1
|
Li P, Zhang W, Zhang J, Liu J, Fu J, Wei Z, Le S, Xu J, Wang L, Zhang Z. Macrophage migration inhibitory factor promotes heterotopic ossification by mediating ROS/HIF-1α positive feedback loop and activating Wnt/β-catenin signaling pathway. Bone 2025; 190:117331. [PMID: 39549900 DOI: 10.1016/j.bone.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Heterotopic ossification (HO) refers to the development of bone tissue in areas other than the skeletal system. The development and maturation of the skeletal system are significantly influenced by macrophage migration inhibitory factor (MIF). The objective of this study was to examine the impact of MIF on the in vitro osteogenic differentiation and mineralization of tendon-derived stem cells (TDSCs), mediated by a positive feedback loop involving ROS/HIF-1α/MIF. METHODS TDSCs were isolated and identified from the hind limbs of C57/BL6 mice. The functional and procedural roles of MIF in HO, focusing on the impact of MIF on the differentiation of TDSCs into bone-forming cells were investigated in vitro. Seventy-five mice were randomly assigned to five groups. Gene expression and histological analyses of MIF and its receptors, and determine the expression of osteogenic markers in vivo. RESULTS The results revealed a positive and concentration-dependent effect of MIF on the osteogenic differentiation of TDSCs. Furthermore, an ROS/HIF-1α/MIF positive loop was detected in the simulated early trauma hypoxic microenvironment, resulting in a 3 to 4 folds increase in MIF expression levels. MIF was also found to enhance double the expression levels of markers associated with bone and cartilage at the site of injury, consequently facilitating the development of HO, which was thought to be associated with the activation of the Wnt/β-catenin pathway. CONCLUSION MIF, which mediates the ROS/HIF-1α/MIF positive feedback loop during the hypoxic phase of HO, triggers the Wnt/β-catenin signaling pathway to enhance the osteogenic differentiation and formation of HO in TDSCs.
Collapse
Affiliation(s)
- Ping Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Wensheng Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jiaming Fu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengnong Wei
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Shiyong Le
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Cao T, Sun Q, Shi X, Lin X, Lin Q, Zhu J, Xu J, Cui D, Shi Y, Jing Y, Guo W. EAF2 Downregulation Recruits Tumor-associated Macrophages in Prostate Cancer through Upregulation of MIF. Biol Proced Online 2024; 26:21. [PMID: 38969982 PMCID: PMC11225222 DOI: 10.1186/s12575-024-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The role of tumor inflammatory microenvironment in the advancement of cancer, particularly prostate cancer, is widely acknowledged. ELL-associated factor 2 (EAF2), a tumor suppressor that has been identified in the prostate, is often downregulated in prostate cancer. Earlier investigations have shown that mice with EAF2 gene knockout exhibited a substantial infiltration of inflammatory cells into the prostatic stroma. METHODS A cohort comprising 38 patients who had been diagnosed with prostate cancer and subsequently undergone radical prostatectomy (RP) was selected. These patients were pathologically graded according to the Gleason scoring system and divided into two groups. The purpose of this selection was to investigate the potential correlation between EAF2 and CD163 using immunohistochemistry (IHC) staining. Additionally, in vitro experimentation was conducted to verify the relationship between EAF2 expression, macrophage migration and polarization. RESULTS Our study demonstrated that in specimens of human prostate cancer, the expression of EAF2 was notably downregulated, and this decrease was inversely associated with the number of CD163-positive macrophages that infiltrated the cancerous tissue. Cell co-culture experiments revealed that the chemotactic effect of tumor cells towards macrophages was intensified and that macrophages differentiated into tumor-associated macrophages (TAMs) when EAF2 was knocked out. Additionally, the application of cytokine protein microarray showed that the expression of chemokine macrophage migration inhibitory factor (MIF) increased after EAF2 knockout. CONCLUSIONS Our findings suggested that EAF2 was involved in the infiltration of CD163-positive macrophages in prostate cancer via MIF.
