1
|
Loggenberg S, Twilley D, Lall N. Evaluating the effects of various ethanolic medicinal plant extracts on metastatic breast cancer proliferation, invasion, and expression of a novel potential drug target; CD82 metastatic suppressor protein, and on in vivo angiogenesis using the ex ovo yolk sac membrane (YSM) assay. J Cancer Res Clin Oncol 2024; 150:257. [PMID: 38753184 PMCID: PMC11098903 DOI: 10.1007/s00432-024-05751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
PURPOSE Breast cancer metastasis relies on cellular invasion and angiogenesis facilitated by the downregulation of metastatic suppressor proteins like Cluster of Differentiation 82 (CD82). Currently, no medicines target multiple systems to prevent metastatic progression through CD82 upregulation. This study screened for plant extracts displaying effects on cell proliferation, invasion, and CD82 expression in breast cancer cells, and in vivo angiogenesis, and further correlated between the biological activities and effect on CD82 expression. METHODS Seventeen ethanolic plant extracts were screened for their effect on cell proliferation (against MDA-MB-231 and MCF-7 breast cancer and Hek293 kidney cells), cell invasion and effect on CD82 expression in metastatic MDA-MB-231 cells. Selected extracts were further evaluated for in vivo anti-angiogenesis. RESULTS Extracts displayed varying antiproliferative activity against the different cell lines, and those that showed selectivity indexes (SI) > 0.5 against MDA-MB-231 were selected for anti-invasion evaluation. Buddleja saligna Willd. (BS), Combretum apiculatum Sond. (CA), Foeniculum vulgare, Greyia radlkoferi, Gunnera perpensa and Persicaria senegalensis (Meisn.) Soják (PS) displayed 50% inhibitory concentration (IC50) values of 44.46 ± 3.46, 74.00 ± 4.48, 180.43 ± 4.51, 96.97 ± 2.29, 55.29 ± 9.88 and 243.60 ± 2.69 µg/mL, respectively against MDA-MB-231, and compared to Hek293 showed SI of 0.9, 0.7, 1.4, 1.1, 2.2 and 0.5. Significant invasion inhibition was observed at both 20 and 40 µg/mL for BS (94.10 ± 0.74 and 96.73 ± 0.95%) and CA (87.42 ± 6.54 and 98.24 ± 0.63%), whereas GR (14.91 ± 1.62 and 41 ± 1.78%) and PS (36.58 ± 0.54 and 51.51 ± 0.83%), only showed significant inhibition at 40 µg/mL, and FV (< 5% inhibition) and GP (10 ± 1.03 and 22 ± 1.31%) did not show significant inhibition at both concentrations. Due to the significant anti-invasive activity of BS, CA and PS at 40 µg/mL, these extracts were further evaluated for their potential to stimulate CD82. BS showed significant (p < 0.05) reduction in CD82 at 20 and 40 µg/mL (13.2 ± 2.2% and 20.3 ± 1.5% decrease, respectively), whereas both CA and PS at 20 µg/mL increased (p < 0.05) CD82 expression (16.4 ± 0.8% and 5.4 ± 0.6% increase, respectively), and at 40 µg/mL significantly reduced CD82 expression (23.4 ± 3.1% and 11.2 ± 2.9% decrease, respectively). Using the yolk sac membrane assay, BS (59.52 ± 4.12 and 56.72 ± 3.13% newly formed vessels) and CA (83.33 ± 3.17 and 74.00 ± 2.12%) at both 20 and 40 µg/egg showed significant (p < 0.001) angiogenesis inhibition, with BS showing statistical similar activity to the positive control, combretastatin A4 (10 nmol/egg), whereas PS only displayed significant (p < 0.001) angiogenesis stimulation at 40 µg/egg (120.81 ± 3.34% newly formed vessels). CONCLUSION BS exhibits antiproliferative, anti-invasive, and anti-angiogenic activity despite inhibiting CD82, suggesting an alternative mode of action. CA at 20 µg/mL shows moderate anti-invasive and anti-angiogenic potential by stimulating CD82, while at 40 µg/mL it still displays these properties but inhibits CD82, suggesting an additional mode of action. PS, with the least antiproliferative activity, stimulates CD82 and inhibits angiogenesis at 20 µg/mL but inhibits CD82 and increases angiogenesis at 40 µg/mL, indicating CD82 targeting as a major mode of action. Future studies should explore breast cancer xenograft models to assess the extracts' impact on CD82 expression and angiogenesis in the tumor microenvironment, along with isolating bioactive compounds from the extracts.
Collapse
Affiliation(s)
- Samantha Loggenberg
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa.
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA.
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Bio-Tech Research and Development Institute, University of the West Indies, Kingston, Jamaica.
| |
Collapse
|
2
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
3
|
Role of Metastasis Suppressor KAI1/CD82 in Different Cancers. JOURNAL OF ONCOLOGY 2021; 2021:9924473. [PMID: 34306081 PMCID: PMC8285166 DOI: 10.1155/2021/9924473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is one of the characteristics of malignant tumors and the main cause of death worldwide. The process of metastasis is mainly affected by tumor metastasis genes, tumor metastasis suppressor genes, tumor microenvironment, extracellular matrix degradation, and other factors. Thus, it is essential to elucidate the mechanism of metastasis and find the therapeutic targets in order to prevent the development of malignant tumors. KAI1/CD82, a member of tetraspanin superfamily of glycoproteins, has been reported as a tumor metastasis suppressor gene in various types of cancers without affecting the tumor formation. Many studies have demonstrated that low expression of KAI1/CD82 might lead to poor prognosis due to its interactions with other tetraspanins and integrins, resulting in the regulation of cell motility and invasion, cell-cell adhesion, and apoptosis. Considering its pathological and physiological significance, KAI1/CD82 could be a potential strategy for clinical predicting and preventing tumor progression and metastasis. The present review aims to discuss the role of KAI1/CD82 in metastasis for different cancers and examine its prospects as a metastasis biomarker and a therapeutic target.
Collapse
|
4
|
Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci 2021; 22:ijms22095015. [PMID: 34065085 PMCID: PMC8125994 DOI: 10.3390/ijms22095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma (VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multicomparison studies also revealed that the expression of CD9 was associated with tumor size, whereas CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover, low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and CD82 are likely potential therapeutic targets in VSCC.
Collapse
|
5
|
Watanabe A, Tanaka A, Koga C, Matsumoto M, Okazaki Y, Kin T, Miyajima A. CD82 is a marker to isolate β cell precursors from human iPS cells and plays a role for the maturation of β cells. Sci Rep 2021; 11:9530. [PMID: 33953224 PMCID: PMC8100138 DOI: 10.1038/s41598-021-88978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Generation of pancreatic β cells from pluripotent stem cells is a key technology to develop cell therapy for insulin-dependent diabetes and considerable efforts have been made to produce β cells. However, due to multiple and lengthy differentiation steps, production of β cells is often unstable. It is also desirable to eliminate undifferentiated cells to avoid potential risks of tumorigenesis. To isolate β cell precursors from late stage pancreatic endocrine progenitor (EP) cells derived from iPS cells, we have identified CD82, a member of the tetraspanin family. CD82+ cells at the EP stage differentiated into endocrine cells more efficiently than CD82- EP stage cells. We also show that CD82+ cells in human islets secreted insulin more efficiently than CD82- cells. Furthermore, knockdown of CD82 expression by siRNA or inhibition of CD82 by monoclonal antibodies in NGN3+ cells suppressed the function of β cells with glucose-stimulated insulin secretion, suggesting that CD82 plays a role in maturation of EP cells to β cells.
