1
|
Bai T, Shi Z, Bao S, Hou X, Zhao Y, Leung WLW, Li Y, Pan S, Xin Y, Luo Y, Xiao X, Bai L, Li H. The structural discrepancy in the immunomodulatory potency of the polysaccharides RFHP-1 and RFHP-2 derived from Radix Fici Hirtae. Int J Biol Macromol 2025; 315:144432. [PMID: 40403788 DOI: 10.1016/j.ijbiomac.2025.144432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/20/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Radix Fici Hirtae (RFH), a traditional Chinese medication, is said to be useful in controlling immunity. However, it remained unclear whether its polysaccharides components are associated with these immunomodulatory properties. Herein, two polysaccharides, designated RFHP-1 and RFHP-2, were isolated from RFH using water-soluble alcohol precipitation and column chromatography. Structural characterization by monosaccharide content analysis, methylation, and nuclear magnetic resonance spectroscopy (NMR) revealed that the main chain of RFHP-1 was formed by the interconnection of →4)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→, and →4,6)-α-D-Glcp-(1→, and the main chain of RFHP-2 was formed by the interconnection of →4)-α-D-Glcp-(1→, →3,6)-β-D-Galp-(1→, →3)-β-D-Galp-(1→, →4,6)-α-D-Glcp-(1→ and →6)-β-D-Galp-(1→. Both RFHP-1 and RFHP-2 raised the CD4/CD8 ratio and improved the expression of immune factors in immunocompromised mice. By activating the NF-κB pathway (promote phosphorylation of p65 and IκB), RFHP-1 and RFHP-2 both promoted release cytokines (NO, TNF-a, IL-6, and IFN-γ) at RAW 264.7 macrophages. The results of molecular docking (-8.4 kcal/mol vs. -6.0 kcal/mol) and isothermal titration calorimetry (ITC) (-7.75 kcal/mol vs. -7.46 kcal/mol) demonstrated that RFHP-1 exhibited stronger binding affinity with MD2, suggesting greater immunoactivating potential. These findings indicate that RFHP polysaccharides, particularly RFHP-1, may serve as promising candidates for development as dietary supplements for individuals with compromised immune systems.
Collapse
Affiliation(s)
- Tiankai Bai
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhilong Shi
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
| | - Shuguang Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaorong Hou
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuping Zhao
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Wai L W Leung
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Yuhui Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sirigunqiqige Pan
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ying Xin
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Luo
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 10071, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 10071, China.
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Huifang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
2
|
Jiang SL, Shen Y, Zhang Y, Guo YL, Liang J, Kuang HX, Xia YG. Arabinan and galactooligosaccharide-rich pectin from the stem bark of Aralia elata (Miq.) Seem.: Structural elucidation and immunomodulatory activities. Int J Biol Macromol 2025; 309:142853. [PMID: 40188906 DOI: 10.1016/j.ijbiomac.2025.142853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
There is increasing interest in the potential application of natural polysaccharides in alleviation of immunosuppressive and immune enhancement activity. Herein, AESP-Dp (Mw, 1.11 × 104 g/mol), an arabinosyl and galactosyl-rich acid heteropolysaccharide, was purified from the stem bark of Aralia elata (Miq.) Seem. and structurally characterized based on a combination strategy of Mw determination, monosaccharide composition, methylation, partial acid hydrolysis and 1/2D NMR spectroscopy. AESP-Dp possessed a pectin characteristic with smooth region (→4GalA1→) and a hairy region (→4GalA1→2Rha1→) in a molar ratio of 1:2. Complex side chains may be involved in an arabinan and three galactooligosaccharide moieties connected at C-4 of the rhamnosyl units in hairy regions. In vitro immunomodulatory assays demonstrated that AESP-Dp enhanced the macrophage endocytosis and promoted the secretion of RNS and cytokines. The action mechanism may be related to activating the MAPK and NF-κB signaling pathways ascribed to high affinity for TLR4 on the membrane of RAW 264.7 cells. These data provide a pharmacological basis for the potential use of A. elata polysaccharide in restoring immunosuppressed scenarios, which are helpful for the resource development and utilization, especially its application in the field of medicine and health.
Collapse
Affiliation(s)
- Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yu Shen
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China; College of Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi 154007, PR China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
3
|
Banihashemi ZS, Azizi-Fini I, Rajabi M, Maghami M, Yadollahi S. Chronic fatigue syndrome post-COVID-19: triple-blind randomised clinical trial of Astragalus root extract. BMJ Support Palliat Care 2025; 15:359-366. [PMID: 38834234 DOI: 10.1136/spcare-2023-004595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effect of Astragalus root extract on nurses suffering from post-COVID-19 chronic fatigue syndrome. MATERIALS AND METHODS The study was designed as a triple-blind, randomised, controlled trial in Iran in 2023. 64 chronic fatigue syndrome nurses were randomly assigned to one of two groups: an intervention group (n=32) that received Astragalus root extract (500 mg two times per day) or a control group (n=32) that received a placebo. Changes in chronic fatigue syndrome scores were measured before to, at the end of and 1 month after the intervention. Data were analysed using descriptive and analytical statistics (T-tests, χ2, analysis of variances, Cochran's Q tests, McNemar and generalised estimating equations). RESULTS In comparison to before, chronic fatigue prevalence decreased statistically significantly at the end of the intervention group (13.8%) and 1 month later (17.2%). Further, the frequency differed between before and after (p=0.0001) and 1 month later (p=0.0001). In the control group, chronic fatigue was statistically significantly different before and after the intervention (72.2%; p=0.003). Having an underlying disease (B=0.84, OR=2.33; p=0.04) and being in the control group (B=2.15, OR=12.36; p=0.01) increased the risk of chronic fatigue, whereas increasing the length of time decreased it (B=-0.67, OR=0.50; p=0.0001). CONCLUSION Astragalus root extract has been shown to reduce chronic fatigue in nurses. Therefore, this herbal extract can be used to reduce the incidence and treatment of chronic fatigue in nurses.
Collapse
Affiliation(s)
- Zahra-Sadat Banihashemi
- Trauma Nursing Research Center, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Ismail Azizi-Fini
- Trauma Nursing Research Center, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Mahdi Rajabi
- Department of Anesthesiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahboobeh Maghami
- Department of Biostatistics and Epidemiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Yadollahi
- Trauma Nursing Research Center, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| |
Collapse
|
4
|
Xue LG, Guo TK, Wang J, Shan YQ, Guo L, Zhang DX, Wei Z, Wang D. Effects of in-ovo injection of Yu ping feng polysaccharides on growth performance, intestinal development, and immunity in broiler chickens. Poult Sci 2025; 104:104574. [PMID: 39616675 PMCID: PMC11648774 DOI: 10.1016/j.psj.2024.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
This study aimed to investigate the effects of the in-ovo injection of Yu Ping Feng polysaccharides (YPF) on the immunological development, hatchability, growth performance, intestinal tissue development, intestinal IgA+ cell distribution, and intestinal secretory IgA (SIgA) production in broiler chicken. Herein, 800 chicken embryos were randomly divided into Astragalus polysaccharide (APS), Atractylodes macrocephala polysaccharide (ATR), YPF, and normal saline (control) injection groups-polysaccharide injection, 0.5 mL of 4 mg/mL polysaccharide; normal saline injection, 0.5 mL. The related indexes of hatched chicks were detected, and there were 5 repeats in each group. Compared with the other three groups, the in-ovo YPF injection did not affect the hatching rate of chicken embryos; however, the initial body weight of hatchlings significantly increased and the feed conversion ratio decreased. Additionally, at each time point, the intestinal villus height (VH) of the chicks in the YPF group increased, whereas no notable difference was observed in the crypt depth (CD), resulting in a higher VH/CD ratio. Furthermore, the YPF group exhibited a statistically significant increase in intestinal IgA+ cell count and flushing fluid SIgA level throughout various time periods compared with those in the other three groups. Additionally, the expression of intestinal mucosal immune cytokines, including interleukin (IL)-2, IL-4, IL-6, and interferon-γ, were markedly increased in the duodenum and ileum of the YPF group. Moreover, the analysis of immune development revealed that their serum levels in the polysaccharide-injected groups were also increased, with the YPF groups exhibiting superior performance than the APS and ATR groups and encouraging the development of T and B lymphocytes in the spleen and peripheral blood mononuclear cells. Altogether, the findings of this study demonstrate that the in-ovo injection of YPF can improve the growth performance, intestinal tissue development, and immune system of the broiler chicks.
