1
|
Javier-López R, Kielbasa M, Armengaud J, Birkeland NK. Transcriptomic and proteomic insights into feather keratin degradation by Fervidobacterium. Front Microbiol 2025; 16:1509937. [PMID: 40309105 PMCID: PMC12042847 DOI: 10.3389/fmicb.2025.1509937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Keratin, one of the most recalcitrant and abundant proteins on Earth, constitutes a challenging and underutilized material for the poultry industry. Although it resists degradation by most commonly available enzymes, natural breakdown occurs through the action of certain fungi and bacteria. This process remains poorly understood, and only a few thermophilic and anaerobic bacteria are known to effectively degrade keratin. Some members of the genus Fervidobacterium have been demonstrated to be effective at degrading feather keratin under high temperatures and anoxic conditions. However, a comprehensive evaluation of their keratinolytic capabilities remains lacking, leaving their potential largely underexplored. In this study, we assessed the keratinolytic activity of all available Fervidobacterium strains. Six strains were active against this recalcitrant substrate, namely Fervidobacterium changbaicum CBS-1T, Fervidobacterium islandicum H-21T, Fervidobacterium pennivorans T, Fervidobacterium pennivorans DSM9078T, Fervidobacterium sp. GSH, and Fervidobacterium sp. 21710. These bacteria were used in a comparative proteomics analysis, grown with either glucose or chicken feathers as the sole carbon source. Similarly, the three most efficient strains, Fervidobacterium pennivorans T, Fervidobacterium sp. GSH, and Fervidobacterium islandicum H-21T underwent an in-depth comparative transcriptomics analysis. Among the numerous upregulated proteins and overexpressed genes identified when comparing feather-grown to glucose-grown cells, oxidoreductases and peptidases are key enzymes in the degradation process, suggesting their potential application in enzymatic keratinolytic cocktails for degrading feather keratin.
Collapse
Affiliation(s)
| | - Mélodie Kielbasa
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | |
Collapse
|
2
|
Mohallem R, Schaser AJ, Aryal UK. Proteomic and phosphoproteomic signatures of aging mouse liver. GeroScience 2025:10.1007/s11357-025-01601-0. [PMID: 40087212 DOI: 10.1007/s11357-025-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The liver is a metabolic powerhouse, crucial for regulating carbohydrates, fats, and protein metabolism. In this study, we conducted a comparative proteomic and phosphoproteomic analysis of aging mouse livers from young adults (3-4 months) and old (19-21 months) mice to identify age-related changes in liver proteins and phosphosites, which were linked to various metabolic pathways. In old mice, proteins associated with the "complement and coagulation cascade," "age-rage signaling in diabetic complications," and "biosynthesis of unsaturated fatty acids" were increased, while those linked to "oxidative phosphorylation," "steroid hormone biosynthesis," and "tryptophan metabolism" were decreased. Interestingly, aging was marked by a significant decrease in liver protein phosphorylation, with nearly 90% of significant phosphosites being downregulated. Pathway analysis of the downregulated phosphosites highlighted connections to "non-small cell lung cancer," "lysine degradation," "cell differentiation," and "glycerophospholipid metabolism." Decreased phosphorylation of several kinases that are linked to cell proliferation, particularly those in the MAPK signaling pathway, including Erk1, EGFR, RAF1, and BRAF was also observed highlighting their important role in the liver. This study identified an important relationship between proteins, phosphosites, and their connections to known as well as new pathways, expanding upon our current knowledge and providing a basis for future studies focused on age-related metabolic traits.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
He J, Hewett SJ. Nrf2 Regulates Basal Glutathione Production in Astrocytes. Int J Mol Sci 2025; 26:687. [PMID: 39859401 PMCID: PMC11765531 DOI: 10.3390/ijms26020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2-/-) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2+/+) pups. Key components of the GSH synthetic pathway, including xCT (the substrate-specific light chain of the substrate-importing transporter, system xc-), glutamate-cysteine ligase [catalytic (GCLc) and modifying (GCLm) subunits], were affected. To wit: qRT-PCR analysis demonstrates that naïve Nrf2-/- astrocytes have significantly lower basal mRNA levels of xCT and both GCL subunits compared to naïve Nrf2+/+ astrocytes. No change in mRNA levels of glutathione synthetase (GS) or the GSH exporting transporter, Mrp1, was found. Western blot analysis reveals reduced protein levels of both subunits of GCL, while (seleno)cystine uptake into Nrf2-/- astrocytes was reduced compared to Nrf2+/+ astrocytes, confirming decreased system xc- activity. These findings suggest that Nrf2 regulates the basal production of GSH in astrocytes through constitutive transcriptional regulation of GCL and xCT.
Collapse
Affiliation(s)
| | - Sandra J. Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA;
| |
Collapse
|
4
|
Gebrekidan AG, Zhang Y, Chen J. A Comprehensive Transcriptomic and Proteomics Analysis of Candidate Secretory Proteins in Rose Grain Aphid, Metopolophium dirhodum (Walker). Curr Issues Mol Biol 2024; 46:13383-13404. [PMID: 39727926 PMCID: PMC11727172 DOI: 10.3390/cimb46120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The Rose grain aphid, a notable agricultural pest, releases saliva while feeding. Yet, there is a need for a comprehensive understanding of the specific identity and role of secretory proteins released during probing and feeding. Therefore, a combined transcriptomic and proteomic approach was employed in this study to identify putative secretory proteins. The transcriptomic sequencing result led to the assembly of 18,030 unigenes out of 31,344 transcripts. Among these, 705 potential secretory proteins were predicted and functionally annotated against publicly accessible protein databases. Notably, a substantial proportion of secretory genes (71.5%, 69.08%, and 60.85%) were predicted to encode known proteins in Nr, Pfam, and Swiss-Prot databases, respectively. Conversely, 27.37% and 0.99% of gene transcripts were predicted to encode known proteins with unspecified functions in the Nr and Swiss-Prot databases, respectively. Meanwhile, the proteomic analysis result identified, 15 salivary proteins. Interestingly, most salivary proteins (i.e., 60% of the proteins) showed close similarity to A. craccivora, while 46.67% showed close similarity to A. glycines, M. sacchari and S. flava. However, to verify the expression of these secretory genes and characterize the biological function of salivary proteins further investigation should be geared towards gene expression and functional analysis.
Collapse
Affiliation(s)
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| |
Collapse
|
5
|
Sriramulu S, Thoidingjam S, Chen WM, Hassan O, Siddiqui F, Brown SL, Movsas B, Green MD, Davis AJ, Speers C, Walker E, Nyati S. BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:163. [PMID: 38863037 PMCID: PMC11167950 DOI: 10.1186/s13046-024-03086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Oudai Hassan
- Department of Surgical Pathology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI-48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH-44106, USA
| | - Eleanor Walker
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA.
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA.
| |
Collapse
|
6
|
Nguyen LAC, Mori M, Yasuda Y, Galipon J. Functional Consequences of Shifting Transcript Boundaries in Glucose Starvation. Mol Cell Biol 2023; 43:611-628. [PMID: 37937348 PMCID: PMC10761120 DOI: 10.1080/10985549.2023.2270406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Glucose is a major source of carbon and essential for the survival of many organisms, ranging from yeast to human. A sudden 60-fold reduction of glucose in exponentially growing fission yeast induces transcriptome-wide changes in gene expression. This regulation is multilayered, and the boundaries of transcripts are known to vary, with functional consequences at the protein level. By combining direct RNA sequencing with 5'-CAGE and short-read sequencing, we accurately defined the 5'- and 3'-ends of transcripts that are both poly(A) tailed and 5'-capped in glucose starvation, followed by proteome analysis. Our results confirm previous experimentally validated loci with alternative isoforms and reveal several transcriptome-wide patterns. First, we show that sense-antisense gene pairs are more strongly anticorrelated when a time lag is taken into account. Second, we show that the glucose starvation response initially elicits a shortening of 3'-UTRs and poly(A) tails, followed by a shortening of the 5'-UTRs at later time points. These result in domain gains and losses in proteins involved in the stress response. Finally, the relatively poor overlap both between differentially expressed genes (DEGs), differential transcript usage events (DTUs), and differentially detected proteins (DDPs) highlight the need for further study on post-transcriptional regulation mechanisms in glucose starvation.
