1
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
2
|
Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Lee KW, Pawar SC. Inhibition of DDX3 and COX-2 by forskolin and evaluation of anti-proliferative, pro-apoptotic effects on cervical cancer cells: molecular modelling and in vitro approaches. Med Oncol 2022; 39:61. [PMID: 35478276 DOI: 10.1007/s12032-022-01658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Several studies have reported up-regulation of both cyclooxygenase-2 (COX-2) and DEAD-box RNA helicase3 (DDX3) and have validated their oncogenic role in many cancers. Inhibition of COX-2 and DDX3 offers a potential pharmacological strategy for prevention of cancer progression. The COX-2 isoform is expressed in response to pro-inflammatory stimuli in premalignant lesions, including cervical tissues. This study elucidates the potential role of plant derived compound Forskolin (FSK) in plummeting the expression of COX-2 and DDX3 in cervical cancer. To establish this, the cervical cancer cells were treated with the FSK compound which induced a dose dependent significant inhibition of COX-2 and DDX3 expression. The FSK treatment also significantly induced apoptosis in cancer cells by modulating the expression of apoptotic markers like caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, full length-poly ADP ribose polymerase (PARP), cleaved-poly ADP ribose polymerase (C-PARP) and Bcl2 in dose dependent manner. Further FSK significantly modulated the cell survival pathway Phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway upon 24 h of incubation in cervical cancer cells. The molecular docking studies revealed that the FSK engaged the active sites of both the targets by interacting with key residues.
Collapse
Affiliation(s)
- Doneti Ravinder
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gangappa Dharmapuri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
3
|
Effects of pituitary adenylate cyclase activating polypeptide (PACAP) in corneal epithelial regeneration and signal transduction in rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCorneal epithelium responds to insults with a rapid wound healing, which is essential for maintaining vision. The proper balance of apoptotic and proliferation-stimulating pathways is critical for normal regeneration. Pituitary adenylate cyclase activating polypeptide (PACAP) is an important growth factor during the development of the nervous system and exerts cytoprotective effects in injuries. The aim of the present study was to investigate the effects of PACAP on corneal epithelial wound healing in rats and on two important protective signaling molecules, Akt and ERK1/2, both of which have been reported to play important roles during cell survival and regeneration, including corneal wound healing. Wistar rats received PACAP treatment in form of eyedrops, containing 1, 5 and 10 µg PACAP27, immediately and every two hours after corneal abrasion. Corneas were stained with fluorescein dye and further processed for histological staining or Western blot analysis for Akt and ERK1/2 expression. Our results showed that topical PACAP application enhanced corneal wound healing, as the area of injury was significantly less in PACAP-treated groups. Furthermore, both ERK1/2 and Akt signaling was induced upon PACAP administration in both injured and intact corneas. In summary, the present results show that PACAP enhances corneal wound healing in a rat model of corneal abrasion.
Collapse
|
4
|
Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MKH, Eiden LE, Jiang SZ, Gillette MU. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci 2019; 13:1281. [PMID: 31866806 PMCID: PMC6909886 DOI: 10.3389/fnins.2019.01281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Results from a variety of sources indicate a role for pituitary adenylate cyclase-activating polypeptide (PACAP) in light/glutamate-induced phase resetting of the circadian clock mediated by the retinohypothalamic tract (RHT). Attempts to block or remove PACAP’s contribution to clock-resetting have generated phenotypes that differ in their responses to light or glutamate. For example, previous studies of circadian behaviors found that period-maintenance and early-night phase delays are intact in PACAP-null mice, yet there is a consistent deficit in behavioral phase-resetting to light stimulation in the late night. Here we report rodent stimulus–response characteristics of PACAP release from the RHT, and map these to responses of the suprachiasmatic nucleus (SCN) in intact and PACAP-deficient mouse hypothalamus with regard to phase-resetting. SCN of PACAP-null mice exhibit normal circadian rhythms in neuronal activity, but are “blind” to glutamate stimulating phase-advance responses in late night, although not in early night, consistent with previously reported selective lack of late-night light behavioral responsiveness of these mice. Induction of CREB phosphorylation, a hallmark of the light/glutamate response of the SCN, also is absent in SCN-containing ex vivo slices from PACAP-deficient mouse hypothalamus. PACAP replacement to the SCN of PACAP-null mice restored wild-type phase-shifting of firing-rate patterns in response to glutamate applied to the SCN in late night. Likewise, ex vivo SCN of wild-type mice post-orbital enucleation are unresponsive to glutamate unless PACAP also is restored. Furthermore, we demonstrate that the period of efficacy of PACAP at SCN nerve terminals corresponds to waxing of PACAP mRNA expression in ipRGCs during the night, and waning during the day. These results validate the use of PACAP-deficient mice in defining the role and specificity of PACAP as a co-transmitter with glutamate in ipRGC-RHT projections to SCN in phase advancing the SCN circadian rhythm in late night.