Collapse
Affiliation(s)
- Li-Gang Xue
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Tian-Kui Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Juan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Quan Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Li Guo
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhong Wei
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
6
|
Li GY, Jiang J. Recent efficacy and long-term survival of Astragalus polysaccharide combined with gemcitabine and S-1 in pancreatic cancer. World J Clin Oncol 2024; 15:1404-1411. [PMID: 39582615 PMCID: PMC11514418 DOI: 10.5306/wjco.v15.i11.1404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a highly malignant tumor with a rapid progression rate and a high susceptibility to infiltration and metastasis. Astragalus polysaccharide (APS), a pure Chinese medicine preparation primarily made from the traditional Chinese herb Astragalus, plays a positive role in the treatment of many malignant tumors. AIM To explore the recent efficacy of APS combined with gemcitabine plus tegafur gimeracil oteracil potassium capsule (S-1) (GS) regimen in the treatment of pancreatic cancer and assess its effect on the immune function and long-term survival of patients. METHODS A total of 97 patients who were diagnosed with pancreatic cancer and received GS chemotherapy at The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) from March 2021 to December 2021 were included in the retrospective analysis. Among them, 41 patients received APS combined with GS chemotherapy, and 56 patients received GS chemotherapy only. The recent efficacy, immune function, adverse reactions, and long-term survival were compared among these patients. RESULTS After 4 cycles of treatment, the objective response rate of patients receiving the combined therapy of APS and GS was 51.22%, and the disease control rate (DCR) was 56.10%, higher than those of patients receiving the monotherapy with GS alone (30.36% and 35.71%, respectively). Besides, the percentages of CD3+ T cells (50.18% ± 9.57%) and CD4+ T cells (31.52% ± 5.33%) in the peripheral blood of patients receiving the combined therapy of APS and GS were higher compared with those treated with GS regimen alone [(44.06% ± 8.55%) and (26.01% ± 7.83%), respectively]. Additionally, the incidences of leukopenia, thrombocytopenia, and fatigue in patients receiving the combined therapy of APS and GS were significantly lower than those in patients receiving the monotherapy of GS alone (17.07%, 9.76%, 31.71% vs 37.50%, 28.57%, 60.71%). Moreover, the median survival time of patients receiving the combined therapy of APS and GS was 394 days, significantly longer than that of patients receiving the monotherapy of GS alone (339 days) (hazard ratio: 0.66; 95%CI: 0.45-0.99; P = 0.036). All these differences were statistically significant (P < 0.05). CONCLUSION The combined therapy of APS and GS improved the recent efficacy and long-term survival of patients with pancreatic cancer and alleviated chemotherapy-induced immune suppression and adverse reactions.
Collapse
Affiliation(s)
- Guang-Yu Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Jing Jiang
- Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
7
|
Chen CC, Lin HL, Guo JH, Chen X, Cho DY, Liao WL, Hsieh CL. Effect of astragalus membranaceus on neurological function in acute aneurysmal subarachnoid hemorrhage patients with high inflammation: A preliminary randomized, double-blind, placebo-controlled clinical trial. J Tradit Complement Med 2024; 14:635-643. [PMID: 39850599 PMCID: PMC11752111 DOI: 10.1016/j.jtcme.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim Astragalus membranaceus (AM) is a traditional Chinese herb. Our previous study revealed that AM can enhance neurological function in patients with acute intracerebral hemorrhage. The aim of this study was to investigated the effects of AM on patients with acute aneurysmal subarachnoid hemorrhage (aSAH). Experimental procedure Eighty-eight patients experiencing acute aSAH were randomly allocated to either the treatment group (TG) comprising 44 patients, who received 3 g of AM orally thrice daily for 14 days, or the control group (CG) with 44 patients, who received 3 g of a placebo. Results Eighty-three patients (41 in CG and 42 in TG) completed the trial. Stratified analyses revealed serum interleukin-6 (IL-6) median ≥7.28 pg/mL at baseline. The percentage of good GOS scores (GOS 4 or 5) at two weeks (W2) and four weeks (W4) was significantly higher in TG than in CG (W2: 35.3 % vs. 7.7 %, p = 0.042; W4: 62.5 % vs. 30.8 %, p = 0.044). Moreover, a higher percentage of Barthel index scores (>60) was observed in TG than in CG at W2 (35.3 % vs. 7.7 %, p = 0.042) after AM or placebo administration. Conclusion Administering AM for 14 days has shown potential in enhancing neurological function four weeks post-aSAH onset, especially in patients with a serum IL-6 level median ≥7.28 pg/mL. Therefore, further research is warranted to explore the anti-inflammatory role of AM. However, this study's limitations include a small sample size and the single-center design, signifying its status as a preliminary investigation.
Collapse
Affiliation(s)
- Chun-Chung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hung-Lin Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Hung Guo
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Feng Y, Hao F. Advances in natural polysaccharides in Alzheimer's disease and Parkinson's disease: Insights from the brain-gut axis. Trends Food Sci Technol 2024; 153:104678. [DOI: 10.1016/j.tifs.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Lee MG, Song Y, Kang H. Exploring the complex immunomodulatory effects and gut defense via oral administration of Astragali radix water extract to normal mice. BMC Complement Med Ther 2024; 24:361. [PMID: 39375623 PMCID: PMC11460088 DOI: 10.1186/s12906-024-04667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. It exhibits diverse biological activities, including immunomodulatory and anti-inflammatory properties; however, some of its activities have only been demonstrated in vitro. OBJECTIVE To examine the effects of orally administered AR extract on immune cells and the intestine under physiological conditions, which bridges the gap between previously observed in vitro outcomes and in vivo results. METHODS AR extract was prepared by hot water extraction. Three separate animal experiments were conducted to isolate macrophages, splenocytes, and the small intestine epithelium. For the macrophage preparation experiment, an intraperitoneal injection of sterile thioglycolate was administered. The mice received oral AR extract at doses of 0.1, 0.5, or 2.5 g/kg for ten days. At the end of each experiment, cells or tissues were isolated. A portion of macrophages and splenocytes were analyzed for the phenotypic changes. The remaining cells were cultured and stimulated with lipopolysaccharide (LPS) or mitogen ex vivo to assess activation status, proliferation, and cytokine production. Samples of the intestine were subjected to real-time RT-PCR. RESULTS Peritoneal macrophages from AR-treated mice exhibited increased expression of scavenger receptors, including SRA and CD36. Stimulation of these macrophages ex vivo with LPS selectively modulated the inflammatory response, including reduced expression of the costimulatory molecules CD40 and CD86, which are important for T cell responses, without affecting TNF-α and IL-6 production. Splenocytes from AR-treated mice exhibited a dose-dependent increase in CD4 and CD8 T cells; however, stimulation with mitogen decreased T cell proliferation and reduced IFN-γ production, which is essential for macrophage activation. An analysis of the small intestinal epithelium revealed an attenuated antimicrobial response, including reduced IgA content in the lumen and decreased expression of mucin-2 and polymeric Ig receptor genes. CONCLUSION The response of immune cells following oral treatment with AR extract did not replicate the previously documented in vitro findings. Immune cells and intestinal epithelium from mice administered oral AR extract exhibited a selective anti-inflammatory phenotype. The overall findings indicate that the systemic effects after oral administration of AR extract include reduced sensitivity to inflammatory insults.
