1
|
Wang X, Liao Y, Liu D, Zheng J, Shi M. Presetting CAR-T cells during ex vivo biomanufacturing. Mol Ther 2025; 33:1380-1406. [PMID: 39988874 PMCID: PMC11997485 DOI: 10.1016/j.ymthe.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. However, it continues to encounter significant obstacles, including treatment relapse and limited efficacy in solid tumors. While effector T cells exhibit robust cytotoxicity, central memory T cells and stem cell-like T cells are essential for in vivo expansion, long-term survival, and persistence. Strategies such as genetic engineering to enhance CAR-T cell efficacy and durability are often accompanied by increased safety risks, which not only raise regulatory approval thresholds but also escalate CAR-T production costs. In contrast, optimizing ex vivo manufacturing conditions represents a more straightforward and practical approach, offering the potential for rapid application to commercially approved CAR-T products and enhancement of their clinical outcomes. This review examines several factors that have been shown to improve T cell memory phenotype and in vivo cytotoxic activity, including cytokines, electrolytes, signaling pathway inhibitors, metabolic modulators, and epigenetic agents. The insights provided will guide the optimization of CAR-T cell industrial production. Furthermore, considerations for selecting appropriate conditions are discussed, balancing effectiveness, cost-efficiency, safety, and regulatory compliance while addressing current challenges in the field.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ying Liao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Clarke KSP, Kingdon CC, Hughes MP, Lacerda EM, Lewis R, Kruchek EJ, Dorey RA, Labeed FH. The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med 2025; 23:149. [PMID: 39905423 DOI: 10.1186/s12967-025-06146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in functioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative biomarker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria-a process that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few participate in social activities. MAIN BODY Recent studies have reported promising quantifiable differences in the biochemical and electrophysiological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities and specificities-demonstrating potential development of an accessible and relatively non-invasive diagnostic biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and certain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker are yet to be explored. CONCLUSION Different biochemical and electrophysiological properties which differentiate ME/CFS have been identified across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. However, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.
Collapse
Affiliation(s)
- Krista S P Clarke
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Caroline C Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology/Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Eliana Mattos Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Robert A Dorey
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
3
|
Yang W, Feng Z, Lai X, Li J, Cao Z, Jiang F, Chen F, Zhan S, Kong F, Yang L, Teng Y, Watford WT, Zhou G, Xie J. Calcium nanoparticles target and activate T cells to enhance anti-tumor function. Nat Commun 2024; 15:10095. [PMID: 39572569 PMCID: PMC11582315 DOI: 10.1038/s41467-024-54402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Calcium signaling plays a crucial role in the activation of T lymphocytes. However, modulating calcium levels to control T cell activation in vivo remains a challenge. In this study, we investigate T cell activation using 12-myristate 13-acetate (PMA)-encapsulated CaCO3 nanoparticles. We find that anti-PD-1 antibody-conjugated CaCO3 nanoparticles can be internalized by T cells via receptor-mediated endocytosis and then gradually release calcium. This results in an increase in cytosolic calcium, which triggers the activation of NFAT and NF-κB pathways, especially when the surface of the CaCO3 nanoparticles is loaded with PMA. Animal studies demonstrate that the PMA-loaded calcium nanoparticles enhance the activation and proliferation of cytotoxic T cells, leading to improved tumor suppression without additional toxicity. When tested in metastatic tumor models, T cells loaded with the calcium nanoparticles prior to adoptive cell transfer control tumor growth better, resulting in prolonged animal survival. Our approach offers an alternative T cell activation strategy to potentiate immunotherapy by targeting a fundamental signaling pathway.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Zhizi Feng
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Xinning Lai
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jianwen Li
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wendy T Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Gang Zhou
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta, GA, USA.
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Bahrami A, Mohammadzadeh M, Abdi F, Paydareh A, Khalesi S, Hejazi E. Calcium Intake and the Pancreatic Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Clin Nutr Res 2024; 13:284-294. [PMID: 39526207 PMCID: PMC11543454 DOI: 10.7762/cnr.2024.13.4.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium plays a major role in apoptosis, cell proliferation, and various cellular mechanisms. It is also essential for the function of the pancreas. However, the association between calcium intake and pancreatic cancer is not clear. This study aims to clarify the links between calcium intake and pancreatic cancer risk using a systematic review and meta-analysis of observational studies. PubMed, Web of Science, Scopus, and Google Scholar were searched for eligible articles published through 31 August 2023. Case-control and cohort studies reporting the association between dietary and/or supplemental calcium intake and risk of pancreatic cancer using relative risk (RR), hazard ratio (HR), or odds ratio (OR) with 95% confidence interval (CI) were included. Meta-analysis using a random effect model was used to estimate the significance of the association. Eight studies were included. An inverse association between total calcium intake (dietary and supplement) and pancreatic cancer risk (RR, 0.83; 95% CI, 0.72-0.97; I2 = 0%) was observed. However, the association between dietary calcium intake alone and pancreatic cancer risk did not reach a statistically significant level (RR, 0.91; 95% CI, 0.78-1.06; I2 = 48%). Higher total calcium intake may reduce the risk of pancreatic cancer but the difference between sources of calcium (dietary vs. supplementation) requires further investigation. Also, due to the heterogeneity between the articles, the results of this study should be interpreted with caution. Trial Registration PROSPERO Identifier: CRD42022331647.
Collapse
Affiliation(s)
- Alireza Bahrami
- Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 4739-19395, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 4739-19395, Iran
| | - Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 4739-19395, Iran
| | - Fatemeh Abdi
- Department of Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Amin Paydareh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 4739-19395, Iran
| | - Saman Khalesi
- Appleton Institute and School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane 4701, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 4739-19395, Iran
| |
Collapse
|
5
|
Chiu TJ, Huang TL, Chien CY, Huang WT, Li SH. Hypoalbuminemia and hypercalcemia are independently associated with poor treatment outcomes of anti-PD-1 immune checkpoint inhibitors in patients with recurrent or metastatic head and neck squamous cell carcinoma. World J Surg Oncol 2024; 22:242. [PMID: 39256833 PMCID: PMC11389424 DOI: 10.1186/s12957-024-03522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Recent randomized phase III trials have demonstrated the efficacy of anti-programmed cell death 1 (PD-1) immune checkpoint inhibitors (ICIs) in treating patients with recurrent or metastatic head and neck squamous cell carcinoma (RMHNSCC). However, a large proportion of such patients still have poor response. This study aimed to identify biomarkers for predicting anti-PD-1 ICI treatment outcomes . METHODS We retrospectively analyzed 144 patients with RMHNSCC who received anti-PD-1 ICIs after progression to platinum-based chemotherapy between January 2017 and December 2022 at Kaohsiung Chang Gung Memorial Hospital. Data on clinicopathological parameters, albumin levels, calcium levels, and other pretreatment peripheral blood biomarkers, including total lymphocyte count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and prognostic nutritional index (PNI) were collected and correlated with the treatment outcome of anti-PD-1 ICIs. RESULTS Low tumor proportion score (TPS), low combined positive score (CPS), NLR ≥ 5, PLR ≥ 300, hypercalcemia, hypoalbuminemia, and PNI < 45 were significantly correlated with poor response of ICIs. The overall response rates were 25% and 3% in patients with calcium < 10 mg/dL and calcium ≥ 10 mg/dL, respectively (P = 0.007). The overall response rates were 6% and 33% in patients with albumin < 4 g/dL and albumin ≥ 4 g/dL, respectively (P < 0.001). Univariate survival analysis showed that low TPS, low CPS, NLR ≥ 5,, hypercalcemia, hypoalbuminemia, and PNI < 45 were significantly associated with worse progression-free survival (PFS) and inferior overall survival (OS). Multivariate analysis revealed that calcium ≥ 10 mg/dL and albumin < 4 g/dL were independent poor prognosticators for worse PFS and inferior OS. The two-year OS rates were 26% and 9% in patients with calcium < 10 mg/dL and ≥ 10 mg/dL, respectively (P < 0.001). The two-year OS rates were 10% and 33% in patients with albumin < 4 g/dL and ≥ 4 g/dL, respectively (P < 0.001). CONCLUSIONS Hypercalcemia and hypoalbuminemia can potentially predict poor treatment outcomes of anti-PD-1 ICIs in patients with RMHNSCC. Blood calcium and albumin levels may be helpful in individualizing treatment strategies for patients with RMHNSCC.