Collapse
Affiliation(s)
- Lan Anh Catherine Nguyen
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Institute of Innovation for Future Society, Nagoya University, Aichi, Nagoya, Japan
| | - Yuji Yasuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Fujisawa, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Yonezawa, Japan
| |
Collapse
|
7
|
Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel) 2023; 14:2065. [PMID: 38003008 PMCID: PMC10671741 DOI: 10.3390/genes14112065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.
Collapse
Affiliation(s)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
9
|
Nguyen LT, Lau LY, Fortes MRS. Proteomic Analysis of Hypothalamus and Pituitary Gland in Pre and Postpubertal Brahman Heifers. Front Genet 2022; 13:935433. [PMID: 35774501 PMCID: PMC9237413 DOI: 10.3389/fgene.2022.935433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
The hypothalamus and the pituitary gland are directly involved in the complex systemic changes that drive the onset of puberty in cattle. Here, we applied integrated bioinformatics to elucidate the critical proteins underlying puberty and uncover potential molecular mechanisms from the hypothalamus and pituitary gland of prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA) proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein were integrated with previously acquired transcriptome profiles. These transcriptomic studies used the same tissues harvested from the same heifers at pre- and post-puberty. This comparison detected a small number of matched transcripts and protein changes at puberty in each tissue, suggesting the need for multiple omics analyses for interpreting complex biological systems. In the hypothalamus, upregulated DA proteins at post-puberty were enriched in pathways related to puberty, including GnRH, calcium and oxytocin signalling pathways, whereas downregulated proteins were observed in the estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this study revealed that ribosomal pathway proteins in the pituitary were involved in the pubertal development of mammals. The reported molecules and derived protein-protein networks are a starting point for future experimental approaches that might dissect with more detail the role of each molecule to provide new insights into the mechanisms of puberty onset in cattle.
Collapse
Affiliation(s)
- Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- *Correspondence: Loan To Nguyen,
| | - Li Yieng Lau
- Agency of Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
10
|
Jiang Z, Jia Y, Zhang J, Li X, Dong C. Effect of secondary attack by Aeromonas hydrophila on the expression level of hif genes in common carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2022; 45:907-917. [PMID: 35385592 DOI: 10.1111/jfd.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia-inducible factors (hifs) are involved in infectious diseases inflammatory reactions, and immune regulation. Common carp, a representative allotetraploid species that has undergone genome-wide replication events, has important research value. In this study, common carp were infected twice with Aeromonas hydrophila. Liver tissues of common carp were collected at 4 h, 12 h, 24 h, 48 h, 3 days, 7 days post-first infection and 4 h, 12 h, 24 h post-second infection. The mRNA levels of hif genes were determined at different time points. The hif2a-2, hif3a-2, hif3b-1 and hif3b-2 expression levels in the infected group were upregulated when compared with those in the control group, whereas the expression levels of other genes were downregulated after the second infection. This indicates that the effect of A. hydrophila infection on gene expression pattern is dependent on the host, pathogen, infected tissue and gene. Pressure analysis of the hif gene family revealed that the non-synonymous substitution to synonymous substitution ratio of 12 hif genes was <1, which indicated that they were in a state of purification and selection. Combined with the differences between copy genes, the polyclonal antibodies against Hif1b-1 and Hif1b-2 were successfully prepared in this study. Western blot analysis showed that the protein expression of Hif1b-1 and Hif1b-2 reached to the highest level 48 h after the first infection. After the second A. hydrophila infection, the protein expression levels of Hif1b-1 and Hif1b-2 reached the highest levels at 4 and 48 h, respectively. This may indicate that the Hif1b-1 and Hif1b-2 genes in common carp play an important role in the immune mechanism at the protein level. The findings of this study will lay the foundation for future studies on the immune regulatory function of common carp hif genes, which may aid in devising novel therapeutic strategies for common carp diseases, such as A. hydrophila infection.
Collapse
Affiliation(s)
- Zhou Jiang
- Research Center on Legal Issues Concerning Agriculture, Countryside and Farmers, College of Fishery, Henan Normal University, Xinxiang, China
| | - Yingying Jia
- Research Center on Legal Issues Concerning Agriculture, Countryside and Farmers, College of Fishery, Henan Normal University, Xinxiang, China
| | - Jiangfan Zhang
- Research Center on Legal Issues Concerning Agriculture, Countryside and Farmers, College of Fishery, Henan Normal University, Xinxiang, China
| | - Xuejun Li
- Research Center on Legal Issues Concerning Agriculture, Countryside and Farmers, College of Fishery, Henan Normal University, Xinxiang, China
| | - Chuanju Dong
- Research Center on Legal Issues Concerning Agriculture, Countryside and Farmers, College of Fishery, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Kim GH, Heo HJ, Kang JW, Kim EK, Baek SE, Kim K, Kim IJ, Suh S, Lee BJ, Kim YH, Pak K. Multi-omics analysis revealed TEK and AXIN2 are potential biomarkers in multifocal papillary thyroid cancer. Cancer Cell Int 2022; 22:185. [PMID: 35550582 PMCID: PMC9097102 DOI: 10.1186/s12935-022-02606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC), the most common endocrine cancer, accounts for 80-85% of all malignant thyroid tumors. This study focused on identifying targets that affect the multifocality of PTC. In a previous study, we determined 158 mRNAs related to multifocality in BRAF-mutated PTC using The Cancer Genome Atlas. METHODS We used multi-omics data (miRNAs and mRNAs) to identify the regulatory mechanisms of the investigated mRNAs. miRNA inhibitors were used to determine the relationship between mRNAs and miRNAs. We analyzed the target protein levels in patient sera using ELISA and immunohistochemical staining of patients' tissues. RESULTS We identified 44 miRNAs that showed a negative correlation with mRNA expression. Using in vitro experiments, we identified four miRNAs that inhibit TEK and/or AXIN2 among the target mRNAs. We also showed that the downregulation of TEK and AXIN2 decreased the proliferation and migration of BRAF ( +) PTC cells. To evaluate the diagnostic ability of multifocal PTC, we examined serum TEK or AXIN2 in unifocal and multifocal PTC patients using ELISA, and showed that the serum TEK in multifocal PTC patients was higher than that in the unifocal PTC patients. The immunohistochemical study showed higher TEK and AXIN2 expression in multifocal PTC than unifocal PTC. CONCLUSIONS Both TEK and AXIN2 play a potential role in the multifocality of PTC, and serum TEK may be a diagnostic marker for multifocal PTC.
Collapse
Affiliation(s)
- Ga Hyun Kim
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University Hospital, Busan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea. .,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea. .,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| |
Collapse
|
12
|
Ruiz-Molina N, Parsons J, Schroeder S, Posten C, Reski R, Decker EL. Process Engineering of Biopharmaceutical Production in Moss Bioreactors via Model-Based Description and Evaluation of Phytohormone Impact. Front Bioeng Biotechnol 2022; 10:837965. [PMID: 35252145 PMCID: PMC8891706 DOI: 10.3389/fbioe.2022.837965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
The moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors. The total amount of recombinant protein was doubled by using fed-batch or batch compared to semi-continuous operation, although the maximum specific productivity (mg MFHR1/g FW) increased just by 35%. We proposed an unstructured kinetic model which fits accurately with the experimental data in batch and semi-continuous operation under autotrophic conditions with 2% CO2 enrichment. The model is able to predict recombinant protein production, nitrate uptake and biomass growth, which is useful for process control and optimization. We investigated strategies to further increase MFHR1 production. While mixotrophic and heterotrophic conditions decreased the MFHR1-specific productivity compared to autotrophic conditions, addition of the phytohormone auxin (NAA, 10 µM) to the medium enhanced it by 470% in shaken flasks and up to 230% and 260%, in batch and fed-batch bioreactors, respectively. Supporting this finding, the auxin-synthesis inhibitor L-kynurenine (100 µM) decreased MFHR1 production significantly by 110% and 580% at day 7 and 18, respectively. Expression analysis revealed that the MFHR1 transgene, driven by the Physcomitrella actin5 (PpAct5) promoter, was upregulated 16 h after NAA addition and remained enhanced over the whole process, whereas the auxin-responsive gene PpIAA1A was upregulated within the first 2 hours, indicating that the effect of auxin on PpAct5 promoter-driven expression is indirect. Furthermore, the day of NAA supplementation was crucial, leading to an up to 8-fold increase of MFHR1-specific productivity (0.82 mg MFHR1/g fresh weight, 150 mg accumulated over 7 days) compared to the productivity reported previously. Our findings are likely to be applicable to other plant-based expression systems to increase biopharmaceutical production and yields.