Collapse
Affiliation(s)
- Mi-Gi Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
10
|
Lazarova I, Nilofar, Caprioli G, Piatti D, Ricciutelli M, Ulusan MD, Koyuncu I, Yuksekdag O, Mollica A, Stefanucci A, Zengin G. Influence of extraction solvents on the chemical constituents and biological activities of Astragalus aduncus from Turkey flora: In vitro and in silico insights. Arch Pharm (Weinheim) 2024; 357:e2400257. [PMID: 38849325 DOI: 10.1002/ardp.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
The n-hexane, ethyl acetate, ethanol, ethanol/water (70% ethanol), and water extracts of Astragalus aduncus aerial parts were investigated for their antioxidant potential, enzyme inhibition activity (anti-acetylcholinesterase [AChE], anti-butyrylcholinesterase [BChE], antityrosinase, antiamylase, and antiglucosidase) and antiproliferative effect (against colon adenocarcinoma cell line [HT-29], gastric cancer cell line [HGC-27], prostate carcinoma cell line [DU-145], breast adenocarcinoma cell line [MDA-MB-231], and cervix adenocarcinoma cell line [HeLa]). In addition, the phytochemical profile of the extracts was evaluated using validated spectrophotometric and high-pressure liquid chromatography-electrospray ionization/tandem mass spectroscopy methods. Generally, the 70% ethanol extract demonstrated the strongest antioxidant properties, and it was the richest source of total phenolic constituents. Our findings indicated that the ethyl acetate extract was the most potent BChE inhibitor (11.44 mg galantamine equivalents [GALAE]/g) followed by the ethanol extract (8.51 mg GALAE/g), while the ethanol extract was the most promising AChE inhibitor (3.42 mg GALAE/g) followed by the ethanol/water extract (3.17 mg GALAE/g). Excellent tyrosinase inhibitory activity (66.25 mg kojic acid equivalent/g) was observed in ethanol/water extracts of the aerial part of A. aduncus. Тhese results showed that the most cytotoxic effects were exhibited by the ethyl acetate extract against HGC-27 cells (IC50: 36.76 µg/mL), the ethanol extract against HT-29 cells (IC50: 30.79 µg/mL), and the water extract against DU-145 cells (IC50: 37.01 µg/mL). A strong correlation was observed between the highest total flavonoid content and the highest content of individual compounds in the ethanol extract, including rutin, hyperoside, isoquercitrin, delphinidin-3,5-diglucoside (delphinidin-3,5-O-diglucoside), and kaempferol-3-glucoside (kaempferol-3-O-glucoside). In the present study, the A. aduncus plant was considered a new source of antioxidants, enzyme inhibitors, and anticancer agents and could be used as a future health-benefit natural product.
Collapse
Affiliation(s)
- Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Nilofar
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, Chieti, Italy
| | - Giovanni Caprioli
- Department of Chemical and Pharmaceutical Sciences and Biotechnology, CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diletta Piatti
- Department of Chemical and Pharmaceutical Sciences and Biotechnology, CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Massimo Ricciutelli
- Department of Chemical and Pharmaceutical Sciences and Biotechnology, CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Musa Denizhan Ulusan
- Department of Forest Engineering, Faculty of Forestry, Department of Forest Engineering, Isparta University of Applied Sciences, Isparta, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
12
|
Pang C, Yuan B, Ren K, Xu H, Nie K, Yu C, Liu Z, Zhang Y, Ozkan SA, Yang Q. Activates B lymphocytes and enhanced immune response: A promising adjuvant based on PLGA nanoparticle to improve the sensitivity of ZEN monoclonal antibody. Talanta 2024; 274:126005. [PMID: 38599116 DOI: 10.1016/j.talanta.2024.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
In preparing monoclonal antibodies by hybridoma cell technology, the quality of B lymphocytes used for cell fusion directly affects the sensitivity of monoclonal antibodies. To obtain B-lymphocytes producing high-quality specific antibodies for cell fusion during the immunization phase of the antigen, we prepared a TH2-Cell stimulatory delivery system as a novel adjuvant. Astragalus polysaccharide has a good ability to enhance antigenic immune response, and it was encapsulated in biocompatible materials PLGA as an immunostimulatory factor to form the delivery system (APS-PLGA). The preparation conditions of APSP were optimized using RSM to attain the highest utilization of APS. Immunization against ZEN-BSA antigen using APSP as an adjuvant to obtain B lymphocytes producing ZEN-specific antibodies for cell fusion. As results present, APSP could induce a stronger TH2 immune response through differentiating CD4 T cells and promoting IL-4 and IL-6 cytokines. Moreover, it could slow down the release efficiency of ZEN-BSA and enhance the targeting of ZEN-BSA to lymph nodes in vivo experiments. Ultimately, the sensitivity of mouse serum ZEN-specific antibodies was enhanced upon completion of immunization, indicating a significant upregulation of high-quality B lymphocyte expression. In the preparation of monoclonal antibodies, the proportion of positive wells for the first screening was 60%, and the inhibition rates of the antibodies were all similar (>50%). Then we obtained the ZEN monoclonal antibody with IC50 of 0.049 ng/mL, which was more sensitive than most antibodies prepared under conventional adjuvants. Finally, a TRFIAS strip assay was preliminarily established with a LOD value of 0.246 ng/mL.
Collapse
Affiliation(s)
- Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Keyun Ren
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Haitao Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Kunying Nie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Chunlei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkiye
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China.
| |
Collapse
|
13
|
Li S, Ma T, Li G, Cheng X, Wen T, Wang Y, Zhang H, Liu Z. Shenqi Fuzheng injection hinders non-small cell lung cancer cell growth by regulating the Bax/Bcl-2 signaling pathway. Discov Oncol 2024; 15:195. [PMID: 38809316 PMCID: PMC11136924 DOI: 10.1007/s12672-024-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Lung cancer (LC) is the most common solid tumor and is currently considered the primary cause of cancer-related deaths worldwide. In clinical efficacy studies, it was not difficult to find that the combination of SFI and chemotherapy could improve the general condition of patients, reduce the side effects of chemotherapy drugs, and have a cooperative antitumor effect in NSCLC patients. However, whether SFI can be used as a novel antitumor drug is still unknown. METHODS First, meta-analysis aimed to explore the efficacy of SFI in NSCLC patients, and SFI was identified by ultra-performance liquid chromatography‒mass spectrometry (UPLC‒MS). Cell proliferation, migration, and invasion were explored by Cell Counting Kit-8 (CCK-8), scratch healing, and Transwell assays, respectively. Cell cycle and apoptosis assays were performed by flow cytometry. Transcriptome sequencing analysis was performed in four NSCLC cell lines. Differential expression analysis was used to identify potential targets. Apoptosis-related protein levels were detected by Western blotting assays. The effects of SFI in NSCLC were further investigated by mouse xenografts. RESULTS SFI could markedly improve the chemotherapy efficacy of NSCLC patients. The main active ingredients include flavonoids and terpenoids, which can effectively exert antitumor effects. SFI could not only inhibit tumor cell proliferation and cell migration/invasion but also regulate the cell cycle and promote tumor cell apoptosis. In NSCLC, SFI could enhance the transcription level of the CHOP gene, thereby upregulating the expression of the proapoptotic proteins Bax and caspase 3, and inhibiting the expression of the antiapoptotic protein Bcl-2. SFI hindered the growth of mouse NSCLC xenografts in vivo. CONCLUSIONS SFI hindered tumor progression and might promote apoptosis by increasing the expression of Bax, caspase 3 and decreasing the level of Bcl-2 in NSCLC.