Collapse
Affiliation(s)
- Tai-Jan Chiu
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Tai-Lin Huang
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C..
| |
Collapse
|
6
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One 2024; 19:e0305704. [PMID: 38917121 PMCID: PMC11198784 DOI: 10.1371/journal.pone.0305704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - James N. Baraniuk
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
8
|
Yang H, Wang Q, Zhang S, Zhang J, Zhang Y, Feng J. Association of Domestic Water Hardness with All-Cause and Cause-Specific Cancers: Evidence from 447,996 UK Biobank Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67008. [PMID: 38889166 PMCID: PMC11218704 DOI: 10.1289/ehp13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Accumulating evidence suggests that domestic water hardness is linked to health outcomes, but its association to all-cause and cause-specific cancers warrants investigation. OBJECTIVE The aim of this study was to investigate the association of domestic hard water with all-cause and cause-specific cancers. METHODS In the prospective cohort study, a total of 447,996 participants from UK Biobank who were free of cancer at baseline were included and followed up for 16 y. All-cause and 22 common cause-specific cancer diagnoses were ascertained using hospital inpatient records and self-reported data until 30 November 2022. Domestic water hardness, measured by CaCO 3 concentrations, was obtained from the local water supply companies across England, Scotland, and Wales in 2005. Data were analyzed using Cox proportional hazard models, with adjustments for known measured confounders, including demographic, socioeconomic, clinical, biochemical, lifestyle, and environmental factors. RESULTS Over a median follow-up of 13.6 y (range: 12.7-14.4 y), 58,028 all-cause cancer events were documented. A U-shaped relationship between domestic water hardness and all-cause cancers was observed (p for nonlinearity < 0.001 ). In comparison with individuals exposed to soft water (0 - 60 mg / L ), the hazard ratios (HRs) and 95% confidence intervals (CIs) of all-cause cancer were 1.00 (95% CI: 0.98, 1.02) for those exposed to moderate hard water (> 60 - 120 mg / L ), 0.88 (95% CI: 0.84, 0.91) for those exposed to hard water (> 120 - 180 mg / L ) and 1.06 (95% CI: 1.04, 1.08) for those exposed to very hard water (> 180 mg / L ). Additionally, domestic water hardness was associated with 11 of 22 cause-specific cancers, including cancers of the esophagus, stomach, colorectal tract, lung, breast, prostate, and bladder, as well as non-Hodgkin lymphoma, multiple myeloma, malignant melanoma, and hematological malignancies. Moreover, we observed a positive linear relationship between water hardness and bladder cancer. DISCUSSION Our findings suggest that domestic water hardness was associated with all-cause and multiple cause-specific cancers. Findings from the UK Biobank support a potentially beneficial association between hard water and the incidence of all-cause cancer. However, very hard water may increase the risk of all-cause cancer. https://doi.org/10.1289/EHP13606.
Collapse
Affiliation(s)
- Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Department of Orthopedics, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Shuquan Zhang
- Department of Orthopedics, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Department of Orthopedics, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Jingyu Zhang
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yuan Zhang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jiangtao Feng
- Department of Orthopedics, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Department of Orthopedics, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Jeremijenko A, Griffin P, Marshall-Gradisnik S. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front Immunol 2024; 15:1264702. [PMID: 38765011 PMCID: PMC11099221 DOI: 10.3389/fimmu.2024.1264702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Andrew Jeremijenko
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
10
|
Lee M, Kwon S. Enhanced cytotoxic activity of natural killer cells from increased calcium influx induced by electrical stimulation. PLoS One 2024; 19:e0302406. [PMID: 38635551 PMCID: PMC11025832 DOI: 10.1371/journal.pone.0302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in immunosurveillance independent of antigen presentation, which is regulated by signal balance via activating and inhibitory receptors. The anti-tumor activity of NK cells is largely dependent on signaling from target recognition to cytolytic degranulation; however, the underlying mechanism remains unclear, and NK cell cytotoxicity is readily impaired by tumor cells. Understanding the activation mechanism is necessary to overcome the immune evasion mechanism, which remains an obstacle in immunotherapy. Because calcium ions are important activators of NK cells, we hypothesized that electrical stimulation could induce changes in intracellular Ca2+ levels, thereby improving the functional potential of NK cells. In this study, we designed an electrical stimulation system and observed a correlation between elevated Ca2+ flux induced by electrical stimulation and NK cell activation. Breast cancer MCF-7 cells co-cultured with electrically stimulated KHYG-1 cells showed a 1.27-fold (0.5 V/cm) and 1.55-fold (1.0 V/cm) higher cytotoxicity, respectively. Electrically stimulated KHYG-1 cells exhibited a minor increase in Ca2+ level (1.31-fold (0.5 V/cm) and 1.11-fold (1.0 V/cm) higher), which also led to increased gene expression of granzyme B (GZMB) by 1.36-fold (0.5 V/cm) and 1.58-fold (1.0 V/cm) by activating Ca2+-dependent nuclear factor of activated T cell 1 (NFAT1). In addition, chelating Ca2+ influx with 5 μM BAPTA-AM suppressed the gene expression of Ca2+ signaling and lytic granule (granzyme B) proteins by neutralizing the effects of electrical stimulation. This study suggests a promising immunotherapeutic approach without genetic modifications and elucidates the correlation between cytolytic effector function and intracellular Ca2+ levels in electrically stimulated NK cells.
Collapse
Affiliation(s)
- Minseon Lee
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| |
Collapse
|
11
|
Amantini C, Morelli MB. Editorial: Calcium signaling in cancer immunity. Front Immunol 2023; 14:1315490. [PMID: 38022525 PMCID: PMC10643154 DOI: 10.3389/fimmu.2023.1315490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
12
|
Erdogan MA, Ugo D, Ines F. The role of ion channels in the relationship between the immune system and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:151-198. [PMID: 38007267 DOI: 10.1016/bs.ctm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The immune system is capable of identifying and eliminating cancer, a complicated illness marked by unchecked cellular proliferation. The significance of ion channels in the complex interaction between the immune system and cancer has been clarified by recent studies. Ion channels, which are proteins that control ion flow across cell membranes, have variety of physiological purposes, such as regulating immune cell activity and tumor development. Immune cell surfaces contain ion channels, which have been identified to control immune cell activation, motility, and effector activities. The regulation of immune responses against cancer cells has been linked to a number of ion channels, including potassium, calcium, and chloride channels. As an example, potassium channels are essential for regulating T cell activation and proliferation, which are vital for anti-tumor immunity. Calcium channels play a crucial role when immune cells produce cytotoxic chemicals in order to eliminate cancer cells. Chloride channels also affect immune cell infiltration and invasion into malignancies. Additionally, tumor cells' own expressed ion channels have an impact on their behavior and in the interaction with the immune system. The proliferation, resistance to apoptosis, and immune evasion of cancer cells may all be impacted by changes in ion channel expression and function. Ion channels may also affect the tumor microenvironment by controlling angiogenesis, inflammatory responses, and immune cell infiltration. Ion channel function in the interaction between the immune system and cancer has important implications for cancer treatment. A possible method to improve anti-tumor immune responses and stop tumor development is to target certain ion channels. Small compounds and antibodies are among the ion channel modulators under investigation as possible immunotherapeutics. The complex interaction between ion channels, the immune system, and cancer highlights the significance of these channels for tumor immunity. The development of novel therapeutic strategies for the treatment of cancer will be made possible by unraveling the processes by which ion channels control immune responses and tumor activity. Hence, the main driving idea of the present chapter is trying to understand the possible function of ion channels in the complex crosstalk between cancer and immunoresponse. To this aim, after giving a brief journey of ion channels throughout the history, a classification of the main ion channels involved in cancer disease will be discussed. Finally, the last paragraph will focus on more recently advancements in the use of biomaterials as therapeutic strategy for cancer treatment. The hope is that future research will take advantage of the promising combination of ion channels, immunomodulation and biomaterials filed to provide better solutions in the treatment of cancer disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Izmir Katip Celebi University Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - D'Amora Ugo
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Fasolino Ines