Collapse
Affiliation(s)
- Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sina Schroeder
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
13
|
Li X, Li D, Ma S, Yang Y. Integration of transcriptomic and proteomic analyses of cold shock response in Kosmotoga olearia, a typical thermophile with an incredible minimum growth temperature at 20 °C. Braz J Microbiol 2022; 53:71-88. [PMID: 34997565 PMCID: PMC8882551 DOI: 10.1007/s42770-021-00662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Kosmotoga olearia TBF 19.5.1 is a typical thermophile with optimal growth at 65 °C and also exhibits visible growth at an incredible minimum temperature (20 °C). It is considered an ideal model for investigating the evolutionary transition from thermophiles to mesophiles within Thermotogae. However, knowledge relevant to molecular mechanisms of K. olearia responding to cold shock is still limited. In this study, transcriptomics and proteomics were integrated to investigate the global variations at the transcript and protein level during cold shock in K. olearia. As a result, total 734 differentially expressed genes and 262 differentially expressed proteins were identified. The cold-responsive genes and proteins were associated with signaling transduction, transcription, translation and repair, cell wall/membrane reconstruction, amino acid biosynthesis, and stress response. However, most genes and proteins, involved in carbon metabolism, fatty acid biosynthesis, and energy production, were repressed. This work provides the first integrative transcriptomics and proteomics analyses of the cold shock response in K. olearia, and it offered new insights into the mechanisms of cold adaptation and post-transcriptional regulation of the distinctive thermophile within Thermotogae.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 China ,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Dan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 China ,School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, 620680 China
| | - Shichun Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
14
|
Zhao Y, Tao J, Chen Z, Li S, Liu Z, Lin L, Zhai L. Functional drug-target-disease network analysis of gene-phenotype connectivity for curcumin in hepatocellular carcinoma. PeerJ 2021; 9:e12339. [PMID: 34754622 PMCID: PMC8555505 DOI: 10.7717/peerj.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background The anti-tumor properties of curcumin have been demonstrated for many types of cancer. However, a systematic functional and biological analysis of its target proteins has yet to be fully documented. The aim of this study was to explore the underlying mechanisms of curcumin and broaden the perspective of targeted therapies. Methods Direct protein targets (DPTs) of curcumin were searched in the DrugBank database. Using the STRING database, the interactions between curcumin and DPTs and indirect protein targets (IPTs) weres documented. The protein-protein interaction (PPI) network of curcumin-mediated proteins was visualized using Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for all curcumin-mediated proteins. Furthermore, the cancer targets were searched in the Comparative Toxicogenomics Database (CTD). The overlapping targets were studied using Kaplan-Meier analysis to evaluate cancer survival. Further genomic analysis of overlapping genes was conducted using the cBioPortal database. Lastly, MTT, quantitative polymerase chain reaction (qPCR), and western blot (WB) analysis were used to validate the predicted results on hepatocellular carcinoma (HCC) cells. Results A total of five DPTs and 199 IPTs were found. These protein targets were found in 121 molecular pathways analyzed via KEGG enrichment. Based on the anti-tumor properties of curcumin, two pathways were selected, including pathways in cancer (36 genes) and HCC (22 genes). Overlapping with 505 HCC-related gene sets identified in CTD, five genes (TP53, RB1, TGFB1, GSTP1, and GSTM1) were finally identified. High mRNA levels of TP53, RB1, and GSTM1 indicated a prolonged overall survival (OS) in HCC, whereas elevated mRNA levels of TGFB1 were correlated with poor prognosis. The viability of both HepG2 cells and Hep3B cells was significantly reduced by curcumin at concentrations of 20 or 30 μM after 48 or 72 h of culture. At a concentration of 20 μM curcumin cultured for 48 h, the expression of TGFB1 and GSTP1 in Hep3B cells was reduced significantly in qPCR analysis, and reduced TGFB1 protein expression was also found in Hep3B cells.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jiahao Tao
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhuangzhong Chen
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Suihui Li
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Zeyu Liu
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Lizhu Lin
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Linzhu Zhai
- Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Sun H, Mertz RW, Smith LB, Scott JG. Transcriptomic and proteomic analysis of pyrethroid resistance in the CKR strain of Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009871. [PMID: 34723971 PMCID: PMC8559961 DOI: 10.1371/journal.pntd.0009871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Aedes aegypti is an important vector of human viral diseases. This mosquito is distributed globally and thrives in urban environments, making it a serious risk to human health. Pyrethroid insecticides have been the mainstay for control of adult A. aegypti for decades, but resistance has evolved, making control problematic in some areas. One major mechanism of pyrethroid resistance is detoxification by cytochrome P450 monooxygenases (CYPs), commonly associated with the overexpression of one or more CYPs. Unfortunately, the molecular basis underlying this mechanism remains unknown. We used a combination of RNA-seq and proteomic analysis to evaluate the molecular basis of pyrethroid resistance in the highly resistant CKR strain of A. aegypti. The CKR strain has the resistance mechanisms from the well-studied Singapore (SP) strain introgressed into the susceptible Rockefeller (ROCK) strain genome. The RNA-seq and proteomics data were complimentary; each offering insights that the other technique did not provide. However, transcriptomic results did not quantitatively mirror results of the proteomics. There were 10 CYPs which had increased expression of both transcripts and proteins. These CYPs appeared to be largely trans-regulated, except for some CYPs for which we could not rule out gene duplication. We identified 65 genes and lncRNAs as potentially being responsible for elevating the expression of CYPs in CKR. Resistance was associated with multiple loci on chromosome 1 and at least one locus on chromosome 3. We also identified five CYPs that were overexpressed only as proteins, suggesting that stabilization of CYP proteins could be a mechanism of resistance. Future studies to increase the resolution of the resistance loci, and to examine the candidate genes and lncRNAs identified here will greatly enhance our understanding of CYP-mediated resistance in A. aegypti.
Collapse
Affiliation(s)
- Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu China
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Robert W. Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
16
|
Goodyear MC, Garnier N, Krieger JR, Geddes-McAlister J, Khursigara CM. Label-free quantitative proteomics identifies unique proteomes of clinical isolates of the Liverpool Epidemic Strain of Pseudomonas aeruginosa and laboratory strain PAO1. Proteomics Clin Appl 2021; 15:e2100062. [PMID: 34510773 DOI: 10.1002/prca.202100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Comparative genomics and phenotypic assays have shown that antibiotic resistance profiles differ among clinical isolates of Pseudomonas aeruginosa and that genotype-phenotype associations are difficult to establish for resistance phenotypes based on these comparisons alone. EXPERIMENTAL DESIGN Here, we used label-free quantitative proteomics to compare two isolates of the Liverpool Epidemic Strain (LES) of P. aeruginosa, LESlike1 and LESB58, and the common laboratory strain P. aeruginosa PAO1 to more accurately predict functional differences between strains. RESULTS Our results show that the proteomes of the LES isolates are more similar to each other than to PAO1; however, a number of differences were observed in the abundance of proteins involved in quorum sensing, virulence, and antibiotic resistance, including in the comparison of LESlike1 and LESB58. Additionally, the proteomic data revealed a higher abundance of proteins involved in polymyxin and aminoglycoside resistance in LESlike1. Minimum inhibitory concentration assays showed that LESlike1 had up to 128-fold higher resistance to antibiotics from these classes. CONCLUSIONS These findings provide an example of the ability of proteomic data to complement genotypic and phenotypic studies to understand resistance in clinical isolates. CLINICAL RELEVANCE P. aeruginosa is a predominant pathogen in chronic lung infections in individuals with cystic fibrosis (CF). LES isolates are capable of transferring between CF patients and have been associated with increased hospital visits and antibiotic treatments.