Collapse
Affiliation(s)
- Siqi Li
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Tianyu Ma
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Gege Li
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Xu Cheng
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Tao Wen
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Wang
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhidong Liu
- No. 2 Department of Thoracic Surgery, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Liu Y, Wu J, Hao H. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma. Front Immunol 2024; 15:1369110. [PMID: 38455058 PMCID: PMC10917928 DOI: 10.3389/fimmu.2024.1369110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
17
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
18
|
Bi Y, Xue Z. Dark septate endophyte inoculation enhances antioxidant activity in Astragalus membranaceus var. mongholicus under heat stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14054. [PMID: 38148191 DOI: 10.1111/ppl.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 12/28/2023]
Abstract
The influence of dark septate endophytic (DSE) on the antioxidant activity of Astragalus membranaceus var. mongholicus under heat stress was investigated. A. membranaceus plants, with or without DSE inoculation, were grown at 28°C for 8 weeks in a greenhouse and subsequently subjected to heat stress conditions (42°C) in an artificial climate chamber. DSE inoculation significantly decreased the malondialdehyde (MDA) content during the initial three days of heat stress. The activities of superoxide dismutase (SOD) and peroxidase (POD) of A. membranaceus leaves were significantly enhanced by DSE inoculation under heat stress, with SOD activities being 63-81% higher than in other treatments. The glutathione (GSH) and putrescine (Put) contents accumulated significantly on the third day under heat stress with DSE inoculation. Additionally, the contents of soluble sugars and proline (Pro) exhibited significant increases on the seventh day of heat stress and were 33-55% and 81-83% higher than in other treatments, respectively. Three-way ANOVA shows that DSE inoculation under heat stress exerted a significant impact on MDA. Multivariate linear regression and structural equality modelling (SEM) further show that the interaction among these antioxidants significantly decreased MDA content and maintained the normal function of cell membranes. In conclusion, DSE inoculation enhanced the heat tolerance of A. membranaceus by boosting its antioxidant capacity and reducing MDA production. This study highlights the potential of utilizing DSE as a strategy to enhance plant heat tolerance.
Collapse
Affiliation(s)
- Yinli Bi
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, China
| | - Zike Xue
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, China
| |
Collapse
|
19
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
20
|
Song W, Zou Z, Chen X, Tan J, Liu L, Wei Q, Xiong P, Song Q, Chen J, Su W, Xu C. Effects of traditional Chinese herbal feed supplement on growth performance, immunity, antioxidant levels, and intestinal health in chickens: a study on Ningdu yellow chickens. Poult Sci 2023; 102:102986. [PMID: 37566964 PMCID: PMC10440571 DOI: 10.1016/j.psj.2023.102986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional Chinese herbs have been widely researched as a green, safe, and effective feed additive for poultry. The purpose of this study was to investigate the effects of traditional Chinese prescription (TCP) based on various herbs in a specific ratio on the growth performance, carcass traits, immunity, antioxidant level, and intestinal health of Ningdu yellow chickens. A total of 420 female Ningdu yellow chickens were randomly divided into 5 groups, with 6 replicates of 14 each. The chickens were fed with a basal diet supplemented with 0 (CON), 0.2, 0.4, 0.6, or 0.8% TCP from d 43 to 105. Body weight, feed intake, and serum biochemical indicators were recorded at d 70 and 105, intestinal morphology and microflora of the carcass were determined at d 105. Compared to the control group, chickens fed with TCP, particularly at the level of 0.6%, showed improved average daily gain and breast muscle percentage, as well as a lower feed-to-gain ratio with statistical significance (P < 0.05). Between 43 and 70 d of age, chickens fed with TCP exhibited higher levels of serum glutathione peroxidase activity, total antioxidant capacity, and superoxide dismutase, particularly in the group fed with the 0.6% level of TCP (P < 0.05). Between 43 and 105 d of age, feeding chickens with 0.4 and 0.6% TCP resulted in a decrease in serum IL-2 concentration, and increase in the IL-4 content (P < 0.05). Chickens fed with 0.4, 0.6, and 0.8% TCP had significantly higher jejunum villous height (P < 0.05), TCP supplementation also led to a marked increase in the relative abundance of Bacteroidota compared to the control group (P < 0.05). Collectively, the study suggests that TCP supplementation can enhance immune and antioxidant functions, improve jejunum morphology, and positively impact cecum microflora in chickens. Based on these results, a level of 0.6% TCP could be considered an optimum level as a feed supplement for Ningdu yellow chickens aged 43 to 105 d.
Collapse
Affiliation(s)
- Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Linxiu Liu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China.
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Weide Su
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Chuanhui Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| |
Collapse
|
21
|
Xiao W, Xu Y, Baak JP, Dai J, Jing L, Zhu H, Gan Y, Zheng S. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement Med Ther 2023; 23:345. [PMID: 37770919 PMCID: PMC10537544 DOI: 10.1186/s12906-023-04148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Most lung cancer patients worldwide (stage IV non-small cell lung cancer, NSCLC) have a poor survival: 25%-30% patients die < 3 months. Yet, of those surviving > 3 months, 10%-15% patients survive (very) long. Astragali radix (AR) is an effective traditional Chinese medicine widely used for non-small cell lung cancer (NSCLC). However, the pharmacological mechanisms of AR on NSCLC remain to be elucidated. METHODS Ultra Performance Liquid Chromatography system coupled with Q-Orbitrap HRMS (UPLC-Q-Orbitrap HRMS) was performed for the qualitative analysis of AR components. Then, network module analysis and molecular docking-based approach was conducted to explore underlying mechanisms of AR on NSCLC. The target genes of AR were obtained from four databases including TCMSP (Traditional Chinese Medicine Systems Pharmacology) database, ETCM (The Encyclopedia of TCM) database, HERB (A high-throughput experiment- and reference-guided database of TCM) database and BATMAN-TCM (a Bioinformatics Analysis Tool for Molecular mechanism of TCM) database. NSCLC related genes were screened by GEO (Gene Expression Omnibus) database. The STRING database was used for protein interaction network construction (PIN) of AR-NSCLC shared target genes. The critical PIN were further constructed based on the topological properties of network nodes. Afterwards the hub genes and network modules were analyzed, and enrichment analysis were employed by the R package clusterProfiler. The Autodock Vina was utilized for molecular docking, and the Gromacs was utilized for molecular dynamics simulations Furthermore, the survival analysis was performed based on TCGA (The Cancer Genome Atlas) database. RESULTS Seventy-seven AR components absorbed in blood were obtained. The critical network was constructed with 1447 nodes and 28,890 edges. Based on topological analysis, 6 hub target genes and 7 functional modules were gained. were obtained including TP53, SRC, UBC, CTNNB1, EP300, and RELA. After module analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that AR may exert therapeutic effects on NSCLC by regulating JAK-STAT signaling pathway, PI3K-AKT signaling pathway, ErbB signaling pathway, as well as NFkB signaling pathway. After the intersection calculation of the hub targets and the proteins participated in the above pathways, TP53, SRC, EP300, and RELA were obtained. These proteins had good docking affinity with astragaloside IV. Furthermore, RELA was associated with poor prognosis of NSCLC patients. CONCLUSIONS This study could provide chemical component information references for further researches. The potential pharmacological mechanisms of AR on NSCLC were elucidated, promoting the clinical application of AR in treating NSCLC. RELA was selected as a promising candidate biomarker affecting the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Wenke Xiao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yaxin Xu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jan P Baak
- Stavanger University Hospital, Stavanger, 4068, Norway
- Dr. Med Jan Baak AS, Tananger, 4056, Norway
| | - Jinrong Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hongxia Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanxiong Gan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shichao Zheng
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
23
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Wang S, Peng Y, Zhuang Y, Wang N, Jin J, Zhan Z. Purification, Structural Analysis and Cardio-Protective Activity of Polysaccharides from Radix Astragali. Molecules 2023; 28:molecules28104167. [PMID: 37241906 DOI: 10.3390/molecules28104167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Two polysaccharides, named APS2-I and APS3-I, were purified from the water extract of Radix Astragali. The average molecular weight of APS2-I was 1.96 × 106 Da and composed of Man, Rha, GlcA, GalA, Glc, Gal, Xyl, and Ara in a molar ratio of 2.3:4.8:1.7:14.0:5.8:11.7:2.8:12.6, while the average molecular weight of APS3-I was 3.91 × 106 Da and composed of Rha, GalA, Glc, Gal, and Ara in a molar ratio of 0.8:2.3:0.8:2.3:4.1. Biological evaluation showed APS2-I and APS3-I had significant antioxidant activity and myocardial protection activity. Furthermore, total polysaccharide treatment could significantly enhance hemodynamic parameters and improve cardiac function in rat ischemia and reperfusion isolated heart models. These results provided important information for the clinical application of APS in the field of cardiovascular disease and implied that Astragalus polysaccharides (APS) could be considered as a reference for the quality control of Radix Astragali.