Collapse
Affiliation(s)
- Ami Watanabe
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| | - Anna Tanaka
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chizuko Koga
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahito Matsumoto
- Graduate School of Medical and Dental Sciences, Department of Biofunction Research, Institute of Biomaterials and Bioenginnering, Tokyo Medical University and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, 2-1-2 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, 210 College Plaza, 8215-112 St, Edmonton, AB, T6G2C8, Canada
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
6
|
Wang Z, Liu Y. MicroRNA-633 enhances melanoma cell proliferation and migration by suppressing KAI1. Oncol Lett 2020; 21:88. [PMID: 33376521 PMCID: PMC7751373 DOI: 10.3892/ol.2020.12349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to determine the impact of microRNA (miRNA/miR)-633 on the biological properties of malignant melanoma cells. Kang-Ai 1 (KAI1), also known as cluster of differentiation 82, is an important transcriptional regulator and tumor suppressor gene present in different types of tumors. miRNAs that potentially bind with KAI1 were predicted via bioinformatics analyses. In total, six putative miRNA regulators of KAI1 were identified in the present analysis, among which miR-633 was upregulated the most in melanoma tissues compared with the control group. The expression levels of miR-633 and KAI1 in melanoma tissues compared with adjacent normal tissues were then assessed. It was found that miR-633 was significantly upregulated in melanoma cells compared with the control group, whereas the expression levels of KAI1 showed the opposite results. miR-633 was predicted to target the 3'-untranslated region of KAI1 using predictive online tools, and results from luciferase reporter assays confirmed the direct regulation of KAI1 promoter activity by miR-633. Furthermore, miR-633 mimics over expression was shown to suppress both mRNA and protein expression of KAI1, while miR-633 inhibition resulted in decreased viability and migrationin melanoma cells in vitro. Taken together, the present study demonstrated, to the best of the authors' knowledge for the first time, that miR-633 exerts an important role in melanoma through targeting KAI1.
Collapse
Affiliation(s)
- Zhengxiang Wang
- Department of Dermatology, Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
7
|
Krishna Latha T, Verma A, Thakur GK, Banerjee B, Kaur N, Singh UR, Sharma S. Down Regulation of KAI1/CD82 in Lymph Node Positive and Advanced T-Stage Group in Breast Cancer Patients. Asian Pac J Cancer Prev 2019; 20:3321-3329. [PMID: 31759355 PMCID: PMC7063004 DOI: 10.31557/apjcp.2019.20.11.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metastasis represents a deadly aspect of any cancer including breast cancer, given its high prevalence; treatment of metastatic breast cancer remains a clinically unmet need, which necessitates the exploration of metastasis suppressor genes (MSGs). KAI-1/CD82 is an important member of MSGs; the role of KAI1 has been well explored in prostate cancer, however its role in breast cancer is not fully explored and in fact the results of breast cancer studies are contentious. Thus, the present study aimed to investigate expression of KAI1 at both transcriptional and translational levels in the tissue of breast cancer patients and benign breast disease. Further, we analysed the relationship between expression levels of KAI1 and clinicopathological parameters in breast cancer patients. MATERIALS AND METHODS mRNA expression was studied by Real time PCR and protein expression was analyzed by both Western blot and Immunohistochemistry. RESULTS The results of the study indicate that KAI1 expression was remarkably decreased in breast cancer both at the gene and the protein levels (P < 0.05) compared to benign breast disease. In addition, KAI1 expression levels were strongly associated with axillary lymph node status and advanced T stage (p < 0.05), however no association was found with tumor grade, age, menopausal status and receptor status like ER, PR and Her2. CONCLUSION Low expression of KAI1 might be helpful for predicting the lymph node metastasis and T staging, thus predicts malignant prognosis of breast cancer.<br />.
Collapse
Affiliation(s)
- Thammineni Krishna Latha
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Ankur Verma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Gaurav Kumar Thakur
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Basudev Banerjee
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
8
|
Zhang W, Sun W, Qin Y, Wu C, He L, Zhang T, Shao L, Zhang H, Zhang P. Knockdown of KDM1A suppresses tumour migration and invasion by epigenetically regulating the TIMP1/MMP9 pathway in papillary thyroid cancer. J Cell Mol Med 2019; 23:4933-4944. [PMID: 31211500 PMCID: PMC6653290 DOI: 10.1111/jcmm.14311] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/10/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.
Collapse
Affiliation(s)
- WenQian Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - CangHao Wu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Liang Shao
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang Liaoning Province, China
| |
Collapse
|
9
|
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic Impact of Tissue Inhibitor of Metalloproteinase-1 in Non- Small Cell Lung Cancer: Systematic Review and Meta-Analysis. Curr Med Chem 2019; 26:7694-7713. [PMID: 30182835 DOI: 10.2174/0929867325666180904114455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) is a multifunctional natural matrixin inhibitor that is generally considered a negative regulator of cancer metastasis. Clinical studies reporting the prognostic value of TIMP-1 in Non-small Cell Lung Cancer (NSCLC) are inconsistent. Therefore, the present study aimed to determine the prognostic impact of TIMP-1 expression in NSCLC. METHODS Appropriate studies with full-text articles were identified in searches of the China National Knowledge Infrastructure (CNKI), Cochrane Library, PubMed, and Web of Science databases up to March 7, 2018. The pooled Hazard Ratio (HR) of overall survival with a 95% confidence interval (95% CI) was employed to assess the relationship between the expression of TIMP-1 and NSCLC patient survival. RESULTS The meta-analysis comprised 40 studies including 3,194 patients. Study outcomes indicated that high TIMP-1 expression is independently associated with poor overall survival (HR: 1.60; 95% CI: 1.50, 1.69; P < 0.00001) with 61% of heterogeneity. In addition, we analyzed subgroups, including ethnicities, histological types, percentage of TIMP-1 expression levels, specimens, and tumor stage. All results were statistically significant. The outcome of our meta-analysis indicates that high expression levels of TIMP-1 are correlated with poor prognosis in patients with NSCLC. CONCLUSION Expression levels of TIMP-1 represent a potential prognostic biomarker in NSCLC patients in addition to being a possible therapeutic target.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Shuhuang Lin
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Keren Gu
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| |
Collapse
|
10
|
Ci H, Xu Z, Xu J, Wang Y, Wu S. Expressions of KAI1 and E-cadherin in nonsmall cell lung cancer and their correlation with vasculogenic mimicry. Medicine (Baltimore) 2018; 97:e12293. [PMID: 30290593 PMCID: PMC6200519 DOI: 10.1097/md.0000000000012293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metastasis and recurrence are the most common reasons for treatment failure of nonsmall cell lung cancer (NSCLC). Vasculogenic mimicry (VM, new blood supply formation in malignant tumors), E-Cadherin (a calcium-dependent transmembrane glycoprotein that mediates intercellular adhesion), KAI1 (a suppressor gene of tumor metastasis) are all valuable factors for metastasis and prognosis in diverse common human cancers. However, the correlation of VM, E-Cadherin, and KAI1 in NSCLC is still unclear. In this study, we analyzed the correlations among these factors as well as their respective correlations with clinicopathological parameters and survival in NSCLC. METHODS The level of VM, E-Cadherin, and KAI1 in 163 tissue samples of NSCLC was examined by immunhistochemistry. Clinical data were also collected. RESULTS Levels of VM was significantly higher, and levels of KAI1 and E-Cadherin significantly lower in NSCLC tissues than in normal lung tissues. Levels of VM were positively associated with lymph node metastasis (LNM), size, grade, and tumor node metastasis (TNM) stages, and negatively associated with patients' overall survival (OS). Levels of KAI1 and E-Cadherin were negatively correlated with LNM, size, grade, and TNM stage, and positively associated with patients' OS. In multivariate analysis, high levels of VM, E-Cadherin, and KAI1, as well as TNM stages were independently correlated with lower OS in patients with NSCLC. CONCLUSION VM and the expression of E-Cadherin and KAI1 may represent promising metastatic and prognostic biomarkers, as well as potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongfei Ci
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhouyi Xu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Jing Xu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Yichao Wang
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Shiwu Wu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Liu W, Wei H, Gao Z, Chen G, Liu Y, Gao X, Bai G, He S, Liu T, Xu W, Yang X, Jiao J, Xiao J. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene 2018; 665:57-66. [PMID: 29702185 DOI: 10.1016/j.gene.2018.04.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lung cancer leads to the largest number of cancer-related deaths worldwide and is usually accompanied with metastasis which is the primary cause of those death and correlated with poor prognosis. However, the mechanism of lung cancer metastasis is still lack of definition. METHODS We compared the primary lung adenocarcinoma (AD) and its metastasis tissues induced by overexpression of KrasG12D and inactivation of P53 in mouse lungs by analyzing GSE40222 about the differentially expressed genes (DEGs), pathways and hub genes. And human lung AD databases are used to verify the conversed changes of identified key gene and then followed functional studies are performed to explore the functions of key gene. RESULTS We identified 165 genes differentially expressed in lung AD metastasis compared to primary AD. Pathway analysis identified 649 GO biological processes and 8 KEGG pathways, such as ECM-receptor interaction. Biological network interaction identified the hub genes during lung adenocarcinoma metastasis, such as the up-regulated COL5A1, a novel gene in AD metastasis. We found it's also increased in human AD and advanced stage. Knockdown of COL5A1 in human AD metastatic cells inhibited cell growth and invasion, and induced cell apoptosis. Notably, higher expression of COL5A1 was observed in the lung AD patients with recurrence and short survive. CONCLUSION By analyzing mouse lung AD and its metastases, we identified the potential key genes and pathways regulating lung AD metastasis, such as COL5A1. The following analysis of COL5A1 in human AD database and cells explores its functions, holding the implications of target therapy in AD metastasis and also providing more clues for future studies.