Collapse
Affiliation(s)
- Mara C Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicole Garnier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Mathew AS, Gorick CM, Thim EA, Garrison WJ, Klibanov AL, Miller GW, Sheybani ND, Price RJ. Transcriptomic response of brain tissue to focused ultrasound-mediated blood-brain barrier disruption depends strongly on anesthesia. Bioeng Transl Med 2021; 6:e10198. [PMID: 34027087 PMCID: PMC8126816 DOI: 10.1002/btm2.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS) mediated blood-brain barrier disruption (BBBD) targets the delivery of systemically-administered therapeutics to the central nervous system. Preclinical investigations of BBBD have been performed on different anesthetic backgrounds; however, the influence of the choice of anesthetic on the molecular response to BBBD is unknown, despite its potential to critically affect interpretation of experimental therapeutic outcomes. Here, using bulk RNA sequencing, we comprehensively examined the transcriptomic response of both normal brain tissue and brain tissue exposed to FUS-induced BBBD in mice anesthetized with either isoflurane with medical air (Iso) or ketamine/dexmedetomidine (KD). In normal murine brain tissue, Iso alone elicited minimal differential gene expression (DGE) and repressed pathways associated with neuronal signaling. KD alone, however, led to massive DGE and enrichment of pathways associated with protein synthesis. In brain tissue exposed to BBBD (1 MHz, 0.5 Hz pulse repetition frequency, 0.4 MPa peak-negative pressure), we systematically evaluated the relative effects of anesthesia, microbubbles, and FUS on the transcriptome. Of particular interest, we observed that gene sets associated with sterile inflammatory responses and cell-cell junctional activity were induced by BBBD, regardless of the choice of anesthesia. Meanwhile, gene sets associated with metabolism, platelet activity, tissue repair, and signaling pathways, were differentially affected by BBBD, with a strong dependence on the anesthetic. We conclude that the underlying transcriptomic response to FUS-mediated BBBD may be powerfully influenced by anesthesia. These findings raise considerations for the translation of FUS-BBBD delivery approaches that impact, in particular, metabolism, tissue repair, and intracellular signaling.
Collapse
Affiliation(s)
- Alexander S. Mathew
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Catherine M. Gorick
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - E. Andrew Thim
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - William J. Garrison
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexander L. Klibanov
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Internal Medicine, Cardiovascular DivisionUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - G. Wilson Miller
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Natasha D. Sheybani
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Richard J. Price
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
18
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
19
|
Wu B, Qiao J, Wang X, Liu M, Xu S, Sun D. Factors affecting the rapid changes of protein under short-term heat stress. BMC Genomics 2021; 22:263. [PMID: 33849452 PMCID: PMC8042900 DOI: 10.1186/s12864-021-07560-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Protein content determines the state of cells. The variation in protein abundance is crucial when organisms are in the early stages of heat stress, but the reasons affecting their changes are largely unknown. RESULTS We quantified 47,535 mRNAs and 3742 proteins in the filling grains of wheat in two different thermal environments. The impact of mRNA abundance and sequence features involved in protein translation and degradation on protein expression was evaluated by regression analysis. Transcription, codon usage and amino acid frequency were the main drivers of changes in protein expression under heat stress, and their combined contribution explains 58.2 and 66.4% of the protein variation at 30 and 40 °C (20 °C as control), respectively. Transcription contributes more to alterations in protein content at 40 °C (31%) than at 30 °C (6%). Furthermore, the usage of codon AAG may be closely related to the rapid alteration of proteins under heat stress. The contributions of AAG were 24 and 13% at 30 and 40 °C, respectively. CONCLUSION In this study, we analyzed the factors affecting the changes in protein expression in the early stage of heat stress and evaluated their influence.
Collapse
Affiliation(s)
- Bingjin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianwen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Manshuang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Daojie Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
20
|
van Westering TLE, Johansson HJ, Hanson B, Coenen-Stass AML, Lomonosova Y, Tanihata J, Motohashi N, Yokota T, Takeda S, Lehtiö J, Wood MJA, El Andaloussi S, Aoki Y, Roberts TC. Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy. Mol Cell Proteomics 2020; 19:2047-2068. [PMID: 32994316 PMCID: PMC7710136 DOI: 10.1074/mcp.ra120.002345] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.
Collapse
Affiliation(s)
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Toshifumi Yokota
- Department of Medical, Genetics, School of Human Development Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, Oxford, UK
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
21
|
Lecoeuvre A, Ménez B, Cannat M, Chavagnac V, Gérard E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME JOURNAL 2020; 15:818-832. [PMID: 33139872 PMCID: PMC8027613 DOI: 10.1038/s41396-020-00816-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
Lost City (mid-Atlantic ridge) is a unique oceanic hydrothermal field where carbonate-brucite chimneys are colonized by a single phylotype of archaeal Methanosarcinales, as well as sulfur- and methane-metabolizing bacteria. So far, only one submarine analog of Lost City has been characterized, the Prony Bay hydrothermal field (New Caledonia), which nonetheless shows more microbiological similarities with ecosystems associated with continental ophiolites. This study presents the microbial ecology of the ‘Lost City’-type Old City hydrothermal field, recently discovered along the southwest Indian ridge. Five carbonate-brucite chimneys were sampled and subjected to mineralogical and geochemical analyses, microimaging, as well as 16S rRNA-encoding gene and metagenomic sequencing. Dominant taxa and metabolisms vary between chimneys, in conjunction with the predicted redox state, while potential formate- and CO-metabolizing microorganisms as well as sulfur-metabolizing bacteria are always abundant. We hypothesize that the variable environmental conditions resulting from the slow and diffuse hydrothermal fluid discharge that currently characterizes Old City could lead to different microbial populations between chimneys that utilize CO and formate differently as carbon or electron sources. Old City discovery and this first description of its microbial ecology opens up attractive perspectives for understanding environmental factors shaping communities and metabolisms in oceanic serpentinite-hosted ecosystems.
Collapse
Affiliation(s)
- Aurélien Lecoeuvre
- Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France.
| | - Bénédicte Ménez
- Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Mathilde Cannat
- Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Valérie Chavagnac
- Université de Toulouse, Géosciences Environnement Toulouse, CNRS UMR 5563, Toulouse, France
| | - Emmanuelle Gérard
- Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| |
Collapse
|
22
|
Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags. J Proteome Res 2020; 19:1183-1195. [PMID: 32027144 DOI: 10.1021/acs.jproteome.9b00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rebecca E Hardman
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rick D Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
23
|
Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y. Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front Genet 2019; 10:995. [PMID: 31781153 PMCID: PMC6857202 DOI: 10.3389/fgene.2019.00995] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
The advent of large-scale microbiome studies affords newfound analytical opportunities to understand how these communities of microbes operate and relate to their environment. However, the analytical methodology needed to model microbiome data and integrate them with other data constructs remains nascent. This emergent analytical toolset frequently ports over techniques developed in other multi-omics investigations, especially the growing array of statistical and computational techniques for integrating and representing data through networks. While network analysis has emerged as a powerful approach to modeling microbiome data, oftentimes by integrating these data with other types of omics data to discern their functional linkages, it is not always evident if the statistical details of the approach being applied are consistent with the assumptions of microbiome data or how they impact data interpretation. In this review, we overview some of the most important network methods for integrative analysis, with an emphasis on methods that have been applied or have great potential to be applied to the analysis of multi-omics integration of microbiome data. We compare advantages and disadvantages of various statistical tools, assess their applicability to microbiome data, and discuss their biological interpretability. We also highlight on-going statistical challenges and opportunities for integrative network analysis of microbiome data.