Collapse
Affiliation(s)
- Tianyu Cao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Sun
- Department of Urology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqin Shi
- Department of Pathology , Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuke Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junhao Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Youwei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China.
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenhuan Guo
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zeng L, Hu P, Zhang Y, Li M, Zhao Y, Li S, Luo A. Macrophage migration inhibitor factor (MIF): Potential role in cognitive impairment disorders. Cytokine Growth Factor Rev 2024; 77:67-75. [PMID: 38548489 DOI: 10.1016/j.cytogfr.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengchao Hu
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Zhang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Mingyue Li
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
5
|
Shirai T, Okazaki S, Tanifuji T, Otsuka I, Miyachi M, Okada S, Shindo R, Horai T, Mouri K, Takahashi M, Kondo T, Ueno Y, Hishimoto A. Association study of a single nucleotide polymorphism in the hypoxia response element of the macrophage migration inhibitory factor gene promoter with suicide completers in the Japanese population. Neuropsychopharmacol Rep 2024; 44:262-266. [PMID: 38267013 PMCID: PMC10932791 DOI: 10.1002/npr2.12410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND More than 800 000 people die by suicide annually. The heritability of suicide is 30%-50%. We focused on the hypoxia response element (HRE), which promotes the expression of macrophage migration inhibitory factor (MIF) via the hypoxia-inducible factor (HIF) pathway, important in neurogenesis and neuroprotection. We examined a genetic polymorphism of rs17004038, a single-nucleotide polymorphism (SNP), in suicide completers and controls. METHODS The study population included 1336 suicide completers and 814 unrelated healthy controls. All participants were Japanese. We obtained peripheral blood, extracted DNA, and genotyped the patients for SNP rs17004038 (C > A). RESULTS No significant differences were observed between the two groups in either the allele or genotype analyses. Subgroup analyses by sex, age (<40 or ≥40), and suicide method (violent or nonviolent suicide) were performed with similar results. CONCLUSION No association was observed between SNP rs17004038 and suicide completion. Although it is challenging to collect a large number of samples from suicide completers, further MIF-related genetic studies, including those of rs17004038, are necessary with larger sample sizes.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Satoshi Okazaki
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Takaki Tanifuji
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Ikuo Otsuka
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Masao Miyachi
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Shohei Okada
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Ryota Shindo
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Tadasu Horai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Kentaro Mouri
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Takeshi Kondo
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Yasuhiro Ueno
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Akitoyo Hishimoto
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
6
|
Parol‐Kulczyk M, Durślewicz J, Blonkowska L, Wujec R, Gzil A, Piątkowska D, Ligmanowska J, Grzanka D. Macrophage migration inhibitory factor (MIF) predicts survival in patients with clear cell renal cell carcinoma. J Pathol Clin Res 2024; 10:e12365. [PMID: 38436543 PMCID: PMC10910479 DOI: 10.1002/2056-4538.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common subtypes of renal cancer, with 30% of patients presenting with systemic disease at diagnosis. This aggressiveness is a consequence of the activation of epithelial-mesenchymal transition (EMT) caused by many different inducers or regulators, signaling cascades, epigenetic regulation, and the tumor environment. Alterations in EMT-related genes and transcription factors are associated with poor prognosis in ccRCC. EMT-related factors suppress E-cadherin expression and are associated with tumor progression, local invasion, and metastasis. The aim of this study was to investigate the expression levels and prognostic significance of macrophage migration inhibitory factor (MIF), β-catenin, and E-cadherin in ccRCC patients. We examined these proteins immunohistochemically in tumor areas and adjacent normal tissues resected from patients with ccRCC. Analysis of the cancer genome atlas (TCGA) cohort was performed to verify our results. Kaplan-Meier analysis showed that median overall survival (OS) was significantly shorter in patients with tumors exhibiting high MIFn and MIFm-c levels compared to those with low MIFn and MIFm-c levels (p = 0.03 and p = 0.007, respectively). In the TCGA cohort, there was a significant correlation between MIF expression and OS (p < 0.0001). In conclusion, this study provides further evidence for the biological and prognostic value of MIF in the context of EMT as a potential early prognostic marker for advanced-stage ccRCC.