Collapse
Affiliation(s)
- Weibo Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhengyu Gao
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Guanghui Chen
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yujie Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guangjian Bai
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shaohui He
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
12
|
Miller J, Dreyer TF, Bächer AS, Sinner EK, Heinrich C, Benge A, Gross E, Preis S, Rother J, Roberts A, Nelles G, Miteva T, Reuning U. Differential tumor biological role of the tumor suppressor KAI1 and its splice variant in human breast cancer cells. Oncotarget 2018; 9:6369-6390. [PMID: 29464079 PMCID: PMC5814219 DOI: 10.18632/oncotarget.23968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/23/2017] [Indexed: 01/30/2023] Open
Abstract
The tetraspanin and tumor suppressor KAI1 is downregulated or lost in many cancers which correlates with poor prognosis. KAI1 acts via physical/functional crosstalk with other membrane receptors. Also, a splice variant of KAI1 (KAI1-SP) has been identified indicative of poor prognosis. We here characterized differential effects of the two KAI1 variants on tumor biological events involving integrin (αvß3) and/or epidermal growth factor receptor (EGF-R). In MDA-MB-231 and -435 breast cancer cells, differential effects were documented on the expression levels of the tumor biologically relevant integrin αvß3 which colocalized with KAI1-WT but not with KAI1-SP. Cellular motility was assessed by video image processing, including motion detection and vector analysis for the quantification and visualization of cell motion parameters. In MDA-MB-231 cells, KAI1-SP provoked a quicker wound gap closure and higher closure rates than KAI1-WT, also reflected by different velocities and average motion amplitudes of singular cells. KAI1-SP induced highest cell motion adjacent to the wound gap borders, whereas in MDA-MB-435 cells a comparable induction of both KAI1 variants was noticed. Moreover, while KAI1-WT reduced cell growth, KAI1-SP significantly increased it going along with a pronounced EGF-R upregulation. KAI1-SP-induced cell migration and proliferation was accompanied by the activation of the focal adhesion and Src kinase. Our findings suggest that splicing of KAI1 does not only abrogate its tumor suppressive functions, but even more, promotes tumor biological effects in favor of cancer progression and metastasis.
Collapse
Affiliation(s)
- Julia Miller
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Tobias F Dreyer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anne Sophie Bächer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva-Kathrin Sinner
- BOKU, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Christine Heinrich
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anke Benge
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva Gross
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Sarah Preis
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Jan Rother
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Anthony Roberts
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Tzenka Miteva
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Ute Reuning
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
13
|
Zhu J, Liang C, Hua Y, Miao C, Zhang J, Xu A, Zhao K, Liu S, Tian Y, Dong H, Zhang C, Li P, Su S, Qin C, Wang Z. The metastasis suppressor CD82/KAI1 regulates cell migration and invasion via inhibiting TGF-β 1/Smad signaling in renal cell carcinoma. Oncotarget 2017; 8:51559-51568. [PMID: 28881668 PMCID: PMC5584269 DOI: 10.18632/oncotarget.18086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022] Open
Abstract
The tetraspanin KAI1/CD82 was identified as a tumor metastasis suppressor that downregulated in various malignant cell types. However, the function of CD82 and its underlying anti-metastasis role in renal cell carcinoma (RCC) is still unraveled. Here, we investigated the expression of CD82 in RCC and explored its regulatory mechanism in RCC cell lines. We found that CD82 was down-regulated in RCC tissues and cells and its expression was significantly associated with histological grade(p=0.041), tumour stage (p=0.036) and tumor size(p=0.020) by analyzing tissue microarrays. After upregulation of CD82 through lentivirus, reduced ability of migration and invasion in Caki-1 cells were detected. In contrast, gene silencing of CD82 by small interfering RNA promoted metastatic and invasive potential of 786-O cells. Furthermore, Western blot was performed to identify the influence of CD82 on MMP family and TGF-β1/Smad pathway in RCC. Subsequently, upregulating protein level of TGF-β1 with the overexpression of CD82 could rescue the malignant behaviors inhibited by CD82 which indicated that CD82 played its inhibitory role in RCC partially by attenuating the expression of TGF-β1. Taken together, CD82 played a prominent role in migration and invasion of RCC cells and it might exhibit its inhibitory role in RCC metastasis via block TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Fang X, Yin Z, Li X, Xia L, Quan X, Zhao Y, Zhou B. Multiple functional SNPs in differentially expressed genes modify risk and survival of non-small cell lung cancer in Chinese female non-smokers. Oncotarget 2017; 8:18924-18934. [PMID: 28148898 PMCID: PMC5386658 DOI: 10.18632/oncotarget.14836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
DNA genotype can affect gene expression, and gene expression can influence the onset and progression of diseases. Here we conducted a comprehensive study, we integrated analysis of gene expression profile and single nucleotide polymorphism (SNP) microarray data in order to scan out the critical genetic changes that participate in the onset and development of non-small cell lung cancer (NSCLC). Gene expression profile datasets were downloaded from the GEO database. Firstly, differentially expressed genes (DEGs) between NSCLC samples and adjacent normal samples were identified. Next, by STRING database, protein-protein interaction (PPI) network was constructed. At the same time, hub genes in PPI network were identified. Then, some functional SNPs in hub genes that may affect gene expression have been annotated. Finally, we carried a study to explore the relationship between functional SNPs and NSCLC risk and overall survival in Chinese female non-smokers. A total of 488 DEGs were identified in our study. There are 29 proteins with a higher degree of connectivity in the PPI network, including FOS, IL6 and MMP9. By using database annotation, we got 8 candidate functional SNPs that may affect the expression level of hub proteins. In the case-control study, we found that rs4754-T allele, rs959173-C allele and rs2239144-G allele were the protective allele of NSCLC risk. In dominant model, rs4754-CT+TT genotype were associated with a shorter survival time. In general, our study provides a novel research direction in the field of multi-omic data integration, and helps us find some critical genetic changes in disease.
Collapse
Affiliation(s)
- Xue Fang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Yuxia Zhao
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|
15
|
Chai J, Du L, Ju J, Ma C, Shen Z, Yang X, Liang L, Ni Q, Sun M. Overexpression of KAI1/CD82 suppresses in vitro cell growth, migration, invasion and xenograft growth in oral cancer. Mol Med Rep 2017; 15:1527-1532. [PMID: 28260006 PMCID: PMC5365014 DOI: 10.3892/mmr.2017.6186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
KAI1/CD82 is a metastatic suppressor gene in human prostate cancer and several other types of cancer in humans. The present study aimed to examine the role of the overexpression of KAI1 in the progression of oral cancer. Human KAI1/CD82 cDNA was transfected into OSCC-15 and 293T cell lines, and its effects on OSCC-15 cell proliferation, invasion and apoptosis were assessed by performing a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Matrigel invasion and Annexin V-FITC staining, respectively. In addition, a xenograft model was used to assess the effect of KAI1/CD82 on the in vivo growth of tumors. The overexpression of KAI1/CD82 inhibited the proliferation and invasion of OSCC-15 cells. It also enhanced the apoptotic rate of the OSCC-15 cells. Furthermore, the overexpression of KAI1/CD82 inhibited tumor growth in the xenograft model. The results demonstrated that the overexpression of KAI1/CD82 significantly inhibited the proliferation and invasion of human oral cancer cells, and inhibited tumor growth in the xenograft model. Therefore, KAI1/CD82 may be considered as a potential therapeutic target in oral cancer.
