1
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Mavrangelos C, Wijenayaka A, Sales KJ, Hughes PA. Combining magnetically isolated CD45 cells with serum maintains intact drug responsiveness for ELISpot analysis in clinical trials. Immunohorizons 2025; 9:vlae012. [PMID: 39882960 PMCID: PMC11841966 DOI: 10.1093/immhor/vlae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
Enzyme-linked immunosorbent spot analysis is frequently used to investigate immune responsiveness during clinical trials. However, ELISpot classically utilizes peripheral blood mononuclear cell isolates from whole blood, requiring relatively high blood draw volumes and removing both granulocytes and bound drug. Here, we describe a novel protocol whereby CD45 cells are magnetically isolated from human whole blood and co-incubated with serum isolated from the same subject. Infliximab is a well characterized anti-tumor necrosis factor α (TNF-α) antibody in clinical use since the late 1990s. We demonstrated that TNF-α inhibition by infliximab in spiked whole blood is lost on peripheral blood mononuclear cell isolation but remains in serum, and that combining serum from infliximab spiked whole blood with magnetically isolated CD45 immune cells inhibited PMA/ionomycin-stimulated TNF-α secretion. This novel protocol has important implications for enzyme-linked immunosorbent spot analysis in clinical trials in which blood volume is limited, and keeping drug responses intact provides critical information.
Collapse
Affiliation(s)
| | - Asiri Wijenayaka
- Agilex Biolabs, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Kurt J Sales
- Agilex Biolabs, Adelaide, South Australia, Australia
| | - Patrick A Hughes
- Agilex Biolabs, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Kasti A, Katsas K, Nikolaki MD, Triantafyllou K. The Role and the Regulation of NLRP3 Inflammasome in Irritable Bowel Syndrome: A Narrative Review. Microorganisms 2025; 13:171. [PMID: 39858939 PMCID: PMC11767632 DOI: 10.3390/microorganisms13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder of the gastrointestinal tract. Its pathogenesis involves multiple factors, including visceral hypersensitivity and immune activation. NLRP3 inflammasome is part of the nucleotide-binding oligomerization domain-like receptor (NLR) family, a crucial component of the innate immune system. Preclinical studies have demonstrated that inhibiting NLRP3 reduces visceral sensitivity and IBS symptoms, like abdominal pain, and diarrhea, suggesting that targeting the NLRP3 might represent a novel therapeutic approach for IBS. This review aims to assess the NLRP3 inhibitors (tranilast, β-hydroxybutyrate, Chang-Kang-fang, paeoniflorin, coptisine, BAY 11-7082, and Bifidobacterium longum), highlighting the signaling pathways, and their potential role in IBS symptoms management was assessed. Although premature, knowledge of the action of synthetic small molecules, phytochemicals, organic compounds, and probiotics might make NLRP3 a new therapeutic target in the quiver of physicians' therapeutic choices for IBS symptoms management.
Collapse
Affiliation(s)
- Arezina Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| |
Collapse
|
4
|
Wu Y, Li S, Lv L, Jiang S, Xu L, Chen H, Li L. Protective effect of Pediococcus pentosaceus Li05 on diarrhea-predominant irritable bowel syndrome in rats. Food Funct 2024; 15:3692-3708. [PMID: 38488110 DOI: 10.1039/d3fo04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus Li05 (Li05) has demonstrated potential benefits in various intestinal and liver diseases, but its potential and mechanisms in relieving diarrhea have not been understood. The objective of this research was to examine the effects and mechanisms of Li05 in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) induced by wrap restrain stress (WRS) and 4% acetic acid. The results demonstrated that Li05 effectively alleviated weight loss, visceral sensitivity and diarrhea in rats with IBS-D. It also improved intestinal and systemic inflammation by reducing the levels of chemokines and proinflammatory cytokines (GRO/KC, RANTES, IL-1β, IL-7, and IL-18). The 5-hydroxytryptamine (5-HT) signaling pathway is involved in regulating excessive intestinal motility and secretion in IBS-D. Li05 effectively reduced the expression levels of the 5-HT3B receptor (5-HT3BR) (p < 0.01) in the intestine. Additionally, Li05 intervention had a regulatory effect on the gut composition, with a decrease in the abundance of [Ruminococcus] gauvreauii group, Dubosiella, Erysipelatoclostridium and Blautia, and an increase in the abundance of Alloprevotella, Anaerotruncus and Mucispirillum. Furthermore, Li05 induced significant changes in fatty acid and amino acid metabolism in the gut of rats with IBS-D. These findings indicate that Li05 exhibits an effective improvement in IBS-D symptoms by reducing inflammation and modulating gut microbiota and metabolism. Based on the above results, Li05 holds promise as a potential probiotic for managing IBS-D.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
5
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Mas-Orea X, Rey L, Battut L, Bories C, Petitfils C, Abot A, Gheziel N, Wemelle E, Blanpied C, Motta JP, Knauf C, Barreau F, Espinosa E, Aloulou M, Cenac N, Serino M, Mouledous L, Fazilleau N, Dietrich G. Proenkephalin deletion in hematopoietic cells induces intestinal barrier failure resulting in clinical feature similarities with irritable bowel syndrome in mice. Commun Biol 2023; 6:1168. [PMID: 37968381 PMCID: PMC10652007 DOI: 10.1038/s42003-023-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lea Rey
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Cyrielle Bories
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Camille Petitfils
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Anne Abot
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Enterosys SAS, Labège, France
| | - Nadine Gheziel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eve Wemelle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Catherine Blanpied
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Meryem Aloulou
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mouledous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), Université de Toulouse, CNRS UMR-5169, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Fazilleau
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
7
|
