflux. Additionally, the review investigates the timing of activation of this pathway and its crosstalk with other signaling pathways such as PI3K/AKT and NF-κB. Targeting JNK/p38 MAPK signaling has shown promise in reversing chemoresistance, with several inhibitors and natural compounds demonstrating potential in preclinical studies. Regulating JNK/p38 MAPK may transform what was once a terminal obstacle into a manageable challenge for OC patients with chemotherapy resistance, ultimately improving survival and quality of life.
Collapse
Affiliation(s)
- Yu-Ting Ma
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wan-Hui You
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ming-Xuan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yi-Fan Mu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Chen ZS, Peng SI, Leong LI, Gall-Duncan T, Wong NSJ, Li TH, Lin X, Wei Y, Koon AC, Huang J, Sun JKL, Turner C, Tippett L, Curtis MA, Faull RLM, Kwan KM, Chow HM, Ko H, Chan TF, Talbot K, Pearson CE, Chan HYE. Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5. Nat Commun 2025; 16:3307. [PMID: 40204699 PMCID: PMC11982267 DOI: 10.1038/s41467-025-58618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play crucial roles in post-transcriptional gene regulation. Poly(A) RNA polymerase D5 (PAPD5) catalyzes the addition of adenosine to the 3' end of miRNAs. In this study, we demonstrate that the Yin Yang 1 protein, a transcriptional repressor of PAPD5, is recruited to both RNA foci and protein aggregates, resulting in an upregulation of PAPD5 expression in Huntington's disease (HD). Additionally, we identify a subset of PAPD5-regulated miRNAs with increased adenylation and reduced expression in our disease model. We focus on miR-7-5p and find that its reduction causes the activation of the TAB2-mediated TAK1-MKK4-JNK pro-apoptotic pathway. This pathway is also activated in induced pluripotent stem cell-derived striatal neurons and post-mortem striatal tissues isolated from HD patients. In addition, we discover that a small molecule PAPD5 inhibitor, BCH001, can mitigate cell death and neurodegeneration in our disease models. This study highlights the importance of PAPD5-mediated miRNA dysfunction in HD pathogenesis and suggests a potential therapeutic direction for the disease.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lok I Leong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nathan Siu Jun Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wei
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex Chun Koon
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- School of Psychology, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Ko
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Li Z, Jiang J, Ficarro SB, Beyett TS, To C, Tavares I, Zhu Y, Li J, Eck MJ, Jänne PA, Marto JA, Zhang T, Che J, Gray NS. Molecular Bidents with Two Electrophilic Warheads as a New Pharmacological Modality. ACS CENTRAL SCIENCE 2024; 10:1156-1166. [PMID: 38947214 PMCID: PMC11212140 DOI: 10.1021/acscentsci.3c01245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 07/02/2024]
Abstract
A systematic strategy to develop dual-warhead inhibitors is introduced to circumvent the limitations of conventional covalent inhibitors such as vulnerability to mutations of the corresponding nucleophilic residue. Currently, all FDA-approved covalent small molecules feature one electrophile, leaving open a facile route to acquired resistance. We conducted a systematic analysis of human proteins in the protein data bank to reveal ∼400 unique targets amendable to dual covalent inhibitors, which we term "molecular bidents". We demonstrated this strategy by targeting two kinases: MKK7 and EGFR. The designed compounds, ZNL-8162 and ZNL-0056, are ATP-competitive inhibitors that form two covalent bonds with cysteines and retain potency against single cysteine mutants. Therefore, molecular bidents represent a new pharmacological modality with the potential for improved selectivity, potency, and drug resistance profile.
Collapse
Affiliation(s)
- Zhengnian Li
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Jie Jiang
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tyler S. Beyett
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ciric To
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Yingde Zhu
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jiaqi Li
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael J. Eck
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pasi A. Jänne
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Jianwei Che
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
7
|
Pallauf M, Ged Y, Singla N. Molecular differences in renal cell carcinoma between males and females. World J Urol 2023; 41:1727-1739. [PMID: 36905442 DOI: 10.1007/s00345-023-04347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE The disparity in renal cell carcinoma (RCC) risk and treatment outcome between males and females is well documented, but the underlying molecular mechanisms remain poorly elucidated. METHODS We performed a narrative review synthesizing contemporary evidence on sex-specific molecular differences in healthy kidney tissue and RCC. RESULTS In healthy kidney tissue, gene expression differs significantly between males and females, including autosomal and sex-chromosome-linked genes. The differences are most prominent for sex-chromosome-linked genes and attributable to Escape from X chromosome-linked inactivation and Y chromosome loss. The frequency distribution of RCC histologies varies between the sexes, particularly for papillary, chromophobe, and translocation RCC. In clear-cell and papillary RCC, sex-specific gene expressions are pronounced, and some of these genes are amenable to pharmacotherapy. However, for many, the impact on tumorigenesis remains poorly understood. In clear-cell RCC, molecular subtypes and gene expression pathways have distinct sex-specific trends, which also apply to the expression of genes implicated in tumor progression. CONCLUSION Current evidence suggests meaningful genomic differences between male and female RCC, highlighting the need for sex-specific RCC research and personalized sex-specific treatment approaches.
Collapse
Affiliation(s)
- Maximilian Pallauf
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 213, Baltimore, MD, 21287, USA
- Department of Urology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Yasser Ged
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 213, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Prieto-Fernandez L, Villaronga MDLA, Hermida-Prado F, Hijazi M, Montoro-Jimenez I, Pevida M, Llames S, Rodrigo JP, Cutillas P, Calvo F, Garcia-Pedrero JM, Alvarez-Teijeiro S. Driving role of head and neck cancer cell secretome on the invasion of stromal fibroblasts: Mechanistic insights by phosphoproteomics. Biomed Pharmacother 2023; 158:114176. [PMID: 36916400 DOI: 10.1016/j.biopha.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC). METHODS Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics. RESULTS Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.