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
13
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
14
|
Olivas-Aguirre M, Cruz-Aguilar LH, Pottosin I, Dobrovinskaya O. Reduction of Ca 2+ Entry by a Specific Block of KCa3.1 Channels Optimizes Cytotoxic Activity of NK Cells against T-ALL Jurkat Cells. Cells 2023; 12:2065. [PMID: 37626875 PMCID: PMC10453324 DOI: 10.3390/cells12162065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Degranulation mediated killing mechanism by NK cells is dependent on store-operated Ca2+ entry (SOCE) and has optimum at moderate intracellular Ca2+ elevations so that partial block of SOCE optimizes the killing process. In this study, we tested the effect of the selective blocker of KCa3.1 channel NS6180 on SOCE and the killing efficiency of NK cells from healthy donors and NK-92 cells against T-ALL cell line Jurkat. Patch-clamp analysis showed that only one-quarter of resting NK cells functionally express KCa3.1 current, which increases 3-fold after activation by interleukins 15 and 2. Nevertheless, blockage of KCa3.1 significantly reduced SOCE and intracellular Ca2+ rise induced by IL-15 or target cell recognition. NS6180 (1 μM) decreased NK degranulation at zero time of coculture with Jurkat cells but already after 1 h, the degranulation reached the same level as in the control. Monitoring of target cell death by flow cytometry and confocal microscopy demonstrated that NS6180 significantly improved the killing ability of NK cells after 1 h in coculture with Jurkat cells and increased the Jurkat cell fraction with apoptotic and necrotic markers. Our data evidence a strong dependence of SOCE on KCa3.1 activity in NK cells and that KCa3.1 specific block can improve NK cytotoxicity.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUsur), University of Guadalajara, Guzmán City 49000, Mexico
| | - Laura Hadit Cruz-Aguilar
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| |
Collapse
|
15
|
Dilworth L, Stennett D, Omoruyi F. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules 2023; 13:972. [PMID: 37371552 DOI: 10.3390/biom13060972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6's cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| |
Collapse
|
16
|
Chen Y, Yao L, Zhao S, Xu M, Ren S, Xie L, Liu L, Wang Y. The oxidative aging model integrated various risk factors in type 2 diabetes mellitus at system level. Front Endocrinol (Lausanne) 2023; 14:1196293. [PMID: 37293508 PMCID: PMC10244788 DOI: 10.3389/fendo.2023.1196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Ko ES, Choi SH, Lee M, Park KS. 25KDa branched polyethylenimine increases interferon-γ production in natural killer cells via improving translation efficiency. Cell Commun Signal 2023; 21:107. [PMID: 37161542 PMCID: PMC10170831 DOI: 10.1186/s12964-023-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ex vivo cultivation is a promising strategy for increasing the number of NK cells and enhancing their antitumor activity prior to clinical application. Recent studies show that stimulation with 25KDa branched polyethylenimine (25KbPEI) generates NK cells with enhanced antitumor activity. To better understand how 25KbPEI primes NK cells, we explored the mechanism underlying increase in production of IFN-γ. METHODS Chemical priming was performed on NK-92MI cells by incubating them with 5 μg/ml of 25KbPEI. The production of IFN-γ was evaluated by RT-qPCR, ELISA, and Flow cytometry. By evaluating the effect of pharmacological inhibition of ERK/mTOR-eIF4E signaling pathways on IFN-γ translation, the function of these signaling pathways in IFN-γ translation was examined. To comprehend the level of 25KbPEI activity on immune-related components in NK cells, RNA sequencing and proteomics analyses were conducted. RESULTS 25KbPEI enhances the production of IFN-γ by NK cells without transcriptional activation. Activation of ERK and mTOR signaling pathways was found to be associated with 25KbPEI-mediated calcium influx in NK cells. The activation of ERK/mTOR signaling was linked to the phosphorylation of 4E-BP1, which resulted in the activation of translation initiation complex and subsequent IFN-γ translation. Analysis of RNA sequencing and proteomics data revealed that the activity of 25KbPEI to improve translation efficiency in NK cells could be extended to additional immune-related molecules. CONCLUSIONS This study provides substantial insight into the process by which 25KbPEI primes NK cells. Our data demonstrated that the 25KbPEI mediated activation of ERK/mTOR signaling and subsequent stimulation of eIF4E is the primary mechanism by which the chemical stimulates translation of IFN-γ in NK cells. Video abstract.
Collapse
Affiliation(s)
- Eun-Su Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Minwook Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea.
| |
Collapse
|
18
|
Ren L, Yang X, Liu J, Wang W, Liu Z, Lin Q, Huang B, Pan J, Mao X. An innovative model based on N7-methylguanosine-related lncRNAs for forecasting prognosis and tumor immune landscape in bladder cancer. Cancer Cell Int 2023; 23:85. [PMID: 37158958 PMCID: PMC10165842 DOI: 10.1186/s12935-023-02933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND As a novel type of the prevalent post-transcriptional modifications, N7-methylguanosine (m7G) modification is essential in the tumorigenesis, progression, and invasion of many cancers, including bladder cancer (BCa). However, the integrated roles of m7G-related lncRNAs in BCa remain undiscovered. This study aims to develop a prognostic model based on the m7G-related lncRNAs and explore its predictive value of the prognosis and anti-cancer treatment sensitivity. METHODS We obtained RNA-seq data and corresponding clinicopathological information from the TCGA database and collected m7G-related genes from previous studies and GSEA. Based on LASSO and Cox regression analysis, we developed a m7G prognostic model. The Kaplan-Meier (K-M) survival analysis and ROC curves were performed to evaluate the predictive power of the model. Gene set enrichment analysis (GSEA) was conducted to explore the molecular mechanisms behind apparent discrepancies between the low- and high-risk groups. We also investigated immune cell infiltration, TIDE score, TMB, the sensitivity of common chemotherapy drugs, and the response to immunotherapy between the two risk groups. Finally, we validated the expression levels of these ten m7G-related lncRNAs in BCa cell lines by qRT-PCR. RESULTS We developed a m7G prognostic model (risk score) composed of 10 m7G-related lncRNAs that are significantly associated with the OS of BCa patients. The K-M survival curves revealed that the high-risk group patients had significantly worse OS than those in the low-risk group. The Cox regression analysis confirmed that the risk score was a significant independent prognostic factor for BCa patients. We found that the high-risk group had higher the immune scores and immune cell infiltration. Furthermore, the results of the sensitivity of common anti-BCa drugs showed that the high-risk group was more sensitive to neoadjuvant cisplatin-based chemotherapy and anti-PD1 immunotherapy. Finally, qRT-PCR revealed that AC006058.1, AC073133.2, LINC00677, and LINC01338 were significantly downregulated in BCa cell lines, while the expression levels of AC124312.2 and AL158209.1 were significantly upregulated in BCa cell lines compared with normal cell lines. CONCLUSION The m7G prognostic model can be applied to accurately predict the prognosis and provide robust directions for clinicians to develop better individual-based and precise treatment strategies for BCa patients.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Qingyuan Lin
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
19
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
20
|
Adib Y, Boy M, Serror K, Dulphy N, des Courtils C, Duciel L, Boccara D, Mimoun M, Samardzic M, Bagot M, Bensussan A, Michel L. Modulation of NK cell activation by exogenous calcium from alginate dressings in vitro. Front Immunol 2023; 14:1141047. [PMID: 37090742 PMCID: PMC10117844 DOI: 10.3389/fimmu.2023.1141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Natural Killer (NK) cells participate in the defense against infection by killing pathogens and infected cells and secreting immuno-modulatory cytokines. Defects in NK cell activity have been reported in obese, diabetic, and elderly patients that are at high risk of developing infected chronic wounds. Calcium alginate dressings are indicated for the debridement during the inflammatory phase of healing. Since calcium ions are major activators of NK cells, we hypothesized that these dressings could enhance NK functions, as investigated in vitro herein. Primary human blood NK cells were freshly-isolated from healthy volunteers and exposed to conditioned media (CM) from two alginate dressings, Algosteril® (ALG, pure Ca2+ alginate) and Biatain® Alginate (BIA, Ca2+ alginate with CMC), in comparison with an exogenous 3mM calcium solution. Our results demonstrated that exogenous calcium and ALG-CM, but not BIA-CM, induced NK cell activation and enhanced their capacity to kill their targets as a result of increased degranulation. NK cell stimulation by ALG depended on the influx of extracellular Ca2+via the SOCE Ca2+ permeable plasma membrane channels. ALG-CM also activated NK cell cytokine production of IFN-γ and TNF-α through a partly Ca2+-independent mechanism. This work highlights the non-equivalence between alginate dressings for NK cell stimulation and shows that the pure calcium alginate dressing Algosteril® enhances NK cell cytotoxic and immuno-modulatory activities. Altogether, these results underline a specific property of this medical device in innate defense that is key for the cutaneous wound healing process.