Shi XZ. Mechano-Regulation of Gene Expression in the Gut: Implications in Pathophysiology and Therapeutic Approaches in Obstructive, Inflammatory, and Functional Bowel Disorders. COMPREHENSIVE PHARMACOLOGY 2022:164-185. [DOI: 10.1016/b978-0-12-820472-6.00168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Hegde S, Lin YM, Fu Y, Savidge T, Shi XZ. Precision Lactobacillus reuteri therapy attenuates luminal distension-associated visceral hypersensitivity by inducing peripheral opioid receptors in the colon. Pain 2020; 161:2737-2749. [PMID: 32569084 PMCID: PMC7669621 DOI: 10.1097/j.pain.0000000000001967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Luminal distension and abdominal pain are major clinical hallmarks of obstructive bowel disorders and functional bowel disorders linked to gut dysbiosis. Our recent studies found that chronic lumen distension increased visceral sensitivity and decreased abundance of gut commensal Lactobacillus reuteri in a rodent model of partial colon obstruction (OB). To establish causation, we performed precision microbial therapy to assess whether recolonization of L. reuteri prevents visceral hypersensitivity in lumen distension, and if so, to identify the gut-microbiota mechanism. Lumen distension was induced in Sprague-Dawley rats by implanting an OB band in the distal colon for up to 7 days. L. reuteri strains or vehicle were gavage ingested 1 × 10 colony-forming units/g daily starting 2 days before OB. L. reuteri rat strains that were able to recolonize obstructed colon significantly improved food intake and body weight in OB rats, and attenuated referred visceral hyperalgesia measured by the withdrawal response to von Frey filament applications to the abdomen. Mechanistically, L. reuteri treatment attenuated hyperexcitability of the dorsal root ganglia neurons projecting to the distended colon by promoting opioid receptor function in affected tissues. The expression of µ, δ, and κ opioid receptors was significantly downregulated in colonic muscularis externae and sensory neurons in OB rats. However, L. reuteri treatment prevented the loss of opioid receptors. Furthermore, administration of peripheral opioid receptor antagonist naloxone methiodide abolished the analgesic effect of L. reuteri in OB. In conclusion, precision L. reuteri therapy prevents lumen distension-associated visceral hypersensitivity by local bacterial induction of opioid receptors.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - You-Min Lin
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Fu
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Tor Savidge
- Dept. of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Xuan-Zheng Shi
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
10
|
Latif A, Aziz Memon F, Asad M. Irritable Bowel Syndrome in a Population of a Developing Country: Prevalence and Association. Cureus 2020; 12:e8112. [PMID: 32542165 PMCID: PMC7292712 DOI: 10.7759/cureus.8112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Irritable bowel syndrome (IBS) is included as one of the functional gastrointestinal (GI) related disorders presenting with pain in abdomen of chronic duration in the absence of any identifiable organic cause. Bloating, distension of abdomen, and defecation in disordered manner are other features commonly associated with IBS. It is a complex disorder with mixed physiological, psychological, and social interactions. The present study was carried out with the aim to determine the frequency of IBS in patients presenting with abdominal pain in a population of a developing country. Materials and methods: A descriptive cross-sectional study was undertaken at the outpatient department of a large tertiary care hospital. Patients of either gender aged between 20 and 50 years presenting with abdominal pain were included. The diagnosis of IBS was established using Rome III criteria. Prevalence of IBS was calculated and confounding factors such as age, gender, marital status, duration of abdominal pain, and economic status were stratified to see their effect on outcome variable by applying chi-square test and taking p-value of <0.05 as significant. Results: A total of 186 patients were included in this study. Some 100 (53.76%) were male and 86 (46.24%) were female. Mean age of the patients was 33.67 ± 7.08 years. Some 58.6% were married and 41.4% were single. Some 61.83% had mild abdominal pain and 38.17% had moderate pain. Out of the total 186 patients, the frequency of IBS was found to be 35.48%. There was no significant effect of confounding variables such as age, gender, duration of abdominal pain, marital status, and economic status on IBS. Conclusion: In our study the frequency of IBS in patients with abdominal pain is high with no significant effect of gender, marital status, economic status, and duration of abdominal pain on IBS.
Collapse
Affiliation(s)
- Abdul Latif
- Gastroenterology, Avicenna Medical College, Lahore, PAK
| | | | - Mansoor Asad
- Gastroenterology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
11
|
Basso L, Benamar M, Mas-Orea X, Deraison C, Blanpied C, Cenac N, Saoudi A, Dietrich G. Endogenous control of inflammatory visceral pain by T cell-derived opioids in IL-10-deficient mice. Neurogastroenterol Motil 2020; 32:e13743. [PMID: 31588671 DOI: 10.1111/nmo.13743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation. METHODS Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice. KEY RESULTS CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, induced abdominal hypersensitivity in IL-10-/- mice with colitis. CONCLUSION AND INFERENCES Opioid-mediated analgesic activity of mucosal T lymphocytes remains operating in IL-10-/- mice with impaired immune regulation. The data suggest that endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in inflammatory bowel diseases associated with homozygous "loss of function mutations" in interleukin-10.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Xavier Mas-Orea
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | - Nicolas Cenac
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Gilles Dietrich
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Dothel G, Chang L, Shih W, Barbaro MR, Cremon C, Stanghellini V, De Ponti F, Mayer EA, Barbara G, Sternini C. µ-opioid receptor, β-endorphin, and cannabinoid receptor-2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterol Motil 2019; 31:e13688. [PMID: 31336406 PMCID: PMC6791736 DOI: 10.1111/nmo.13688] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The gut immune, cannabinoid, and opioid systems constitute an integrated network contributing to visceral sensation and pain modulation. We aimed to assess the expression of the µ-opioid receptor (MOR), its ligand β-endorphin (β-END), and cannabinoid receptor-2 (CB2 ) in patients with irritable bowel syndrome (IBS) and asymptomatic controls (AC) and their correlation with sex and symptom perception. METHODS Mucosal biopsies were obtained from the left colon of 31 IBS patients (45% women) with predominant constipation (IBS-C, 9) or diarrhea (IBS-D, 10) or with mixed bowel habits (IBS-M, 12) and 32 AC (44% women) and processed for qRT-PCR, Western blotting, and immunohistochemistry. KEY RESULTS µ-opioid receptor and CB2 mRNA and protein expression and β-END protein levels were increased in patients with IBS compared to AC (all Ps=0.021). A significant sex by IBS interaction was found in relation to CB2 mRNA expression (P = .003) with women showing a markedly higher expression to men (P = .035). In contrast, in AC, men had higher expression than women (P = .033). β-END, MOR, and CB2 immunoreactivities (IR) were localized to CD4+T cells including EMR-1+ eosinophils and CD31+ T cells but not to mast cells. CONCLUSIONS The increased expression of MOR, β-END, and CB2 in the mucosa of IBS patients, where they are localized to immune cells, suggests that opioid and cannabinoid systems play an immune-related compensatory role in visceral pain in IBS patients. Further work is necessary to support this hypothesis.