Collapse
Affiliation(s)
- Llara Prieto-Fernandez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria de Los Angeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maruan Hijazi
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Irene Montoro-Jimenez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pevida
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sara Llames
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Fernando Calvo
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom; Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana Maria Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saul Alvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Du XH, Ke SB, Liang XY, Gao J, Xie XX, Qi LZ, Liu XY, Xu GY, Zhang XD, Du RL, Li SZ. USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis 2023; 14:56. [PMID: 36693850 PMCID: PMC9873792 DOI: 10.1038/s41419-023-05579-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
Collapse
Affiliation(s)
- Xue-Hua Du
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Xiao Xie
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guo-Yuan Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, China.
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
11
|
In Vitro Anticancer Activity of Novel Ciprofloxacin Mannich Base in Lung Adenocarcinoma and High-Grade Serous Ovarian Cancer Cell Lines via Attenuating MAPK Signaling Pathway. Molecules 2023; 28:molecules28031137. [PMID: 36770806 PMCID: PMC9921546 DOI: 10.3390/molecules28031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Novel drugs are desperately needed in order to combat a significant challenge due to chemo-therapeutic resistance and bad prognosis. This research aimed to assess the anticancer activity of a newly synthesized ciprofloxacin Mannich base (CMB) on ovarian cancer (OVCAR-3) and lung cancer (A-549) cell lines and to investigate probable involved molecular mechanisms. The cytotoxic and pro-apoptotic impact of CMB on both cell lines was investigated using MTT assay, Annexin V assay, and cell cycle analysis, as well as caspase-3 activation. Western blotting was carried out to evaluate downstream targets of the MAPK pathway, while qRT PCR was used to evaluate the gene expression pattern of the p53/Bax/Bcl2 pathway. CMB treatment showed significantly reduced cell proliferation in both OVCAR-3 and A-549 cells with half maximum inhibitory concentration (IC50) = 11.60 and 16.22 µg/mL, respectively. CMB also induced apoptosis, S phase cell cycle arrest, and up-regulated expression of p53, p21, and Bax while down-regulated Bcl2 expression. CMB also halted cell proliferation by deactivating the MAPK pathway. In conclusion, CMB may be regarded as a potential antiproliferative agent for lung and ovarian cancers due to anti-proliferative and pro-apoptotic actions via inhibition of the MAPK pathway and p53/Bax/Bcl2.
Collapse
|
12
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
13
|
Anti-Inflammatory Effects of Phlebia sp. Extract in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2717196. [PMID: 35872858 PMCID: PMC9303134 DOI: 10.1155/2022/2717196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Lichens are a life form in which algae and fungi have a symbiotic relationship and have various biological activities, including anti-inflammatory and antiproliferative activities. This is the first study to investigate the anti-inflammatory activity of a Phlebia sp. fungal extract (PSE) isolated from Peltigera neopolydactyla in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage. PSE reduced the production of the proinflammatory cytokine (tumor necrosis factor-α, interleukin-6, and interleukin-1β), chemokine (granulocyte-macrophage colony-stimulating factor), nitric oxide, and prostaglandin E2 in the LPS-stimulated RAW264.7 macrophages. Especially, PSE inhibits the phosphorylation of activator protein-1 (AP-1) signaling (c-Fos and c-Jun) and their upstream mitogen-activated protein kinase kinases/mitogen-activated protein kinases (MKK/MAPKs: MKK4, MKK7, and JNK) and finally reduced the production of the inflammatory cytokines. The inhibitory effects mainly act via suppressing JNK-mediated AP-1 rather than the NF-κB pathway. Furthermore, PSE inhibited the production of final inflammatory effector molecules involved in AP-1 signaling, including nitric oxide (NO) and prostaglandin E2 (PGE2). Here, we report that PSE has the potential to be developed as an anti-inflammatory agent.
Collapse
|
14
|
Gehi BR, Gadhave K, Uversky VN, Giri R. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell Mol Life Sci 2022; 79:202. [PMID: 35325330 PMCID: PMC11073203 DOI: 10.1007/s00018-022-04230-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.
Collapse
Affiliation(s)
- Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
15
|
Heinen T, Xie C, Keshavarz M, Stappert D, Künzel S, Tautz D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front Genet 2022; 12:812139. [PMID: 35069705 PMCID: PMC8766832 DOI: 10.3389/fgene.2021.812139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Dominik Stappert
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Sven Künzel
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Gadd45 in Normal Hematopoiesis and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:41-54. [DOI: 10.1007/978-3-030-94804-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Caliz AD, Vertii A, Fisch V, Yoon S, Yoo HJ, Keaney JF, Kant S. Mitogen-activated protein kinase kinase 7 in inflammatory, cancer, and neurological diseases. Front Cell Dev Biol 2022; 10:979673. [PMID: 36340039 PMCID: PMC9630596 DOI: 10.3389/fcell.2022.979673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated mitogen-activated protein kinase kinase 7 (MKK7) is a member of the dual-specificity mitogen-activated protein kinase family. In the human body, MKK7 controls essential physiological processes, including but not limited to proliferation and differentiation in multiple tissues and organs. MKK7, along with the MKK4 pathway, has been implicated in stress-activated activities and biological events that are mediated by c-Jun N-terminal kinase (JNK) signaling. Although numerous studies have been performed to identify the role of JNK in multiple biological processes, there are limited publications that focus on dissecting the independent role of MKK7. Recent research findings have spurred testing via in vivo genetically deficient models, uncovering previously undocumented JNK-independent functions of MKK7. Here we discuss both JNK-dependent and-independent functions of MKK7 in vivo. This review summarizes the role of MKK7 in inflammation, cytokine production, cancer, and neurological diseases.