Collapse
Affiliation(s)
- Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Courtney R Armour
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Chenxiao Hu
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Meng Mei
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Chuan Tian
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Thomas J Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
24
|
Zhang Y, Chen W, Li M, Yang L, Chen X. Cloning, phylogenetic research, and prokaryotic expression study of the metabolic detoxification gene EoGSTs1 in Empoasca onukii Matsuda. PeerJ 2019; 7:e7641. [PMID: 31534862 PMCID: PMC6733243 DOI: 10.7717/peerj.7641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the misuse of chemical pesticides, small green leafhoppers (Empoasca onukii Matsuda) have developed resistance to pesticides, thereby posing a serious problem to the tea industry. Glutathione S-transferases (GSTs) are an important family of enzymes that are involved in pesticide resistance in Empoasca onukii Matsuda. Empoasca onukii GST sigma 1 (EoGSTs1, GenBank: MK443501) is a member of the GST family. In this study, the full-length cDNA of EoGSTs1 was cloned by reverse transcription polymerase chain reaction (qPCR), and its taxonomic identity was examined. Furthermore, we performed bioinformatics and phylogenetic analyses of the gene and structural and functional domain prediction of the protein. The results demonstrate that EoGSTS1 belongs to the Sigma family of GSTs; the full-length EoGSTs1 cDNA is 841 bp with a 624-bp coding region that encodes a 23.68932-kDa protein containing 207 amino acids. The theoretical isoelectric point (IEP) was calculated to be 6.00. Phylogenetic analysis indicates that EoGSTS1 is closely related to the Sub psaltriayangi subfamily of the Cicadoidea superfamily in order Hemiptera, whereas it is distantly related to Periplaneta americana of order Blattodea. Amino acid sequence alignment of EoGSTS1 and GSTs from four other insects of order Hemiptera revealed protein sequence conservation. Tertiary structure analysis and structural domain functional predictions of the protein revealed that EoGSTS1 contains nine α helices and two β sheets with one conserved GST domain. The results of enzyme activity assay showed that recombinant EoGSTs1 (rEoGSTs1) protein had catalytic activity for substrate 1-chloro-2,4-dinitrobenzene (CDNB) and exhibited the highest activity at pH 7 and 25 °C. The Michaelis constant Km of rEoGSTs1 protein was 0.07782 ± 0.01990 mmol/L, and the maximum reaction rate Vmax was 12.15 ± 1.673 µmol/min⋅mg. Our study clarified the taxonomic identity of small green leafhopper EoGSTs1 and revealed some properties of the gene and its encoded protein sequence. According to the catalytic activity of the rEoGSTs1 enzyme on the model substrate CDNB, we infer that it functions in the degradation of exogenous substances.
Collapse
Affiliation(s)
- Yujie Zhang
- Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Plant Pest Management of Mountainous Region, Guizhou University, Guiyang, China
| | - Wenlong Chen
- Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Plant Pest Management of Mountainous Region, Guizhou University, Guiyang, China
| | - Ming Li
- The Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guiyang, China
| | - Lin Yang
- Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Plant Pest Management of Mountainous Region, Guizhou University, Guiyang, China
| | - Xiangsheng Chen
- Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Plant Pest Management of Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
25
|
El-Rami F, Kong X, Parikh H, Zhu B, Stone V, Kitten T, Xu P. Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis. MICROBIOLOGY-SGM 2019; 164:173-185. [PMID: 29393020 PMCID: PMC5882076 DOI: 10.1099/mic.0.000595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions.
Collapse
Affiliation(s)
- Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Hardik Parikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ping Xu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Shabbir MZ, Zhang T, Wang Z, He K. Transcriptome and Proteome Alternation With Resistance to Bacillus thuringiensis Cry1Ah Toxin in Ostrinia furnacalis. Front Physiol 2019; 10:27. [PMID: 30774599 PMCID: PMC6367224 DOI: 10.3389/fphys.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Asian corn borer (ACB), Ostrinia furnacalis can develop resistance to transgenic Bacillus thuringiensis (Bt) maize expressing Cry1Ah-toxin. However, the mechanisms that regulate the resistance of ACB to Cry1Ah-toxin are unknown. Objective: In order to understand the molecular basis of the Cry1Ah-toxin resistance in ACB, “omics” analyses were performed to examine the difference between Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains of ACB at both transcriptional and translational levels. Results: A total of 7,007 differentially expressed genes (DEGs) and 182 differentially expressed proteins (DEPs) were identified between ACB-AhR and ACB-BtS and 90 genes had simultaneous transcription and translation profiles. Down-regulated genes associated with Cry1Ah resistance included aminopeptidase N, ABCC3, DIMBOA-induced cytochrome P450, alkaline phosphatase, glutathione S-transferase, cadherin-like protein, and V-ATPase. Whereas, anti-stress genes, such as heat shock protein 70 and carboxylesterase were up-regulated in ACB-AhR, displaying that a higher proportion of genes/proteins related to resistance was down-regulated compared to up-regulated. The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 578 and 29 DEGs and DEPs, to 27 and 10 pathways, respectively (P < 0.05). Furthermore, real-time quantitative (qRT-PCR) results based on relative expression levels of randomly selected genes confirmed the “omics” response. Conclusion: Despite the previous studies, this is the first combination of a study using RNA-Seq and iTRAQ approaches on Cry1Ah-toxin binding, which led to the identification of longer length of unigenes in ACB. The DEGs and DEPs results are valuable for further clarifying Cry1Ah-mediated resistance.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Chávez J, Vargas MH, Martínez-Zúñiga J, Falfán-Valencia R, Ambrocio-Ortiz E, Carbajal V, Sandoval-Roldán R. Allergic sensitization increases the amount of extracellular ATP hydrolyzed by guinea pig leukocytes. Purinergic Signal 2019; 15:69-76. [PMID: 30637575 DOI: 10.1007/s11302-019-09644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Increased levels of ATP have been found in the bronchoalveolar lavage of patients with asthma, and subjects with this disease, but not healthy subjects, develop bronchospasm after nebulization with ATP. Because the main mechanism for controlling the noxious effects of extracellular ATP is its enzymatic hydrolysis, we hypothesized that allergic sensitization is accompanied by a decreased functioning of such hydrolysis. In the present study, peripheral blood leukocytes from sensitized and non-sensitized guinea pigs were used for determining the extracellular metabolism (as assessed by inorganic phosphate production) of ATP, ADP, AMP, or adenosine, and for detecting possible changes in the expression (qPCR and Western blot) of major ectonucleotidases (NTPDase1, NTPDase3, and NPP1) and purinoceptors (P2X1, P2X7, P2Y4, and P2Y6). Contrary to our hypothesis, we found that leukocytes from allergic animals produced higher amounts of inorganic phosphate after stimulation with ATP and ADP, as compared with leukocytes from non-sensitized animals. Although at first glance, this result suggested that sensitization caused higher efficiency of ectonucleotidases, their mRNA and protein expressions were unaffected. On the other hand, after sensitization, we found a significant increase in the protein expression of P2X7 and P2Y4, two purinoceptors known to be responsible for ATP release after activation. We concluded that allergic sensitization increased the amount of ATP hydrolyzed by ectonucleotidases, the latter probably not due to the enhanced efficiency of its enzymatic breakdown, but rather due to an increased release of endogenous ATP or other nucleotides, partly mediated by enhanced expression or P2X7 and P2Y4 receptors.
Collapse
Affiliation(s)
- Jaime Chávez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico.
| | - Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| | - Jesús Martínez-Zúñiga
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| | - Rosa Sandoval-Roldán
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Mexico City, Mexico
| |
Collapse
|
28
|
Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives. Acta Biomater 2018; 81:158-168. [PMID: 30268915 DOI: 10.1016/j.actbio.2018.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
An esterase from S. mutans UA159, SMU_118c, was shown to hydrolyze methacrylate resin-based dental monomers. OBJECTIVE To investigate the association of SMU_118c to the whole cellular hydrolytic activity of S. mutans toward polymerized resin composites, and to examine how the bacterium adapts its hydrolytic activity in response to environmental stresses triggered by the presence of a resin composites and adhesives biodegradation by-product (BBP). MATERIALS AND METHODS Biofilms of S. mutans UA159 parent wild strain, SMU_118c knockout strain (ΔSMU_118c), and SMU_118c complemented strain (ΔSMU_118cC) were incubated with photo-polymerized resin composite. High performance liquid chromatography was used to quantify the amount of a universal 2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bisGMA)-derived BBP, bishydroxy-propoxy-phenyl-propane (bisHPPP) in the media. Fluorescence in situ hybridization (FISH) and quantitative proteomic analysis were used to measure SMU_118c gene expression and production of SMU_118c protein, respectively, from biofilms of S. mutans UA159 wild strain that were cultured with bisHPPP. RESULTS The levels of bisHPPP released from composite were similar for ΔSMU_118c and media control, and these were significantly lower compared to the parent wild-strain UA159 and complemented strain (ΔSMU_118cC) (p < 0.05). Gene expression of SMU_118c and productions of SMU_118c protein were higher for bisHPPP incubated biofilms (p < 0.05). SIGNIFICANCE This study suggests that SMU_118c is a dominant esterase in S. mutans and capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to BBP was to increase the expression of the esterase gene and enhance esterase production, potentially accelerating the biodegradation of the restoration, adhesive and restoration-tooth interface, ultimately contributing to premature restoration failure. STATEMENT OF SIGNIFICANCE We recently reported (Huang et al., 2018) on the isolation and initial characterization of a specific esterase (SMU_118c) from S. mutans that show degradative activity toward the hydrolysis of dental monomers. The current study further characterize this enzyme and shows that SMU_118c is a dominant degradative esterase activity in the cariogenic bacterium S. mutans and is capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to biodegradation by-products from composites and adhesives was to increase the expression of the esterase gene and enhance esterase production, accelerating the biodegradation of the restoration, adhesive and the restoration-tooth interface, potentially contributing to the pathogenesis of recurrent caries around resin composite restorations.