Collapse
Affiliation(s)
- G Dothel
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - L Chang
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, University of California Los Angeles, USA
| | - W Shih
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, USA
| | - MR Barbaro
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - C Cremon
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - V Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - F De Ponti
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - EA Mayer
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, USA
| | - G Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - C Sternini
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, USA
| |
Collapse
|
13
|
Wardill HR, Choo JM, Dmochowska N, Mavrangelos C, Campaniello MA, Bowen JM, Rogers GB, Hughes PA. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflamm Bowel Dis 2019; 25:1196-1207. [PMID: 30794280 DOI: 10.1093/ibd/izz011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has a remitting and relapsing disease course; however, relatively little is understood regarding how inflammatory damage in acute colitis influences the microbiota, epithelial barrier, and immune function in subsequent colitis. METHODS Mice were administered trinitrobenzene sulphonic acid (TNBS) via enema, and inflammation was assessed 2 days (d2) or 28 days (d28) later. Colitis was reactivated in some mice by re-treating at 28 days with TNBS and assessing 2 days later (d30). Epithelial responsiveness to secretagogues, microbiota composition, colonic infiltration, and immune activation was compared between all groups. RESULTS At day 28, the distal colon had healed, mucosa was restored, and innate immune response had subsided, but colonic transepithelial transport (P = 0.048), regulatory T-cell (TREG) infiltration (P = 0.014), adherent microbiota composition (P = 0.0081), and responsiveness of stimulated innate immune bone marrow cells (P < 0.0001 for IL-1β) differed relative to health. Two days after subsequent instillation of TNBS (d30 mice), the effects on inflammatory damage (P < 0.0001), paracellular permeability (P < 0.0001), and innate immune infiltration (P < 0.0001 for Ly6C+ Ly6G- macrophages) were reduced relative to d2 colitis. However, TREG infiltration was increased (P < 0.0001), and the responsiveness of stimulated T cells in the mesenteric lymph nodes shifted from pro-inflammatory at d2 to immune-suppressive at d30 (P < 0.0001 for IL-10). These effects were observed despite similar colonic microbiota composition and degradation of the mucosal layer between d2 and d30. CONCLUSIONS Collectively, these results indicate that acute colitis chronically alters epithelial barrier function and both innate and adaptive immune responses. These effects reduce the consequences of a subsequent colitis event, warranting longitudinal studies in human IBD subjects.
Collapse
Affiliation(s)
- Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jocelyn M Choo
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
14
|
Szymaszkiewicz A, Storr M, Fichna J, Zielinska M. Enkephalinase inhibitors, potential therapeutics for the future treatment of diarrhea predominant functional gastrointestinal disorders. Neurogastroenterol Motil 2019; 31:e13526. [PMID: 30549162 DOI: 10.1111/nmo.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
The endogenous opioid system (EOS) is considered being a crucial element involved in the pathophysiology of irritable bowel syndrome (IBS) as it regulates gastrointestinal (GI) homeostasis through modulation of motility and water and ion secretion/absorption. Along with opioid receptors (ORs), the following components of EOS can be distinguished: 1. endogenous opioid peptides (EOPs), namely enkephalins, endorphins, endomorphins and dynorphins, and 2. peptidases, which regulate the metabolism (synthesis and degradation) of EOPs. Enkephalins, which are δ-opioid receptors agonists, induce significant effects in the GI tract as they act as potent pro-absorptive neurotransmitters. The action of enkephalins and other EOPs is limited, since EOPs are easily and rapidly inactivated by a natural metalloendopeptidase (enkephalinase/neprilysin) and aminopeptidase N. Studies show that the activity of EOPs can be enhanced by inhibition of these enzymes. In this review, we discuss the antidiarrheal and antinociceptive potential of enkephalinase inhibitors. Furthermore, our review is to answer the question whether enkephalinase inhibitors may be helpful in the future treatment of diarrhea predominant functional GI disorders.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Martin Storr
- Department of Medicine, Ludwig Maximilians University Munich, Munich, Germany.,Center of Endoscopy, Starnberg, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
İliaz R, Akyüz F, Yeğen G, Örmeci A, Göktürk S, Akyüz Ü, Baran B, Mutluay Ö, Evirgen S, Karaca Ç, Demir K, Beşışık F, Güllüoğlu M, Kaymakoğlu S. Does the number of mucosal immune cells differ in irritable bowel syndrome and its subtypes? TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:384-391. [PMID: 30249551 DOI: 10.5152/tjg.2018.17491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Recently, mucosal inflammation has been proposed to be one of the mechanisms underlying the pathophysiology of irritable bowel syndrome (IBS); however, there are controversial results regarding this hypotheses. Our aim was to evaluate immune cell infiltration in rectal and ileal biopsy specimens of patients with IBS and to compare it with those of healthy controls. MATERIALS AND METHODS In total, 36 patients with IBS (15 with diarrhea and 21 with constipation) and 16 healthy volunteers were enrolled. Ileocolonoscopy and ileal/rectal biopsies were performed. Rectal and terminal ileal biopsy specimens were evaluated for mucosal immune cell infiltration using immunohistochemical analysis. Serotonin positivity as well as counts of intraepithelial lymphocytes (IEL) and CD4+, CD8+, CD20+, and CD3+ cells were determined by a single pathologist who is an expert in the gastrointestinal system. RESULTS CD3+ and CD4+ cell counts in rectal and terminal ileal biopsy specimens were lower in the IBS group than in the controls. Conversely, there was no statistically significant difference between the IBS and control groups in terms of serotonin positivity as well as counts of IEL and CD20+ and CD8+ cells. Comparison between the IBS subgroups revealed a higher number of IEL in rectal biopsy specimens of the diarrhea dominant group. In the IBS subgroups, immune cell counts in terminal ileal and rectal biopsy specimens showed a positive correlation. CONCLUSION IBS and its subgroups showed lower immune cell counts than the controls in our study. These results indicate that there is no significant mucosal inflammation in homogeneous groups of patients with IBS. Rectal biopsies may be sufficient for the evaluation of inflammation in IBS.
Collapse
Affiliation(s)
- Raim İliaz
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Filiz Akyüz
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Gülçin Yeğen
- Department of Pathology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Aslı Örmeci
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Suut Göktürk
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Ümit Akyüz
- Department of Gastroenterology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Bülent Baran
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Özlem Mutluay
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Sami Evirgen
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Çetin Karaca
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Kadir Demir
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Fatih Beşışık
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Mine Güllüoğlu
- Department of Pathology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Sabahattin Kaymakoğlu
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
16
|
Abstract
Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
17
|
Brierley SM, Hibberd TJ, Spencer NJ. Spinal Afferent Innervation of the Colon and Rectum. Front Cell Neurosci 2018; 12:467. [PMID: 30564102 PMCID: PMC6288476 DOI: 10.3389/fncel.2018.00467] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite their seemingly elementary roles, the colon and rectum undertake a variety of key processes to ensure our overall wellbeing. Such processes are coordinated by the transmission of sensory signals from the periphery to the central nervous system, allowing communication from the gut to the brain via the "gut-brain axis". These signals are transmitted from the peripheral terminals of extrinsic sensory nerve fibers, located within the wall of the colon or rectum, and via their axons within the spinal splanchnic and pelvic nerves to the spinal cord. Recent studies utilizing electrophysiological, anatomical and gene expression techniques indicate a surprisingly diverse set of distinct afferent subclasses, which innervate all layers of the colon and rectum. Combined these afferent sub-types allow the detection of luminal contents, low- and high-intensity stretch or contraction, in addition to the detection of inflammatory, immune, and microbial mediators. To add further complexity, the proportions of these afferents vary within splanchnic and pelvic pathways, whilst the density of the splanchnic and pelvic innervation also varies along the colon and rectum. In this review we traverse this complicated landscape to elucidate afferent function, structure, and nomenclature to provide insights into how the extrinsic sensory afferent innervation of the colon and rectum gives rise to physiological defecatory reflexes and sensations of discomfort, bloating, urgency, and pain.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
18
|
Bessac A, Cani PD, Meunier E, Dietrich G, Knauf C. Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Front Neurosci 2018; 12:725. [PMID: 30364179 PMCID: PMC6191495 DOI: 10.3389/fnins.2018.00725] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
The gut-brain axis is now considered as a major actor in the control of glycemia. Recent discoveries show that the enteric nervous system (ENS) informs the hypothalamus of the nutritional state in order to control glucose entry in tissues. During type 2 diabetes (T2D), this way of communication is completely disturbed leading to the establishment of hyperglycemia and insulin-resistance. Indeed, the ENS neurons are largely targeted by nutrients (e.g., lipids, peptides) but also by inflammatory factors from different origin (i.e., host cells and gut microbiota). Inflammation, and more particularly in the intestine, contributes to the development of numerous pathologies such as intestinal bowel diseases, Parkinson diseases and T2D. Therefore, targeting the couple ENS/inflammation could represent an attractive therapeutic solution to treat metabolic diseases. In this review, we focus on the role of the crosstalk between intestinal immune cells and ENS neurons in the control of glycemia. In addition, given the growing evidence showing the key role of the gut microbiota in physiology, we will also briefly discuss its potential contribution and role on the immune and neuronal systems.