Collapse
Affiliation(s)
- Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anastassiia Vertii
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Vijay Fisch
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Soonsang Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Stoll K, Bergmann M, Spiliotis M, Brehm K. A MEKK1 - JNK mitogen activated kinase (MAPK) cascade module is active in Echinococcus multilocularis stem cells. PLoS Negl Trop Dis 2021; 15:e0010027. [PMID: 34879059 PMCID: PMC8687709 DOI: 10.1371/journal.pntd.0010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. Methodology/Principal findings Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. Conclusions/Significance We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis. The metacestode larva of the tapeworm E. multilocularis grows infiltrative, like a malignant tumour, within the liver of the host thus causing the lethal disease alveolar echinococcosis. Previous work established that the metacestode senses signals of host hormones and cytokines by expressing surface receptors that share high homology with respective host receptors. However, little is known how these signals are transmitted from the parasite cell surface to the nucleus to alter gene expression. In this work, the authors present a module of several protein kinases that typically transmit cytokine signals from surface receptors to central regulators called mitogen-activated protein kinases (MAPK). The authors demonstrate that this module is active in parasite stem cells, which drive the development of metacestode larva. They also show that inhibitors directed against one component of the module, EmMPK3, affect maintenance and/or survival of stem cells in the metacestode and prevent the formation of metacestode larva from parasite cell cultures. This information facilitates molecular and cellular studies to unravel the complex signalling network that regulate Echinococcus stem cell proliferation in response to host signals. Furthermore, these data could open new ways of anti-parasitic chemotherapy by introducing EmMPK3 as a possible drug target.
Collapse
Affiliation(s)
- Kristin Stoll
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Monika Bergmann
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Gao X, Li S, Liu X, Cong C, Zhao L, Liu H, Xu L. Neuroprotective effects of Tiaogeng decoction against H 2O 2-induced oxidative injury and apoptosis in PC12 cells via Nrf2 and JNK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114379. [PMID: 34216727 DOI: 10.1016/j.jep.2021.114379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiaogeng decoction (TGD), a mixture of 10 traditional Chinese herbs, has been used clinically for over 30 years in treating menopause-related symptoms such as cognitive changes, mood disorders, vasomotor symptoms, and sleep disorders. These central nervous system symptoms are closely associated with declined ovarian function, which dramatically increases the risk of neurodegenerative disease. Previous studies revealed that TGD may have anti-oxidative and anti-apoptotic properties, potentially preventing neurodegenerative conditions; however, the underlying pharmacological mechanism remains unclear. AIM OF THE STUDY This study aimed to examine whether TGD could activate the Nrf2 and C-Jun N-terminal kinase (JNK) signaling pathways to effectively reduce oxidative injury and apoptosis in PC12 cells and elucidate the mechanism by which this medicine may prevent neurodegenerative disease. MATERIALS AND METHODS PC12 cells were exposed to different concentrations of TGD (125, 250, 500 μg/mL) and H2O2 (150 μM). 17β-estradiol (0.05 μg/mL) was used as the positive control. A cell counting kit-8 (CCK-8) and a lactate dehydrogenase (LDH) assay were used to detect cell viability and cytotoxicity, while Hoechst and flow cytometry were performed to evaluate apoptosis levels. Mitochondrial function was assessed by measuring mitochondrial membrane potential (MMP), and superoxide dismutase (SOD), and reactive oxygen species (ROS) levels were used to measure oxidative stress (OS). Western blot analysis was used to identify the levels of Nrf2, phospho-JNK (p-JNK), phospho-mitogen-activated protein kinase kinase 7 (p-MKK7), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), Caspase3 (Casp3), Caspase9 (Casp9), Bax, and Bcl-2 proteins. Moreover, JNK agonist anisomycin and Nrf2 inhibitor ML385 were used to validate pathways. RESULTS TGD pretreatment significantly alleviated H2O2-induced cytotoxicity, apoptosis, MMP, and OS levels. H2O2 stimulated the activation of Nrf2 and JNK signaling pathways, but TGD increased the extent of Nrf2 antioxidant activation, decreased the activation of JNK, and eventually reversed the H2O2-induced protein expression of p-MKK7, Keap1, HO-1, Cleaved Caspase3 (CL-Casp3), Cleaved Caspase9 (CL-Casp9), Bax, and Bcl-2. CONCLUSIONS This study's findings suggest that TGD may attenuate oxidative injury and apoptosis via the Nrf2 and JNK signaling pathways, making it a potential therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianwei Gao
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Shengnan Li
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xiaofei Liu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Cong
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Li Zhao
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Huicong Liu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Lianwei Xu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
21
|
Kwong AJ, Pham TND, Oelschlager HE, Munshi HG, Scheidt KA. Rational Design, Optimization, and Biological Evaluation of Novel MEK4 Inhibitors against Pancreatic Adenocarcinoma. ACS Med Chem Lett 2021; 12:1559-1567. [PMID: 34676038 DOI: 10.1021/acsmedchemlett.1c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
Growth, division, and development of healthy cells relies on efficient response to environmental survival cues. The conserved mitogen-activated protein kinase (MAPK) family of pathways interface extracellular stimuli to intracellular processes for this purpose. Within these pathways, the MEK family has been identified as a target of interest due to its clinical relevance. Particularly, MEK4 has drawn recent attention for its indications in pancreatic and prostate cancers. Here, we report two potent MEK4 inhibitors demonstrating significant reduction of phospho-JNK and antiproliferative properties against pancreatic cancer cell lines. Furthermore, molecular inhibition of MEK4 pathway activates the MEK1/2 pathway, with the combination of MEK1/2 and MEK4 inhibitors demonstrating synergistic effects against pancreatic cancer cells. Our inhibitors provided insight into the crosstalk between MAPK pathways and new tools for elucidating the roles of MEK4 in disease states, findings which will pave the way for better understanding of the MAPK pathways and development of additional probes.
Collapse
Affiliation(s)
- Ada J. Kwong
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thao N. D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Hannah E. Oelschlager
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Karl A. Scheidt
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
23
|
Castro-Torres RD, Olloquequi J, Etchetto M, Caruana P, Steele L, Leighton KM, Ureña J, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. Dual Mkk4 and Mkk7 Gene Deletion in Adult Mouse Causes an Impairment of Hippocampal Immature Granule Cells. Int J Mol Sci 2021; 22:ijms22179545. [PMID: 34502457 PMCID: PMC8430506 DOI: 10.3390/ijms22179545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/-), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/-), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.