Collapse
Affiliation(s)
- Martyna Parol‐Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Laura Blonkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Radosław Wujec
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Daria Piątkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Joanna Ligmanowska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| |
Collapse
|
7
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Wei Y, Zheng X, Huang T, Zhong Y, Sun S, Wei X, Liu Q, Wang T, Zhao Z. Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding. PLoS One 2023; 18:e0288281. [PMID: 37616250 PMCID: PMC10449177 DOI: 10.1371/journal.pone.0288281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and participates in important biological mechanisms. However, few studies have reported whether MIF is expressed in human Embryonic stem cells (ESCs) and its effect on human ESCs. Two human ESCs cell lines, H1 and H9 were used. The expression of MIF and its receptors CD74, CD44, CXCR2, CXCR4 and CXCR7 were detected by an immunofluorescence assay, RT-qPCR and western blotting, respectively. The autocrine level of MIF was measured via enzyme-linked immunosorbent assay. The interaction between MIF and its main receptor was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Finally, the effect of MIF on the proliferation and survival of human ESCs was preliminarily explored by incubating cells with exogenous MIF, MIF competitive ligand CXCL12 and MIF classic inhibitor ISO-1. We reported that MIF was highly expressed in H1 and H9 human ESCs. MIF was positively expressed in the cytoplasm, cell membrane and culture medium. Several surprising results emerge. The autosecreted concentration of MIF was 22 ng/mL, which was significantly higher than 2 ng/mL-6 ng/mL in normal human serum, and this was independent of cell culture time and cell number. Human ESCs mainly expressed the MIF receptors CXCR2 and CXCR7 rather than the classical receptor CD74. The protein receptor that interacts with MIF on human embryonic stem cells is CXCR7, and no evidence of interaction with CXCR2 was found. We found no evidence that MIF supports the proliferation and survival of human embryonic stem cells. In conclusion, we first found that MIF was highly expressed in human ESCs and at the same time highly expressed in associated receptors, suggesting that MIF mainly acts in an autocrine form in human ESCs.
Collapse
Affiliation(s)
- Yanzhao Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Department of Human Functioning, Department of Health Services, Logistics University of Chinese People’s Armed Police Force, Tianjin, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xiaohan Zheng
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Ting Huang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Yuanji Zhong
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Shengtong Sun
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xufang Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Qibing Liu
- Department of Pharmacy, Hainan Medical University, Hainan, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| |
Collapse
|
9
|
Xuan W, Xie W, Li F, Huang D, Zhu Z, Lin Y, Lu B, Yu W, Li Y, Li P. Dualistic roles and mechanistic insights of macrophage migration inhibitory factor in brain injury and neurodegenerative diseases. J Cereb Blood Flow Metab 2023; 43:341-356. [PMID: 36369735 PMCID: PMC9941868 DOI: 10.1177/0271678x221138412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in various immune-mediated pathologies and regulates both innate and adaptive immune reactions, thus being related to several acute and chronic inflammatory diseases such as rheumatoid arthritis, septic shock, and atherosclerosis. Its role in acute and chronic brain pathologies, such as stroke and neurodegenerative diseases, has attracted increasing attention in recent years. In response to stimuli like hypoxia, inflammation or infection, different cell types can rapidly release MIF, including immune cells, endothelial cells, and neuron cells. Notably, clinical data from past decades also suggested a possible link between serum MIF levels and the severity of stroke and the evolving of neurodegenerative diseases. In this review, we summarize the major and recent findings focusing on the mechanisms of MIF modulating functions in brain injury and neurodegenerative diseases, which may provide important therapeutic targets meriting further investigation.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Fengshi Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yuxuan Lin