Collapse
Affiliation(s)
- Yara Adib
- Skin Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Laboratoires Brothier, Nanterre, France
| | - Maxime Boy
- Université Paris Cité, Paris, France
- Department of Immunology, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_1160, Hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Skin Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Chirurgie plastique, reconstructive et esthétique, Hôpital Saint-Louis, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Paris, France
- Department of Immunology, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_1160, Hôpital Saint-Louis, Paris, France
- Service d’Immunologie et Histocompatibilité, Assistance publique-Hôpitaux de Paris (APHP), Hôpital Saint Louis, Paris, France
| | | | | | - David Boccara
- Service de Chirurgie plastique, reconstructive et esthétique, Hôpital Saint-Louis, Paris, France
| | - Maurice Mimoun
- Service de Chirurgie plastique, reconstructive et esthétique, Hôpital Saint-Louis, Paris, France
| | | | - Martine Bagot
- Université Paris Cité, Paris, France
- Service de Dermatologie, Assistance publique-Hôpitaux de Paris, Hôpital Saint Louis, Paris, France
| | - Armand Bensussan
- Skin Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - Laurence Michel
- Skin Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMRS)_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- *Correspondence: Laurence Michel,
| |
Collapse
|
21
|
Comprehensive Analysis of Transcriptomic Profiles Identified the Prediction of Prognosis and Drug Sensitivity of Aminopeptidase-Like 1 (NPEPL1) for Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4732242. [PMID: 36816355 PMCID: PMC9931475 DOI: 10.1155/2023/4732242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 02/10/2023]
Abstract
Aminopeptidase-like 1 (NPEPL1) is a member of the aminopeptidase group that plays a role in the development and progression of various diseases. Expression of NPEPL1 has been reported to be involved in prostate, breast, and colorectal cancers. However, the role and mechanism of NPEPL1 in clear cell renal cell carcinoma (ccRCC) are unclear. The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases were used to predict the relationship between clinicopathological features and NPEPL1 expression. Changes in immune status and drug sensitivity with NPEPL1 expression were analyzed by the "CIBERSORT" function in R software. The results found that NPEPL1 expression was upregulated in ccRCC tissues, with expression progressively increasing with ccRCC stage and grade. Patients with high NPEPL1 expression presented with a poor prognosis across different clinicopathological features. Univariate and multivariate Cox regression analyses indicated that aberrant NPEPL1 expression was an independent risk factor for ccRCC. The nomogram showed that NPEPL1 expression improved the accuracy of predicting the prognosis of ccRCC patients. The Gene Ontology (GO) term enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that NPEPL1 may be involved in the development of ccRCC through the voltage-gated calcium channel complex, channel activity, cAMP signaling pathway, and oxytocin signaling pathway. The coexpression analysis found that NPEPL1 altered tumor characteristics by interacting with related genes. The "CIBERSORT" analysis showed that elevated NPEPL1 expression was followed by an enrichment of regulatory T cells and follicular helper T cells in the microenvironment. The drug sensitivity analysis found patients with high NPEPL1 expression had a higher benefit from axitinib, cisplatin, and GSK429286A. In conclusion, upregulation of NPEPL1 expression was involved in ccRCC prognosis and treatment. NPEPL1 could be used as a therapeutic target to guide clinical dosing.
Collapse
|
22
|
Wu JY, Shao Y, Huang CZ, Wang ZL, Zhang HQ, Fu Z. Genetic variants in the calcium signaling pathway participate in the pathogenesis of colorectal cancer through the tumor microenvironment. Front Oncol 2023; 13:992326. [PMID: 36824126 PMCID: PMC9941622 DOI: 10.3389/fonc.2023.992326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Background Cancer risk is influenced by calcium signaling in intracellular and intercellular signaling pathways. However, the relationship between the calcium signaling pathway and colorectal cancer risk remains unknown. We aim to evaluate the role of genetic variants in calcium signaling pathway genes in colorectal cancer risk through the tumor microenvironment. Methods An analysis of genetic variants in the calcium signaling pathway was conducted using a case-control study that included 1150 colorectal cancer patients and 1342 non-cancer patients. Using the regression model, we assessed whether single-nucleotide polymorphisms (SNPs) increase the risk of colorectal cancer. We also performed a dual luciferase reporter gene assay using HCT116 cell lines and DLD1 cell lines to demonstrate the regulatory relationship between SNP and candidate risk gene. We evaluated the expression of candidate risk gene in different populations. In addition, we also evaluated candidate risk gene and 22 immune cells correlation studies. Results There was a significant association between the PDE1C rs12538364 T allele and colorectal cancer risk [odds ratio (OR) = 1.57, 95% confidence interval (CI) = 1.30 - 1.90, P = 3.07 × 10-6, P FDR = 0.004]. Mutation of intron region rs1538364 C to T locus reduces promoter activity of PDE1C in DLD1 and HCT116 cell lines (P < 0.05). We identified that PDE1C is significantly down-regulated in colorectal cancer, closely associated with 22 immune cells. Finally, we found that PDE1C could be the biomarker for individual immunotherapy of colorectal cancer. Conclusion According to our findings, PDE1C may be a key factor contributing to colorectal cancer, thus improving individual immunotherapy for the disease. The potential mechanism by which polymorphisms in the calcium signaling pathway genes may participate in the pathogenesis of colorectal cancer through the tumor microenvironment.
Collapse
Affiliation(s)
- Jing-Yu Wu
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Shao
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang-Zhi Huang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Ling Wang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Qiang Zhang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
23
|
Baroja-Mazo A, Peñín-Franch A, Lucas-Ruiz F, de Torre-Minguela C, Alarcón-Vila C, Hernández-Caselles T, Pelegrín P. P2X7 receptor activation impairs antitumour activity of natural killer cells. Br J Pharmacol 2023; 180:111-128. [PMID: 36098250 PMCID: PMC10092446 DOI: 10.1111/bph.15951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE A high number of intratumoural infiltrating natural killer (NK) cells is associated with better survival in several types of cancer, constituting an important first line of defence against tumours. Hypoxia in the core of solid tumours induces cellular stress and ATP release into the extracellular space where it triggers purinergic receptor activation on tumour-associated immune cells. The aim of this study was to assess whether activation of the purinergic receptor P2X7 by extracellular ATP plays a role in the NK cells antitumour activity. EXPERIMENTAL APPROACH We carried out in vitro experiments using purified human NK cells triggered through P2X7 by extracellular ATP. NK cell killing activity against the tumour target cells K562 was studied by means of NK cytotoxicity assays. Likewise, we designed a subcutaneous solid tumour in vivo mouse model. KEY RESULTS In this study we found that human NK cells, expressing a functional plasma membrane P2X7, acquired an anergic state after ATP treatment, which impaired their antitumour activity and decreased IFN-γ secretion. This effect was reversed by specific P2X7 antagonists and pretreatment with either IL-2 or IL-15. Furthermore, genetic P2rx7 knockdown resulted in improved control of tumour size by NK cells. In addition, IL-2 therapy restored the ability of NK cells to diminish the size of tumours. CONCLUSIONS AND IMPLICATIONS Our results show that P2X7 activation represents a new mechanism whereby NK cells may lose antitumour effectiveness, opening the possibility of generating modified NK cells lacking P2X7 but with improved antitumour capacity.
Collapse
Affiliation(s)
- Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alejandro Peñín-Franch
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Fernando Lucas-Ruiz
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Cristina Alarcón-Vila
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Zong GF, Deng R, Yu SY, Wang AY, Wei ZH, Zhao Y, Lu Y. Thermo-Transient Receptor Potential Channels: Therapeutic Potential in Gastric Cancer. Int J Mol Sci 2022; 23:ijms232315289. [PMID: 36499622 PMCID: PMC9740781 DOI: 10.3390/ijms232315289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
Over the last decade, researchers have found abnormal expression of transient receptor potential (TRP) channels. In particular, members of the thermally sensitive subclass (thermo-TRPs) are involved in many disease processes. Moreover, they have a vital role in the occurrence and development of gastric cancer (GC). Accordingly, thermo-TRPs constitute a major pharmacological target, and the elucidation of the mechanisms underlying their response to physiological stimuli or drugs is key for notable advances in GC treatment. Therefore, this paper summarizes the existing literature about thermo-TRP protein expression changes that are linked to the incidence and progression of GC. The review also discusses the implication of such association to pathology and cell physiology and identifies potential thermo-TRP protein targets for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Su-Yun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
| | - Ai-Yun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| |
Collapse
|
25
|
Liu X, Pan L, Wang K, Pan W, Li N, Tang B. Imaging strategies for monitoring the immune response. Chem Sci 2022; 13:12957-12970. [PMID: 36425502 PMCID: PMC9667917 DOI: 10.1039/d2sc03446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 08/11/2023] Open
Abstract
Real-time monitoring of the immune response can be used to evaluate the immune status of the body and to distinguish immune responders and non-responders, so as to better guide immunotherapy. Through direct labelling of immune cells and imaging specific biomarkers of different cells, the activation status of immune cells and immunosuppressive status of tumor cells can be visualized. The immunotherapeutic regimen can then be adjusted accordingly in a timely manner to improve the efficacy of immunotherapy. In this review, various imaging methods, immune-related imaging probes, current challenges and opportunities are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
26
|
Hoyt M, Song Y, Gao S, O'Palka J, Zhang J. Intake of Calcium, Magnesium, and Phosphorus and Risk of Pancreatic Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:747-757. [PMID: 34586963 DOI: 10.1080/07315724.2021.1970047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
ObjectiveFew epidemiological studies have investigated the associations between calcium, magnesium, and phosphorus intake and pancreatic cancer. We examined these associations in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial.MethodsDiet was assessed using the Dietary Questionnaire (DQX) at baseline in the intervention arm and the Dietary History Questionnaire (DHQ) in 1999 or around the third anniversary of randomization in both the intervention and control arms. During a median follow-up of 12.2 years, 279 cases of pancreatic cancer occurred from 58,477 participants who completed DQX; 380 cases arose from 101,622 participants who responded to DHQ over a median follow-up of 8.9 years. Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI).ResultsTotal calcium intake was inversely associated with pancreatic cancer [HR (95% CI) for the fourth vs. the first quartiles in the DHQ cohort: 0.67 (0.47, 0.96); p-trend: 0.035]. An inverse association was also observed for total magnesium intake [HR (95% CI) for the fourth vs. the first quartiles in the DQX cohort: 0.61 (0.37, 1.00); p-trend: 0.023]. Reduced risk associated with total calcium intake was confined to subjects with a high fat intake (>73 g/day) in the DHQ cohort (p-interaction: 0.16).ConclusionsThere was not a significant association between dietary phosphorus intake and pancreatic cancer risk in both cohorts. Total intake of calcium and magnesium are associated with a lower pancreatic cancer risk. The effect of total calcium intake was modified by fat intake.