Collapse
Affiliation(s)
- Rubén Darío Castro-Torres
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Laboratory of Neurobiotechnology CUCBA, Department of Cell and Molecular Biology, Universidad de Guadalajara, Jalisco 45200, Mexico;
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Health Sciences Faculty, Biomedical Sciences Institute, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Miren Etchetto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Pablo Caruana
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Luke Steele
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Kyra-Mae Leighton
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Jesús Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carlos Beas-Zarate
- Laboratory of Neurobiotechnology CUCBA, Department of Cell and Molecular Biology, Universidad de Guadalajara, Jalisco 45200, Mexico;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
24
|
Caliz AD, Yoo HJ, Vertii A, Dolan AC, Tournier C, Davis RJ, Keaney JF, Kant S. Mitogen Kinase Kinase (MKK7) Controls Cytokine Production In Vitro and In Vivo in Mice. Int J Mol Sci 2021; 22:9364. [PMID: 34502275 PMCID: PMC8431745 DOI: 10.3390/ijms22179364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo.
Collapse
Affiliation(s)
- Amada D. Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.D.C.); (H.-J.Y.); (A.C.D.); (J.F.K.J.)
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.D.C.); (H.-J.Y.); (A.C.D.); (J.F.K.J.)
| | - Anastassiia Vertii
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Ana C. Dolan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.D.C.); (H.-J.Y.); (A.C.D.); (J.F.K.J.)
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Roger J. Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - John F. Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.D.C.); (H.-J.Y.); (A.C.D.); (J.F.K.J.)
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.D.C.); (H.-J.Y.); (A.C.D.); (J.F.K.J.)
| |
Collapse
|
25
|
Zhang R, Wan K, Liu Y, Wang Z, Zhang D, Yin H. Expression pattern of mitogen-activated protein kinase kinase 4 and regulation to antibacterial factor ABF-1/2 in response to bacterial challenge from Artemia parthenogenetica. FISH & SHELLFISH IMMUNOLOGY 2021; 115:35-42. [PMID: 33785471 DOI: 10.1016/j.fsi.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinase 4, MKK4, is a key upstream kinase in the JNK/p38 MAPK pathway that has been reported to participate in multiple immune responses. In this study, the gene that encodes ApMKK4 was isolated and identified from Artemia parthenogenetica. It was found to contain a 1134 bp open reading frame encoding 378 amino acids. The predicted protein contains D domain, DVD domain and kinase domain. Homology analysis revealed that ApMKK4 shares 38-69% identity with MKK4 homologs from other species. Results revealed that ApMKK4 was mainly expressed during early development of which highest at the gastrula stage. After challenged by Vibrio harveyi and Micrococcus lysodeikticus, ApMKK4 was remarkably upregulated at 10 and 103 cfu/mL bacterial concentrations, respectively. Through siRNAi, the transcript level of ApMKK4 was significantly decreased by 46-67%. Intriguingly, when the ApMKK4-knockdown nauplii faced with bacterial stimulation, the expression of ApMKK4 was completely restored in a short time. Moreover, this phenomenon also occurred in related antimicrobial peptide genes, ABF-1 and ABF-2. Our research reveals that ApMKK4 plays a pivotal role during early development and immune responses against bacterial infections.
Collapse
Affiliation(s)
- Rui Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Kun Wan
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Yudan Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Zhangping Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China.
| | - Hong Yin
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
26
|
Guo D, Zhao G, Li G, Wang C, Wang H, Liu Z, Xu B, Guo X. Identification of a mitogen-activated protein kinase kinase (AccMKK4) from Apis cerana cerana and its involvement in various stress responses. INSECT MOLECULAR BIOLOGY 2021; 30:325-339. [PMID: 33538052 DOI: 10.1111/imb.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 05/19/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway is a ubiquitous signal transduction pathway in eukaryotes that regulates a variety of immune responses. This study accomplished the first isolation of an AccMKK4 gene from Apis cerana cerana and explored its function. Yeast two-hybrid experiments proved that AccMKK4 can interact with Accp38b, and the silencing of AccMKK4 in honeybees downregulated the expression level of Accp38b, which suggests that AccMKK4 might participate in the oxidative stress response through the p38 MAPK pathway. Tissue-specific expression levels of AccMKK4 analysis showed that AccMKK4 in the thorax, particularly muscle tissue, was higher than that in other tissues. The qRT-PCR results from different conditions demonstrated that AccMKK4 responds to various environmental stresses. After AccMKK4 silencing, the transcription level of some antioxidant genes and the activity of antioxidant-related enzymes are reduced, which indicated that AccMKK4 plays an important role in resistance against oxidative stress caused by external stimuli. In summary, our findings indicate that AccMKK4 probably plays an indispensable role in the response of honeybees to environmental stress and might aid for further research on the role of the MAPK cascade pathway in the antioxidant defence mechanisms of insects.
Collapse
Affiliation(s)
- D Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Z Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
27
|
JNK signaling as a target for anticancer therapy. Pharmacol Rep 2021; 73:405-434. [PMID: 33710509 DOI: 10.1007/s43440-021-00238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors. Studies showed that the two major JNK proteins JNK1 and JNK2 have opposite functions in different types of cancers, which need more specification in the design of JNK inhibitors. Some of ATP- competitive and ATP non-competitive inhibitors have been developed and widely used in vitro, but this type of inhibitors lack selectivity and inhibits phosphorylation of all JNK substrates and may lead to cellular toxicity. In this review, we summarized and discussed the strategies of JNK binding inhibitors and the role of JNK signaling in the pathogenesis of different solid and hematological malignancies.
Collapse
|
28
|
Medda A, Duca D, Chiocca S. Human Papillomavirus and Cellular Pathways: Hits and Targets. Pathogens 2021; 10:262. [PMID: 33668730 PMCID: PMC7996217 DOI: 10.3390/pathogens10030262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Human Papillomavirus (HPV) is the causative agent of different kinds of tumors, including cervical cancers, non-melanoma skin cancers, anogenital cancers, and head and neck cancers. Despite the vaccination campaigns implemented over the last decades, we are far from eradicating HPV-driven malignancies. Moreover, the lack of targeted therapies to tackle HPV-related tumors exacerbates this problem. Biomarkers for early detection of the pathology and more tailored therapeutic approaches are needed, and a complete understanding of HPV-driven tumorigenesis is essential to reach this goal. In this review, we overview the molecular pathways implicated in HPV infection and carcinogenesis, emphasizing the potential targets for new therapeutic strategies as well as new biomarkers.