Collapse
Affiliation(s)
- Juan Chai
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Liangzhi Du
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun Ju
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Ma
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhiyuan Shen
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiangming Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Liang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qianwei Ni
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Moyi Sun
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
16
|
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X, Zhang XA. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2016; 34:619-33. [PMID: 26335499 DOI: 10.1007/s10555-015-9585-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.
Collapse
Affiliation(s)
- Jin Feng
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dao-Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhou Yan
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Jiexin Zhang
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Li Y, Yang F, Zheng W, Hu M, Wang J, Ma S, Deng Y, Luo Y, Ye T, Yin W. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro. Biomed Pharmacother 2016; 80:227-235. [DOI: 10.1016/j.biopha.2016.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
|
18
|
Momeny M, Saunus JM, Marturana F, McCart Reed AE, Black D, Sala G, Iacobelli S, Holland JD, Yu D, Da Silva L, Simpson PT, Khanna KK, Chenevix-Trench G, Lakhani SR. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 2016; 6:3932-46. [PMID: 25668816 PMCID: PMC4414164 DOI: 10.18632/oncotarget.2846] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 12/25/2022] Open
Abstract
HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment.
Collapse
Affiliation(s)
- Majid Momeny
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia
| | - Jodi M Saunus
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Flavia Marturana
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia
| | - Amy E McCart Reed
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Debra Black
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | | - Jane D Holland
- Department of Cancer Research, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonard Da Silva
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,The University of Queensland School of Medicine, Herston, QLD, Australia
| | - Peter T Simpson
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,The University of Queensland School of Medicine, Herston, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Sunil R Lakhani
- University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, QLD, Australia.,The University of Queensland School of Medicine, Herston, QLD, Australia
| |
Collapse
|
19
|
Wu Q, Yang Y, Wu S, Li W, Zhang N, Dong X, Ou Y. Evaluation of the correlation of KAI1/CD82, CD44, MMP7 and β-catenin in the prediction of prognosis and metastasis in colorectal carcinoma. Diagn Pathol 2015; 10:176. [PMID: 26408312 PMCID: PMC4582888 DOI: 10.1186/s13000-015-0411-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/17/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To investigate the relationship of KAI1/CD82, CD44, matrix metalloproteinase 7 (MMP7) and β-catenin, and examine its association with clinicopathological features, metastasis and prognosis in colorectal carcinoma (CRC). METHODS Immunohistochemical (IHC) analysis was used to detect the expression of KAI1/CD82, CD44, MMP7 and β-catenin in 174 archival surgical specimens of human CRC. Furthermore, clinicopathological features such as age, sex and so on were also collected retrospectively. RESULTS CD44, MMP7 and β-catenin expression was positively associated with distant metastasis, lymph node metastasis and tumor-node-metastasis (TNM) stage. However, decreased KAI1/CD82 expression correlated significantly with distant metastasis, lymph node metastasis and TNM stage. KAI1/CD82 expression showed a negative correlation with CD44, MMP7 and β-catenin. Furthermore, β-catenin expression showed a positive correlation with CD44 and MMP7. Multivariate logistic regression analysis showed that KAI1/CD82 and β-catenin expression were significantly associated with lymph node metastasis and KAI1/CD82 was significantly associated with distant metastasis. Kaplan-Meier analysis revealed that CD44, MMP7 and β-catenin expression was negatively correlated with overall survival (OS), while KAI1/CD82 expression was positively correlated with OS. Low KAI1/CD82 expression and high expression of CD44, MMP7 and β-catenin was associated with a poor prognosis in CRC. Multivariate Cox regression analysis indicated that the expression of KAI1/CD82, MMP7 and β-catenin were independent predictors of OS in CRC. CONCLUSION The expression of KAI1/CD82, CD44, MMP7 and β-catenin is related to tumor metastasis and prognosis in CRC. Combined detection of these factors may be of significant value in predicting the prognosis and metastasis in CRC patients.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Wanyun Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Na Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Xiuqin Dong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, China.
| |
Collapse
|
20
|
Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumour Biol 2015; 36:3957-67. [PMID: 25578494 DOI: 10.1007/s13277-015-3039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
Abstract
Tissue inhibitor metalloproteinase-1 (TIMP-1) is clinically associated with a poor prognosis for various cancers, but the roles of TIMP-1 in lung cancer metastasis are controversial. Our previous secretomic study revealed that TIMP-1 is highly abundant in high invasiveness cells of lung adenocarcinoma. In the current study, TIMP-1 abundances in primary lung adenocarcinoma tissues, as revealed by immunohistochemistry, are significantly higher in patients with lymph invasion and distant metastasis than in those without. Receiver operating characteristic curve analyses suggest 73.7 and 86.2 % accuracy to separate patients with lymph node and distant metastasis and those without, respectively. Moreover, we demonstrate that the expression level of TIMP-1 positively associates with cell mobility, invasiveness, and metastatic colonization. Most notably, the novel mechanism in which TIMP-1 facilitates metastatic colonization through the mediation of pericellular polyFN1 assembly was revealed. In summary, this study presents novel functions of TIMP-1 in promoting cancer metastasis and suggests TIMP-1 is a potential tissue biomarker for lymph invasion and distant metastasis of lung adenocarcinoma.
Collapse
|
21
|
Upheber S, Karle A, Miller J, Schlaugk S, Gross E, Reuning U. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology. Cell Signal 2014; 27:652-62. [PMID: 25435431 DOI: 10.1016/j.cellsig.2014.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023]
Abstract
Loss or downregulation of the tumor-suppressor KAI1 correlates with poor cancer patient prognosis. KAI1 functions by interacting with other proteins, including integrin cell adhesion and signaling receptors. We previously showed that KAI1 physically and functionally crosstalks with the tumor-biologically relevant integrin αvβ3, thereby suppressing ovarian cancer cell migration and proliferation. Interestingly, in metastases, a KAI1 splice variant had been identified, indicating poor patient prognosis. Thus, we here characterized differential effects of the two KAI1 proteins upon their cellular restoration. Opposite to KAI1, KAI1-splice reduced αvβ3-mediated cell adhesion, thereby inducing cell migration. This was accompanied by elevated αvβ3 levels and drastically elevated focal adhesion kinase activation, however, without any obvious colocalization with αvβ3, as observed for KAI1. Moreover, codistribution of KAI1 with the cell/cell-adhesion molecule E-cadherin was abrogated in KAI1-splice. Whereas KAI1 diminished cell proliferative activity, KAI1-splice prominently enhanced cell proliferation concomitant with elevated transcription and cell-surface expression of the epidermal growth factor receptor. Thus KAI1-splice does not only counteract the tumor-suppressive actions of KAI1, but - beyond that - promotes αvβ3-mediated biological functions in favor of tumor progression and metastasis.
Collapse
Affiliation(s)
- Sina Upheber
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Alexandra Karle
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Julia Miller
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Stephanie Schlaugk
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Eva Gross
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Ute Reuning
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany.
| |
Collapse
|
22
|
ZISMANOV VICTORIA, ATTAR-SCHNEIDER OSHRAT, LISHNER MICHAEL, AIZENFELD RACHELHEFFEZ, MATALON SHELLYTARTAKOVER, DRUCKER LIAT. Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E. Int J Oncol 2014; 46:860-70. [DOI: 10.3892/ijo.2014.2774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/11/2014] [Indexed: 11/06/2022] Open
|
23
|
Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9. PLoS One 2013; 8:e67766. [PMID: 23840773 PMCID: PMC3696041 DOI: 10.1371/journal.pone.0067766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/22/2013] [Indexed: 12/30/2022] Open
Abstract
Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.