Collapse
Affiliation(s)
- Arnaud Bessac
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, Université Paul Sabatier, Toulouse, France
| | - Gilles Dietrich
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| |
Collapse
|
19
|
Cıralı C, Ulusoy E, Kume T, Arslan N. Elevated serum neopterin levels in children with functional constipation: association with systemic proinflammatory cytokines. World J Pediatr 2018; 14:448-453. [PMID: 29549607 DOI: 10.1007/s12519-018-0144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/21/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Functional constipation is a clinical problem with an incompletely understood etiology. Functional bowel diseases have been shown to be related to inflammation in many studies in adults. In this study, we aimed to evaluate leukocytes, C-reactive protein, proinflammatory and anti-inflammatory cytokines, and neopterin levels in children with functional constipation. METHODS Seventy-six children with constipation and 71 healthy controls (mean age 7.12 ± 3.46 years and 7.32 ± 4.33 years, respectively, P = 0.991) were included in the study. Leukocytes, C-reactive protein, interleukin (IL)-1β, IL-6, IL-10, IL-12, tumor necrosis factor-alpha (TNF-α) and neopterin levels were assessed in patients and healthy controls. Parameters were measured in the serum using enzyme-linked immunosorbent assay methods. RESULTS Mean IL-6 (20.31 ± 12.05 vs. 16.2 ± 10.25 pg/mL, respectively, P = 0.003), IL-12 (181.42 ± 133.45 vs. 135.6 ± 83.67 pg/mL, respectively, P = 0.018) and neopterin levels (2.08 ± 1.12 vs. 1.52 ± 1.02 pg/mL, respectively, P = 0.001) were significantly higher in constipated children than healthy controls. Leukocyte and thrombocyte counts, C-reactive protein, and IL-1β, IL-10 and TNF-α levels did not show any difference between the two groups. CONCLUSIONS In this study, IL-6, IL-12 and neopterin levels of constipated patients were found to be higher than those of controls. These results indicate the presence of subclinical inflammation in children with functional constipation.
Collapse
Affiliation(s)
- Ceren Cıralı
- Department of Pediatrics, Dokuz Eylul University, Izmir, Turkey
| | - Emel Ulusoy
- Department of Pediatrics, Dokuz Eylul University, Izmir, Turkey
| | - Tuncay Kume
- Department of Medical Biochemistry, Dokuz Eylul University, Izmir, Turkey
| | - Nur Arslan
- Division of Pediatric Gastroenterology, Metabolism and Nutrition, Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| |
Collapse
|
20
|
Nam Y, Min YS, Sohn UD. Recent advances in pharmacological research on the management of irritable bowel syndrome. Arch Pharm Res 2018; 41:955-966. [PMID: 30132170 DOI: 10.1007/s12272-018-1068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS), a common gastrointestinal (GI) disorder, is associated with various factors, including lifestyle, infection, stress, intestinal flora, and related diseases. The pharmacotherapeutic stimulation of receptors and downstream signaling pathways is effective in reducing IBS symptoms; however, it is still associated with adverse effects. Various receptors related to GI motility and visceral hypersensitivity should be considered to enhance the benefit/risk ratio of IBS treatments. This review discusses recent pharmacological advances in IBS management. Several receptors related to GI motility and abdominal pain are investigated in various angles. 5-Hydroxytryptamine (5-HT) is an important neurotransmitter that activates the colonic mucosal 5-HT4 receptor without causing severe cardiovascular adverse effects. The clinical potential of ramosetron for diarrhea-predominant IBS has been suggested because of a lower risk of ischemic colitis than conventional 5-HT3 receptor antagonists. Toll-like receptors (TLRs), especially TLR2 and TLR4, show a significant effect on the post-infection symptoms and lipopolysaccharide-mediated regulation of GI motility. Histamine is a well-known nitrogenous compound that regulates inflammatory responses and visceral hypersensitivity. Histamine 1 receptor-mediated sensitization of the transient receptor potential vanilloid 1 is associated with IBS. Pharmacological approaches based on these signaling pathways could be useful in the development of novel IBS treatments.
Collapse
Affiliation(s)
- Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Young Sil Min
- Department of Medical Plant Science, Jung Won University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Hofma BR, Wardill HR, Mavrangelos C, Campaniello MA, Dimasi D, Bowen JM, Smid SD, Bonder CS, Beckett EA, Hughes PA. Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis. PLoS One 2018; 13:e0199394. [PMID: 29933379 PMCID: PMC6014673 DOI: 10.1371/journal.pone.0199394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Methods Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. Results TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. Conclusions TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.
Collapse
Affiliation(s)
- Ben R. Hofma
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R. Wardill
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A. Campaniello
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Joanne M. Bowen
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Scott D. Smid
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claudine S. Bonder
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | | | - Patrick A. Hughes
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
22
|
Tejada MÁ, Montilla-García Á, González-Cano R, Bravo-Caparrós I, Ruiz-Cantero MC, Nieto FR, Cobos EJ. Targeting immune-driven opioid analgesia by sigma-1 receptors: Opening the door to novel perspectives for the analgesic use of sigma-1 antagonists. Pharmacol Res 2018; 131:224-230. [PMID: 29454675 DOI: 10.1016/j.phrs.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
Abstract
Immune cells have a known role in pronociception, since they release a myriad of inflammatory algogens which interact with neurons to facilitate pain signaling. However, these cells also produce endogenous opioid peptides with analgesic potential. The sigma-1 receptor is a ligand-operated chaperone that modulates neurotransmission by interacting with multiple protein partners, including the μ-opioid receptor. We recently found that sigma-1 antagonists are able to induce opioid analgesia by enhancing the action of endogenous opioid peptides of immune origin during inflammation. This opioid analgesia is seen only at the inflamed site, where immune cells naturally accumulate. In this article we review the difficulties of targeting the opioid system for selective pain relief, and discuss the dual role of immune cells in pain and analgesia. Our discussion creates perspectives for possible novel therapeutic uses of sigma-1 antagonists as agents able to maximize the analgesic potential of the immune system.