Collapse
Affiliation(s)
| | | | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (A.M.); (D.D.)
| |
Collapse
|
29
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
30
|
Lucafò M, Sicari D, Chicco A, Curci D, Bellazzo A, Di Silvestre A, Pegolo C, Autry R, Cecchin E, De Iudicibus S, Collavin L, Evans W, Decorti G, Stocco G. miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway. Cancer Chemother Pharmacol 2020; 86:361-374. [PMID: 32776229 PMCID: PMC7479018 DOI: 10.1007/s00280-020-04122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science Park, Trieste, Italy
- Chemistry, Oncogenesis, Stress, Signaling (COSS), CLCC Eugene Marquis Inserm U1242, University of Rennes-1, Rennes, France
| | - Andrea Chicco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Debora Curci
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Arianna Bellazzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Chiara Pegolo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Robert Autry
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - William Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
31
|
Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020; 9:cells9081802. [PMID: 32751228 PMCID: PMC7464089 DOI: 10.3390/cells9081802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
JNK is a protein kinase, which induces transactivation of c-jun. The three isoforms of JNK, JNK1, JNK2, and JNK3, are encoded by three distinct genes. JNK1 and JNK2 are expressed ubiquitously throughout the body. By contrast, the expression of JNK3 is limited and observed mainly in the brain, heart, and testes. Concerning the biological properties of JNKs, the contribution of upstream regulators and scaffold proteins plays an important role in the activation of JNKs. Since JNK signaling has been described as a form of stress-response signaling, the contribution of JNK3 to pathophysiological events, such as stress response or cell death including apoptosis, has been well studied. However, JNK3 also regulates the physiological functions of neurons and non-neuronal cells, such as development, regeneration, and differentiation/reprogramming. In this review, we shed light on the physiological functions of JNK3. In addition, we summarize recent advances in the knowledge regarding interactions between JNK3 and cellular reprogramming.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
- Correspondence:
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| |
Collapse
|
32
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|
33
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
34
|
Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020; 9:E857. [PMID: 32252279 PMCID: PMC7226813 DOI: 10.3390/cells9040857] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), with its members JNK1, JNK2, and JNK3, is a subfamily of (MAPK) mitogen-activated protein kinases. JNK signaling regulates a wide range of cellular processes, including cell proliferation, differentiation, survival, apoptosis, and inflammation. Dysregulation of JNK pathway is associated with a wide range of immune disorders and cancer. Our objective is to provide a review of JNK proteins and their upstream regulators and downstream effector molecules in common skin disorders, including psoriasis, dermal fibrosis, scleroderma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma.
Collapse
Affiliation(s)
- Manel B. Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Amy E. Ford
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Yuan Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
36
|
Kurtoğlu EL, Kayhan B, Gül M, Kayhan B, Akdoğan Kayhan M, Karaca ZM, Yeşilada E, Yılmaz S. A bioactive product lipoxin A4 attenuates liver fibrosis in an experimental model by regulating immune response and modulating the expression of regeneration genes. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:745-757. [PMID: 31418419 DOI: 10.5152/tjg.2019.18276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Lipoxin A4 (LXA4), an anti-inflammatory lipid mediator, regulates leukocyte cellular activity and activates gene transcription. The therapeutic effect of LXA4 on liver fibrosis and its mechanism on the immune system are largely unknown. Because the regenerative capacity of hepatocytes in acute and chronic liver failure models of mouse increases by silencing MKK4, we aimed to investigate the effect of parenteral administration of LXA4 on the genes responsible for regeneration of liver, namely MKK4, MKK7, and ATF2, and visualize the therapeutic effects in an experimental model. MATERIALS AND METHODS Fibrosis was induced in mice by administration of thioacetamide (TAA). LXA4 was administered during the last two weeks of fibrosis induction. The fibrosis level was measured by Knodell scoring. The liver function was measured by analyzing serum ALT, AST, and AP levels. Expression levels of genes responsible for liver fibrosis (TGF-α) and cell regeneration (MKK4, MKK7, and ATF2) have been measured by RT-PCR analysis. Inflammatory and anti-inflammatory cytokine levels were measured in serum samples and liver homogenates by Enzyme Linked Immunosorbent Assay (ELISA). Ultrathin sections were examined using a transmission electron microscope and analyzed. RESULTS We observed significant healing in liver of the LXA4-treated group, histologically. This finding was in parallel with reduction of serum ALT, AST, but not AP levels. TGF-α and MKK4 expressions were significantly reduced in the LXA4-treated group. Administration of LXA4 caused significant elevation of IL-10 in systemic circulation; however, that elevation was not detected in liver homogenates. Nevertheless, significant reductions in TNF-α and IL-17 have been observed. CONCLUSION The anti-inflammatory effect of LXA4 maintains the regenerative capacity of liver during fibrosis in an experimental liver fibrosis model. LXA4 may be therapeutically beneficial in liver fibrosis.