Collapse
|
29
|
Sharpnack MF, Ranbaduge N, Srivastava A, Cerciello F, Codreanu SG, Liebler DC, Mascaux C, Miles WO, Morris R, McDermott JE, Sharpnack JL, Amann J, Maher CA, Machiraju R, Wysocki VH, Govindan R, Mallick P, Coombes KR, Huang K, Carbone DP. Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. J Thorac Oncol 2018; 13:1519-1529. [PMID: 30017829 DOI: 10.1016/j.jtho.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite apparently complete surgical resection, approximately half of resected early-stage lung cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 8%. Thus, there is a need for better identifying who benefits from adjuvant therapy, the drivers of relapse, and novel targets in this setting. METHODS RNA sequencing and liquid chromatography/liquid chromatography-mass spectrometry proteomics data were generated from 51 surgically resected non-small cell lung tumors with known recurrence status. RESULTS We present a rationale and framework for the incorporation of high-content RNA and protein measurements into integrative biomarkers and show the potential of this approach for predicting risk of recurrence in a group of lung adenocarcinomas. In addition, we characterize the relationship between mRNA and protein measurements in lung adenocarcinoma and show that it is outcome specific. CONCLUSIONS Our results suggest that mRNA and protein data possess independent biological and clinical importance, which can be leveraged to create higher-powered expression biomarkers.
Collapse
Affiliation(s)
- Michael F Sharpnack
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Nilini Ranbaduge
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | | | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Celine Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille, France; Aix-Marseille University, Marseille, France
| | - Wayne O Miles
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Morris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - James L Sharpnack
- Department of Statistics, University of California, Davis, California
| | - Joseph Amann
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher A Maher
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | - Vicki H Wysocki
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Ramaswami Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Parag Mallick
- Department of Radiology, Stanford University, Palo Alto, California
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
30
|
Zhang J, Chai H, Guo S, Guo H, Li Y. High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome. Molecules 2018; 23:molecules23061448. [PMID: 29903999 PMCID: PMC6099666 DOI: 10.3390/molecules23061448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/02/2023] Open
Abstract
Secreted proteins are widely spread in living organisms and cells. Since secreted proteins are easy to be detected in body fluids, urine, and saliva in clinical diagnosis, they play important roles in biomarkers for disease diagnosis and vaccine production. In this study, we propose a novel predictor for accurate high-throughput identification of mammalian secreted proteins that is based on sequence-derived features. We combine the features of amino acid composition, sequence motifs, and physicochemical properties to encode collected proteins. Detailed feature analyses prove the effectiveness of the considered features. Based on the differences across various species of secreted proteins, we introduce the species-specific scheme, which is expected to further explore the intrinsic attributes of specific secreted proteins. Experiments on benchmark datasets prove the effectiveness of our proposed method. The test on independent testing dataset also promises a good generalization capability. When compared with the traditional universal model, we experimentally demonstrate that the species-specific scheme is capable of significantly improving the prediction performance. We use our method to make predictions on unreviewed human proteome, and find 272 potential secreted proteins with probabilities that are higher than 99%. A user-friendly web server, named iMSPs (identification of Mammalian Secreted Proteins), which implements our proposed method, is designed and is available for free for academic use at: http://www.inforstation.com/webservers/iMSP/.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.
| | - Haiting Chai
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Song Guo
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.
| | - Huaping Guo
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.
| | - Yanling Li
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
31
|
Comparative transcriptomic and proteomic analysis of Arthrobacter sp. CGMCC 3584 responding to dissolved oxygen for cAMP production. Sci Rep 2018; 8:1246. [PMID: 29352122 PMCID: PMC5775200 DOI: 10.1038/s41598-017-18889-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023] Open
Abstract
Arthrobacter sp. CGMCC 3584 is able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. However, the molecular basis of cAMP production in Arthrobacter species is rarely explored. Here, for the first time, we report the comparative transcriptomic and proteomic study of Arthrobacter cells to elucidate the higher productivity of cAMP under high oxygen supply. We finally obtained 14.1% and 19.3% of the Arthrobacter genome genes which were up-regulated and down-regulated notably, respectively, with high oxygen supply, and identified 54 differently expressed proteins. Our results revealed that high oxygen supply had two major effects on metabolism: inhibition of glycolysis, pyruvate metabolism, nitrogen metabolism, and amino acid metabolism (histidine, branched-chain amino acids and glutamate metabolism); enhancement of the tricarboxylic acid cycle and purine metabolism. We also found that regulation of adenylate cyclase and phosphodiesterase was not significant under high oxygen supply, suggesting efficient cAMP export might be important in cAMP production. These findings may contribute to further understanding of capacities of Arthrobacter species and would be highly useful in genetic regulation for desirable production.
Collapse
|
32
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
33
|
Kaplanoglu E, Chapman P, Scott IM, Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci Rep 2017; 7:1762. [PMID: 28496260 PMCID: PMC5431904 DOI: 10.1038/s41598-017-01961-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Current control of insect pests relies on chemical insecticides, however, insecticide resistance development by pests is a growing concern in pest management. The main mechanisms for insecticide resistance typically involve elevated activity of detoxifying enzymes and xenobiotic transporters that break-down and excrete insecticide molecules. In this study, we investigated the molecular mechanisms of imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), an insect pest notorious for its capacity to develop insecticide resistance rapidly. We compared the transcriptome profiles of imidacloprid-resistant and sensitive beetle strains and identified 102 differentially expressed transcripts encoding detoxifying enzymes and xenobiotic transporters. Of these, 74 were up-regulated and 28 were down-regulated in the resistant strain. We then used RNA interference to knock down the transcript levels of seven up-regulated genes in the resistant beetles. Ingestion of double-stranded RNA successfully knocked down the expression of the genes for three cytochrome P450s (CYP6BQ15, CYP4Q3 and CYP4Q7), one ATP binding cassette (ABC) transporter (ABC-G), one esterase (EST1), and two UDP-glycosyltransferases (UGT1 and UGT2). Further, we demonstrated that silencing of CYP4Q3 and UGT2 significantly increased susceptibility of resistant beetles to imidacloprid, indicating that overexpression of these two genes contributes to imidacloprid resistance in this resistant strain.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Patrick Chapman
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Ian M Scott
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Cam Donly
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada.