Collapse
Affiliation(s)
- Peder T Lindberg
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jennifer W Mitchell
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Penny W Burgoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christian Beaulé
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Martha U Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Hirabayashi T, Nakamachi T, Shioda S. Discovery of PACAP and its receptors in the brain. J Headache Pain 2018; 19:28. [PMID: 29619773 PMCID: PMC5884755 DOI: 10.1186/s10194-018-0855-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
Abstract
Pituitary adenylate-cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide (VIP)/glucagon/secretin family. PACAP shows particularly high homology (~ 68%) to VIP. Because of the high homology of the amino acid sequences of PACAP and VIP, these peptides share three class B-G-protein coupled receptors: the PAC1-Receptor (PAC1-R), the VPAC1-Receptor (VPAC1-R) and VPAC2-Receptor (VPAC2-R). These receptors have high homology to each other, and their high homology is utilized for these discoveries. This review provides mainly an overview of the history of the discovery of PACAP and its three receptors.
Collapse
Affiliation(s)
- Takahiro Hirabayashi
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
6
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
7
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1070] [Impact Index Per Article: 152.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
8
|
Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res 2016; 30:633-647. [PMID: 27557978 PMCID: PMC5047952 DOI: 10.1007/s12640-016-9659-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide, with known antiapoptotic functions. Our previous in vitro study has demonstrated the ameliorative role of PACAP-38 in chicken hair cells under oxidative stress conditions, but its effects on living hair cells is now yet known. Therefore, the aim of the present study was to investigate in vivo the protective role of PACAP-38 in hair cells found in zebrafish (Danio rerio) sense organs-neuromasts. To induce oxidative stress the 5-day postfertilization (dpf) zebrafish larvae were exposed to 1.5 mM H2O2 for 15 min or 1 h. This resulted in an increase in caspase-3 and p-38 MAPK level in the hair cells as well as in an impairment of the larvae basic behavior. To investigate the ameliorative role of PACAP-38, the larvae were incubated with a mixture of 1.5 mM H2O2 and 100 nM PACAP-38 following 1 h preincubation with 100 nM PACAP-38 only. PACAP-38 abilities to prevent hair cells from apoptosis were investigated. Whole-mount immunohistochemistry and confocal microscopy analyses revealed that PACAP-38 treatment decreased the cleaved caspase-3 level in the hair cells, but had no influence on p-38 MAPK. The analyses of basic locomotor activity supported the protective role of PACAP-38 by demonstrating the improvement of the fish behavior after PACAP-38 treatment. In summary, our in vivo findings demonstrate that PACAP-38 protects zebrafish hair cells from oxidative stress by attenuating oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, box 105J, 10-719, Olsztyn, Poland.
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Maria Sundvik
- Department of Anatomy, Neuroscience Center, University of Helsinki, Haartmaninkatu 8 (Biomedicum Helsinki), 00290, Helsinki, Finland
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, Szigeti 12, 7624, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, Szigeti 12, 7624, Pecs, Hungary
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, box 105J, 10-719, Olsztyn, Poland
| |
Collapse
|
9
|
Resch JM, Albano R, Liu X, Hjelmhaug J, Lobner D, Baker DA, Choi S. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor. Synapse 2014; 68:604-612. [PMID: 25066643 DOI: 10.1002/syn.21772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc-. In this study, 24-h treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc- function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc- inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc- activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc-. Furthermore, the potentiation of system xc- activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc- activity. Synapse 68:604-612, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Rebecca Albano
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Xiaoqian Liu
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Julie Hjelmhaug
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Sujean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| |
Collapse
|
10
|
Blechman J, Levkowitz G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front Endocrinol (Lausanne) 2013; 4:55. [PMID: 23734144 PMCID: PMC3659299 DOI: 10.3389/fendo.2013.00055] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/24/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.