Collapse
Affiliation(s)
- Elçin Latife Kurtoğlu
- Department of Medical Biology and Genetics, İnönü University School of Medicine, Malatya, Turkey
| | - Başak Kayhan
- Department of Medical Biology and Genetics, İnönü University School of Medicine, Malatya, Turkey;Transplantation Immunology Laboratory, Department of General Surgery, Institute of Liver Transplantation, İnönü University School of Medicine, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, İnönü University School of Medicine, Malatya, Turkey
| | - Burçak Kayhan
- Division of Gastroenterology, Department of Internal Medicine, Karabük University School of Medicine, Karabük, Turkey
| | - Meral Akdoğan Kayhan
- Division of Gastroenterology, Department of Internal Medicine, Abant İzzet Baysal School of Medicine, Bolu, Turkey
| | - Zeynal Mete Karaca
- Department of Medical Biology and Genetics, İnönü University School of Medicine, Malatya, Turkey
| | - Elif Yeşilada
- Department of Medical Biology and Genetics, İnönü University School of Medicine, Malatya, Turkey
| | - Sezai Yılmaz
- Department of Surgery, Liver Transplantation Institute, İnönü University School of Medicine, Malatya, Turkey
| |
Collapse
|
37
|
Schellino R, Boido M, Vercelli A. JNK Signaling Pathway Involvement in Spinal Cord Neuron Development and Death. Cells 2019; 8:E1576. [PMID: 31817379 PMCID: PMC6953032 DOI: 10.3390/cells8121576] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The c-Jun NH2-terminal protein kinase (JNK) is a Janus-faced kinase, which, in the nervous system, plays important roles in a broad range of physiological and pathological processes. Three genes, encoding for 10 JNK isoforms, have been identified: jnk1, jnk2, and jnk3. In the developing spinal cord, JNK proteins control neuronal polarity, axon growth/pathfinding, and programmed cell death; in adulthood they can drive degeneration and regeneration, after pathological insults. Indeed, recent studies have highlighted a role for JNK in motor neuron (MN) diseases, such as amyotrophic lateral sclerosis and spinal muscular atrophy. In this review we discuss how JNK-dependent signaling regulates apparently contradictory functions in the spinal cord, in both the developmental and adult stages. In addition, we examine the evidence that the specific targeting of JNK signaling pathway may represent a promising therapeutic strategy for the treatment of MN diseases.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| |
Collapse
|
38
|
Kuang P, Guo H, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride impairs splenic innate immunity via inactivation of TLR2/MyD88 signaling pathway in mice. CHEMOSPHERE 2019; 237:124437. [PMID: 31356994 DOI: 10.1016/j.chemosphere.2019.124437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Fluoride is known to affect the inflammatory process and autoregulation of immune responses, but the molecular mechanism by which fluoride causes innate immune injury remain largely unknown. Also, studies on sodium fluoride (NaF)-caused alteration of TLR signaling are still lacking. In the present study, we examined the effects of NaF on the mRNA and protein expression levels of TLR2/MyD88 signaling pathway molecules in the mouse spleen by using the methods of qRT-PCR and Western blotting. Consequently, we elucidated the mechanism underlying the effects of NaF on innate immunity. Two hundred and forty ICR mice were randomly divided into 4 groups with intragastric administration of distilled water in the control group and 12, 24, 48 mg/kg of NaF treatment in the experiment groups for 42 days. The findings revealed that NaF impaired splenic innate immunity in mice via inactivation of TLR2/MyD88 signaling pathway. NaF-inactivated TLR2/MyD88 signaling pathway was identified by prominently downregulated mRNA and protein expression levels of TLR2/MyD88, IRAK4, IRAK1, TRAF6, TAK1, MKK4/MKK7 and c-Jun, which ultimately altered the expression levels of IL-1β, IL-4, IL-6 and IL-8 to attenuate innate immunity.
Collapse
Affiliation(s)
- Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
39
|
Dou Y, Jiang X, Xie H, He J, Xiao S. The Jun N-terminal kinases signaling pathway plays a "seesaw" role in ovarian carcinoma: a molecular aspect. J Ovarian Res 2019; 12:99. [PMID: 31639019 PMCID: PMC6802331 DOI: 10.1186/s13048-019-0573-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the most common gynecological malignancy that causes cancer-related deaths in women today; this being the case, developing an understanding of ovarian cancer has become one of the major driving forces behind cancer research overall. Moreover, such research over the last 20 years has shown that the Jun N-terminal kinase (JNK) signaling pathway plays an important role in regulating cell death, survival, growth and proliferation in the mitogen-activated protein kinases (MAPK) signaling pathway, an important pathway in the formation of cancer. Furthermore, the JNK signaling pathway is often regulated by an abnormal activation in human tumors and is frequently reported in the literature for its effect on the progression of ovarian cancer. Although the FDA has approved some JNK inhibitors for melanoma, the agency has not approved JNK inhibitors for ovarian cancer. However, there are some experimental data on inhibitors and activators of the JNK signaling pathway in ovarian cancer, but related clinical trials need to be further improved. Although the Jun N-terminal kinase (JNK) signaling pathway is implicated in the formation of cancer in general, research has also indicated that it has a role in suppressing cancer as well. Here, we summarize this seemingly contradictory role of the JNK signaling pathway in ovarian cancer, that ‘seesaws’ between promoting and suppressing cancer, as well as summarizing the application of several JNK pathway inhibitors in cancer in general, and ovarian cancer in particular.
Collapse
Affiliation(s)
- Yingyu Dou
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Hui Xie
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Cancer Research Institute, the Central South University, Changsha, 410011, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
40
|
Matsumoto T, Yamano A, Murakawa Y, Fukada H, Sawa M, Kinoshita T. Ensemble structural analyses depict the regulatory mechanism of non-phosphorylated human MAP2K4. Biochem Biophys Res Commun 2019; 521:106-112. [PMID: 31635803 DOI: 10.1016/j.bbrc.2019.10.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a critical role in regulating the stress-activated protein kinase signaling cascade. A small angle X-ray scattering experiment, a powerful technique for analyzing a solution structure cleared from the structural artifacts due to crystal packing, provided the ensemble structures of human non-phosphorylated MAP2K4 in three states involving the apo form, the binary complex with an ATP analogue, and the ternary complex with the ATP analogue and substrate peptide. These ensemble structures provided more detailed mechanisms for regulating MAP2K4 in addition to those delineated only by the crystal structures in three states.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan.
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Yuka Murakawa
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka, 599-8531, Japan
| | - Harumi Fukada
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka, 599-8531, Japan
| | | | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
41
|
Park JG, Aziz N, Cho JY. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol 2019; 11:1758835919875574. [PMID: 31579105 PMCID: PMC6759727 DOI: 10.1177/1758835919875574] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/19/2019] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.