Collapse
Affiliation(s)
- Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Rafael González-Cano
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| |
Collapse
|
23
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
24
|
Gray MA, Chao CY, Staudacher HM, Kolosky NA, Talley NJ, Holtmann G. Anti-TNFα therapy in IBD alters brain activity reflecting visceral sensory function and cognitive-affective biases. PLoS One 2018. [PMID: 29518097 PMCID: PMC5843226 DOI: 10.1371/journal.pone.0193542] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background In inflammatory bowel disease (IBD), immune activation with increased circulating TNF-α is linked to the intensity of gastrointestinal symptoms and depression or anxiety. A central feature of depression is cognitive biases linked to negative attributions about self, the world and the future. We aimed to assess the effects of anti-TNFα therapy on the central processing of self-attribution biases and visceral afferent information in patients with Crohn’s disease. Methods We examined 9 patients with Crohn’s disease (age 26.1±10.6. yrs, 5 female, 5 ileocolonic, 2 colonic and 2 ileal disease) during chronic anti-TNFα therapy (5 adalimumab, 4 infliximab). Patients were studied twice in randomized order before and after anti-TNFα administration. On each occasion patients underwent functional magnetic resonance imaging (fMRI) of the brain during a test of implicit attribution biases regarding sickness/health and undertook a standardized nutrient challenge. Results Following anti-TNFα treatment, ratings of ‘fullness’ following nutrient challenge reduced compared to pre-treatment ratings (p<0.05). Reaction times revealed improved processing of self-related and positive health words, consistent with improved implicit sense of wellbeing that correlated with improvements in sensory function after treatment (r = 0.67, p<0.05). Treatment-associated improvements in implicit processing were mirrored by alterations of prefrontal, amygdala, posterior cingulate and visual regions. Between patients, the degree of functional amygdala change was additionally explained by individual differences in attention regulation and body awareness rankings. Conclusion In patients with Crohn’s disease, anti-TNFα administration reduces visceral sensitivity and improves implicit cognitive-affective biases linked to alterations in limbic (amygdala) function.
Collapse
Affiliation(s)
- Marcus A. Gray
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Health and Behavioral Science, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- * E-mail:
| | - Che-yung Chao
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital Brisbane, Queensland, Australia
| | - Heidi M. Staudacher
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Natasha A. Kolosky
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicholas J. Talley
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gerald Holtmann
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Health and Behavioral Science, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Bashashati M, Moossavi S, Cremon C, Barbaro MR, Moraveji S, Talmon G, Rezaei N, Hughes PA, Bian ZX, Choi CH, Lee OY, Coëffier M, Chang L, Ohman L, Schmulson MJ, McCallum RW, Simren M, Sharkey KA, Barbara G. Colonic immune cells in irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol Motil 2018; 30. [PMID: 28851005 DOI: 10.1111/nmo.13192] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Increases in mucosal immune cells have frequently been observed in irritable bowel syndrome (IBS) patients. However, this finding is not completely consistent between studies, possibly due to a combination of methodological variability, population differences and small sample sizes. We performed a meta-analysis of case-control studies that compared immune cell counts in colonic biopsies of IBS patients and controls. METHODS PubMed and Embase were searched in February 2017. Results were pooled using standardized mean difference (SMD) and were considered significant when zero was not within the 95% confidence interval (CI). Heterogeneity was assessed based on I2 statistics where I2 ≤ 50% and I2 > 50% indicated fixed and random effect models, respectively. KEY RESULTS Twenty-two studies on 706 IBS patients and 401 controls were included. Mast cells were increased in the rectosigmoid (SMD: 0.38 [95% CI: 0.06-0.71]; P = .02) and descending colon (SMD: 1.69 [95% CI: 0.65-2.73]; P = .001) of IBS patients. Increased mast cells were observed in both constipation (IBS-C) and diarrhea predominant IBS (IBS-D). CD3+ T cells were increased in the rectosigmoid (SMD: 0.53 [95% CI: 0.21-0.85]; P = .001) and the descending colon of the IBS patients (SMD: 0.79, 95% CI [0.28-1.30]; P = .002). This was possibly in relation to higher CD4+ T cells in IBS (SMD: 0.33 [95% CI: 0.01-0.65]; P = .04) as there were no differences in CD8+ T cells. CONCLUSIONS & INFERENCES Mast cells and CD3+ T cells are increased in colonic biopsies of patients with IBS vs non-inflamed controls. These changes are segmental and sometimes IBS-subtype dependent. The diagnostic value of the quantification of colonic mucosal cells in IBS requires further investigation.
Collapse
Affiliation(s)
- M Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA
| | - S Moossavi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - C Cremon
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - M R Barbaro
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - S Moraveji
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA
| | - G Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, Omaha, NE, USA
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - P A Hughes
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| | - Z X Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - C H Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - O Y Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - M Coëffier
- Normandie Univ, INSERM unit 1073 "Nutrition, inflammation and brain-gut axis", Institute for Research and Innovation in Biomedicine, Rouen Medical University and Rouen University Hospital, Rouen, France
| | - L Chang
- G Oppenheimer Center of Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - L Ohman
- Departments of Internal Medicine and Clinical Nutrition and Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M J Schmulson
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Mexico City, Mexico
| | - R W McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA
| | - M Simren
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| | - K A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - G Barbara
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Guerrero-Alba R, Valdez-Morales EE, Jimenez-Vargas NN, Lopez-Lopez C, Jaramillo-Polanco J, Okamoto T, Nasser Y, Bunnett NW, Lomax AE, Vanner SJ. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis. Gut 2017; 66:2121-2131. [PMID: 27590998 DOI: 10.1136/gutjnl-2016-311456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
AIMS AND BACKGROUND Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. CONCLUSIONS Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, México
| | - Eduardo E Valdez-Morales
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Cátedras CONACYT, Aguascalientes México
| | - Nestor N Jimenez-Vargas
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Cintya Lopez-Lopez
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Josue Jaramillo-Polanco
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Takanobu Okamoto
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Yasmin Nasser
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan E Lomax
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
27
|
Affiliation(s)
- Alexander C Ford
- From the Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, and the Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, United Kingdom (A.C.F.); the Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (B.E.L.); the Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia (N.J.T.); the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (N.J.T.); and Karolinska Institute, Stockholm (N.J.T.)