Collapse
Affiliation(s)
- Shilei Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuan Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianchang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
25
|
Li R, Shi C, Wei C, Wang C, Du H, Hong Q, Chen X. Fufang shenhua tablet, astragali radix and its active component astragaloside IV: Research progress on anti-inflammatory and immunomodulatory mechanisms in the kidney. Front Pharmacol 2023; 14:1131635. [PMID: 37089929 PMCID: PMC10113559 DOI: 10.3389/fphar.2023.1131635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Given the limited treatment options available for kidney disease, a significant number of patients turn to alternative therapies, including traditional Chinese medicine. Among these therapies, the Fufang Shenhua tablet (SHT) has garnered attention for its effectiveness in addressing the most common deficiency of Qi and Yin in chronic glomerulonephritis. Notably, the sovereign drug of SHT is Astragali Radix (AR), with the most abundant and effective component being Astragaloside IV (AS-IV). AS-IV has been shown to possess anti-inflammatory and immunomodulatory properties, and it is extensively used in treating kidney diseases. Nevertheless, the molecular mechanisms underlying its action are numerous and intricate, and a comprehensive understanding is yet to be achieved. Aim of the review: Thus, we have thoroughly examined the existing research and outlined the advancements made in investigating the anti-inflammatory and immunomodulatory mechanisms of SHT, AR and its active component AS-IV, in relation to kidney health. This serves as a dependable foundation for conducting more comprehensive investigations, evaluating efficacy, and making further improvements in the future. Materials and methods: We conducted a comprehensive literature search utilizing multiple globally recognized databases, including Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, and CNKI. The search keywords used in this study were "Fufang Shenhua tablet," "Astragali Radix," "Astragaloside IV," and "Anti-inflammatory" or "Immunity." Results: The mechanism of inflammation inhibition by SHT, AR and its active component AS-IV is mainly related to the signaling pathways such as NF-κB, TLRs, PI3K/AKT, Wnt/β-catenin, and JAK-STAT. Immunomodulation exerts not only activating, stimulating, and regulating effects on macrophages and dendritic cells, but also on immune organs, T-lymphocytes, B-lymphocytes, and a myriad of cytokines. Moreover, the SHT, AR and its active component AS-IV also demonstrate regulatory effects on renal cells, including glomerular mesangial cells, tubular epithelial cells, and podocytes. Conclusion: To summarize, SHT, AR and its active component AS-IV, exhibit notable therapeutic effects in kidney-related ailments, and their molecular mechanisms for anti-inflammatory and immunomodulatory effects have been extensively explored. However, further standard clinical trials are necessary to evaluate their safety and efficacy in the adjunctive treatment of kidney-related diseases. Moreover, in-depth studies of unverified chemical components and regulatory mechanisms in SHT are required. It is our belief that with continued research, SHT, AR and its active component AS-IV are poised to pave the way for enhancing therapeutic outcomes in kidney-related ailments.
Collapse
Affiliation(s)
- Run Li
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Cuiting Wei
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
26
|
Bhatnagar A, Rathi P. Isolation and characterization of autochthonous probiotics from skin mucus and their in vivo validation with dietary probiotic bacteria on growth performance and immunity of Labeo calbasu (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:191-208. [PMID: 36622624 DOI: 10.1007/s10695-022-01168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/23/2022] [Indexed: 05/04/2023]
Abstract
The present study was performed to isolate and identify antimicrobial bacteria from the skin mucus of Labeo calbasu and assess their effects as water additives alone and in synergism, with dietary probiotic bacteria Aneurinibacillus aneurinilyticus LC1 isolated from intestinal tracts of L. calbasu on physiology and survival of same fish. Eight treatments (T1-T8) were conducted in triplicate, containing 10 fishes (2.02 ± 0.01 g) in each treatment: T1, control group (diet without probiotics); T2-T4, a diet with water additive probiotics; Bacillus cereus LC1, B. albus LC7, and B. cereus LC10, respectively, at 1000 CFU ml-1; T5, a diet with dietary probiotic A. aneurinilyticus at 3000 CFU g-1, T6-T8, a diet with water additives Bacillus cereus LC1, B. albus LC7, and B. cereus LC10 at 1000 CFU ml-1 along with dietary probiotic A. aneurinilyticus at 3000 CFU g-1. Results revealed improved growth, nutritive physiology, immune response, water quality, and survival in fish of group T8 (fingerlings fed on a probiotic diet at 3000 CFU g-1 and reared in holding water treated with skin mucus bacteria B. cereus LC10 at 1000 CFU g-1) as compared to other treatments, suggesting autochthonous intestinal and cutaneous mucosal bacteria as robust candidates for their collective application in aquaculture.
Collapse
Affiliation(s)
- Anita Bhatnagar
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Pragati Rathi
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
27
|
Liu M, Yang J, Qian S, Sun Z, Jin Y, Liu X, Ye D, Rong R, Yang Y. Mahuang Xixin Fuzi decoction protects the BALB/c-nude mice infected with influenza A virus by reducing inflammatory cytokines storm and weakly regulating SIgA immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116070. [PMID: 36549371 DOI: 10.1016/j.jep.2022.116070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the immunocompromised individuals infected with influenza A virus (IAV). AIM OF THE STUDY The study aims to explore the regulatory of MXF on inflammation and secretory immunoglobulin A (SIgA) antibodies immune response in BALB/c-nude mice infected with IAV. MATERIALS AND METHODS The BALB/c-nude mice were infected with IAV, then different dosages of MXF were orally administrated to the mice. The weight, rectal temperature, spontaneous activity, spleen index, lung index, pathological changes of lung tissues, and the relative mRNA expression level of H1N1 M gene were measured for the purpose of valuing the antiviral effect of MXF. The expression levels of cytokines in lungs and immunoglobulin A (IgA) in serum of BALB/c-nude mice were determined with Cytometric Bead Array System (CBA). SIgA in bronchoalveolar lavage fluids (BALF) was detected with Enzyme-linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of B cell activating factor (BAFF), chemokine receptors 10 (CCR10), and polymeric immunoglobulin receptor (pIgR) in the lung tissues, which are related to the secretion of SIgA, were determined by using RT-PCR and Western blot. RESULTS MXF could alleviate the clinical features and reduce the severity of viral lung lesions, including improving the body weight, rectal temperature and spontaneous activity of nude mice infected with IAV, increasing spleen index, decreasing lung index, alleviating pathological damage, and decreasing the relative expression level of H1N1 M gene. Levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-12p70 (IL-12p70), and interleukin-17A (IL-17A) were also significantly decreased after treatment with MXF. Interferon-γ (IFN-γ), an antiviral cytokine, was significantly up-regulated in high dose MXF (3.12 g/kg) group. Moreover, after MXF treatment, the expressions of SIgA in BALF and IgA in serum were both at relatively low levels. And the mRNA and protein expressions of BAFF, CCR10, and pIgR were significantly decreased after treatment with MXF. CONCLUSIONS MXF has obviously protective effects on BALB/c-nude mice infected with IAV by inhibiting virus replication, calming inflammatory cytokine storm, and regulating SIgA immune response weakly.