Collapse
Affiliation(s)
- Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
42
|
Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:1-8. [PMID: 30878547 DOI: 10.1016/j.jep.2019.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) exerts a significant protective effect against neurotoxicity and mitochondrial damage in neurons. However, the mechanisms underlying PF-mediated rescue remain elusive. Therefore, we endeavored to further research the molecular mechanisms underlying PF-mediated inhibition of tributyltin chloride (TBTC)-induced apoptosis of neurons. AIM OF THE STUDY To investigate the influence and possible mechanism of action of PF in TBTC-induced neurodegenerative disease. MATERIALS AND METHODS First, primary hypothalamic neurons were treated with tributyltin chloride (150 μg/L) and PF (25, 50, and 100 μM). 17β-estradiol (1 nM) was used as a positive control. Subsequently, CCK-8 assay was performed. The level of apoptosis was examined by flow cytometry and the function of mitochondria was reflected by MMP levels. The mRNA expression levels of B-cell lymphoma-2 (Bcl-2), together with Bax, were examined using qRT-PCR. The protein levels of mitogen-activated protein kinase kinase 4 (MKK4), c-Jun N-terminal kinase (JNK), Bcl-2, Bax, and Caspase-3 were examined using western blotting. Finally, pretreatment with JNK agonist, anisomycin, was done to observe the change in expressions of MKK4 and JNK. RESULTS Paeoniflorin treatment reduced TBTC-induced damage and neuron loss in a dose-dependent manner. Decrease in mitogen-activated protein kinase (MAPK) as well as JNK levels were reversed by treatment with paeoniflorin via inhibition of JNK activation. Furthermore, ratio of levels of Bcl-2/Bax increased while the activation of caspase-3 was suppressed. In addition, pretreatment with JNK agonist, anisomycin effectively suppressed TBTC-induced cytotoxicity in hypothalamic neuron. CONCLUSIONS PF can potentially be used to prevent and/or treat neurodegenerative diseases and neural injury by inhibiting MKK4-JNK signaling pathway.
Collapse
Affiliation(s)
- Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Te Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
43
|
Wolle P, Engel J, Smith S, Goebel L, Hennes E, Lategahn J, Rauh D. Characterization of Covalent Pyrazolopyrimidine–MKK7 Complexes and a Report on a Unique DFG-in/Leu-in Conformation of Mitogen-Activated Protein Kinase Kinase 7 (MKK7). J Med Chem 2019; 62:5541-5546. [DOI: 10.1021/acs.jmedchem.9b00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Steven Smith
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Lisa Goebel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Elisabeth Hennes
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
44
|
Shi W, Wang Y, Peng J, Qi S, Vitale N, Kaneda N, Murata T, Luo H, Wu J. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells. J Biol Chem 2019; 294:6871-6887. [PMID: 30824540 PMCID: PMC6497964 DOI: 10.1074/jbc.ra118.005767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
EPHB6 is a member of the erythropoietin-producing hepatocellular kinase (EPH) family and a receptor tyrosine kinase with a dead kinase domain. It is involved in blood pressure regulation and adrenal gland catecholamine (CAT) secretion, but several facets of EPHB6-mediated CAT regulation are unclear. In this study, using biochemical, quantitative RT-PCR, immunoblotting, and gene microarray assays, we found that EPHB6 up-regulates CAT biosynthesis in adrenal gland chromaffin cells (AGCCs). We observed that epinephrine content is reduced in the AGCCs from male Ephb6-KO mice, caused by decreased expression of tyrosine hydroxylase, the rate-limiting enzyme in CAT biosynthesis. We demonstrate that the signaling pathway from EPHB6 to tyrosine hydroxylase expression in AGCCs involves Rac family small GTPase 1 (RAC1), MAP kinase kinase 7 (MKK7), c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, activator protein 1 (AP1), and early growth response 1 (EGR1). On the other hand, signaling via extracellular signal-regulated kinase (ERK1/2), p38 mitogen-activated protein kinase, and ELK1, ETS transcription factor (ELK1) was not affected by EPHB6 deletion. We further report that EPHB6's effect on AGCCs was via reverse signaling through ephrin B1 and that EPHB6 acted in concert with the nongenomic effect of testosterone to control CAT biosynthesis. Our findings elucidate the mechanisms by which EPHB6 modulates CAT biosynthesis and identify potential therapeutic targets for diseases, such as hypertension, caused by dysfunctional CAT biosynthesis.
Collapse
Affiliation(s)
- Wei Shi
- From the Research Centre and
| | - Yujia Wang
- From the Research Centre and
- the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | | | | | - Nicolas Vitale
- the Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, 67000 Strasbourg, France, and
| | - Norio Kaneda
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | - Tomiyasu Murata
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | | | - Jiangping Wu
- From the Research Centre and
- Nephrology Department, Centre Hospitalier de l'Université de Montréal Montreal, Quebec, H2X 0A9, Canada
| |
Collapse
|
45
|
Wolle P, Hardick J, Cronin SJF, Engel J, Baumann M, Lategahn J, Penninger JM, Rauh D. Targeting the MKK7–JNK (Mitogen-Activated Protein Kinase Kinase 7–c-Jun N-Terminal Kinase) Pathway with Covalent Inhibitors. J Med Chem 2019; 62:2843-2848. [DOI: 10.1021/acs.jmedchem.9b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Julia Hardick
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Shane J. F. Cronin
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr Gasse 3, AT-1030 Vienna, Austria
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Josef M. Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr Gasse 3, AT-1030 Vienna, Austria
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
46
|
Xiao T, Zhou Y, Li H, Xiong L, Wang J, Wang ZH, Liu LH. MiR-125b suppresses the carcinogenesis of osteosarcoma cells via the MAPK-STAT3 pathway. J Cell Biochem 2019; 120:2616-2626. [PMID: 30277613 DOI: 10.1002/jcb.27568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