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Binwei Lu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| |
Collapse
|
10
|
Neumaier F, Stoppe C, Stoykova A, Weiss M, Veldeman M, Höllig A, Hamou HA, Temel Y, Conzen C, Schmidt TP, Dogan R, Wiesmann M, Clusmann H, Schubert GA, Haeren RHL, Albanna W. Elevated concentrations of macrophage migration inhibitory factor in serum and cerebral microdialysate are associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Front Neurol 2023; 13:1066724. [PMID: 36712451 PMCID: PMC9880331 DOI: 10.3389/fneur.2022.1066724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Inflammation is increasingly recognized to be involved in the pathophysiology of aneurysmal subarachnoid hemorrhage (aSAH) and may increase the susceptibility to delayed cerebral ischemia (DCI). Macrophage migration inhibitory factor (MIF) has been shown to be elevated in serum and cerebrospinal fluid (CSF) after aSAH. Here, we determined MIF levels in serum, CSF and cerebral microdialysate (MD) at different time-points after aSAH and evaluated their clinical implications. Methods MIF levels were measured in serum, CSF and MD obtained from 30 aSAH patients during early (EPd1-4), critical (CPd5-15) and late (LPd16-21) phase after hemorrhage. For subgroup analyses, patients were stratified based on demographic and clinical data. Results MIF levels in serum increased during CPd5-15 and decreased again during LPd16-21, while CSF levels showed little changes over time. MD levels peaked during EPd1-4, decreased during CPd5-15 and increased again during LPd16-21. Subgroup analyses revealed significantly higher serum levels in patients with aneurysms located in the anterior vs. posterior circulation during CPd5-15 (17.3 [15.1-21.1] vs. 10.0 [8.4-11.5] ng/ml, p = 0.009) and in patients with DCI vs. no DCI during CPd5-15 (17.9 [15.1-22.7] vs. 11.9 [8.9-15.9] ng/ml, p = 0.026) and LPd16-21 (17.4 [11.7-27.9] vs. 11.3 [9.2-12.2] ng/ml, p = 0.021). In addition, MIF levels in MD during CPd5-15 were significantly higher in patients with DCI vs. no DCI (3.6 [1.8-10.7] vs. 0.2 [0.1-0.7] ng/ml, p = 0.026), while CSF levels during the whole observation period were similar in all subgroups. Conclusion Our findings in a small cohort of aSAH patients provide preliminary data on systemic, global cerebral and local cerebral MIF levels after aSAH and their clinical implications. Clinical trial registration ClinicalTrials.gov, identifier: NCT02142166.
Collapse
Affiliation(s)
- Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Stoppe
- Departments of Cardiac Anesthesiology and Intensive Care Medicine Charité, Berlin, Germany,Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany,Department of Anesthesiology and Intensive Care Medicine, Würzburg University, Würzburg, Germany
| | - Anzhela Stoykova
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Hussam Aldin Hamou
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Rabia Dogan
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,*Correspondence: Walid Albanna ✉
| |
Collapse
|
11
|
Sun H, Cheng R, Zhang D, Guo Y, Li F, Li Y, Li Y, Bai X, Mo J, Huang C. MIF promotes cell invasion by the LRP1-uPAR interaction in pancreatic cancer cells. Front Oncol 2023; 12:1028070. [PMID: 36703790 PMCID: PMC9871987 DOI: 10.3389/fonc.2022.1028070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is characterized by high aggressiveness and a hypoxic tumour microenvironment. Macrophage migration inhibitory factor (MIF) is a hypoxia-related pleiotropic cytokine that plays important roles in cancer. However, its role in PDAC progression has not been fully elucidated. Methods The clinical significance of MIF and hypoxia inducible factor 1 subunit alpha (HIF1A) in PDAC was analysed using immunohistochemical staining on PDAC tissues and data from KM-Plotter database. Spatial distribution of MIF and HIF1A gene expression was visualized by spatial transcriptomics in PDAC cell xenografts. To monitor the role of MIF in PDAC cell malignancy, immunostaining, lentivirus