| | - Brian E Lacy
- From the Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, and the Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, United Kingdom (A.C.F.); the Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (B.E.L.); the Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia (N.J.T.); the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (N.J.T.); and Karolinska Institute, Stockholm (N.J.T.)
| | - Nicholas J Talley
- From the Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, and the Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, United Kingdom (A.C.F.); the Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (B.E.L.); the Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia (N.J.T.); the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (N.J.T.); and Karolinska Institute, Stockholm (N.J.T.)
| |
Collapse
|
28
|
Boeckxstaens GE, Wouters MM. Neuroimmune factors in functional gastrointestinal disorders: A focus on irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 28027594 DOI: 10.1111/nmo.13007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Abnormal abdominal pain perception is the most bothersome and difficult to treat symptom of functional gastrointestinal disorders (FGIDs). Visceral pain stimuli are perceived and transmitted by afferent neurons residing in the dorsal root ganglia that have sensory nerve endings in the gut wall and mesentery. Accumulating evidence indicates that peripheral activation and sensitization of these sensory nerve endings by bioactive mediators released by activated immune cells, in particular mast cells, can lead to aberrant neuroimmune interactions and the development and maintenance of visceral hypersensitivity. Besides direct neuronal activation, low concentrations of proteases, histamine, and serotonin can chronically sensitize nociceptors, such as TRP channels, leading to persistent aberrant pain perception. PURPOSE This review discusses the potential mechanisms underlying aberrant neuroimmune interactions in peripheral sensitization of sensory nerves. A better understanding of the cells, mediators, and molecular mechanisms triggering persistent aberrant neuroimmune interactions brings new insights into their contribution to the physiology and pathophysiology of visceral pain perception and provides novel opportunities for more efficient therapeutic treatments for these disorders.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| | - M M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| |
Collapse
|
29
|
Mikocka-Walus A, Hughes PA, Bampton P, Gordon A, Campaniello MA, Mavrangelos C, Stewart BJ, Esterman A, Andrews JM. Fluoxetine for Maintenance of Remission and to Improve Quality of Life in Patients with Crohn's Disease: a Pilot Randomized Placebo-Controlled Trial. J Crohns Colitis 2017; 11:509-514. [PMID: 27664274 PMCID: PMC5881791 DOI: 10.1093/ecco-jcc/jjw165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Previous studies have shown that antidepressants reduce inflammation in animal models of colitis. The present trial aimed to examine whether fluoxetine added to standard therapy for Crohn's disease [CD] maintained remission, improved quality of life [QoL] and/or mental health in people with CD as compared to placebo. METHODS A parallel randomized double-blind placebo controlled trial was conducted. Participants with clinically established CD, with quiescent or only mild disease, were randomly assigned to receive either fluoxetine 20 mg daily or placebo, and followed for 12 months. Participants provided blood and stool samples and completed mental health and QoL questionnaires. Immune functions were assessed by stimulated cytokine secretion [CD3/CD28 stimulation] and flow cytometry for cell type. Linear mixed-effects models were used to compare groups. RESULTS Of the 26 participants, 14 were randomized to receive fluoxetine and 12 to placebo. Overall, 14 [54%] participants were male. The mean age was 37.4 [SD=13.2] years. Fluoxetine had no effect on inflammatory bowel disease activity measured using either the Crohn's Disease Activity Index [F(3, 27.5)=0.064, p=0.978] or faecal calprotectin [F(3, 32.5)=1.08, p=0.371], but did have modest effects on immune function. There was no effect of fluoxetine on physical, psychological, social or environmental QoL, anxiety or depressive symptoms as compared to placebo [all p>0.05]. CONCLUSIONS In this small pilot clinical trial, fluoxetine was not superior to placebo in maintaining remission or improving QoL. [ID: ACTRN12612001067864.].
Collapse
Affiliation(s)
- Antonina Mikocka-Walus
- School of Nursing and Midwifery, University of South Australia, Adelaide, Australia,Department of Health Sciences, University of York, York, UK,School of Psychology, University of Adelaide, Adelaide, Australia,School of Psychology, Deakin University, Burwood, Australia
| | - Patrick A. Hughes
- Centre for Nutrition and Gastrointestinal Diseases, School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Peter Bampton
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, Australia
| | - Andrea Gordon
- School of Nursing and Midwifery, University of South Australia, Adelaide, Australia
| | - Melissa A. Campaniello
- Centre for Nutrition and Gastrointestinal Diseases, School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Diseases, School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | | | - Adrian Esterman
- School of Nursing and Midwifery, University of South Australia, Adelaide, Australia,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Jane M. Andrews
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Reed DE, Vanner SJ. Emerging studies of human visceral nociceptors. Am J Physiol Gastrointest Liver Physiol 2017; 312:G201-G207. [PMID: 28007748 DOI: 10.1152/ajpgi.00391.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/31/2023]
Abstract
Animal studies have led to significant advances in our understanding of pain mechanisms in the intestine that could lead to altered signaling in disorders such as irritable bowel syndrome. However, how these translate to the human afferent nervous system is unclear. Recent studies have demonstrated that it is possible to use a variety of techniques, including electrophysiological recordings, to begin to examine these concepts in humans. This mini-review examines these studies to explore how well animal studies translate to humans suffering from irritable bowel syndrome, highlights some of the advantages and technical limitations of these approaches, and identifies some priorities for future studies using human tissues.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
31
|
Inserra MC, Israel MR, Caldwell A, Castro J, Deuis JR, Harrington AM, Keramidas A, Garcia-Caraballo S, Maddern J, Erickson A, Grundy L, Rychkov GY, Zimmermann K, Lewis RJ, Brierley SM, Vetter I. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Sci Rep 2017; 7:42810. [PMID: 28225079 PMCID: PMC5320492 DOI: 10.1038/srep42810] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.