The microRNA (miRNA) miR-125b is abnormally expressed in many different types of tumors, including osteosarcoma (OS). How aberrantly expressed miR-125b participates in regulating the initiation and progression of OS is still poorly understood. In the current study, we found that in OS, miR-125b can suppress the expression of MAP kinase kinase 7 (MKK7), which can dephosphorylate and inactivate signal transducer and activator of transcription 3 (STAT3). We also identified an elevated expression level of MKK7 in OS and an association between MKK7 expression and poor prognosis. Further, miR-125b inhibited OS cell proliferation and invasion by targeting and downregulating MKK7 in vitro and suppressed tumor formation in vivo. Moreover, using Western blot analysis, we preliminarily proved that the activation (phosphorylation) of STAT3 was regulated by MKK7 at the epigenetic level. MKK7 was overexpressed in OS and associated with poor clinical results. The miR-125b-MAPK-STAT3 axis may be one of the mechanisms of OS oncogenesis and a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - You Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Xiong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhi-Hua Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Li-Hong Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Gibson ES, Woolfrey KM, Li H, Hogan PG, Nemenoff RA, Heasley LE, Dell'Acqua ML. Subcellular Localization and Activity of the Mitogen-Activated Protein Kinase Kinase 7 (MKK7) γ Isoform are Regulated through Binding to the Phosphatase Calcineurin. Mol Pharmacol 2019; 95:20-32. [PMID: 30404891 PMCID: PMC6277928 DOI: 10.1124/mol.118.113159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Calcineurin (CaN) phosphatase signaling is regulated by targeting CaN to substrates, inhibitors, and scaffold proteins containing docking motifs with the consensus sequence of PxIxIT. Here, we identify the docking of CaN to the γ isoform of MKK7, a component of the c-Jun N-terminal kinase (JNK) pathway. Because of alternative splicing of a single exon within the N-terminal domain, MKK7γ encodes a unique PxIxIT motif (PIIVIT) that is not present in MKK7α or β We found that MKK7γ bound directly to CaN through this PIIVIT motif in vitro, immunoprecipitated with CaN from cell extracts, and exhibited fluorescence resonance energy transfer (FRET) with CaN in the cytoplasm but not in the nucleus of living cells. In contrast, MKK7α and β exhibited no direct binding or FRET with CaN and were localized more in the nucleus than the cytoplasm. Furthermore, the inhibition of CaN phosphatase activity increased the basal phosphorylation of MKK7γ but not MKK7β Deletion of the MKK7γ PIIVIT motif eliminated FRET with CaN and promoted MKK7γ redistribution to the nucleus; however, the inhibition of CaN activity did not alter MKK7γ localization, indicating that MKK7γ cytoplasmic retention by CaN is phosphatase activity independent. Finally, the inhibition of CaN phosphatase activity in vascular smooth muscle cells, which express MKK7γ mRNA, enhances JNK activation. Overall, we conclude that the MKK7γ-specific PxIxIT motif promotes high-affinity CaN binding that could promote novel cross talk between CaN and JNK signaling by limiting MKK7γ phosphorylation and restricting its localization to the cytoplasm.
Collapse
Affiliation(s)
- Emily S Gibson
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Kevin M Woolfrey
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Huiming Li
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Patrick G Hogan
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Raphael A Nemenoff
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Lynn E Heasley
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| | - Mark L Dell'Acqua
- Department of Pharmacology (E.S.G., K.M.W., M.L.D.) and Department of Medicine, Division of Renal Diseases and Hypertension (R.A.N.), University of Colorado School of Medicine, Aurora, Colorado; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado (L.E.H.); Immune Disease Institute, Harvard Medical School, Boston, Massachusetts (H.L.); and La Jolla Institute for Allergy and Immunology, La Jolla, California (P.G.H.)
| |
Collapse
|
48
|
An E, Brognard J. Orange is the new black: Kinases are the new master regulators of tumor suppression. IUBMB Life 2018; 71:738-748. [PMID: 30548122 PMCID: PMC6563145 DOI: 10.1002/iub.1981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
For many decades, kinases have predominantly been characterized as oncogenes and drivers of tumorigenesis, because activating mutations in kinases occur in cancer with high frequency. The oncogenic functions of kinases relate to their roles as growth factor receptors and as critical mediators of mitogen-activated pathways. Indeed, some of the most promising cancer therapeutic agents are kinase inhibitors. However, cancer genomics studies, especially screens that utilize high-throughput identification of loss-of-function somatic mutations, are beginning to shed light on a widespread role for kinases as tumor suppressors. The initial characterization of tumor-suppressing kinases- in particular members of the protein kinase C (PKC) family, MKK4 of the mitogen-activated protein kinase kinase family, and DAPK3 of the death-associated protein kinase family- laid the foundation for bioinformatic approaches that enable the identification of other tumor-suppressing kinases. In this review, we discuss the important role that kinases play as tumor suppressors, using several examples to illustrate the history of their discovery and highlight the modern approaches that presently aid in the identification of tumor-suppressing kinases. © 2018 IUBMB Life, 71(6):738-748, 2019.
Collapse
Affiliation(s)
- Elvira An
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
49
|
Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death Dis 2018; 9:1095. [PMID: 30367030 PMCID: PMC6203745 DOI: 10.1038/s41419-018-1079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush (CONC)). Adult Mkk4- and Mkk7-deficient retinas had all retinal cell types, and with the exception of small areas of disrupted photoreceptor lamination in Mkk4-deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling in RGCs after axonal injury and resulted in a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wild-type controls (Mkk4: 51.5%, Mkk7: 29.1%, WT: 15.2%; p < 0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.
Collapse
|
50
|
Prenylated quinolinecarboxylic acid derivative prevents neuronal cell death through inhibition of MKK4. Biochem Pharmacol 2018; 162:109-122. [PMID: 30316820 DOI: 10.1016/j.bcp.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
The development of neuroprotective agents is necessary for the treatment of neurodegenerative diseases. Here, we report PQA-11, a prenylated quinolinecarboxylic acid (PQA) derivative, as a potent neuroprotectant. PQA-11 inhibits glutamate-induced cell death and caspase-3 activation in hippocampal cultures, as well as inhibits N-Methyl-4-phenylpyridinium iodide- and amyloid β1-42-induced cell death in SH-SY5Y cells. PQA-11 also suppresses mitogen-activated protein kinase kinase 4 (MKK4) and c-jun N-terminal kinase (JNK) signaling activated by these neurotoxins. Quartz crystal microbalance analysis and in vitro kinase assay reveal that PQA-11 interacts with MKK4, and inhibits its sphingosine-induced activation. The administration of PQA-11 by intraperitoneal injection alleviates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopaminergic neurons in mice. These results suggest that PQA-11 is a unique MKK4 inhibitor with potent neuroprotective effects in vitro and in vivo. PQA-11 may be a valuable lead for the development of novel neuroprotectants.
Collapse
|