Collapse
Affiliation(s)
- Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gil Levkowitz, Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel. e-mail:
| |
Collapse
|
11
|
Nakamachi T, Farkas J, Kagami N, Wada Y, Hori M, Tsuchikawa D, Tsuchida M, Yoshikawa A, Imai N, Hosono T, Atrata S, Shioda S. Expression and distribution of pituitary adenylate cyclase-activating polypeptide receptor in reactive astrocytes induced by global brain ischemia in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:55-9. [PMID: 23564104 DOI: 10.1007/978-3-7091-1434-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neuroprotectant. We previously showed that PACAP receptor (PAC1R) immunoreactivity was elevated in reactive astrocytes after stab wound injury. However, the pattern of PAC1R expression in astrocytes after brain injury is still unknown. In this study, PAC1R expression was evaluated in mouse hippocampal astrocytes after bilateral common carotid artery occlusion. PAC1R mRNA levels in the hippocampus peaked on day 7, and glial fibrillary acidic protein (GFAP) mRNA levels increased from day 3 to day 7 after ischemia. We then observed co-localization of PAC1R and GFAP by double immunostaining. GFAP-immunopositive cells showed signs of hypertrophy 3 days after the ischemia, and by day 7 had fine processes, were hypertrophied, and are known as reactive astrocytes. A low number of PAC1R-immunopositive astrocytes were detectable in the hippocampal area until 3 days after ischemia. PAC1R-positive astrocytes were widely distributed in the hippocampus between day 7 and day 14 after ischemia, and they were converging around the damaged CA1 pyramidal cell layer by day 28. These results suggest that PAC1R might be expressed in the middle to late stage of reactive astrocytes and PACAP plays an important role in the reactive astrocytes after brain injury.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O. The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 2012; 7:e42498. [PMID: 22927932 PMCID: PMC3424241 DOI: 10.1371/journal.pone.0042498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/06/2012] [Indexed: 12/18/2022] Open
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H2O2)-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo1–8[DLeu5]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H2O2-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H2O2 of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H2O2 on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jérôme Leprince
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Helene Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
- * E-mail: (MA), (HV)
| | - Marie-Christine Tonon
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
- * E-mail: (MA), (HV)
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Park KH, Park HJ, Shin KS, Choi HS, Kai M, Lee MK. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons. Toxicol Sci 2012; 128:247-57. [PMID: 22539619 DOI: 10.1093/toxsci/kfs139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.
Collapse
Affiliation(s)
- Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, Basille M, Leprince J, Fournier A, Vaudry H, Tonon MC, Amri M. Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem 2011; 117:403-11. [PMID: 21244427 DOI: 10.1111/j.1471-4159.2011.07185.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 μM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakamachi T, Nakamura K, Oshida K, Kagami N, Mori H, Watanabe J, Arata S, Yofu S, Endo K, Wada Y, Hori M, Tsuchikawa D, Kato M, Shioda S. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates proliferation of reactive astrocytes in vitro. J Mol Neurosci 2010; 43:16-21. [PMID: 20574684 DOI: 10.1007/s12031-010-9404-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide originally isolated from ovine hypothalamus. Recently, we have shown that the PACAP receptor (PAC1-R) is expressed in reactive astrocytes following an in vivo stub wound brain injury. However, the functional role of PACAP has not yet been clarified. In order to investigate the effect of PACAP on the proliferation of reactive astrocytes, a scratch wound paradigm was applied to astrocytic monolayers. Following injury, there was an increase in PAC1-R and glial fibrillary acidic protein (GFAP) immunoreactivity in the astrocytes surrounding the scratch line. PACAP at concentrations of 10(-15) to 10(-7) M was applied immediately after scratching, and the proliferating astrocytes were visualized by multiple immunofluorescence labeling. The percentage of cells that colabeled for Ki67 (a marker of proliferating cells) and GFAP increased in the 10(-11)- and 10(-13)-M PACAP-treated groups. The proliferating astrocytes induced by PACAP treatment mainly occurred in the proximal wound area where many reactive astrocytes were observed. Pretreatment with the PACAP receptor antagonist PACAP6-38 significantly suppressed the PACAP-induced effects. These results strongly suggest that PACAP plays an important role in the proliferation of reactive astrocytes following nerve injury.