shRNA, migration assays, flow cytometry, transcriptomics and in vivo tumorigenicity were performed. Results The spatial distribution of MIF and HIF1A was highly correlated and that high MIF expression was associated with poor prognosis of PDAC patients. MIF knockdown impaired cell invasion, with a decrease in the expression of urokinase-type plasminogen activator receptor (uPAR). Although PLAUR transcript was not reduced, a uPAR endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP1), was upregulated at both the mRNA and protein levels after MIF knockdown. The LRP1 antagonist RAP restored uPAR expression and invasiveness. MIF attenuated the nuclear translocation of p53, a transcriptional regulator of LRP1. Furthermore, MIF downregulation blunted the growth of PDAC cell xenografts and inhibited cell proliferation under normoxia and hypoxia. Transcriptome analysis also provided evidence for the role of MIF in cancer-associated pathways. Discussion We demonstrate a novel link between the two pro-invasive agents MIF and uPAR and explain how MIF increases PDAC cell invasion capability. This finding provides a basis for therapeutic intervention of MIF in PDAC progression.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| |
Collapse
|
12
|
Mendoza-Reinoso V, Schnepp PM, Baek DY, Rubin JR, Schipani E, Keller ET, McCauley LK, Roca H. Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF-1α Stabilization. Cells 2022; 11:cells11233712. [PMID: 36496973 PMCID: PMC9737180 DOI: 10.3390/cells11233712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Patricia M. Schnepp
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dah Youn Baek
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - John R. Rubin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan T. Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| |
Collapse
|
13
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
14
|
Cao MC, Cawston EE, Chen G, Brooks C, Douwes J, McLean D, Graham ES, Dragunow M, Scotter EL. Serum biomarkers of neuroinflammation and blood-brain barrier leakage in amyotrophic lateral sclerosis. BMC Neurol 2022; 22:216. [PMID: 35690735 PMCID: PMC9188104 DOI: 10.1186/s12883-022-02730-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and rapidly progressive neurological disorder. Biomarkers are critical to understanding disease causation, monitoring disease progression and assessing the efficacy of treatments. However, robust peripheral biomarkers are yet to be identified. Neuroinflammation and breakdown of the blood-brain barrier (BBB) are common to familial and sporadic ALS and may produce a unique biomarker signature in peripheral blood. Using cytometric bead array (n = 15 participants per group (ALS or control)) and proteome profiling (n = 6 participants per group (ALS or control)), we assessed a total of 106 serum cytokines, growth factors, and BBB breakdown markers in the serum of control and ALS participants. Further, primary human brain pericytes, which maintain the BBB, were used as a biosensor of inflammation following pre-treatment with ALS serum. Principal components analysis of all proteome profile data showed no clustering of control or ALS sera, and no individual serum proteins met the threshold for statistical difference between ALS and controls (adjusted P values). However, the 20 most changed proteins between control and ALS sera showed a medium effect size (Cohen’s d = 0.67) and cluster analysis of their levels together identified three sample subsets; control-only, mixed control-ALS, and ALS-only. These 20 proteins were predominantly pro-angiogenic and growth factors, including fractalkine, BDNF, EGF, PDGF, Dkk-1, MIF and angiopoietin-2. S100β, a protein highly concentrated in glial cells and therefore a marker of BBB leakage when found in blood, was unchanged in ALS serum, suggesting that serum protein profiles were reflective of peripheral rather than CNS biofluids. Finally, primary human brain pericytes remained proliferative and their secretome was unchanged by chronic exposure to ALS serum. Our exploratory study suggests that individual serum cytokine levels may not be robust biomarkers in small studies of ALS, but that larger studies using multiplexed analysis of pro-angiogenic and growth factors may identify a peripheral signature of ALS pathogenesis.