Collapse
Affiliation(s)
- Meiyi Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Shensi Qian
- Shandong University of Traditional Chinese Medicine, PR China
| | - Zhuyun Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yifan Jin
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
28
|
Liao Y, Wang X, Huang L, Qian H, Liu W. Mechanism of pyroptosis in neurodegenerative diseases and its therapeutic potential by traditional Chinese medicine. Front Pharmacol 2023; 14:1122104. [PMID: 36713841 PMCID: PMC9880437 DOI: 10.3389/fphar.2023.1122104] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) are disorders characterized by degenerative degeneration of neurons and loss of their function. NDs have a complicated pathophysiology, of which neuroinflammation and neuronal death are significant factors. The inflammatory process known as pyroptosis ("fiery death") is caused by a family of pore-forming proteins called Gasdermins (GSDMs), which appears downstream from the activation of the inflammasome. Clear evidence of enhanced pyroptosis-related proteins activity in common NDs has coincided with abnormal aggregation of pathological proteins (such as Aβ, tau, α-synuclein et al.), making pyroptosis an attractive direction for the recent study of NDs. The purpose of this review is to provide an overview of the molecular mechanisms driving pyroptosis, the mechanistic links between pyroptosis and NDs, and emerging therapeutic strategies in Traditional Chinese Medicine (TCM) to inhibit pyroptosis for the treatment of NDs.
Collapse
Affiliation(s)
- Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liting Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hu Qian
- Department of Breast Cancer Oncology, Foshan No 1 Hospital, Foshan, China,*Correspondence: Hu Qian, ; Wei Liu,
| | - Wei Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China,*Correspondence: Hu Qian, ; Wei Liu,
| |
Collapse
|
29
|
Mai Z, Wang G, Ma X, Zhou B, Yang X, Wang M, Xia W. Silencing of HEATR1 contributes the synergistic effect of Feiyanning decoction and cisplatin on the inhibition of cell viability in A549/DDP cells. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Zhongchao Mai
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xing Ma
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Borong Zhou
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinlin Yang
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Dong H, Cheng GQ, Zhang L, Xia JY, Zhou J, Yuan MM, Zhan JF, Hong Y. Dietary addition of Astragalus polysaccharide (APS) in dogs: palatability, blood biochemistry and immunity. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2139263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Han Dong
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Guo-Qiang Cheng
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Lei Zhang
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Jie-Ying Xia
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Jing Zhou
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Ming-Ming Yuan
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Jia-Fei Zhan
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| | - Yang Hong
- Laboratory Animal Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, People’s Republic of China
| |
Collapse
|
31
|
An EK, Zhang W, Kwak M, Lee PCW, Jin JO. Polysaccharides from Astragalus membranaceus elicit T cell immunity by activation of human peripheral blood dendritic cells. Int J Biol Macromol 2022; 223:370-377. [PMID: 36368354 DOI: 10.1016/j.ijbiomac.2022.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Astragalus membranaceus is a widely used herbal medicine in Asia. It has been recognized as possessing various biological properties, however, studies on the activity of the A. membranaceus polysaccharide (AMP), a major component of A. membranaceus, on human peripheral blood dendritic cells (PBDCs) have not been thoroughly investigated. In this study, we found that AMP induced changes in dendritic morphology and the upregulation of activation marker expression and inflammatory cytokine production in human blood monocyte-derived dendritic cells (MDDCs). The AMP promoted the activation of both blood dendritic cell antigen 1+ (BDCA1+) and BDCA3+ PBDCs. AMP-induced secretion of cytokines in the peripheral blood mononuclear cells (PBMCs) was mainly due to PBDCs. Finally, activated BDCA1+ and BDCA3+ PBDCs by AMP elicited proliferation and activation of autologous T cells, respectively. Hence, these data demonstrated that AMPs could activate dendritic and T cells in human blood, and may provide a new direction for the application of AMPs in the regulation of human immunity.
Collapse
Affiliation(s)
- Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
32
|
Szabo K, Ranga F, Elemer S, Varvara RA, Diaconeasa Z, Dulf FV, Vodnar DC. Evaluation of the Astragalus exscapus L. subsp. transsilvanicus Roots' Chemical Profile, Phenolic Composition and Biological Activities. Int J Mol Sci 2022; 23:ijms232315161. [PMID: 36499484 PMCID: PMC9739471 DOI: 10.3390/ijms232315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.
Collapse
Affiliation(s)
- Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological Transfer Center COMPAC, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
33
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Qiu H, Zhang L, He X, Wei Y, Wang M, Ma B, Hu D, Shi Z. Promotion of angiogenesis in vitro by Astragalus polysaccharide via activation of TLR4 signaling pathway. J Food Biochem 2022; 46:e14329. [PMID: 35867029 DOI: 10.1111/jfbc.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
During the implantation of functional tissue-engineered constructs for treating bone defects, a functional vascular network is critical for the survival of the construct. One strategy to achieve rapid angiogenesis for this application is the co-culture of outgrowth endothelial cells (OECs) and primary human osteoblasts (POBs) within a scaffold prior to implantation. In the present study, we aim to investigate whether Astragalus polysaccharide (APS) promotes angiogenesis or vascularization via the TLR4 signaling pathway in a co-culture of OECs and POBs. The co-cultures were treated with various concentrations of APS for 24 h and, subsequently, another 7 days, followed by CD31 staining and analysis of micro-vessel-formation areas using software. Additionally, APS (0.4 mg/ml for 24 h) was added to monocultures of OECs or POBs for evaluating proliferation, apoptosis, angiogenesis, osteogenesis, TLR4 signaling pathway, and inflammatory cytokine release. We found that APS promoted angiogenesis in the co-culture at the optimal concentration of 0.4 mg/ml. TLR4 activation by APS up-regulated the expression level of TLR4/MyD88 and enhanced angiogenesis and osteogenesis in monocultures of OECs and POBs. The levels of E-selectin adhesion molecules, three cytokines (IL-6, TNF-α, and IFN-γ), and VEGF and PDGF-BB, which can induce angiogenesis, increased significantly (p < .05) following APS treatment. Therefore, APS appears to promote angiogenesis and ossification in the co-culture system via the TLR4 signaling pathway. PRACTICAL APPLICATIONS: This study demonstrates that APS may promote angiogenesis and osteocyte proliferation in OEC and POB co-culture systems through the MyD88-dependent TLR4 signaling pathway. APS might represent a potential therapeutic strategy in tissue-engineered bone implantation for the treatment of large bone defects; additionally, it has the advantage of safety, as it exhibits low or no side effects. In the future, it is expected to be used in vitro for the construction of tissue-engineered bone and in vivo after implantation in patients with bone defects for promoting rapid vascularization and ossification of tissue-engineered bone and early fusion with the recipient's bone. In addition, as a food additive, Astragalus membranaceus can be used as a tonic material in patients recovering from a fracture for promoting blood-vessel formation at the fracture site and fracture recovery. Combining traditional Chinese medicine with tissue engineering can provide further strategies for promoting the development of regenerative medicine.
Collapse
Affiliation(s)
- Huiqing Qiu
- Department of Geriatrics, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China
| | - Liyan Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yusen Wei
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Miaoran Wang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Bin Ma
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhongli Shi
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China.,Central Laboratory, The First Hospital of Hebei Medical University, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
35
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int J Biol Macromol 2022; 205:530-538. [PMID: 35217078 DOI: 10.1016/j.ijbiomac.2022.02.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Galactomannan (GM) is widely recognized as an immune enhancer; however, the underlying molecular mechanism is still unknown. Herein, four products with molecular weights in descending order, namely GM40, GM50, GM65, and GMOS, were separated from incomplete degradation products of Sesbania cannabina GM by ethanol precipitation, followed by their immunomodulatory activity. Through FTIR and XPS spectra, the amount of free hydroxyl groups was shown to decrease in the following order: GM > GM50 > GMOS > GM40 > GM65. Moreover, the immunomodulatory activity of different products decreased in abovementioned order. The TNF-α, IL-6 and TLR4 content in RAW 264.7 cells treated with different GM products in the presence or absence of TAK-242 (TLR4 inhibitor) suggested that the immunomodulatory activity of GM and its degradation products is TLR4-dependent. Overall, the preliminary relationship indicated here between the hydroxyl groups or the possible deeper structural changes of GM and the immunomodulatory activity need to be further investigated.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
36
|
Assessment of Genetic Diversity and Population Structure of the Endangered Astragalus exscapus subsp. transsilvanicus through DNA-Based Molecular Markers. PLANTS 2021; 10:plants10122732. [PMID: 34961203 PMCID: PMC8707493 DOI: 10.3390/plants10122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Astragalus exscapus L. subsp. transsilvanicus (Schur) Nyár. (Fabaceae) is a rare plant endemic to the Transylvanian Plateau, represented by 24 identified populations. Limited information on the genetic variation and population structure is available, which obstructs efficient measures for conservation strategy. The present study aimed to analyze the genetic diversity and population structure of eight populations of A. exscapus subsp. transsilvanicus revealed by sequence-related amplified polymorphism (SRAP) markers. A total of 164 bands were amplified, 96.7% of which (159) were polymorphic. Nei’s gene diversity index (He) was estimated to be 0.228 at the population level and 0.272 at the subspecies level. The genetic differentiation among populations (Gst) was 0.165, which indicated a low proportion of total genetic diversity. The analysis of molecular variance (AMOVA) indicated that 17% of the total variation of A. exscapus subsp. transsilvanicus is found among the populations, while 83% was found within the populations. A UPGMA dendrogram, principal coordinate analysis, and the STRUCTURE software grouped the populations into two clusters uncorrelated with the provenience of the 125 individuals, which might be attributed to fragmentation processes, insect pollination, population size, and specific environmental conditions of the habitats.