| |
Collapse
|
34
|
Bauernfeind AL, Babbitt CC. The predictive nature of transcript expression levels on protein expression in adult human brain. BMC Genomics 2017; 18:322. [PMID: 28438116 PMCID: PMC5402646 DOI: 10.1186/s12864-017-3674-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. RESULTS Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. CONCLUSIONS The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, 63110, USA. .,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
35
|
Global Analysis and Comparison of the Transcriptomes and Proteomes of Group A Streptococcus Biofilms. mSystems 2016; 1:mSystems00149-16. [PMID: 27933318 PMCID: PMC5141267 DOI: 10.1128/msystems.00149-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Prokaryotes are thought to regulate their proteomes largely at the level of transcription. However, the results from this first set of global transcriptomic and proteomic analyses of paired microbial samples presented here show that this assumption is false for the majority of genes and their products in S. pyogenes. In addition, the tenuousness of the link between transcription and translation becomes even more pronounced when microbes exist in a biofilm or a stationary planktonic state. Since the transcriptome level does not usually equal the proteome level, the validity attributed to gene expression studies as well as proteomic studies in microbial analyses must be brought into question. Therefore, the results attained by either approach, whether RNA-seq or shotgun proteomics, must be taken in context and evaluated with particular care since they are by no means interchangeable. To gain a better understanding of the genes and proteins involved in group A Streptococcus (GAS; Streptococcus pyogenes) biofilm growth, we analyzed the transcriptome, cellular proteome, and cell wall proteome from biofilms at different stages and compared them to those of plankton-stage GAS. Using high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics, we found distinct expression profiles in the transcriptome and proteome. A total of 46 genes and 41 proteins showed expression across the majority of biofilm time points that was consistently higher or consistently lower than that seen across the majority of planktonic time points. However, there was little overlap between the genes and proteins on these two lists. In line with other studies comparing transcriptomic and proteomic data, the overall correlation between the two data sets was modest. Furthermore, correlation was poorest for biofilm samples. This suggests a high degree of regulation of protein expression by nontranscriptional mechanisms. This report illustrates the benefits and weaknesses of two different approaches to global expression profiling, and it also demonstrates the advantage of using proteomics in conjunction with transcriptomics to gain a more complete picture of global expression within biofilms. In addition, this report provides the fullest characterization of expression patterns in GAS biofilms currently available. IMPORTANCE Prokaryotes are thought to regulate their proteomes largely at the level of transcription. However, the results from this first set of global transcriptomic and proteomic analyses of paired microbial samples presented here show that this assumption is false for the majority of genes and their products in S. pyogenes. In addition, the tenuousness of the link between transcription and translation becomes even more pronounced when microbes exist in a biofilm or a stationary planktonic state. Since the transcriptome level does not usually equal the proteome level, the validity attributed to gene expression studies as well as proteomic studies in microbial analyses must be brought into question. Therefore, the results attained by either approach, whether RNA-seq or shotgun proteomics, must be taken in context and evaluated with particular care since they are by no means interchangeable.
Collapse
|
36
|
Ozgun-Acar O, Celik-Turgut G, Gazioglu I, Kolak U, Ozbal S, Ergur BU, Arslan S, Sen A, Topcu G. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice. J Neuroimmunol 2016; 298:106-116. [PMID: 27609283 DOI: 10.1016/j.jneuroim.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
Since ancient times, Capparis species have been widely used in traditional medicine to treat various diseases. Our recent investigations have suggested Capparis ovata's potential anti-neuroinflammatory application for the treatment of multiple sclerosis (MS). The present study was designed to precisely determine the underlying mechanism of its anti-neuroinflammatory effect in a mouse model of MS. C. ovata water extract (COWE) was prepared using the plant's fruit, buds, and flower parts (Turkish Patent Institute, PT 2012/04,093). We immunized female C57BL/6J mice with MOG35-55/CFA. COWE was administered at a daily dose of 500mg/kg by oral gavage either from the day of immunization (T1) or at disease onset (T2) for 21days. Gene expression analysis was performed using a Mouse Multiple Sclerosis RT² Profiler PCR Array, and further determinations and validations of the identified genes were performed using qPCR. Whole-genome transcriptome profiling was analyzed using Agilent SurePrint G3 Mouse GE 8X60K microarrays. Immunohistochemical staining was applied to brain sections of the control and treated mice to examine the degree of degeneration. COWE was further fractionated and analyzed phytochemically using the Zivak Tandem Gold Triple Quadrupole LC/MS-MS system. COWE remarkably suppressed the development of EAE in T1, and the disease activity was completely inhibited. In the T2 group, the maximal score was significantly reduced compared with that of the parallel EAE group. The COWE suppression of EAE was associated with a significantly decreased expression of genes that are important in inflammatory signaling, such as TNFα, IL6, NF-κB, CCL5, CXCL9, and CXCK10. On the other hand, the expression of genes involved in myelination/remyelination was significantly increased. Immunohistochemical analysis further supported these effects, showing that the number of infiltrating immune cells was decreased in the brains of COWE-treated animals. In addition, differential expression profiling of the transcriptome revealed that COWE treatment caused the down regulation of a group of genes involved in the immune response, inflammatory response, antigen processing and presentation, B-cell-mediated immunity and innate immune response. Collectively, these results suggest anti-neuroinflammatory mechanisms by which COWE treatment delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.
Collapse
Affiliation(s)
- Ozden Ozgun-Acar
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Gurbet Celik-Turgut
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ufuk Kolak
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bekir U Ergur
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Alaattin Sen
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey.
| | - Gulacti Topcu
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| |
Collapse
|
37
|
Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries. Int J Mol Sci 2016; 17:ijms17081206. [PMID: 27483239 PMCID: PMC5000604 DOI: 10.3390/ijms17081206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp with a 5′-untranslated region (UTR) of 24 bp, a 3′-UTR of 1740 bp with a poly (A) tail, and an open reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb) against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future.
Collapse
|
38
|
Lyu K, Meng Q, Zhu X, Dai D, Zhang L, Huang Y, Yang Z. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4798-4807. [PMID: 27057760 DOI: 10.1021/acs.est.6b00101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Global warming and increased nutrient fluxes cause cyanobacterial blooms in freshwater ecosystems. These phenomena have increased the concern for human health and ecosystem services. The mass occurrences of toxic cyanobacteria strongly affect freshwater zooplankton communities, especially the unselective filter feeder Daphnia. However, the molecular mechanisms of cyanobacterial toxicity remain poorly understood. This study is the first to combine the established body growth rate (BGR), which is an indicator of life-history fitness, with differential peptide labeling (iTRAQ)-based proteomics in Daphnia magna influenced by microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. A significant decrease in BGR was detected when D. magna was exposed to MP or MF M. aeruginosa. Conducting iTRAQ proteomic analyses, we successfully identified and quantified 211 proteins with significant changes in expression. A cluster of orthologous groups revealed that M. aeruginosa-affected differential proteins were strongly associated with lipid, carbohydrate, amino acid, and energy metabolism. These parameters could potentially explain the reduced fitness based on the cost of the substance metabolism.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Daoxin Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
39
|
Feng B, Guo Z, Zhang W, Pan Y, Zhao Y. Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus. BMC Microbiol 2016; 16:75. [PMID: 27113578 PMCID: PMC4845332 DOI: 10.1186/s12866-016-0688-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 04/14/2016] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh-/tlh+) and ATCC17802 (tdh-/trh+/tlh+)). RESULTS Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson's correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. CONCLUSIONS This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics.
Collapse
Affiliation(s)
- Bo Feng
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hu Cheng Huan Road, Shanghai, China
| | - Zhuoran Guo
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hu Cheng Huan Road, Shanghai, China
| | - Weijia Zhang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hu Cheng Huan Road, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hu Cheng Huan Road, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hu Cheng Huan Road, Shanghai, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
40
|
Wang J, Wu G, Chen L, Zhang W. Integrated Analysis of Transcriptomic and Proteomic Datasets Reveals Information on Protein Expressivity and Factors Affecting Translational Efficiency. Methods Mol Biol 2016; 1375:123-136. [PMID: 25762301 DOI: 10.1007/7651_2015_242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrated analysis of large-scale transcriptomic and proteomic data can provide important insights into the metabolic mechanisms underlying complex biological systems. In this chapter, we present methods to address two aspects of issues related to integrated transcriptomic and proteomic analysis. First, due to the fact that proteomic datasets are often incomplete, and integrated analysis of partial proteomic data may introduce significant bias. To address these issues, we describe a zero-inflated Poisson (ZIP)-based model to uncover the complicated relationships between protein abundances and mRNA expression levels, and then apply them to predict protein abundance for the proteins not experimentally detected. The ZIP model takes into consideration the undetected proteins by assuming that there is a probability mass at zero representing expressed proteins that were undetected owing to technical limitations. The model validity is demonstrated using biological information of operons, regulons, and pathways. Second, weak correlation between transcriptomic and proteomic datasets is often due to biological factors affecting translational processes. To quantify the effects of these factors, we describe a multiple regression-based statistical framework to quantitatively examine the effects of various translational efficiency-related sequence features on mRNA-protein correlation. Using the datasets from sulfate-reducing bacteria Desulfovibrio vulgaris, the analysis shows that translation-related sequence features can contribute up to 15.2-26.2% of the total variation of the correlation between transcriptomic and proteomic datasets, and also reveals the relative importance of various features in translation process.