Collapse
Affiliation(s)
- Marco C Inserra
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Ashlee Caldwell
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Joel Castro
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Andrea M Harrington
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jessica Maddern
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Luke Grundy
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Katharina Zimmermann
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia.,School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
32
|
Campaniello MA, Mavrangelos C, Eade S, Harrington AM, Blackshaw LA, Brierley SM, Smid SD, Hughes PA. Acute colitis chronically alters immune infiltration mechanisms and sensory neuro-immune interactions. Brain Behav Immun 2017; 60:319-332. [PMID: 27864046 DOI: 10.1016/j.bbi.2016.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Little is understood regarding how disease progression alters immune and sensory nerve function in colitis. We investigated how acute colitis chronically alters immune recruitment and the impact this has on re-activated colitis. To understand the impact of disease progress on sensory systems we investigated the mechanisms underlying altered colonic neuro-immune interactions after acute colitis. DESIGN Inflammation was compared in mouse models of health, acute tri-nitrobenzene sulphonic acid (TNBS) colitis, Remission and Reactivated colitis. Cytokine concentrations were compared by ELISA in-situ and in explanted colon tissue. Colonic infiltration by CD11b/F4-80 macrophage, CD4 THELPER (TH) and CD8 TCYTOTOXIC (TC) and α4β7 expression on mesenteric lymph node (MLN) TH and TC was determined by flow cytometry. Cytokine and effector receptor mRNA expression was determined on colo-rectal afferent neurons and the mechanisms underlying cytokinergic effects on high-threshold colo-rectal afferent function were investigated using electrophysiology. RESULTS Colonic damage, MPO activity, macrophage infiltration, IL-1β and IL-6 concentrations were lower in Reactivated compared to Acute colitis. TH infiltration and α4β7 expression on TH MLN was increased in Remission but not Acute colitis. IFN-γ concentrations, TH infiltration and α4β7 expression on TH and TC MLN increased in Reactivated compared to Acute colitis. Reactivated explants secreted more IL-1β and IL-6 than Acute explants. IL-6 and TNF-α inhibited colo-rectal afferent mechanosensitivity in Remission mice via a BKCa dependent mechanism. CONCLUSIONS Acute colitis persistently alters immune responses and afferent nerve signalling pathways to successive episodes of colitis. These findings highlight the complexity of viscero-sensory neuro-immune interactions in painful remitting and relapsing diseases.
Collapse
Affiliation(s)
- Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Samuel Eade
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Department of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Andrea M Harrington
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - L Ashley Blackshaw
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Stuart M Brierley
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Scott D Smid
- Department of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide and South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| |
Collapse
|
33
|
Nullens S, Deiteren A, Jiang W, Keating C, Ceuleers H, Francque S, Grundy D, De Man JG, De Winter BY. In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments. J Vis Exp 2016:54576. [PMID: 27805592 PMCID: PMC5092238 DOI: 10.3791/54576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent nerves not only convey information concerning normal physiology, but also signal disturbed homeostasis and pathophysiological processes of the different organ systems from the periphery towards the central nervous system. As such, the increased activity or 'sensitization' of mesenteric afferent nerves has been allocated an important role in the pathophysiology of visceral hypersensitivity and abdominal pain syndromes. Mesenteric afferent nerve activity can be measured in vitro in an isolated intestinal segment that is mounted in a purpose-built organ bath and from which the splanchnic nerve is isolated, allowing researchers to directly assess nerve activity adjacent to the gastrointestinal segment. Activity can be recorded at baseline in standardized conditions, during distension of the segment or following the addition of pharmacological compounds delivered intraluminally or serosally. This technique allows the researcher to easily study the effect of drugs targeting the peripheral nervous system in control specimens; besides, it provides crucial information on how neuronal activity is altered during disease. It should be noted however that measuring afferent neuronal firing activity only constitutes one relay station in the complex neuronal signaling cascade, and researchers should bear in mind not to overlook neuronal activity at other levels (e.g., dorsal root ganglia, spinal cord or central nervous system) in order to fully elucidate the complex neuronal physiology in health and disease. Commonly used applications include the study of neuronal activity in response to the administration of lipopolysaccharide, and the study of afferent nerve activity in animal models of irritable bowel syndrome. In a more translational approach, the isolated mouse intestinal segment can be exposed to colonic supernatants from IBS patients. Furthermore, a modification of this technique has been recently shown to be applicable in human colonic specimens.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Annemie Deiteren
- Visceral Pain Group, Discipline of Medicine, University of Adelaide
| | - Wen Jiang
- Department of Biomedical Sciences, University of Sheffield
| | - Christopher Keating
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp;
| |
Collapse
|
34
|
Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol 2016; 1:133-146. [DOI: 10.1016/s2468-1253(16)30023-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022]
|
35
|
Hughes PA, Costello SP, Bryant RV, Andrews JM. Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 2016; 311:G501-13. [PMID: 27469369 DOI: 10.1152/ajpgi.00442.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Opioids are one of the most prescribed drug classes for treating acute pain. However, chronic use is often associated with tolerance as well as debilitating side effects, including nausea and dependence, which are mediated by the central nervous system, as well as constipation emerging from effects on the enteric nervous system. These gastrointestinal (GI) side effects limit the usefulness of opioids in treating pain in many patients. Understanding the mechanism(s) of action of opioids on the nervous system that shows clinical benefit as well as those that have unwanted effects is critical for the improvement of opioid drugs. The opioidergic system comprises three classical receptors (μ, δ, κ) and a nonclassical receptor (nociceptin), and each of these receptors is expressed to varying extents by the enteric and intestinal extrinsic sensory afferent nerves. The purpose of this review is to discuss the role that the opioidergic system has on enteric and extrinsic afferent nerves in the lower GI tract in health and diseases of the lower GI tract, particularly inflammatory bowel disease and irritable bowel syndrome, and the implications of opioid treatment on clinical outcomes. Consideration is also given to emerging developments in our understanding of the immune system as a novel source of endogenous opioids and the mechanisms underlying opioid tolerance, including the potential influence of opioid receptor splice variants and heteromeric complexes.
Collapse
Affiliation(s)
- Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Department of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia;
| | - Samuel P Costello
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Robert V Bryant
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Jane M Andrews
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| |
Collapse
|
36
|
Hughes PA. Sleeping in on pancreatic cancer pain: Schwann cell secreted IL-6 pushes snooze on the pain alarm. Gut 2016; 65:897-8. [PMID: 26864073 DOI: 10.1136/gutjnl-2015-311272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 12/08/2022]
|
37
|
Sobolewska-Włodarczyk A, Włodarczyk M, Storr M, Fichna J. Clinical potential of eluxadoline in the treatment of diarrhea-predominant irritable bowel syndrome. Ther Clin Risk Manag 2016; 12:771-5. [PMID: 27257381 PMCID: PMC4874728 DOI: 10.2147/tcrm.s83722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) belongs to the group of functional gastrointestinal disorders and is characterized by abdominal pain in conjunction with diarrhea. The incidence of IBS-D is currently increasing, leading to a heavy economic burden for patients and health care systems worldwide. Recent studies suggest eluxadoline as an attractive new tool for the treatment of patients with IBS-D. Eluxadoline is an orally active μ- and κ-opioid receptor agonist and δ-opioid receptor antagonist, with powerful antidiarrheal and analgesic activity. Eluxadoline is believed to act locally in the enteric nervous system, and has no adverse effects in the central nervous system. In this review, we discuss the most recent findings on the mechanism of action of eluxadoline and the results of the clinical trials in patients with IBS-D. We also discuss possible side effects and analyze the potential of eluxadoline to be used in the treatment of IBS-D.