Collapse
|
37
|
Peng D, Wen Y, Bi S, Huang C, Yang J, Guo Z, Huang W, Zhu J, Yu R, Song L. A new GlcNAc-containing polysaccharide from Morchella importuna fruiting bodies: Structural characterization and immunomodulatory activities in vitro and in vivo. Int J Biol Macromol 2021; 192:1134-1149. [PMID: 34656541 DOI: 10.1016/j.ijbiomac.2021.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
This study investigated the purification and characterization of a new immunomodulatory GlcNAc-containing polysaccharide (MIPB70-1) from Morchella importuna with molecular weights of 20.6 kDa. Structural analysis indicated that MIPB70-1 was composed of GlcNAc:Gal:Glc:Man with molar ratios of 1.00:7.16:5.54:5.61, and its primary structure was characterized as a repeating unit consisting of →6)-α-D-Glcp-(1→, α-D-GlcpNAc-(1→, α-D-Galp-(1→, β-D-Glcp-(1→, →6)-α-D-Manp-(1→, →4)-α-D-GlcpNAc-(1→, →4)-β-D-Glcp-(1→, →3,6)-α-D-Manp-(1→, →2)-α-D-Galp-(1→, →2,3,6)-α-D-Manp-(1→. Immunological assays indicated that MIPB70-1 enhanced the phagocytic function and promoted the secretion of nitric oxide (NO) as well as cytokines through targeting Toll-like receptor 4 (TLR4) on macrophage membrane and activating the downstream signaling pathways in RAW 264.7 cells. MIPB70-1 regulated mouse immunity to counteract the immune damage caused by the chemotherapy drug cyclophosphamide (CTX) in vivo. Furthermore, MIPB70-1 enhanced the anti-tumor activity of doxorubicin (DOX) and inhibited the growth of tumors, by immunomodulation in the orthotopic murine model of 4T1 breast cancer. These results demonstrate the potential of this GlcNAc-containing polysaccharide as an immune enhancer.
Collapse
Affiliation(s)
- Dan Peng
- Department of Pharmacology, Jinan University 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yao Wen
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Sixue Bi
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunhua Huang
- Department of Pharmacology, Jinan University 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongyi Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, Jinan University 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
38
|
Kong F, Chen T, Li X, Jia Y. The Current Application and Future Prospects of Astragalus Polysaccharide Combined With Cancer Immunotherapy: A Review. Front Pharmacol 2021; 12:737674. [PMID: 34721026 PMCID: PMC8548714 DOI: 10.3389/fphar.2021.737674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
So far, immunotherapy has been shown to have impressive effects on different cancers in clinical trials. All those immunotherapies are generally derived from three main therapeutic approaches: immune checkpoint inhibitors, immune cell vaccination, and adoptive cellular immunotherapy. Our research systematically reviewed a wide range of clinical trials and laboratory studies of astragalus polysaccharide (APS) and elucidated the potential feasibility of using APS in activating adoptive immunotherapy. Apart from being effective in adaptive “passive” immunotherapy such as lymphokine-activated killer treatment and dendritic cell (DC)–cytokine–induced killer treatment, APS could also regulate the anti-programmed cell death protein 1 (PD-1)/PD-L1 on the surface of the immune cells, as a part in the immune checkpoint inhibitory signaling pathway by activating the immune-suppressed microenvironment by regulating cytokines, toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, and immune cells, such as DCs, macrophages, NK cells, and so on. In view of the multiple functions of APS in immunotherapy and tumor microenvironment, a combination of APS and immunotherapy in cancer treatment has a promising prospect.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
39
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
40
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
41
|
|
42
|
Liu J, Nile SH, Xu G, Wang Y, Kai G. Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: Insights from the comparative biological and computational analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153077. [PMID: 31477352 DOI: 10.1016/j.phymed.2019.153077] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Immune system plays a decisive role for defending various pathogenic microorganisms. Astragalus membranaceus (AM) and Panax ginseng (PG) are two tonic herbs used in traditional Chinese medicine (TCM) as immune booster and help to control diseases with their healthy synergistic effect on immune system. PURPOSE This study was aimed to investigate the promote effect and molecular mechanisms of AM and PG on immune system as booster and to control the target diseases using animal and computational systematic study. METHODS Computational models including absorption, distribution, metabolism, and elimination (ADME) with weighted ensemble similarity (WES) algorithm-based models and ClueGo network analysis were used to find the potential bioactive compounds targets and pathways, which were responsible for immune regulation. Viscera index analysis, proliferation activity of splenic lymphocytes and cytotoxic activity of NK cells assays were performed to validate the effect of AM and PG on immune system of long-term administrated mice. Metabonomic study of mice plasma was conducted to investigate effect of AM and PG on the endogenous metabolic perturbations, together with correlation analysis. RESULTS AM and PG simultaneously showed the ability to strengthen the immune system function including enhancement of spleen and thymus index, proliferation of splenic lymphocytes and cytotoxic activity of NK cells. Besides, the different molecular mechanisms of AM and PG on immune regulation were also investigated by analyzing the potential bioactive compounds, enzymes actions and pathways. Quercetin, formononetin and kaempferol were the main immune-related compounds in AM, while ginsenoside Ra1, ginsenoside Rh1 and kaempferol in PG. About 10 target proteins were found close to immune regulation, including acetylcholinesterase (ACHE, common target in AM and PG), sphingosine kinase 1(SPHK1), cytidine deaminase (CDA), and Choline O-acetyltransferase (CHAT). Glycerophospholipid metabolism was regulated in both AM and PG groups. Pyrimidine metabolism and sphingolipid metabolism were considered as the special pathway in AM groups. Energy metabolism and glycerolipid metabolism were the special pathways in PG groups. CONCLUSION A novel comprehensive molecular mechanism analysis method was established and applied to clarify the scientific connotation of AM and PG as immune regulation, with similar herbal tonic effect provided in clinical practice of TCM, which can provide a new line of research for drug development (immune booster) using AM and PG.
Collapse
Affiliation(s)
- Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoliang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, University of Jiangxi TCM, Nanchang, PR China
| | - Yuesheng Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
43
|
Li Y, Liu Y, Zhang H, Yang Y, Wei G, Li Z. The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Front Microbiol 2021; 12:642730. [PMID: 34046020 PMCID: PMC8147693 DOI: 10.3389/fmicb.2021.642730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.