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sullivan SM, Björkman ST, Miller SM, Colditz PB, Pow DV. Structural remodeling of gray matter astrocytes in the neonatal pig brain after hypoxia/ischemia. Glia 2010; 58:181-94. [PMID: 19606499 DOI: 10.1002/glia.20911] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Astrocytes play a vital role in the brain; their structural integrity and sustained function are essential for neuronal viability, especially after injury or insult. In this study, we have examined the response of astrocytes to hypoxia/ischemia (H/I), employing multiple methods (immunohistochemistry, iontophoretic cell injection, Golgi-Kopsch staining, and D-aspartate uptake) in a neonatal pig model of H/I. We have identified morphological changes in cortical gray matter astrocytes in response to H/I. Initial astrocytic changes were evident as early as 8 h post-insult, before histological evidence for neuronal damage. By 72 h post-insult, astrocytes exhibited significantly fewer processes that were shorter, thicker, and had abnormal terminal swellings, compared with astrocytes from control brains that exhibited a complex structure with multiple fine branching processes. Quantification and image analysis of astrocytes at 72 h post-insult revealed significant decreases in the average astrocyte size, from 686 microm(2) in controls to 401 microm(2) in H/I brains. Sholl analysis revealed a significant decrease (>60%) in the complexity of astrocyte branching between 5 and 20 microm from the cell body. D-Aspartate uptake studies revealed that the H/I insult resulted in impaired astrocyte function, with significantly reduced clearance of the glutamate analog, D-aspartate. These results suggest that astrocytes may be involved in the pathophysiological events of H/I brain damage at a far earlier time point than first thought. Developing therapies that prevent or reverse these astrocytic changes may potentially improve neuronal survival and thus might be a useful strategy to minimize brain damage after an H/I insult.
Collapse
Affiliation(s)
- Susan M Sullivan
- UQ Centre for Clinical Research and Perinatal Research Centre, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|
17
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 860] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakamachi T, Ohtaki H, Yofu S, Dohi K, Watanabe J, Hayashi D, Matsuno R, Nonaka N, Itabashi K, Shioda S. Pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) co-localizes with activity-dependent neuroprotective protein (ADNP) in the mouse brains. ACTA ACUST UNITED AC 2008; 145:88-95. [DOI: 10.1016/j.regpep.2007.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 2007; 104:74-88. [PMID: 17995938 PMCID: PMC2230095 DOI: 10.1111/j.1471-4159.2007.05018.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC1 and VIP/PACAP receptor type 2 (VPAC2) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC1 receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC2 receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC1 receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2′,5′-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC1 receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.
Collapse
Affiliation(s)
- T K Monaghan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, Glasgow, UK
| | | | | | | |
Collapse
|
20
|
Baba A. [Molecular pharmacologic approaches to functional analysis of new biological target molecules for drug discovery]. YAKUGAKU ZASSHI 2007; 127:1643-54. [PMID: 17917422 DOI: 10.1248/yakushi.127.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review focuses on two pharmacologic approaches to the functional evaluation of new target molecules for drug discovery. One is the development of a novel specific antagonist of the Na(+)-Ca(++) exchanger (NCX) SEA0400. The other is a comprehensive analysis of the functions of pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide ligand for G protein-coupled receptors. NCX is the one of the last target molecules regulating the cellular Ca(++) concentration. There was no efficient way to address the pathophysiologic roles of NCX until a specific antagonist, 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400), was developed. Our recent studies using SEA0400 clearly showed the possible roles of NCX in several pathologic states of cardiovascular and nervous tissues. In our second approach including gene-targeting methods, we found new, unexpected roles of PACAP in higher brain functions, such as psychomotor, cognition, photoentrainment, and nociception. Based on these experimental findings, a genetic association study in schizophrenia patients revealed that the single-nucleotide polymorphisms of the PACAP gene are significantly associated with the hypofunction of the hippocampus. Regarding the peripheral roles of PACAP, we found that PACAP is involved not only in the regulation of insulin secretion in pancreatic islets, but also in the regulation of islet turnover. In subsequent phenotypic analysis of PACAP transgenic mice, we identified novel candidate genes that probably have promising functional roles.