Collapse
Affiliation(s)
| | - Marcin Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
38
|
Foxx-Orenstein AE. New and emerging therapies for the treatment of irritable bowel syndrome: an update for gastroenterologists. Therap Adv Gastroenterol 2016; 9:354-75. [PMID: 27134665 PMCID: PMC4830102 DOI: 10.1177/1756283x16633050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome is a functional bowel disorder with gastrointestinal symptoms (e.g. abdominal pain, straining, urgency, incomplete evacuation, nausea, and bloating) that occur alongside bowel function alterations (i.e. constipation, diarrhea, or both). Patients with irritable bowel syndrome may also experience comorbid anxiety and depression. Irritable bowel syndrome is common, with a prevalence estimated between 3% and 28%, affecting patient health and quality of life. Patients with moderate or severe irritable bowel syndrome generally seek medical care, whereas those with milder symptoms may choose self-management. Most patients with irritable bowel syndrome receive outpatient care, but irritable bowel syndrome-related hospitalizations do occur. The pathophysiology of irritable bowel syndrome is multifactorial (i.e. genetics, immune components, changes in the gut microbiota, disturbances in physiologic stress response systems, and psychosocial factors). Management of irritable bowel syndrome can include lifestyle changes, dietary interventions, counseling, psychologic medication, and agents that affect gastrointestinal motility. A number of therapies have emerged in recent years with clinical trial data demonstrating efficacy and safety for patients with irritable bowel syndrome, including agents that target gastrointestinal motility (i.e. linaclotide), gastrointestinal opioid receptors (i.e. asimadoline, eluxadoline), and gut microbiota (i.e. rifaximin). Linaclotide has been shown to significantly improve stool frequency and abdominal pain compared with placebo in constipation-predominant irritable bowel syndrome (number needed to treat, 5.1). Asimadoline shows efficacy in patients with moderate-to-severe irritable bowel syndrome-related pain. Rifaximin provided adequate relief of global irritable bowel syndrome symptoms versus placebo for a significantly greater percentage of patients with diarrhea-predominant irritable bowel syndrome (p < 0.001). Management that encompasses all aspects of irritable bowel syndrome (gastrointestinal symptoms) and comorbid psychologic symptoms (e.g. anxiety or depression) is important for improving overall patient health and well-being.
Collapse
Affiliation(s)
- Amy E. Foxx-Orenstein
- Mayo Clinic Division of Gastroenterology and Hepatology, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| |
Collapse
|
39
|
De Winter BY, Deiteren A, De Man JG. Novel nervous system mechanisms in visceral pain. Neurogastroenterol Motil 2016; 28:309-315. [PMID: 26891060 DOI: 10.1111/nmo.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling.
Collapse
Affiliation(s)
- B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
41
|
Campaniello MA, Harrington AM, Martin CM, Ashley Blackshaw L, Brierley SM, Hughes PA. Activation of colo-rectal high-threshold afferent nerves by Interleukin-2 is tetrodotoxin-sensitive and upregulated in a mouse model of chronic visceral hypersensitivity. Neurogastroenterol Motil 2016; 28:54-63. [PMID: 26468044 DOI: 10.1111/nmo.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic visceral pain is a defining feature of irritable bowel syndrome (IBS). IBS patients often show alterations in innate and adaptive immune function which may contribute to symptoms. Immune mediators are known to modulate the activity of viscero-sensory afferent nerves, but the focus has been on the innate immune system. Interleukin-2 (IL-2) is primarily associated with adaptive immune responses but its effects on colo-rectal afferent function in health or disease are unknown. METHODS Myeloperoxidase (MPO) activity determined the extent of inflammation in health, acute trinitrobenzene-sulfonic acid (TNBS) colitis, and in our post-TNBS colitis model of chronic visceral hypersensitivity (CVH). The functional effects of IL-2 on high-threshold colo-rectal afferents and the expression of IL-2R and NaV 1.7 mRNA in colo-rectal dorsal root ganglia (DRG) neurons were compared between healthy and CVH mice. KEY RESULTS MPO activity was increased during acute colitis, but subsided to levels comparable to health in CVH mice. IL-2 caused direct excitation of colo-rectal afferents that was blocked by tetrodotoxin. IL-2 did not affect afferent mechanosensitivity in health or CVH. However, an increased proportion of afferents responded directly to IL-2 in CVH mice compared with controls (73% vs 33%; p < 0.05), and the abundance of IL-2R and NaV 1.7 mRNA was increased 3.5- and 2-fold (p < 0.001 for both) in colo-rectal DRG neurons. CONCLUSIONS & INFERENCES IL-2, an immune mediator from the adaptive arm of the immune response, affects colo-rectal afferent function, indicating these effects are not restricted to innate immune mediators. Colo-rectal afferent sensitivity to IL-2 is increased long after healing from inflammation.
Collapse
Affiliation(s)
- M A Campaniello
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| | - A M Harrington
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| | - C M Martin
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| | - L Ashley Blackshaw
- Neurogastroenterology Group, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - S M Brierley
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| | - P A Hughes
- Centre for Nutritional and Gastrointestinal Diseases, Department of Medicine, University of Adelaide and South Australian Health Medical Health Research Institute, Adelaide, SA, Australia
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Structural causes are absent in more than 50% of patients with symptoms referred to the gastroduodenal region when routine diagnostic tests are applied. New knowledge holds the prospect that targeted therapy may more optimally manage subsets of these patients with functional dyspepsia. RECENT FINDINGS An understanding of gut-to-brain and brain-to-gut pathways in functional dyspepsia is expanding. Minimal mucosal inflammation with eosinophils (and in some cases mast cells) characterized by ultrastructural changes in the duodenum appears to be present in a substantial subgroup of functional dyspepsia patients as identified now by investigators globally. Although antibiotic therapy targeting Helicobacter pylori appears to be effective in a small proportion of functional dyspepsia patients, eradication therapy may be more effective in functional dyspepsia patients with microscopic duodenal inflammation, a potentially important finding needing to be confirmed. This may suggest that the effects of antibiotics for functional dyspepsia are not simply mediated by the eradication of gastric H. pylori, but have other antibacterial effects (e.g., on the duodenal microbiome). Abnormal visceral sensory function plays a key role not only in the manifestations of functional dyspepsia but also in peptic ulcer disease. SUMMARY The pathophysiologic concepts underlying functional dyspepsia and related treatment approaches are shifting from a focus on H. pylori, acid suppression or modulation of motility toward new models. New evidence suggests that minimal duodenal inflammation plays a role in symptom generation in at least a proportion of patients with otherwise unexplained symptoms. This is a paradigm shift and ultimately may change the treatment of many patients with functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Gerald Holtmann
- aFaculty of Medicine and Biomedical Sciences bFaculty of Health and Behavioural Sciences, Princess Alexandra Hospital Brisbane cTranslational Research Institute, University of Queensland, Brisbane, Queensland dFaculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | | |
Collapse
|