Collapse
Affiliation(s)
- Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China
| | - Gang Wu
- University of Maryland at Baltimore Country, Baltimore County, MD, USA
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China.
| |
Collapse
|
41
|
Córdoba-Rodríguez G, Vargas MH, Ruiz V, Carbajal V, Campos-Bedolla P, Mercadillo-Herrera P, Arreola-Ramírez JL, Segura-Medina P. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs. Respir Physiol Neurobiol 2015; 223:9-15. [PMID: 26657047 DOI: 10.1016/j.resp.2015.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.
Collapse
Affiliation(s)
- Guadalupe Córdoba-Rodríguez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Patricia Campos-Bedolla
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México DF, Mexico
| | | | - José Luis Arreola-Ramírez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico.
| |
Collapse
|
42
|
Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms. J Proteome Res 2015; 14:4524-37. [PMID: 26378716 DOI: 10.1021/acs.jproteome.5b00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs show that drug-binding cytoplasmic proteins and porins are potentially shuttled from the whole cell into the OMVs and may contribute to the antibiotic resistance of P. aeruginosa whole cells within biofilms.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Matthew D Surette
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Christopher Bandoro
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Paul Taylor
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| |
Collapse
|
43
|
Roberts TC, Johansson HJ, McClorey G, Godfrey C, Blomberg KEM, Coursindel T, Gait MJ, Smith CIE, Lehtiö J, El Andaloussi S, Wood MJA. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. Hum Mol Genet 2015; 24:6756-68. [PMID: 26385637 PMCID: PMC4634378 DOI: 10.1093/hmg/ddv381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/11/2015] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD. Notably, 3272 proteins were quantifiable and 525 identified as differentially expressed in mdx muscle (P < 0.01). Therapeutic restoration of dystrophin by exon skipping induced widespread shifts in protein and mRNA expression towards wild-type expression levels, whereas the miRNome was largely unaffected. Comparison analyses between datasets showed that protein and mRNA ratios were only weakly correlated (r = 0.405), and identified a multitude of differentially affected cellular pathways, upstream regulators and predicted miRNA-target interactions. This study provides fundamental new insights into gene expression and regulation in dystrophic muscle.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK, Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm SE-171 21, Sweden
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - K Emelie M Blomberg
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Thibault Coursindel
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michael J Gait
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm SE-171 21, Sweden
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK,
| |
Collapse
|
44
|
Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R, López-Torres MA, Grijalva-Chon JM. Seasonal changes in gene expression and polymorphism of hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. MARINE ENVIRONMENTAL RESEARCH 2015; 110:25-32. [PMID: 26254584 DOI: 10.1016/j.marenvres.2015.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The HSP70 proteins are an important element of the response against thermal stress and infectious diseases, and they are highly conserved and ubiquitous. In some species, variations on the hsp70 encoding sequence resulted in intraspecific differential expression, which leads to variations on thermo-tolerance among individuals. This phenomenon has not been described in the Pacific oyster Crassostrea gigas, which is cultivated in Mexico under temperature conditions highly above the optimal for this species. The present study was aimed to identify associations between hsp70 genotypes and their expression levels in C. gigas. By analyzing a 603 bp fragment from the 3' end of the hsp70 gene, 21 different genotypes with 60 nucleotide polymorphic sites were detected, of which 34 sites were found in heterozygous condition. Although no correlation was found between genotype-expression-season, a minimum expression threshold that should be taken into account as an important feature for a future breeding program is proposed.
Collapse
Affiliation(s)
- Adán Valenzuela-Castillo
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S.C. Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Hermosillo, Sonora 83106, Mexico
| | - Reina Castro-Longoria
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Marco Antonio López-Torres
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - José Manuel Grijalva-Chon
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
45
|
Borirak O, Rolfe MD, de Koning LJ, Hoefsloot HCJ, Bekker M, Dekker HL, Roseboom W, Green J, de Koster CG, Hellingwerf KJ. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1269-79. [PMID: 26049081 DOI: 10.1016/j.bbapap.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.
Collapse
Affiliation(s)
- Orawan Borirak
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Matthew D Rolfe
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijn Bekker
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Jeffrey Green
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Chaum E, Winborn CS, Bhattacharya S. Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. Mamm Genome 2015; 26:210-21. [PMID: 25963977 DOI: 10.1007/s00335-015-9568-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/02/2015] [Indexed: 01/04/2023]
Abstract
The tumor suppressor p53 is a major regulator of genes important for cell cycle arrest, senescence, apoptosis, and innate immunity, and has recently been implicated in retinal aging. In this study we sought to identify the genetic networks that regulate p53 function in the retina using quantitative trait locus (QTL) analysis. First we examined age-associated changes in the activation and expression levels of p53; known p53 target proteins and markers of innate immune system activation in primary retinal pigment epithelial (RPE) cells that were harvested from young and aged human donors. We observed increased expression of p53, activated caspase-1, CDKN1A, CDKN2A (p16INK4a), TLR4, and IFNα in aged primary RPE cell lines. We used the Hamilton Eye Institute (HEI) retinal dataset ( www.genenetwork.org ) to identify genomic loci that modulate expression of genes in the p53 pathway in recombinant inbred BXD mouse strains using a QTL systems biology-based approach. We identified a significant trans-QTL on chromosome 1 (region 172-177 Mb) that regulates the expression of Cdkn1a. Many of the genes in this QTL locus are involved in innate immune responses, including Fc receptors, interferon-inducible family genes, and formin 2. Importantly, we found an age-related increase in FCGR3A and FMN2 and a decrease in IFI16 levels in RPE cultures. There is a complex multigenic innate immunity locus that controls expression of genes in the p53 pathway in the RPE, which may play an important role in modulating age-related changes in the retina.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
47
|
Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA. Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast. PLoS Genet 2015; 11:e1005206. [PMID: 25950722 PMCID: PMC4423881 DOI: 10.1371/journal.pgen.1005206] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Collapse
Affiliation(s)
- Gábor Csárdi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America,
| | - Alexander Franks
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America,
| | - David S. Choi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America,
| | - Edoardo M. Airoldi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America,
- The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America,
| | - D. Allan Drummond
- Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America,
- Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
48
|
Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA. Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast. PLoS Genet 2015. [PMID: 25950722 DOI: 10.5061/dryad.d644f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Collapse
Affiliation(s)
- Gábor Csárdi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alexander Franks
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
| | - David S Choi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Edoardo M Airoldi
- Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America,; The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America
| | - D Allan Drummond
- Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America,; Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
49
|
Bordner K, Deak T. Endogenous opioids as substrates for ethanol intake in the neonatal rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period. Physiol Behav 2015; 148:100-10. [PMID: 25662024 DOI: 10.1016/j.physbeh.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. METHODS Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2g/kg ethanol during the last few days of gestation (GDs 17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. RESULTS Three main trends emerged - (1) mRNA for the majority of factors was found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. CONCLUSION We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug.
Collapse
Affiliation(s)
- Kelly Bordner
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, United States; Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center (DEARC), Center for Development and Behavioral Neuroscience, Binghamton University-SUNY, Binghamton, NY 13902, United States
| |
Collapse
|
50
|
Fondi M, Liò P. Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 2015; 171:52-64. [PMID: 25644953 DOI: 10.1016/j.micres.2015.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/27/2022]
Abstract
Integrated -omics approaches are quickly spreading across microbiology research labs, leading to (i) the possibility of detecting previously hidden features of microbial cells like multi-scale spatial organization and (ii) tracing molecular components across multiple cellular functional states. This promises to reduce the knowledge gap between genotype and phenotype and poses new challenges for computational microbiologists. We underline how the capability to unravel the complexity of microbial life will strongly depend on the integration of the huge and diverse amount of information that can be derived today from -omics experiments. In this work, we present opportunities and challenges of multi -omics data integration in current systems biology pipelines. We here discuss which layers of biological information are important for biotechnological and clinical purposes, with a special focus on bacterial metabolism and modelling procedures. A general review of the most recent computational tools for performing large-scale datasets integration is also presented, together with a possible framework to guide the design of systems biology experiments by microbiologists.
Collapse
Affiliation(s)
- Marco Fondi
- Florence Computational Biology Group (ComBo), University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence 50019, Italy; Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Pietro Liò
- University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, CB3 0FD Cambridge, UK
| |
Collapse
|