Collapse
Affiliation(s)
- Akemichi Baba
- Molecular Pharmacological Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita City 565-0871, Japan.
| |
Collapse
|
21
|
Masmoudi-Kouki O, Gandolfo P, Castel H, Leprince J, Fournier A, Dejda A, Vaudry H, Tonon MC. Role of PACAP and VIP in astroglial functions. Peptides 2007; 28:1753-60. [PMID: 17655978 DOI: 10.1016/j.peptides.2007.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Astrocytes represent at least 50% of the volume of the human brain. Besides their roles in various supportive functions, astrocytes are involved in the regulation of stem cell proliferation, synaptic plasticity and neuroprotection. Astrocytes also influence neuronal physiology by responding to neurotransmitters and neuropeptides and by releasing regulatory factors termed gliotransmitters. In particular, astrocytes express the PACAP-specific receptor PAC1-R and the PACAP/VIP mutual receptors VPAC1-R and VPAC2-R during development and/or in the adult. There is now clear evidence that PACAP and VIP modulate a number of astrocyte activities such as proliferation, plasticity, glycogen production, and biosynthesis of neurotrophic factors and gliotransmitters.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rácz B, Gasz B, Borsiczky B, Gallyas F, Tamás A, Józsa R, Lubics A, Kiss P, Roth E, Ferencz A, Tóth G, Hegyi O, Wittmann I, Lengvári I, Somogyvári-Vigh A, Reglodi D. Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis. Gen Comp Endocrinol 2007; 153:115-23. [PMID: 17270184 DOI: 10.1016/j.ygcen.2006.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/15/2006] [Accepted: 12/18/2006] [Indexed: 11/16/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widely distributed neuropeptide that has various different functions in the nervous system and in non-neural tissues. Little is known about the effects of PACAP in endothelial cells. The aim of the present study was to investigate the effects of PACAP on endothelial cell survival and apoptotic signaling pathways under oxidative stress. Mouse hemangioendothelioma (EOMA) cells were exposed to 0.5mM H(2)O(2) which resulted in a marked reduction of cell viability and a parallel increase of apoptotic cells assessed by MTT test and flow cytometry. Co-incubation with 20nM PACAP1-38 increased cell viability and reduced the percentage of apoptotic cells. Flow cytometry analysis showed that oxidative stress reduced the phosphorylation of the anti-apoptotic ERK and increased the phosphorylation of the pro-apoptotic JNK and p38 MAP kinases. PACAP1-38 treatment ameliorated these changes: levels of phospho-ERK were elevated and those of phospho-JNK and p38 were decreased. All these effects were abolished by simultaneous treatment with the PACAP antagonist PACAP6-38. In summary, our results show that PACAP effectively protects endothelial cells against the apoptosis-inducing effects of oxidative stress.
Collapse
Affiliation(s)
- B Rácz
- Department of Surgical Research and Techniques, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shintani N, Ogita K, Hashimoto H, Baba A. Recent Studies on the Trimethyltin Actions in Central Nervous Systems. YAKUGAKU ZASSHI 2007; 127:451-61. [PMID: 17329931 DOI: 10.1248/yakushi.127.451] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trimethyltin (TMT) is a toxic organotin compound that produces injury to the central nervous systems of mammals. Recently, high-dose TMT (2.8 mg/kg) has been shown to produce neurodegeneration and subsequent neurogenesis specifically in the hippocampal dentate gyrus of mice, indicating that mice injected with TMT serve as a useful in vivo model to study neurogenesis as well as neurodegeneration in this brain region. In addition, gene-engineered mice have allowed research to focuse on the mechanisms of TMT toxicity. These studies have revealed the involvement of stannin, nuclear factor kappa B (NF-kappaB), presenilin-1, apolipoprotein E, and pituitary adenylyl cyclase-activating polypeptide (PACAP) in TMT toxicity and suggested the relationship between genetic mutations and neuronal susceptibility to degeneration. In this review, we briefly summarize the previous studies and discuss the current status of research on TMT.