Collapse
|
24
|
Numblike regulates proliferation, apoptosis, and invasion of lung cancer cell. Tumour Biol 2013; 34:2773-80. [PMID: 23681800 DOI: 10.1007/s13277-013-0835-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 12/30/2022] Open
Abstract
Numblike (Numbl), a conserved homolog of Drosophila Numb, has been proved to be implicated in early development of the nervous system. A recent study also showed that Numbl played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, the biological role of Numbl remains unknown in lung cancer up to now. To address the expression of Numbl in the lung cancer cell, four lung cancer cell lines (metastatic cell lines NCI-H292, 95-D, and non-metastatic cell lines A549, HCC827) and non-cancerous human bronchial epithelial cells were used to detect the protein expression of Numbl by western blotting. The results in this study indicated that the expression of Numbl was downregulated in human lung cancer cell lines, especially in metastatic cell lines. To investigate the role of Numbl in lung cancer cell proliferation, apoptosis, and invasion, we generated human lung cancer 95-D cell lines in which Numbl was either overexpressed or depleted. Subsequently, the effects of Numbl on the cell viability, cycle, apoptosis, and invasion properties in 95-D cells were determined with MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, flow cytometry analysis, and Transwell invasion assays. The results indicated that Numbl could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. In addition, we investigated the effects of Numbl on the expression of the following proteins: TRAF6 (tumor necrosis factor receptor-associated factor 6), p-p65 (phosphor-NF-κB), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Results showed that Numbl could decrease the expression of TRAF6, p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that Numbl might be involved in the inhibition of growth, proliferation, and invasion of 95-D cells, as well as the potentiation of apoptosis of 95-D cells by abrogating TRAF6-induced activation of NF-κB.
Collapse
|
25
|
Saito Y, Kasamatsu A, Yamamoto A, Shimizu T, Yokoe H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 2013; 139:585-94. [PMID: 23242234 DOI: 10.1007/s00432-012-1361-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/04/2012] [Indexed: 12/01/2022]
Abstract
PURPOSE ALY, an essential mRNA export factor, is dysregulated in a wide variety of human malignancies. However, little is known about the relevance of ALY to oral squamous cell carcinoma (OSCC). The purpose of this study was to investigate ALY expression and its functional mechanisms in OSCCs. METHODS ALY mRNA and protein expression in seven OSCC-derived cell lines (Sa3, HO-1-u-1, KON, Ca9-22, HSC-2, HSC-3, and HSC-4) and primary OSCCs were analyzed by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry. We evaluated cellular invasiveness, migration, and the expression levels of metastasis modulators, ribosomal RNA processing 1 homolog B (RRP1B) and CD82, in ALY knockdown cells. RESULTS ALY was frequently up-regulated in OSCC-derived cell lines and primary OSCCs compared with normal counterparts at both the mRNA and protein expression levels. ALY-positive expression was correlated significantly (P < 0.05) with a higher risk of regional lymph node metastasis. Furthermore, ALY knockdown cells caused a significant (P < 0.05) decrease in cellular invasiveness and migration with up-regulation of RRP1B and CD82 compared with the control cells. CONCLUSION Our results showed that ALY is linked to regional lymph node metastasis by regulating cellular invasiveness and migration. Therefore, ALY might be a potential biomarker for early detection of lymph node metastasis in OSCCs.
Collapse
Affiliation(s)
- Yasuhiro Saito
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
TNF receptor-associated factor 6 regulates proliferation, apoptosis, and invasion of glioma cells. Mol Cell Biochem 2013; 377:87-96. [PMID: 23358926 DOI: 10.1007/s11010-013-1573-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/18/2013] [Indexed: 01/28/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.
Collapse
|
27
|
Nishioka C, Ikezoe T, Furihata M, Yang J, Serada S, Naka T, Nobumoto A, Kataoka S, Tsuda M, Udaka K, Yokoyama A. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells. Int J Cancer 2012; 132:2006-19. [PMID: 23055153 DOI: 10.1002/ijc.27904] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/25/2012] [Indexed: 12/22/2022]
Abstract
To identify molecular targets in leukemia stem cells (LSCs), this study compared the protein expression profile of freshly isolated CD34(+) /CD38(-) cells with that of CD34(+) /CD38(+) counterparts from individuals with acute myelogenous leukemia (n = 2, AML) using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 98 proteins were overexpressed, while six proteins were underexpressed in CD34(+) /CD38(-) AML cells compared with their CD34(+) /CD38(+) counterparts. Proteins overexpressed in CD34(+) /CD38(-) AML cells included a number of proteins involved in DNA repair, cell cycle arrest, gland differentiation, antiapoptosis, adhesion, and drug resistance. Aberrant expression of CD82, a family of adhesion molecules, in CD34(+) /CD38(-) AML cells was noted in additional clinical samples (n = 12) by flow cytometry. Importantly, down-regulation of CD82 in CD34(+) /CD38(-) AML cells by a short hairpin RNA (shRNA) inhibited adhesion to fibronectin via up-regulation of matrix metalloproteinases 9 (MMP9) and colony forming ability of these cells as assessed by transwell assay, real-time RT-PCR, and colony forming assay, respectively. Moreover, we found that down-regulation of CD82 in CD34(+) /CD38(-) AML cells by an shRNA significantly impaired engraftment of these cells in severely immunocompromised mice. Taken together, aberrant expression of CD82 might play a role in adhesion of LSCs to bone marrow microenvironment and survival of LSCs. CD82 could be an attractive molecular target to eradicate LSCs.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chang YH, Lee SH, Liao IC, Huang SH, Cheng HC, Liao PC. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol Cell Proteomics 2012; 11:1320-39. [PMID: 22896658 DOI: 10.1074/mcp.m112.017384] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis is a major obstacle that must be overcome for the successful treatment of lung cancer. Proteins secreted by cancer cells may facilitate the progression of metastasis, particularly within the phases of migration and invasion. To discover metastasis-promoting secretory proteins within cancer cells, we used the label-free quantitative proteomics approach and compared the secretomes from the lung adenocarcinoma cell lines CL1-0 and CL1-5, which exhibit low and high metastatic properties, respectively. By employing quantitative analyses, we identified 660 proteins, 68 of which were considered to be expressed at different levels between the two cell lines. High levels of A1AT were secreted by CL1-5, and the roles of A1AT in the influence of lung adenocarcinoma metastasis were investigated. Molecular and pathological confirmation demonstrated that altered expression of A1AT correlates with the metastatic potential of lung adenocarcinoma. The migration and invasion properties of CL1-5 cells were significantly diminished by reducing the expression and secretion of their A1AT proteins. Conversely, the migration and invasion properties of CL1-0 cells were significantly increased through the overexpression and secretion of A1AT proteins. Furthermore, the assembly levels of the metastasis-promoting pericellular fibronectin (FN1), which facilitates colonization of lung capillary endothelia by adhering to the cell surface receptor dipeptidyl peptidase IV (DPP IV), were higher on the surfaces of suspended CL1-5 cells than on those of the CL1-0 cells. This discovery reflects previous findings in breast cancer. In line with this finding, FN1 assembly and the lung colonization of suspended CL1-5 cells were inhibited when endogenous A1AT protein was knocked down using siRNA. The major thrust of this study is to demonstrate the effects of coupling the label-free proteomics strategy with the secretomes of cancer cells that differentially exhibit invasive and metastatic properties. This provides a new opportunity for the effective identification of metastasis-associated proteins that are secreted by cancer cells and promote experimental metastasis.