Collapse
Affiliation(s)
- Margaret Hoyt
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health and School of Medicine, Indianapolis, IN, USA
| | - Jacquelynn O'Palka
- Department of Nutrition and Dietetics, Indiana University School of Health and Human Sciences, Indianapolis, IN, USA
| | - Jianjun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
27
|
Betzer O, Gao Y, Shamul A, Motiei M, Sadan T, Yehuda R, Atkins A, Cohen CJ, Shen M, Shi X, Popovtzer R. Multifunctional nanoprobe for real-time in vivo monitoring of T cell activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102596. [PMID: 36031044 DOI: 10.1016/j.nano.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.
Collapse
Affiliation(s)
- Oshra Betzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Astar Shamul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronen Yehuda
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Cyrille J Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Rachela Popovtzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
28
|
Vazquez DR, Munoz Forti K, Figueroa Rosado MM, Gutierrez Mirabal PI, Suarez-Martinez E, Castro-Rosario ME. Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:10494. [PMID: 37124318 PMCID: PMC10137321 DOI: 10.3390/app122010494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the effect of naked CaS nanostructures on the proliferation of carcinoma cancer cells and normal fibroblasts in vitro. The CaS nanostructures were prepared via the microwave-mediated decomposition of dimethyl sulfoxide (DMSO) in the presence of calcium acetate Ca ( CH 3 CO 2 ) 2 . Light scattering measurements revealed that dispersions contain CaS nanostructures in the size range of a few Å to about 1 nanometer, and are formed when DMSO is decomposed in the presence of Ca ( CH 3 CO 2 ) 2 . Theoretical calculations at the DFT/B3LYP/DGDZVP level of theory on ( C a S ) n clusters ( n = 1 , 2 , 3 , and 4) are consistent with clusters in this size range. The absorption spectra of the CaS nanostructures are dominated by strong bands in the UV, as well as weaker absorption bands in the visible. We found that a single dose of CaS nanoclusters smaller than 0.8 nm in diameter does not affect the survival and growth rate of normal fibroblasts and inhibits the proliferation rate of carcinoma cells in vitro. Larger CaS nanostructures, approximately (1.1 ± 0.2) nm in diameter, have a similar effect on carcinoma cell proliferation and survival rate. The CaS nanoclusters have little effect on the normal fibroblast cell cycle. Human carcinoma cells treated with CaS nanocluster dispersion exhibited a decreased ability to properly enter the cell cycle, marked by a decrease in cell concentration in the G0/G1 phase in the first 24 h and an increase in cells held in the SubG1 and G0/G1 phases up to 72 h post-treatment. Apoptosis and necrotic channels were found to play significant roles in the death of human carcinoma exposed to the CaS nanoclusters. In contrast, any effect on normal fibroblasts appeared to be short-lived and non-detrimental. The interaction of CaS with several functional groups was further investigated using theoretical calculations. CaS is predicted to interact with thiol ( R-SH ), hydroxide ( R - OH ), amino ( R - NH 2 ), carboxylic acid ( R - COOH ), ammonium ( R-NH 3 + ), and carboxylate ( R-COO - ) functional groups. None of these interactions are predicted to result in the dissociation of CaS. Thermodynamic considerations, on the other hand, are consistent with the dissociation of CaS into Ca 2 + ions and H 2 S in acidic media, both of which are known to cause apoptosis or cell death. Passive uptake and extracellular pH values of carcinoma cells are proposed to result in the observed selectivity of CaS to inhibit cancer cell proliferation with no significant effect on normal fibroblast cells. The results encourage further research with other cell lines in vitro as well as in vivo to translate this nanotechnology into clinical use.
Collapse
Affiliation(s)
- Daniel Rivera Vazquez
- School of Biological and Physical Sciences, Northwestern State University, Natchitoches, LA 71457, USA
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
| | - Kevin Munoz Forti
- Department of Biology, The University of Puerto Rico at Ponce, Ponce 00716, Puerto Rico, USA
| | | | - Pura I. Gutierrez Mirabal
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
| | - Edu Suarez-Martinez
- Department of Biology, The University of Puerto Rico at Ponce, Ponce 00716, Puerto Rico, USA
| | - Miguel E. Castro-Rosario
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
- Correspondence:
| |
Collapse
|
29
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Lesslar OL, Deed G, Marshall-Gradisnik S. Transient receptor potential melastatin 3 dysfunction in post COVID-19 condition and myalgic encephalomyelitis/chronic fatigue syndrome patients. Mol Med 2022; 28:98. [PMID: 35986236 PMCID: PMC9388968 DOI: 10.1186/s10020-022-00528-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multisystemic condition associated with post-infectious onset, impaired natural killer (NK) cell cytotoxicity and impaired ion channel function, namely Transient Receptor Potential Melastatin 3 (TRPM3). Long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has resulted in neurocognitive, immunological, gastrointestinal, and cardiovascular manifestations recently recognised as post coronavirus disease 2019 (COVID-19) condition. The symptomatology of ME/CFS overlaps significantly with post COVID-19; therefore, this research aimed to investigate TRPM3 ion channel function in post COVID-19 condition patients. METHODS Whole-cell patch-clamp technique was used to measure TRPM3 ion channel activity in isolated NK cells of N = 5 ME/CFS patients, N = 5 post COVID-19 patients, and N = 5 healthy controls (HC). The TRPM3 agonist, pregnenolone sulfate (PregS) was used to activate TRPM3 function, while ononetin was used as a TRPM3 antagonist. RESULTS As reported in previous research, PregS-induced TRPM3 currents were significantly reduced in ME/CFS patients compared with HC (p = 0.0048). PregS-induced TRPM3 amplitude was significantly reduced in post COVID-19 condition compared with HC (p = 0.0039). Importantly, no significant difference was reported in ME/CFS patients compared with post COVID-19 condition as PregS-induced TRPM3 currents of post COVID-19 condition patients were similar of ME/CFS patients currents (p > 0.9999). Isolated NK cells from post COVID-19 condition and ME/CFS patients were resistant to ononetin and differed significantly with HC (p < 0.0001). CONCLUSION The results of this investigation suggest that post COVID-19 condition patients may have impaired TRPM3 ion channel function and provide further evidence regarding the similarities between post COVID-19 condition and ME/CFS. Impaired TRPM3 channel activity in post COVID-19 condition patients suggest impaired ion mobilisation which may consequently impede cell function resulting in chronic post-infectious symptoms. Further investigation into TRPM3 function may elucidate the pathomechanism, provide a diagnostic and therapeutic target for post COVID-19 condition patients and commonalities with ME/CFS patients.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia.
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Olivia Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, USA
- Cingulum Health, Rosebery, NSW, Australia
| | - Gary Deed
- Mediwell Medical Clinic, Coorparoo, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
30
|
Du X, Zhao D, Wang Y, Sun Z, Yu Q, Jiang H, Wang L. Low Serum Calcium Concentration in Patients With Systemic Lupus Erythematosus Accompanied by the Enhanced Peripheral Cellular Immunity. Front Immunol 2022; 13:901854. [PMID: 35757710 PMCID: PMC9226677 DOI: 10.3389/fimmu.2022.901854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Objective This study aims to explore the relationship between serum calcium concentration and peripheral lymphocyte status/Th1/Th2 cytokine levels in SLE patients, and the effect of glucocorticoids (GCs) on the calcium concentration and immune cell activation. Methods The peripheral blood TBNK lymphocyte subsets and Th1/Th2 cytokines in SLE patients with low or normal serum calcium concentration and healthy people were analyzed and compared retrospectively. Peripheral white blood cells (PWBCs) from SLE patients or healthy people were stimulated with PMA or GCs in vitro to test their extracellular calcium concentration and CD8+ T cell activation. Results The percentages of CD8+ T in SLE patients increased, but the increase of the number of CD8+ T cells only occurred in the SLE patients with low serum calcium concentration, and the number of CD45hiCD8+ T cells also increased, suggesting that SLE patients with hypocalcemia tend to possess an enhanced cellular immunity. The results of Th1/Th2 cytokines in peripheral blood showed that the levels of serum IL-2, IL-10, IL-6 and IFN-γ in SLE patients with hypocalcemia were significantly increased. Although the serum levels of TNF-α in SLE patients were –similar to that in healthy people, it was significantly higher than that in SLE patients with normal serum calcium. When comparing the results of Th1/Th2 cytokines in two times of one patient, the serum levels of TNF-α in SLE patients increased while serum calcium levels decreased. The in vitro experiments showed that the decrease of serum calcium concentration in SLE patients was affected by the immune cell activation and the application of GCs, but GCs did not promote the immune cell activation. Conclusions Low serum calcium may make SLE patients in an enhanced cellular immune status and GCs aggravates the decrease of serum calcium levels but has no role on the immune cell activation. It suggests that hypocalcemia possibly promotes the disease activity of SLE patient, which should be paid attention to clinically.