Collapse
Affiliation(s)
- Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan.
| | | | | | | |
Collapse
|
24
|
The effects of PACAP on neural cell proliferation. ACTA ACUST UNITED AC 2006; 137:50-7. [PMID: 17011642 DOI: 10.1016/j.regpep.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/20/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
PACAP and its receptors are expressed in growth zones of the brain. By stimulating PAC(1)-receptors PACAP can enhance, as well as reduce, the proliferation rate in a cell-type dependent manner. PACAP can enhance the proliferation rate by activating phospholipase C and protein kinase C, although other signal transduction pathways may also be responsible. PACAP can suppress proliferation by inhibiting protein complexes of the cyclins D and E with the cyclin-dependent kinases 4/6 and 2, respectively, which are necessary for entry into the cell cycle. PACAP seems to exert these inhibitory effects by acting via the Sonic hedgehog glycoprotein and the small GTPase RhoA. Also, the activation of a cyclin-dependent kinase inhibitor has been suggested. The signal transduction pathways mediating the effects of PACAP on proliferation are discussed.
Collapse
|
25
|
Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, Shioda S. Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Müller cells. Peptides 2006; 27:1871-6. [PMID: 16427158 DOI: 10.1016/j.peptides.2005.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is known to regulate not only neurons but also astrocytes. Here, we investigated, both in vitro and in vivo, the effects of PACAP38 on rat Müller cells, which are the predominant glial element in the retina. Müller cells isolated from juvenile Wistar rats were treated with PACAP38 or PACAP6-38, a PACAP selective antagonist. Cell proliferation was determined by measuring the incorporation of bromodeoxyuridine with ELISA. Interleukin-6 (IL-6) levels in the culture medium were determined by a bioassay using B9 cells, IL-6 dependent hybridoma. In adult Wistar rats, the expression of IL-6 in the retina after intravitreal injection of PACAP38 (10 pmol) was assessed by immunohistochemistry. PACAP38 stimulated IL-6 production in Müller cells at a concentration as low as 10(-12) M, which did not induce cell proliferation. This elevation of IL-6 production was inhibited by PACAP6-38. Radial IL-6 expression was observed throughout the retina at 2 and 3 days after PACAP38 injection. These data demonstrate that Müller cells are one of the target cells for PACAP. IL-6, which is released from Müller cells with stimulation by PACAP, may play a significant role in the retina.
Collapse
Affiliation(s)
- Masayoshi Nakatani
- Bioengineering Institute, Assessment Research Department, Nidek Co. Ltd., 6-209-1 Miyakitadori Gamagori-shi, Aichi 443-0022, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nakamachi T, Li M, Shioda S, Arimura A. Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides 2006; 27:1859-64. [PMID: 16564114 DOI: 10.1016/j.peptides.2006.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/20/2006] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Activity-dependent neurotrophic protein (ADNP) was discovered as a novel response gene for VIP and has neuroprotective potential. When the VIP paralog, PACAP38 was added to mouse neuron-glia co-cultures, it induced ADNP mRNA expression in a bimodal fashion at subpico- and nanomolar concentrations with greater response at subpicomolar level. The response was attenuated by a PAC1-R antagonist at both concentrations and by a VPAC1-R antagonist at nanomolar concentration only. An IP3/PLC inhibitor attenuated the response at both concentrations of PACAP38, but a MAPK inhibitor had no effect. A PKA inhibitor suppressed the response at nanomolar concentration only. These findings suggest that ADNP expression is mediated through multiple receptors and signaling pathways that are regulated by different concentrations of PACAP.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- U.S.-Japan Biomedical Research Laboratories, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
27
|