Collapse
Affiliation(s)
- Ying-Hua Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
An inverse relationship between KAI1 expression, invasive ability, and MMP-2 expression and activity in bladder cancer cell lines. Urol Oncol 2012; 30:502-8. [DOI: 10.1016/j.urolonc.2010.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/23/2022]
|
30
|
Zhang Q, Tan D, Luo W, Lu J, Tan Y. Expression of CD82 in human trophoblast and its role in trophoblast invasion. PLoS One 2012; 7:e38487. [PMID: 22679510 PMCID: PMC3367946 DOI: 10.1371/journal.pone.0038487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Well-controlled trophoblast invasion at maternal-fetal interface is a critical event for the normal development of placenta. CD82 is a member of transmembrane 4 superfamily, which showed important role in inhibiting tumor cell invasion and migration. We surmised that CD82 are participates in trophoblast differentiation during placenta development. METHODOLOGY/PRINCIPAL FINDINGS CD82 was found to be strongly expressed in human first trimester placental villous and extravillous trophoblast cells as well as in trophoblast cell lines. To investigate whether CD82 plays a role in trophoblast invasion and migration, we further utilized human villous explants culture model on matrigel and invasion/migration assay of trophoblast cell line HTR8/SVneo. CD82 siRNA significantly promoted outgrowth of villous explants in vitro (P<0.01), as well as invasion and migration of HTR8/SVneo cells (P<0.05), whereas the trophoblast proliferation was not affected. The enhanced effect of CD82 siRNA on invasion and migration of trophoblast cells was found associated with increased gelatinolytic activities of matrix metalloproteinase MMP9 while over-expression of CD82 markedly decreased trphoblast cell invasion and migration as well as MMP9 activities. CONCLUSIONS/SIGNIFICANCE These findings suggest that CD82 is an important negative regulator at maternal-fetal interface during early pregnancy, inhibiting human trophoblast invasion and migration.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Junjie Lu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
31
|
Chen S, Qiu J, Chen C, Liu C, Liu Y, An L, Jia J, Tang J, Wu L, Hang H. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells. Protein Cell 2012; 3:460-9. [PMID: 22467272 DOI: 10.1007/s13238-012-2024-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/04/2012] [Indexed: 10/28/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.
Collapse
Affiliation(s)
- Shaopeng Chen
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes αvβ3-mediated adhesion and invasive migration. Breast Cancer Res Treat 2011; 133:853-63. [PMID: 22042369 DOI: 10.1007/s10549-011-1844-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/18/2011] [Indexed: 12/11/2022]
Abstract
Triggering of Toll-like receptor 4 (TLR4) on tumor cells has been found to promote tumor progression by promoting tumor cell proliferation and survival. So far, however, the effect of TLR4 signaling on tumor metastasis has not been well elucidated. Here, we report that triggering of TLR4 on metastatic breast cancer cells could reciprocally regulate the expression of αvβ3 and the expressions of TPM1 and maspin, and promote αvβ3-mediated adhesion and invasive migration of the cells. In metastatic breast cancer cells, TLR4 signaling increased the expression of integrin αvβ3 by activating NF-κB, resulting in the increased adhesion capacity of tumor cells to the ligand for αvβ3, and the increased polymerization of actin and production of MMP-9 in tumor cells in response to ECM. HoxD3 was required for the up-regulation of αv and β3 expressions by NF-κB. Moreover, TLR4 signaling increased the expression of miR-21 in breast cancer cells by activating NF-κB. Accordingly, the expressions of TPM1 and maspin were decreased at protein level, whereas the transcription activity of these genes was not influenced. Consistent with the promoting effect on αvβ3-mediated adhesion and invasive migration, TLR4 signaling promoted the arrest of metastatic breast cancer cells in circulation and following invasion. The effect of TLR4 signaling could be abrogated by inhibiting NF-κB. These findings suggest that metastatic breast cancer cells could acquire higher metastatic potential due to triggering of TLR4 and activation of NF-κB in the cells, and that both TLR4 and NF-κB could be therapeutic targets for preventing metastasis of breast cancer cells.
Collapse
|
33
|
Tsai YC, Weissman AM. Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. FEBS Lett 2011; 585:3166-73. [PMID: 21875585 PMCID: PMC3409691 DOI: 10.1016/j.febslet.2011.08.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 01/22/2023]
Abstract
The recent identification of metastasis suppressor genes, the products of which inhibit metastasis but not primary tumor growth, distinguishes oncogenic transformation and tumor suppression from a hallmark of malignancy, the ability of cancer cells to invade sites distant from the primary tumor. The metastasis suppressor CD82/KAI1 is a member of the tetraspanin superfamily of glycoproteins. CD82 suppresses metastasis by multiple mechanisms including inhibition of cell motility and invasion, promotion of cell polarity as well as induction of senescence and apoptosis in response to extracellular stimuli. A common feature of these diverse effects is CD82 regulation of membrane organization as well as protein trafficking and interactions, which affects cellular signaling and intercellular communication.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| | | |
Collapse
|
34
|
Tetraspanins and tumor progression. Clin Exp Metastasis 2010; 28:261-70. [DOI: 10.1007/s10585-010-9365-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/30/2010] [Indexed: 02/07/2023]
|
35
|
Tennis MA, Van Scoyk MM, Freeman SV, Vandervest KM, Nemenoff RA, Winn RA. Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Mol Cancer Res 2010; 8:833-43. [PMID: 20501643 DOI: 10.1158/1541-7786.mcr-09-0400] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sprouty proteins are potent receptor tyrosine kinase inhibitors that antagonize growth factor signaling and are involved in lung development. However, little is known about the regulation or targets of Sprouty-4 (Spry4) in lung cancer. Our study aimed to determine the role of Spry4 in non-small cell lung cancer (NSCLC). We found that Spry4 mRNA expression was decreased in NSCLC cell lines and in dysplastic lung cell lines compared with a nontransformed cell line, suggesting that Spry4 has tumor-suppressing activity. When Spry4 was stably transfected into H157 and H2122 NSCLC cell lines, decreased migration and invasion were observed. Matrix metalloproteinase-9 activity was decreased, and the expression of matrix metalloproteinase inhibitors TIMP1 and CD82 were increased. Stable expression of Spry4 led to reduced cell growth and reduced anchorage-independent growth in NSCLC cell lines, along with upregulation of tumor suppressors p53 and p21. Changes in epithelial and mesenchymal markers indicated that Spry4 expression induces a reversal of the epithelial to mesenchymal transition characteristic of tumor cells. Treatment of a nontransformed lung epithelial cell line with short hairpin RNA to Spry4 led to the decreased expression of epithelial markers and increased cell growth, supporting the concept of Spry4 acting as a tumor suppressor. We showed that the activity of the Spry4 promoter is increased by Wnt7A/Fzd9 signaling through peroxisome proliferator-activated receptor gamma. These data present previously undescribed targets of Spry4 and suggest that Spry4 is a downstream target of Wnt7A/Fzd 9 signaling. Spry4 may have efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Meredith A Tennis
- University of Colorado at Denver and Health Sciences Center, 12700 East 19th Avenue, Box C272, RC2 9th Floor, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Choi UJ, Jee BK, Lim Y, Lee KH. KAI1/CD82 decreases Rac1 expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells. Cell Biochem Funct 2009; 27:40-7. [PMID: 19107873 DOI: 10.1002/cbf.1532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the KAI1/CD82 protein has been reported to inhibit cell metastasis in many studies, its mechanism of action has not yet been fully elucidated. In the present study, we investigated the possible effects of KAI1/CD82 on the metastatic phenotype in H1299 lung carcinoma cells. These studies were based on the pivotal role that the acquisition of motile phenotype plays on the initial steps of metastasis. KAI1/CD82-mediated morphological changes were observed using phase contrast microscopy. We report here, that a KAI1/CD82-induced phenotypic change was involved in the decrease of Rac1 expression and GTPase activity. However, we found that KAI1/CD82 did not regulate Rac1 mRNA levels. This suggests the existence of another regulatory mechanism of Rac1 protein maturation or activation. To identify the signaling pathway of Rac1 regulation, we investigated the PI3K/Akt/mTOR pathway, since the PI3K/Akt pathway regulates Rac1 activation and mTOR is known to play a regulatory role in protein translation. H1299/CD82-transfectants showed lower mTOR expression and cell growth than the control group. The data obtained from this study suggested that KAI1/CD82 decreased the metastatic phenotype of H1299 lung carcinoma cells by down-regulating Rac1 expression through the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Un-Jong Choi
- Department of General Surgery, Wonkwang University School of Medicine, Iksan-City, Jeonbuk, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Chae SW, Jee BK, Lee JY, Han CW, Jeon YW, Lim Y, Lee KH, Rha HK, Chae GT. HOX gene analysis in the osteogenic differentiation of human mesenchymal stem cells. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008005000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Song Wha Chae
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Bo Keun Jee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Joo Yong Lee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Chang Whan Han
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yang-Whan Jeon
- Department of Psychiatry, Our Lady of Mercy Hospital, The Catholic University of Korea, Republic of Korea
| | - Young Lim
- Department of Occupational and Environmental Medicine, St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Kweon-Haeng Lee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Hyoung Kyun Rha
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Gue-Tae Chae
- Institute of Hansen's Disease, The Catholic University of Korea, Republic of Korea
| |
Collapse
|
38
|
Delassus GS, Cho H, Park J, Eliceiri GL. New pathway links from cancer-progression determinants to gene expression of matrix metalloproteinases in breast cancer cells. J Cell Physiol 2008; 217:739-44. [PMID: 18651563 DOI: 10.1002/jcp.21548] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AP-2alpha, interleukin-4 (IL-4), E-cadherin, fibulin 1D, p16(INK4alpha), PTEN, RKIP, and S100A4 are determinants (suppressors, except for S100A4) of cancer cell invasiveness and other traits of cancer progression, which are located upstream of matrix metalloproteinases (MMPs) in cell signaling pathways. We will refer to them as upstream cancer-progression determinants (UCPDs, for brevity). MMP-1, MMP-2, MMP-9, MMP-11, MMP-13, MMP-14, MMP-16, and MMP-19 are enhancers of cancer cell invasiveness and other traits of cancer progression, in MDA-MB-231 breast cancer cells. We are interested in pathway links from UCPDs to gene expression of cancer cell MMPs in MDA-MB-231 cells. To test models about these links, wild-type copies of UCPDs were transiently overexpressed and then MMP mRNAs were measured by reverse transcription real-time PCR. The present results show that each of eight UCPDs is linked to the gene expression of a unique set of MMPs. This indicates that the effects are sequence-specific and that each UCPD reaches these MMP expressions through different sets of signaling pathways. We have detected 20 new pathway links, 11 are downregulatory and nine are upregulatory; 15 are new links in any cell, and five are new links in breast cancer. In seven links, three cancer-progression suppressing UCPDs unexpectedly enhance the gene expression of five cancer-progression promoting MMPs.