Collapse
Affiliation(s)
- Xue Du
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhengyi Sun
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Qiuyang Yu
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
31
|
Pyun SH, Min W, Goo B, Seit S, Azzi A, Yu-Shun Wong D, Munavalli GS, Huh CH, Won CH, Ko M. Real-time, in vivo skin cancer triage by laser-induced plasma spectroscopy combined with a deep learning-based diagnostic algorithm. J Am Acad Dermatol 2022:S0190-9622(22)02214-9. [PMID: 35752277 DOI: 10.1016/j.jaad.2022.06.1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Although various skin cancer detection devices have been proposed, most of them are not used owing to their insufficient diagnostic accuracies. Laser-induced plasma spectroscopy (LIPS) can noninvasively extract biochemical information of skin lesions using an ultrashort pulsed laser. OBJECTIVE To investigate the diagnostic accuracy and safety of real-time noninvasive in vivo skin cancer diagnostics utilizing nondiscrete molecular LIPS combined with a deep neural network (DNN)-based diagnostic algorithm. METHODS In vivo LIPS spectra were acquired from 296 skin cancers (186 basal cell carcinomas, 96 squamous cell carcinomas, and 14 melanomas) and 316 benign lesions in a multisite clinical study. The diagnostic performance was validated using 10-fold cross-validations. RESULTS The sensitivity and specificity for differentiating skin cancers from benign lesions using LIPS and the DNN-based algorithm were 94.6% (95% CI: 92.0%-97.2%) and 88.9% (95% CI: 85.5%-92.4%), respectively. No adverse events, including macroscopic or microscopic visible marks or pigmentation due to laser irradiation, were observed. LIMITATIONS The diagnostic performance was evaluated using a limited data set. More extensive clinical studies are needed to validate these results. CONCLUSIONS This LIPS system with a DNN-based diagnostic algorithm is a promising tool to distinguish skin cancers from benign lesions with high diagnostic accuracy in real clinical settings.
Collapse
Affiliation(s)
| | - Wanki Min
- R&D Center, Speclipse, Inc, Sunnyvale, California
| | - Boncheol Goo
- R&D Center, Speclipse, Inc, Sunnyvale, California
| | - Samuel Seit
- The Skin Cancer & Cosmetic Clinic, Neutral Bay, New South Wales, Australia
| | - Anthony Azzi
- Newcastle Skin Check, Charlestown, New South Wales, Australia
| | | | - Girish S Munavalli
- Dermatology, Laser & Vein Specialists of the Carolinas, Charlotte, North Carolina
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Chong-Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minsam Ko
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| |
Collapse
|
32
|
Wang K, Yang A, Peng X, Lv F, Wang Y, Cui Y, Wang Y, Zhou J, Si H. Linkages of Various Calcium Sources on Immune Performance, Diarrhea Rate, Intestinal Barrier, and Post-gut Microbial Structure and Function in Piglets. Front Nutr 2022; 9:921773. [PMID: 35782941 PMCID: PMC9248811 DOI: 10.3389/fnut.2022.921773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different sources of calcium on immune performance, diarrhea rate, intestinal barrier, and post-intestinal flora structure and function in weaned piglets. A total of 1,000 weaned piglets were randomly assigned to five groups 10 replicate pens per treatment, 20 piglets per pen and fed calcium carbonate, calcium citrate, multiple calcium, and organic trace minerals of different concentrations of acidifier diets. The results of the study showed that the replacement of calcium carbonate with calcium citrate and multiple calcium had almost no significant effect on immune indexes (IL-1β, IL-6, IL-10, TNF-α) of piglets compared with the control group (p > 0.05). The five groups did not show a change in the diarrhea rate and diarrhea index (p > 0.05). The diet containing multiple calcium dramatically decreased the TP compared to the C and L diet (p < 0.05). No significant difference in HDL was noted in the five groups (p > 0.05). However, the concentration of LDL in blood in the multiple calcium group was significantly higher than that in groups L and D (p < 0.05). Moreover, the concentration of Glu in blood in the multiple calcium group was significantly higher than that in group C (p < 0.05). Compared with the control group, calcium citrate plus organic trace minerals diet markedly increased UCG-005 abundance in the colon (p < 0.05). In addition, the relative abundance of Prevotellaceae_NK3B31_group had an upward trend in the colon of the M group compared to the D group (p = 0.070). Meanwhile, calcium citrate plus organic trace minerals diet markedly increased Clostridium_sensu_stricto_1 abundance in the colon (p < 0.05). Metagenomic predictions by PICRUSt suggested that the colonic and fecal microbiota was mainly involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, and metabolism of cofactors and vitamins.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
33
|
El-sonbaty SM, Moawed FSM, Kandil EI, M Tamamm A. Antitumor and Antibacterial Efficacy of Gallium Nanoparticles Coated by Ellagic Acid. Dose Response 2022; 20:15593258211068998. [PMID: 35173563 PMCID: PMC8841935 DOI: 10.1177/15593258211068998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a mortality contributor worldwide, and breast cancer is the most common among women. Despite the numerous breast cancer therapeutic strategies, they either have limitations or sometimes are resisted by cancer, so new approaches are needed to tackle those restrictions. Nanotechnology offers exciting leaps in the diagnosis and treatment of cancer, especially breast cancer. The main objective of this study was to investigate the effect of the newly synthesized gallium nanoparticles coated by Ellagic acid (EA-GaNPs) on the induced mammary gland carcinogenesis in female rats and their antibacterial activities comparison with standard antibiotics (Ketoconazole (100 μg/ml) and Gentamycin (4 μg/ml)) by disc diffusion method using eight different microbial species. The antitumor efficacy of EA-GaNPs was conducted both in vitro and in in vivo. The result of antimicrobial activity of EA-Ga NPs (1 mg/1 mL) revealed moderate toxicity behavior against Gram-positive {Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and Gram-negative pathogenic bacteria {Escherichia coli, Proteus vulgarfs) also, antifungal activity was detected against {Aspergillus terreus). In vitro study showed that EA-GaNPs inhibited human breast cancer cell line (MCF-7) proliferation with IC50 of 2.86 μg/ml. Although in vivo; the administration of EA-GaNPs to DMBA-treated rats ameliorated the hyperplastic state of mammary gland carcinogenesis induced by DMBA. Additionally, EA-GaNPs administration significantly modulated the activities of ALT and AST, as well as the levels of urea and creatinine in serum. Also, EA-GaNPs administration improved the antioxidant state by increasing Superoxide dismutase activity and GSH content, and decreasing malondialdehyde content in the mammary tissue, besides enhancing the apoptotic activity through elevating the levels of caspase-3 and decreasing the protein intensities of protein kinase B & phosphatidyl inositide 3-kinases. Furthermore, a significant decrease in serum Total iron-binding capacity accompanied by a significant increase in the level of calcium was noted. So, it can be concluded that the newly synthesized nanoparticles EA-GaNPs have an efficient antitumor activity that was manifested by reduction of the viability on the human breast cancer cell line (MCF-7) in vitro. Also, in vivo against the chemically induced mammary gland carcinogenesis in a female rat model. Histopathological findings were in harmony with biochemical and molecular results showing the effectiveness of EA-GaNPs against mammary carcinogenesis. Therefore, EA-GaNPs could be a promising, potent anti-cancer compound.
Collapse
Affiliation(s)
- Sawsan M El-sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amira M Tamamm
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Li Y, Yu M, Yin J, Yan H, Wang X. Enhanced Calcium Signal Induces NK Cell Degranulation but Inhibits Its Cytotoxic Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:347-357. [PMID: 34911773 DOI: 10.4049/jimmunol.2001141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Although the mechanism of NK cell activation is still unclear, the strict calcium dependence remains the hallmark for lytic granule secretion. A plethora of studies claiming that impaired Ca2+ signaling leads to severely defective cytotoxic granule exocytosis accompanied by weak target cell lysis has been published. However, there has been little discussion about the effect of induced calcium signal on NK cell cytotoxicity. In our study, we observed that small-molecule inhibitor UNC1999, which suppresses global H3K27 trimethylation (H3K27me3) of human NK cells, induced a PKD2-dependent calcium signal. Enhanced calcium entry led to unbalanced vesicle release, which resulted into fewer target cells acquiring lytic granules and subsequently being killed. Further analyses revealed that the ability of conjugate formation, lytic synapse formation, and granule polarization were normal in NK cells treated with UNC1999. Cumulatively, these data indicated that induced calcium signal exclusively enhances unbalanced degranulation that further inhibits their cytotoxic activity in human NK cells.