Collapse
Affiliation(s)
- Yanmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| |
Collapse
|
44
|
Traditional Chinese herb, Astragalus: possible for treatment and prevention of COVID-19? HERBA POLONICA 2021. [DOI: 10.2478/hepo-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Astragalus is a traditional herb which has been used in China for a long time. It regulates blood circulation (vital energy), invigorates body fluid circulation, protects the flow of blood to fight against the attack of pathogens, and strengthens “blood deficiencies” according to Bencao Congxin. Astragalus was approved by the Food and Drug Administration in 2009 as a dietary supplement for upper respiratory infections, allergic rhinitis (hay fever), asthma, chronic fatigue syndrome, and chronic kidney disease. Thirty journals published in the past ten years were reviewed by using library search engines such as SCI/SCIE, PubMed, and Scopus. In this mini-review, we focus on the anti-inflammatory of Astragalus features, discuss the background of Astragalus and its function in various diseases from water-extracted Astragalus membranaceus, Astragalus saponins, and Astragalus polysaccharides. Based on the traditional Chinese medicine theory, Astragalus is a potential candidate to treat and prevent COVID-19.
Collapse
|
45
|
Wang D, Liu Y, Zhao W. The Adjuvant Effects on Vaccine and the Immunomodulatory Mechanisms of Polysaccharides From Traditional Chinese Medicine. Front Mol Biosci 2021; 8:655570. [PMID: 33869288 PMCID: PMC8047473 DOI: 10.3389/fmolb.2021.655570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccination is still the most successful strategy to prevent and control the spread of infectious diseases by generating an adequate protective immune response. However, vaccines composed of antigens alone can only stimulate weak immunogenicity to prevent infection in many cases. Adjuvant can enhance the immunogenicity of the antigens. Therefore, adjuvant is urgently needed to strengthen the immune response of the vaccines. An ideal adjuvant should be safe, cheap, biodegradable and biologically inert. In addition to having a long shelf life, it can also promote cellular and humoral immune responses. Traditional Chinese medicine (TCM) has many different ingredients, such as glycosides, polysaccharides, acids, terpenes, polyphenols, flavonoids, alkaloids, and so on. TCM polysaccharides are one of the main types of biologically active substances. They have a large range of pharmacological activities, especially immunomodulatory. TCM polysaccharides can regulate the immune system of animals by binding to multiple receptors on the surface of immune cells and activating different signal pathways. This review focuses on a comprehensive summary of the most recent developments in vaccine adjuvant effects of polysaccharides from many important TCM, such as Artemisia rupestris L., Cistanche deserticola, Pinus massoniana, Chuanminshen violaceum, Astragalus, Ganoderma lucidum, Codonopsis pilosula, Lycium barbarum, Angelica, Epimedium, and Achyranthes bidentata. Moreover, this review also introduces their immunomodulatory effects and the molecular mechanisms of action on animal bodies, which showed that TCM polysaccharides can activate macrophages, the signal pathway of T/B lymphocytes, regulate the signal pathway of natural killer cells, activate the complement system, and so on.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| | - Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
47
|
Feng S, Ding H, Liu L, Peng C, Huang Y, Zhong F, Li W, Meng T, Li J, Wang X, Li Y, Wu J. Astragalus polysaccharide enhances the immune function of RAW264.7 macrophages via the NF-κB p65/MAPK signaling pathway. Exp Ther Med 2021; 21:20. [PMID: 33235629 PMCID: PMC7678613 DOI: 10.3892/etm.2020.9452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the immunoregulatory effects of Astragalus polysaccharide (APS) on RAW264.7 cells. The production of cytokines by RAW264.7 cells was analyzed using ELISA, while cell viability and optimal concentration of APS were assessed using the Cell Counting Kit-8 assay. In addition, the mRNA levels of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α were determined by reverse transcription-quantitative PCR analysis. The levels of co-stimulatory molecules and cell cycle distribution were assessed by flow cytometry. Electrophoretic mobility shift assay was used to determine the effects of APS on p65 expression. Compared with controls, APS enhanced the production of NO, the gene expression of TNF-α, IL-6 and iNOS and the protein levels of phosphorylated p65, p38, Jun N-terminal kinase and extracellular signal regulated kinase in RAW264.7 cells, whereas these effects of APS were alleviated by pyrrolidine dithiocarbamate. The results of the present study indicated that the immunoregulatory effects of APS are mediated, at least in part, via the activation of the NF-κB p65/MAPK signaling pathway.
Collapse
Affiliation(s)
- Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Chenglu Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Fuchao Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Wei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Tingting Meng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
48
|
Lim SM, Park HB, Jin JO. Polysaccharide from Astragalus membranaceus promotes the activation of human peripheral blood and mouse spleen dendritic cells. Chin J Nat Med 2021; 19:56-62. [PMID: 33516452 DOI: 10.1016/s1875-5364(21)60006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/23/2022]
Abstract
Astragalus membranaceus (A. membranaceus) is a widely used traditional herb in China and Korea. A. membranaceus polysaccharides (AMP), which make up a major part of the root extract, have been shown to modulate immune modulations, especially activation of bone marrow-derived dendritic cells (BMDCs) and T cells. However, the immune stimulatory effect of AMP in the mouse in vivo and human peripheral blood DCs (PBDCs) has not been well investigated. In this study, we found that intravenous (i.v.) injection of AMP in C57BL/6 mice induced remarkable elevations in co-stimulatory and MHC class I and II molecule levels in the splenic DCs and its subsets. The stimulatory effect of DCs by AMP was elevated 6 h after treatment, which rapidly decreased 18 h after injection. Furthermore, AMP promoted intracellular production of pro-inflammatory cytokines in spleen DC subsets, which contributed elevation of serum cytokine levels. Finally, the AMP promoted PBDC activation. Thus, these results demonstrate that AMP can be used as an immune stimulatory molecules in human and mouse.
Collapse
Affiliation(s)
- Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hae-Bin Park
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
49
|
Xiao N, He H, Wang J, Zhang L, Chow B, Feng F, Xu Y, Huang J, Zhou X, Dong R. Meta-Analysis of Aidi Injection and First-Generation Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Therapy in Treating Advanced Non-Small Cell Lung Cancer. J Evid Based Integr Med 2021; 26:2515690X211010733. [PMID: 33926244 PMCID: PMC8114743 DOI: 10.1177/2515690x211010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/27/2021] [Indexed: 12/01/2022] Open
Abstract
The combination of Aidi injection (ADI) and epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in treating non-small cell lung cancer (NSCLC) has been reported, but the effects of this therapy have not been systematically assessed. Randomized controlled trials (RCTs) published before June 2020 were searched from 6 databases. Two reviewers independently assessed the methodological quality of 8 RCTs involving 667 patients diagnosed with stage III-IV NSCLC. We found that ADI combined with EGFR-TKI increased the objective response rate (ORR) significantly (relative risk [RR]: 1.60; 95% confidence interval [CI]: 1.28-1.99, P < 0.0001). There was also improvement in the disease control rate (DCR) (RR: 1.25; 95% CI: 1.11-1.40, P = 0.0002) as compared with EGFR-TKI alone. This therapy also increased the percentage of CD3+ cells (weighted mean difference [WMD]: 9.86; 95% CI: 4.62-15.10), CD4+ cells (WMD: 6.10; 95% CI: 1.67-10.53), and the CD4+/CD8+ (WMD: 0.35; 95% CI: 0.28-0.43). With regard to drug toxicity, the occurrence of rash was significantly reduced by ADI combined with EGFR-TKI (RR: 0.78, 95% CI: 0.63-0.97, P = 0.03); however, we did not find a significant reduction in the occurrence of dry skin, nausea and vomiting, as well as diarrhea between the 2 therapies. ADI combined with first-generation EGFR-TKIs may be more effective in improving tumor response, reducing the occurrence of rash, and enhancing immune function in NSCLC than EGFR-TKI alone.
Collapse
Affiliation(s)
- Na Xiao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hailang He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Brandon Chow
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Fanchao Feng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Rui Dong
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Kangyide Pulmonary Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| |
Collapse
|
50
|
Xu HX, Lin ZX. Overview of Research Trends in Precious Chinese Medicines. CHINESE MEDICINE AND CULTURE 2021. [DOI: 10.4103/cmac.cmac_45_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|