Collapse
Affiliation(s)
- Gregory S Delassus
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1028, USA
| | | | | | | |
Collapse
|
39
|
Miranti CK. Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal 2008; 21:196-211. [PMID: 18822372 DOI: 10.1016/j.cellsig.2008.08.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/24/2008] [Indexed: 12/29/2022]
Abstract
The recent identification of metastasis suppressor genes, uniquely responsible for negatively controlling cancer metastasis, are providing inroads into the molecular machinery involved in metastasis. While the normal function of a few of these genes is known; the molecular events associated with their loss that promotes tumor metastasis is largely not understood. KAI1/CD82, whose loss is associated with a wide variety of metastatic cancers, belongs to the tetraspanin family. Despite intense scrutiny, many aspects of how CD82 specifically functions as a metastasis suppressor and its role in normal biology remain to be determined. This review will focus on the molecular events associated with CD82 loss, the potential impact on signaling pathways that regulate cellular processes associated with metastasis, and its relationship with other metastasis suppressor genes.
Collapse
Affiliation(s)
- C K Miranti
- Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, United States.
| |
Collapse
|
40
|
Tarasenko N, Nudelman A, Tarasenko I, Entin-Meer M, Hass-Kogan D, Inbal A, Rephaeli A. Histone deacetylase inhibitors: the anticancer, antimetastatic and antiangiogenic activities of AN-7 are superior to those of the clinically tested AN-9 (Pivanex). Clin Exp Metastasis 2008; 25:703-16. [PMID: 18506586 DOI: 10.1007/s10585-008-9179-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/08/2008] [Indexed: 12/19/2022]
Abstract
Histone deacetylase inhibitory prodrugs that are metabolized to butyric acid and formaldehyde possess antineoplastic properties and low toxicity. We sought to characterize the antiangiogenic and antimetastatic activities of two lead prodrugs, pivaloyloxymethyl butyrate (AN-9) and butyroyloxymethyl-diethyl phosphate (AN-7) in murine cancer models. In the sc implanted human colon carcinoma HT-29 xenograft model AN-7, exhibited superior anticancer activity compared to AN-9, as was evident by the significantly greater inhibition of tumor growth and reduction of serum CEA. AN-7 was also more effective in reducing mean vessel density (MVD) by 7-fold, bFGF, Ki-67 (7-fold) and HIF-1alpha in immunohistochemically stained tumor sections. Semi-quantitative evaluation of the levels of bFGF, HDAC1 and HIF-1alpha by Western blot analysis showed a decrease in expression only in the tumors of mice treated with AN-7. The level of bFGF was reduced 3-fold in the tumor and that of TIMP1 was elevated (by 3-fold) in the serum of AN-7 treated mice. In a 4T1 metastatic breast carcinoma model, AN-7 inhibited the formation of lung lesions by 76% and AN-9 by 47%, further demonstrating the greater efficacy of AN-7 compared to AN-9 (P<0.02). Both AN-7 and AN-9 exhibited antimetastatic and antiangiogenic activities by reducing vascularization, bFGF expression and HIF-1alpha. Yet, AN-7 was more potent than AN-9.
Collapse
Affiliation(s)
- Nataly Tarasenko
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Beilinson Campus, Petach Tikva 49100, Israel
| | | | | | | | | | | | | |
Collapse
|
41
|
Metastasis suppressors and the tumor microenvironment. CANCER MICROENVIRONMENT 2008; 1:1-11. [PMID: 19308680 PMCID: PMC2654358 DOI: 10.1007/s12307-008-0001-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 12/11/2022]
Abstract
The most dangerous attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and extracellular molecules. This brief review explores how a new class of molecules – metastasis suppressors – regulate tumor cell–microenvironmental interactions. Data are presented which demonstrate that metastasis suppressors act at multiple steps of the metastatic cascade. A brief discussion for how metastasis suppressor regulation of cellular interactions might be exploited is presented.
Collapse
|
42
|
Chung N, Jee BK, Chae SW, Jeon YW, Lee KH, Rha HK. HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 2007; 36:227-35. [PMID: 17972163 DOI: 10.1007/s11033-007-9171-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 10/19/2007] [Indexed: 12/11/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (hMSCs) have been shown to possess multilineage differentiation potential. HOX genes function in transcriptional regulators, and are involved in stem cell differentiation. The aim of the present study was to demonstrate HOX genes that are related to angiogenesis. To identify the expression patterns of 37 HOX genes in the endothelial cell differentiation of hMSCs, we analyzed HOX genes through profiling with multiplex RT-PCR. The results showed that the expression patterns of four HOX genes, HOXA7, HOXB3, HOXA3, and HOXB13, significantly changed during angiogenesis. The expression levels of HOXA7 and HOXB3 were dramatically increased, whereas those of HOXA3 and HOXB13 were decreased during endothelial cell differentiation. When further analysis of the expressions of these HOX genes was performed with real-time PCR and an immunoblot assay, the expression patterns were also found to be well-matched with the results of multiplex RT-PCR. Here, we report that HOXA7, HOXB3, HOXA3, and HOXB13 might be involved in the angiogenesis of hMSCs.
Collapse
Affiliation(s)
- Namhyun Chung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Iwakuma T, Tochigi Y, Van Pelt CS, Caldwell LC, Terzian T, Parant JM, Chau GP, Koch JG, Eischen CM, Lozano G. Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene 2007; 27:1813-20. [PMID: 17906694 DOI: 10.1038/sj.onc.1210827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mdm2 inhibits the function of the p53 tumor suppressor. Mdm2 is overexpressed in many tumors with wild-type p53 suggesting an alternate mechanism of loss of p53 activity in tumors. An Mdm2-binding protein (MTBP) was identified using a yeast two-hybrid screen. In tissue culture, MTBP inhibits Mdm2 self-ubiquitination, leading to stabilization of Mdm2 and increased degradation of p53. To address the role of MTBP in the regulation of the p53 pathway in vivo, we deleted the Mtbp gene in mice. Homozygous disruption of Mtbp resulted in early embryonic lethality, which was not rescued by loss of p53. Mtbp+/- mice were not tumor prone. When mice were sensitized for tumor development by p53 heterozygosity, we found that the Mtbp+/-p53+/- mice developed significantly more metastatic tumors (18.2%) as compared to p53+/- mice (2.6%). Results of in vitro migration and invasion assays support the in vivo findings. Downmodulation of Mtbp in osteosarcoma cells derived from p53+/- mice resulted in increased invasiveness, and overexpression of Mtbp in Mtbp+/-p53+/- osteosarcoma cells inhibited invasiveness. These results suggest that MTBP is a metastasis suppressor. These results advance our understanding of the cellular roles of MTBP and raise the possibility that MTBP is a novel therapeutic target for metastasis.