Collapse
Affiliation(s)
- Yang Li
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China;
| | - Minghang Yu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Immunology, Department of Oncology, Capital Medical University, Beijing, China
| | - Jie Yin
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China; and
| | - Han Yan
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China;
- Department of Immunology, Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Barbonari S, D'Amore A, Palombi F, De Cesaris P, Parrington J, Riccioli A, Filippini A. RELEVANCE OF LYSOSOMAL Ca2+ SIGNALLING MACHINERY IN CANCER. Cell Calcium 2022; 102:102539. [DOI: 10.1016/j.ceca.2022.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
|
37
|
Fan H, Yu Y, Nan H, Hoyt M, Reger MK, Prizment A, Anderson KE, Zhang J. Associations between intake of calcium, magnesium and phosphorus and risk of pancreatic cancer: a population-based, case-control study in Minnesota. Br J Nutr 2021; 126:1549-1557. [PMID: 33494844 DOI: 10.1017/s0007114521000283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experimental studies suggest that abnormal levels of Ca, Mg and phosphorus are implicated in pancreatic carcinogenesis. We investigated the associations between intakes of these minerals and the risk of pancreatic cancer in a case-control study conducted in 1994-1998. Cases of pancreatic cancer (n 150) were recruited from all hospitals in the metropolitan area of the Twin Cities and Mayo Clinic, Minnesota. Controls (n 459) were randomly selected from the general population and frequency matched to cases by age, sex and race. All dietary variables were adjusted for energy intake using the residual method prior to data analysis. Logistic regression was performed to evaluate the associations between intake of three nutrients examined and the risk of pancreatic cancer. Total intake of Ca (936 v. 1026 mg/d) and dietary intake of Mg (315 v. 331 mg/d) and phosphorus (1350 v. 1402 mg/d) were significantly lower in cases than in controls. After adjustment for confounders, there were not significant associations of total and dietary intakes of Ca, Mg and phosphorus with the risk of pancreatic cancer. In addition, no significant interactions exist between intakes of these minerals and total fat on pancreatic cancer risk. In conclusion, the present study does not suggest that intakes of Ca, Mg and phosphorus were significantly associated with the risk of pancreatic cancer.
Collapse
Affiliation(s)
- Hao Fan
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Yunpeng Yu
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health and School of Medicine, Indianapolis, IN, USA
| | - Haocheng Nan
- Department of Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Margaret Hoyt
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Michael K Reger
- College of Health Professions, Ferris State University, Big Rapids, MI, USA
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, Medical School and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kristin E Anderson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jianjun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
38
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
39
|
Characterization of IL-2 Stimulation and TRPM7 Pharmacomodulation in NK Cell Cytotoxicity and Channel Co-Localization with PIP 2 in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211879. [PMID: 34831634 PMCID: PMC8618557 DOI: 10.3390/ijerph182211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystemic disorder responsible for significant disability. Although a unifying etiology for ME/CFS is uncertain, impaired natural killer (NK) cell cytotoxicity represents a consistent and measurable feature of this disorder. Research utilizing patient-derived NK cells has implicated dysregulated calcium (Ca2+) signaling, dysfunction of the phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent cation channel, transient receptor potential melastatin (TRPM) 3, as well as altered surface expression patterns of TRPM3 and TRPM2 in the pathophysiology of ME/CFS. TRPM7 is a related channel that is modulated by PIP2 and participates in Ca2+ signaling. Though TRPM7 is expressed on NK cells, the role of TRPM7 with IL-2 and intracellular signaling mechanisms in the NK cells of ME/CFS patients is unknown. This study examined the effect of IL-2 stimulation and TRPM7 pharmacomodulation on NK cell cytotoxicity using flow cytometric assays as well as co-localization of TRPM7 with PIP2 and cortical actin using confocal microscopy in 17 ME/CFS patients and 17 age- and sex-matched healthy controls. The outcomes of this investigation are preliminary and indicate that crosstalk between IL-2 and TRMP7 exists. A larger sample size to confirm these findings and characterization of TRPM7 in ME/CFS using other experimental modalities are warranted.
Collapse
|
40
|
Lin C, Chen J, Su Z, Liu P, Liu Z, Zhu C, Xu D, Lin Z, Xu P, Liu G, Liu X. A Calcium-Related Immune Signature in Prognosis Prediction of Patients With Glioma. Front Cell Dev Biol 2021; 9:723103. [PMID: 34650975 PMCID: PMC8505737 DOI: 10.3389/fcell.2021.723103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Immune checkpoint inhibitors have been successfully used in a variety of tumors, however, the efficacy of immune checkpoint blockade therapy for patients with glioma is limited. In this study, we tried to clarify gene expression signatures related to the prognosis of gliomas and construct a signature to predict the survival of patients with gliomas. Methods: Calcium-related differential expressed genes (DEGs) between gliomas and normal brain tissues were comprehensively analyzed in two independent databases. Univariate, multivariate Cox regression analysis and proportional hazards model were used to identify the prognostic of calcium-related risk score signature. The CIBERSORT algorithm and association analysis were carried out to evaluate the relationship between calcium-related signature and characteristic clinical features, tumor-infiltrating immune cell signatures as well as immune checkpoint molecules in glioma. A nomogram model was developed for predicting the overall survival for patients with gliomas. Results: We found the intersection of 415 DEGs between gliomas and normal brain tissues, and identified that an eighteen calcium-related gene panel was significantly enriched in these DEGs. A calcium-related signature derived risk score was developed to divide patients into high- and low-risk groups. Low levels of calcium-related gene expression in high-risk score cases were accompanied with worse outcomes of patients. Calcium-related risk scores were significantly associated with characteristic clinical features, immune infiltrating signatures of tumor microenvironment, and exhausted T cell markers including programmed cell death 1 (PD-1), lymphocyte activating 3 (LAG3), and T cell membrane protein 3 (TIM-3), which contribute to an adverse therapeutic effect of immunotherapy. Calcium-related signature risk score was considered as an independent prognostic parameter to predict the of overall survival of patients with gliomas in nomogram model. Conclusion: Our study demonstrated that calcium signaling pathway is highly associated with immunosuppression of gliomas and overall survival of patients. Targeting the calcium signaling pathway might be a new strategy to reverse the immunosuppressive microenvironment of gliomas and improve the efficacy of glioma immunotherapy.
Collapse
Affiliation(s)
- Cha Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China.,Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhaoying Su
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zheyu Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chenchen Zhu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dan Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongda Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xinjian Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
41
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
42
|
Saeed H, Elsawy E, Shalaby M, Abdel-Fattah M, Hemida A, Eldoksh A, Ataya FS, Nematalla H, Elkewedi M, Labrou NN, El-Nikhely N. L-asparaginase from Dickeya chrysanthemi: expression, purification and cytotoxicity assessment. Prep Biochem Biotechnol 2021; 52:668-680. [PMID: 34612174 DOI: 10.1080/10826068.2021.1983831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microbial L-asparaginases are aminohydrolases that hydrolyze L-asparagine to L-aspartate. They are used to treat acute lymphoblastic leukemia and Hodgkin's lymphomas and in food industries. Increasing demand for L-ASNases is therefore needed. In the current study, the recombinant L-ASNase from Dickeya chrysanthemi (DcL-ASNase) was cloned into pET28a (+) expression vector and expressed in Escherichia coli as a 6His-tagged fusion protein and purified using Ni2+ chelated Sepharose chromatography resin, yielding a highly purified enzyme. Kinetics analysis allowed the determination of its substrate specificity and the physicochemical parameters that affect enzyme activity. The enzyme showed operational stability at 37 °C and 45 °C. The immunogenicity of the purified DcL-ASNase was evaluated by measuring the IgG and IgM levels in rats after injection. The cytotoxicity DcL-ASNase in selected cancer cell lines and peripheral blood monocytes was determined. The results showed that the enzyme induces pleiotropic effects, including significant morphological changes and the formation of apoptotic bodies. No cytotoxic effects were observed in peripheral blood monocytes at the same concentrations. In addition, gene expression analysis by RT-PCR of apoptotic biomarkers (Bax, survivin, and Ki-67) allowed the study of the apoptotic mechanism induced by DcL-ASNase on THP-1 cells.