Deacon CF, Ahrén B, Holst JJ. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opin Investig Drugs 2005; 13:1091-102. [PMID: 15330741 DOI: 10.1517/13543784.13.9.1091] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inhibitors of the enzyme dipeptidyl peptidase IV (DPP IV) are of increasing interest to both diabetologists and the pharmaceutical industry alike, as they may become established as the next member of the oral antidiabetic class of therapeutic agents, designed to lower blood glucose and, possibly, prevent the progressive impairment of glucose metabolism in patients with impaired glucose tolerance and Type 2 diabetes. DPP IV has become a focus of attention for drug design, as it has a pivotal role in the rapid degradation of at least two of the hormones released during food ingestion, a property that has warranted the design of inhibitor-based drugs. At the molecular level, DPP IV cleaves two amino acids from the N-terminus of the intact, biologically active forms of both so-called incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (formerly known as gastric inhibitory polypeptide), resulting in truncated metabolites, which are largely inactive. Inhibition of the enzyme, therefore, is thought to increase levels of the active forms of both incretin hormones, culminating in an increase in insulin release after a meal, in a fully glucose-dependent manner. DPP IV inhibitors combine several features of interest to the drug design process. They can be readily optimised for their target and be designed as low molecular weight, orally active entities compatible with once-daily administration.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Medical Physiology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
28
|
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal peptide (VIP)/ secretin/ glucagon superfamily and functions as a hormone, neurohormone, and neurotransmitter in the central nervous system as well as in several peripheral tissues. Recently, several groups including ours have independently produced lines of mice lacking PACAP (PACAP(-/-)). These mutant mice have not only led to a better understanding of the physiologic roles of endogenous PACAP, but have also revealed some unexpected roles of PACAP. In this paper, phenotypic changes in several brain functions in PACAP(-/-) mice, including light-induced phase-resetting of the circadian activity rhythm, hippocampal long-term potentiation, and psychomotor behaviors, are reviewed based on the results obtained in our laboratory.
Collapse
Affiliation(s)
- Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
29
|
Sakai Y, Hashimoto H, Shintani N, Katoh H, Negishi M, Kawaguchi C, Kasai A, Baba A. PACAP activates Rac1 and synergizes with NGF to activate ERK1/2, thereby inducing neurite outgrowth in PC12 cells. ACTA ACUST UNITED AC 2004; 123:18-26. [PMID: 15046862 DOI: 10.1016/j.molbrainres.2003.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/29/2022]
Abstract
The mechanisms linked to the neuritogenic effect of PACAP acting in synergy with NGF were analyzed in PC12 cells. Recently, we have shown that PACAP synergizes with NGF to stimulate PACAP gene transcription and neurite outgrowth, differentially dependent on both the ERK1/2 and p38 MAP kinase pathways in PC12 cells. This suggests that PACAP modulates mitogen signaling pathways governing cell differentiation, in part through MAP kinase activation and an autocrine mechanism. Here, we studied the mechanism of the underlying neuritogenic actions of PACAP. PACAP induced transient activation of Rac1, a small GTPase involved in neurite outgrowth, in a PI3-kinase-independent manner, and stimulated accumulation of active Rac1 at filamentous actin-rich protrusions on the cell surface to induce subsequent neurite formation. PACAP had no additional effect on the activity of Rac1 beyond the effect of NGF and failed to activate Ras or Cdc42. By contrast, simultaneous treatment with PACAP and NGF acts in synergy to induce prolonged activation of ERK1/2. These results indicate for the first time that PACAP induces activation of Rac1 associated with neurite outgrowth and suggest that the synergistic effect of PACAP and NGF on neurite extension is due to enhanced activation of ERK1/2.
Collapse
Affiliation(s)
- Yoshiyuki Sakai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shintani N, Hashimoto H, Baba A. [Altered higher brain function in PACAP-knockout mice]. Nihon Yakurigaku Zasshi 2004; 123:274-80. [PMID: 15056943 DOI: 10.1254/fpj.123.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that functions as not only a neurotransmitter/neuromodulator but also a neurotrophic factor. To assess the roles of endogenous PACAP, several groups including ours have independently produced mice with targeted mutations in the PACAP gene. The phenotypes of the mutant mice both confirm and extend our knowledge of the physiological roles of PACAP in the central nervous system as well as many peripheral organs. In this review, we briefly summarize the roles of PACAP in higher brain function, which have been proposed by the studies using the mutant mice as well as histological and pharmacological approaches.
Collapse
Affiliation(s)
- Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.
| | | | | |
Collapse
|