Collapse
Affiliation(s)
- T Iwakuma
- Department of Genetics, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
El Touny LH, Banerjee PP. Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun 2007; 361:169-75. [PMID: 17658479 PMCID: PMC2075085 DOI: 10.1016/j.bbrc.2007.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/03/2007] [Indexed: 11/29/2022]
Abstract
Previous studies demonstrated a direct correlation with loss of kangai-1 (KAI1), a metastasis suppressor, and poor prognosis in human prostate and other cancers. In this study, we have characterized the age-dependent downregulation of KAI1 in the TRAMP model which was reversed when mice were fed a genistein-enriched diet. We demonstrated here that doses of genistein (5 and 10 microM)--achievable by supplement intake--significantly induced the expression of KAI1, both at the mRNA and protein levels (up to 2.5-fold), and decreased the invasiveness of TRAMP-C2 cells >2.0-fold. We have pinpointed KAI1 as the invasion suppressor, since its knockdown by siRNA restored the invasive potential of genistein-treated TRAMP-C2 cells to control levels. This work provides the first evidence that genistein treatment may counteract KAI1 downregulation, which is observed in many cancer types and therefore, could be used in anti-metastatic therapies.
Collapse
Affiliation(s)
- Lara H El Touny
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Medical-Dental Building, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | | |
Collapse
|
45
|
Jee BK, Lee JY, Lim Y, Lee KH, Jo YH. Effect of KAI1/CD82 on the beta1 integrin maturation in highly migratory carcinoma cells. Biochem Biophys Res Commun 2007; 359:703-8. [PMID: 17560548 DOI: 10.1016/j.bbrc.2007.05.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The KAI1/CD82 protein has been documented as the tumor metastasis suppressor in many types of human cancers. KAI1/CD82 regulates cell motility and invasiveness; however, the mechanism by which this occurs remains to be fully established. Several studies have shown that KAI1/CD82 modulates integrin-dependent signaling. It was suggested that KAI1/CD82 might function to attenuate the beta1 integrin function of inducing cellular migration. A wound-healing and modified Boyden chamber assays were performed to investigate the mechanism of the KAI1/CD82-mediated inhibition of cell migration. It was found that the migratory ability of H1299/CD82 was inhibited. The immunoblotting and biotinylation assays revealed that H1299/CD82 showed significantly decreased expression of the mature form of beta1, which was functional at the cell surface. It was confirmed that KAI1/CD82 regulates the maturation of the beta1 integrin using CD82-specific si-RNA. These results support a model in which KAI1/CD82 attenuates the maturation of the beta1 integrin precursor and thereby suppresses cell migration.
Collapse
Affiliation(s)
- Bo Keun Jee
- Neuroscience Genome Research Center, The Catholic University of Korea, 505 Banpo-dong, Socho-ku, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Guo Z, Cai S, Fang R, Chen H, Du J, Tan Y, Ma W, Hu H, Cai S, Liu Y. The synergistic effects of CXCR4 and EGFR on promoting EGF-mediated metastasis in ovarian cancer cells. Colloids Surf B Biointerfaces 2007; 60:1-6. [PMID: 17601710 DOI: 10.1016/j.colsurfb.2007.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/16/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been reported to mediate the metastasis of many solid tumors including ovarian, breast, lung and prostate. The over-expression of the epidermal growth factor receptor (EGFR) is associated with the majority of ovarian cancer and has been implicated in the process of malignant transformation by promoting cell proliferation, survival, and motility. In this research, the result first showed that epidermis growth factor (EGF) enhanced the expression of CXCR4 and the migration of ovarian cancer cells, moreover, both stromal cell derived factor-1alpha (SDF-1alpha) and EGF-induced high matrix metallopeptidase 9 (MMP9) expressions. Molecular analysis indicated that augmented CXCR4 and MMP9 expression was regulated by phosphatidylinositol-3-kinase(PI3K)/Akt signal transduction pathway. These results suggested a possible important "cross-talk" between CXCR4 and EGFR intracellular pathways that might link signals of tumor deteriorated and provided a plausible explanation for the poor overall survival rate of patients whose co-expression of CXCR4 and EGFR was detected in their tissue sections. It enlightened that, compared to the respective inhibition of the EGFR or CXCR4 signaling, the simultaneous inhibition of them might be a more useful therapeutic strategy of cancer.
Collapse
Affiliation(s)
- Zhigang Guo
- College of Bioengineering, Key Laboratory for Biomechanics and Tissue Engineering of the State Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Iezzi G, Piattelli A, Artese L, Goteri G, Fioroni M, Rubini C. KAI-1 protein expression in odontogenic cysts. J Endod 2007; 33:235-8. [PMID: 17320703 DOI: 10.1016/j.joen.2006.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 10/31/2006] [Accepted: 11/04/2006] [Indexed: 10/23/2022]
Abstract
The KAI-1 tumor suppressor gene is widely distributed in normal tissues and its down-regulation may be correlated with the invasive phenotype and metastases in several different epithelial tumors. The aim of the present study was an evaluation of KAI-1 expression in radicular cysts (RC), follicular cysts (FC), orthokeratinized keratocysts (OOKC), and parakeratinized keratocysts (POKC). Eighty-five odontogenic cysts, 28 RC, 22 FC, and 35 OKC (16 OOKC, 19 POKC) were selected. All the POKC were negative and only four of 16 of the OOKC were positive for KAI-1. On the contrary, all RC and FC cases were positive and immunoreactivity for KAI-1 was detected throughout all the layers of the cyst epithelium. The lack of KAI-1 expression in POKC could help to explain the differences in the clinical and pathologic behavior of OKC and, according to what has been reported for epithelial tumors, could be related to the increased aggressive behavior and invasiveness of OKC.
Collapse
|
48
|
Gellersen B, Briese J, Oberndörfer M, Redlin K, Samalecos A, Richter DU, Löning T, Schulte HM, Bamberger AM. Expression of the metastasis suppressor KAI1 in decidual cells at the human maternal-fetal interface: Regulation and functional implications. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:126-39. [PMID: 17200188 PMCID: PMC1762710 DOI: 10.2353/ajpath.2007.060175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At the human maternal-fetal interface, the decidua forms a dense matrix that is believed to limit trophoblast invasion. We investigated whether the metastasis suppressor KAI1 (CD82) is expressed at the maternal-fetal interface. Immunohistochemistry showed strong expression of KAI1 in decidual cells, whereas trophoblast cells were negative for KAI1. In luteal phase endometrium, KAI1 was present in decidualizing endometrial stromal cells. We investigated whether KAI1 expression in endometrial stromal cells is regulated by the decidualizing stimuli cAMP and progesterone or by the cytokine interleukin (IL)-1beta. Western blot analysis revealed induction of KAI1 protein by cAMP analog, but not by progesterone, in a delayed fashion. In contrast, IL-1beta rapidly stimulated KAI1 expression at the transcript level and at the protein level. Cultured decidual cells from term placenta expressed a basal level of KAI1 protein that was elevated on cAMP stimulation. Silencing of KAI1 by RNA interference attenuated expression of decorin, a decidual product implicated in limiting trophoblast invasion. This study shows for the first time the expression of KAI1 in decidual cells at the human maternal-fetal interface, where the metastasis suppressor might participate in intercellular communication with trophoblast cells and the control of trophoblast invasion.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg, Falkenried 88, 20251 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|