Collapse
Affiliation(s)
- Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Eman Elsawy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Manal Shalaby
- City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Manal Abdel-Fattah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Asmaa Hemida
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmad Eldoksh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohamed Elkewedi
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nikolaos N Labrou
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Foroutan M, Molania R, Pfefferle A, Behrenbruch C, Scheer S, Kallies A, Speed TP, Cursons J, Huntington ND. The Ratio of Exhausted to Resident Infiltrating Lymphocytes Is Prognostic for Colorectal Cancer Patient Outcome. Cancer Immunol Res 2021; 9:1125-1140. [PMID: 34413087 DOI: 10.1158/2326-6066.cir-21-0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy success in colorectal cancer is mainly limited to patients whose tumors exhibit high microsatellite instability (MSI). However, there is variability in treatment outcomes within this group, which is in part driven by the frequency and characteristics of tumor-infiltrating immune cells. Indeed, the presence of specific infiltrating immune-cell subsets has been shown to correlate with immunotherapy response and is in many cases prognostic of treatment outcome. Tumor-infiltrating lymphocytes (TIL) can undergo distinct differentiation programs, acquiring features of tissue-residency or exhaustion, a process during which T cells upregulate inhibitory receptors, such as PD-1, and lose functionality. Although residency and exhaustion programs of CD8+ T cells are relatively well studied, these programs have only recently been appreciated in CD4+ T cells and remain largely unknown in tumor-infiltrating natural killer (NK) cells. In this study, we used single-cell RNA sequencing (RNA-seq) data to identify signatures of residency and exhaustion in colorectal cancer-infiltrating lymphocytes, including CD8+, CD4+, and NK cells. We then tested these signatures in independent single-cell data from tumor and normal tissue-infiltrating immune cells. Furthermore, we used versions of these signatures designed for bulk RNA-seq data to explore tumor-intrinsic mutations associated with residency and exhaustion from TCGA data. Finally, using two independent transcriptomic datasets from patients with colon adenocarcinoma, we showed that combinations of these signatures, in particular combinations of NK-cell activity signatures, together with tumor-associated signatures, such as TGFβ signaling, were associated with distinct survival outcomes in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Momeneh Foroutan
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Ramyar Molania
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Aline Pfefferle
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| | - Corina Behrenbruch
- University of Melbourne Centre for Cancer Research, Parkville, Victoria, Australia
| | - Sebastian Scheer
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Terence P Speed
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,School of Mathematics & Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph Cursons
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| |
Collapse
|
44
|
Feng H, Yang X, Fan J, Zhang L, Liu Q, Chai D. DEC-205 receptor-mediated long-circling nanoliposome as an antigen and Eucommia ulmoides polysaccharide delivery system enhances the immune response via facilitating dendritic cells maturation. Drug Deliv 2021; 27:1581-1596. [PMID: 33169636 PMCID: PMC7655039 DOI: 10.1080/10717544.2020.1844343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DEC-205 receptor-mediated dendritic cells (DC) targeting nanoliposomes is a promising delivery system in eliciting an immune response against pathogens. When this delivery system carries both antigen and immunomodulator, it can effectively regulate the DC function as well as the initial T cell response. To maximize the desired therapeutic effects of Eucommia ulmoides Oliv. polysaccharides (EUPS), and induce an efficient humoral and cellular immune response against an antigen, we encapsulated the OVA and EUPS in long-circling nanoliposomes and conjugated it with anti-DEC-205 receptor antibody to obtain a DEC-205-targeted nanoliposomes (anti-DEC-205-EUPS-OVA-LPSM). The physicochemical properties and immune-modulating effects were investigated in vitro and in vivo by a series of the experiment to evaluate the targeting efficiency of anti-DEC-205-EUPS-OVA-LPSM. In vitro, anti-DEC-205-EUPS-OVA-LPSM (160 μg mL−1) could enhance DCs proliferation and increase their phagocytic efficiency. In vivo anti-DEC-205-EUPS-OVA-LPSM remarkably promoted the OVA-specific IgG and IgG isotypes levels, enhanced the splenocyte proliferation, and induced the NK cell and CTL cytotoxicity. Besides, the anti-DEC-205-EUPS-OVA-LPSM enhanced the maturation of DCs. These findings suggest that the DEC-205 receptor antibody-conjugated EUPS nanoliposome can act as an efficient antigen delivery system to enhance the cellular and humoral immune response by promoting DC maturation. This indicates that the anti-DEC-205-EUPS-OVA-LPSM has significant potential as an immune-enhancing agent and antigen delivery system.
Collapse
Affiliation(s)
- Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R. China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, P. R. China
| | - Xiaonong Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R. China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, P. R. China
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, P. R. China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R. China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, P. R. China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R. China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, P. R. China
| | - Dongkun Chai
- Department of Veterinary Medicine, Southwest University, Rongchang, P. R. China
| |
Collapse
|
45
|
Cabanas H, Muraki K, Eaton-Fitch N, Staines DR, Marshall-Gradisnik S. Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Front Immunol 2021; 12:687806. [PMID: 34326841 PMCID: PMC8313851 DOI: 10.3389/fimmu.2021.687806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic condition of unknown aetiology classified as an immune dysfunction syndrome and neurological disorder. The discovery of the widely expressed Transient Receptor Potential Melastatin 3 (TRPM3) as a nociceptor channel substantially targeted by certain opioid receptors, and its implication in calcium (Ca2+)-dependent Natural Killer (NK) cell immune functions has raised the possibility that TRPM3 may be pharmacologically targeted to treat characteristic symptoms of ME/CFS. Naltrexone hydrochloride (NTX) acts as an antagonist to the mu (μ)-opioid receptor thus negating its inhibitory function on TRPM3. Based on the benefits reported by patients on their symptoms, low dose NTX (LDN, 3.0-5.0 mg/day) treatment seems to offer some potential benefit suggesting that its effect may be targeted towards the pathomechanism of ME/CFS. As there is no literature confirming the efficacy of LDN for ME/CFS patients in vitro, this study investigates the potential therapeutic effect of LDN in ME/CFS patients. TRPM3 ion channel activity was measured after modulation with Pregnenolone sulfate (PregS) and ononetin in NK cells on 9 ME/CFS patients taking LDN and 9 age- and sex-matched healthy controls using whole-cell patch-clamp technique. We report that ME/CFS patients taking LDN have restored TRPM3-like ionic currents in NK cells. Small ionic currents with a typical TRPM3-like outward rectification were measured after application of PregS, a TRPM3-agonist, in NK cells from patients taking LDN. Additionally, PregS-evoked ionic currents through TRPM3 were significantly modulated by ononetin, a TRPM3-antagonist, in NK cells from ME/CFS patients taking LDN. These data support the hypothesis that LDN may have potential as a treatment for ME/CFS by characterising the underlying regulatory mechanisms of LDN treatment involving TRPM3 and opioid receptors in NK cells. Finally, this study may serve for the repurpose of marketed drugs, as well as support the approval of prospective randomized clinical studies on the role and dose of NTX in treating ME/CFS patients.
Collapse
Affiliation(s)
- Helene Cabanas
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Donald Ross Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
46
|
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Li A. Plant Natural Products: Promising Resources for Cancer Chemoprevention. Molecules 2021; 26:933. [PMID: 33578780 PMCID: PMC7916513 DOI: 10.3390/molecules26040933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major factor threatening human health and life safety, and there is a lack of safe and effective therapeutic drugs. Intervention and prevention in premalignant process are effective ways to reverse carcinogenesis and prevent cancer from occurring. Plant natural products are rich in sources and are a promising source for cancer chemoprevention. This article reviews the chemopreventive effects of natural products, especially focused on polyphenols, flavonoids, monoterpene and triterpenoids, sulfur compounds, and cellulose. Meanwhile, the main mechanisms include induction of apoptosis, antiproliferation and inhibition of metastasis are briefly summarized. In conclusion, this article provides evidence for natural products remaining a prominent source of cancer chemoprevention.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - MengMeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - YueRong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
47
|
A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Semin Cell Dev Biol 2020; 115:10-18. [PMID: 33358089 DOI: 10.1016/j.semcdb.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are required for host defense. They destroy malignant target cells like cancer cells. Among metal cations, Ca2+ plays a prescinded role for CTL and NK cytotoxicity as it is the only cation used as ubiquitous second messenger. Measuring intracellular Ca2+ concentrations [Ca2+]int in single cells has greatly changed our understanding of Ca2+ signaling. Yet, comparing the role of Ca2+ in the pre-[Ca2+]int and [Ca2+]int measurement era reveals that even in the pre-[Ca2+]int measurement era (before 1980), the functions of Ca2+ and some other metal cations for the cytotoxic immune response were well established. It was even shown that Ca2+ influx across the plasma membrane but not Ca2+ release from intracellular sources is relevant for lymphocyte cytotoxicity and that very little Ca2+ is needed for efficient lymphocyte cytotoxicity against cancer cells. In the [Ca2+]int measurement era after 1980, many of the important findings were better and more quantitatively refined and in addition the molecules important for Ca2+ transport were defined. The unexpected finding that there is a Ca2+ optimum of CTL and NK cell cytotoxicity deserves some attention and may be important for anti-cancer therapy.
Collapse
|
48
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
49
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
50
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|