Collapse
Affiliation(s)
- Maize C Cao
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand.,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin E Cawston
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand.,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Grace Chen
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Collin Brooks
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - E Scott Graham
- Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand. .,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Emma L Scotter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand. .,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
15
|
Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, Shimmyo N, Tanifuji T, Someya T, Hishimoto A. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One 2022; 17:e0265738. [PMID: 35324982 PMCID: PMC8946738 DOI: 10.1371/journal.pone.0265738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that promotes neurogenesis and neuroprotection. MIF is predominantly expressed in astrocytes in the brain. The serum MIF level and microsatellites/single nucleotide polymorphisms (SNPs) in the MIF gene promoter region are known to be associated with schizophrenia (SCZ). Interestingly, previous studies reported that hypoxia, an environmental risk factor for SCZ, induced MIF expression through binding of the hypoxia inducible factor (HIF)-1 to the hypoxia response element (HRE) in the MIF promoter. Methods We investigated the involvement of MIF in SCZ while focusing on the HIF pathway. First, we conducted an association study of the SNP rs17004038 (C>A) in the HRE of the MIF promoter between 1758 patients with SCZ and 1507 controls. Next, we investigated the effect of hypoxia on MIF expression in primary cultured astrocytes derived from neonatal mice forebrain. Results SNP rs17004038 was significantly associated with SCZ (p = 0.0424, odds ratio = 1.445), indicating that this SNP in the HRE of the MIF promoter was a genetic risk factor for SCZ. Hypoxia induced MIF mRNA expression and MIF protein production and increased HIF-1 binding to the MIF promoter, while the activity of the MIF promoter was suppressed by mutations in the HRE and by deletion of the HRE in astrocytes. Conclusion These results suggest that SNP rs17004038 in the HRE of the MIF promoter was significantly associated with SCZ and may be involved in the pathophysiology of SCZ via suppression of hypoxia and HIF pathway-induced MIF expression.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
- * E-mail:
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Osipyan A, Chen D, Dekker FJ. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation. Drug Discov Today 2021; 26:1728-1734. [PMID: 33746067 DOI: 10.1016/j.drudis.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are important for the regular development and maintenance of the tissue-specific expression of cytokine genes. One of the crucial cytokines involved in cancer and inflammation is macrophage migration inhibitory factor (MIF), which triggers the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways by binding to CD74 and other receptors. Altered expression of this cytokine and altered activity states of the connected pathways are linked to inflammatory disease and cancer. Therapeutic strategies based on epigenetic mechanisms have the potential to regulate MIF-mediated signaling in cancer and inflammation.
Collapse
Affiliation(s)
- Angelina Osipyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
17
|
Okazaki S, Boku S, Otsuka I, Horai T, Kimura A, Shimmyo N, Yamaki N, Hishimoto A. Clozapine increases macrophage migration inhibitory factor (MIF) expression via increasing histone acetylation of MIF promoter in astrocytes. J Psychiatr Res 2021; 135:237-242. [PMID: 33508542 DOI: 10.1016/j.jpsychires.2021.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and promotes neurogenesis and neuroprotection in brains. In addition, MIF has been identified as a potential marker of schizophrenia (SCZ). Our recent study also showed that serum MIF level is higher in SCZ and positively correlated with antipsychotic doses, and that MIF promoter polymorphisms are associated with SCZ. Here, we investigated the effects of antipsychotics such as clozapine on MIF expression in primary cultured astrocytes derived from neonatal mouse forebrain. MIF mRNA expression was estimated with quantitative reverse-transcription polymerase chain reaction. MIF protein concentration was measured with enzyme-linked immunosorbent assay. The histone acetylation of MIF promoter was examined with chromatin immunoprecipitation assay. As a result, common antipsychotics, especially clozapine, increased MIF mRNA expression in a dose-dependent manner. Clozapine increased MIF mRNA expression and protein concentration in a time-dependent manner. Moreover, clozapine increased the acetylation of histone H3 at lysine 27 residues (H3K27) in MIF promoter. In conclusion, we provide novel evidence that antipsychotics such as clozapine increases MIF expression via the acetylation of H3K27 in astrocytes, and that MIF may have a potential role for astrocytes in the action mechanisms of antipsychotics.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naruhisa Yamaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Li L, Xu M, Rowan SC, Howell K, Russell-Hallinan A, Donnelly SC, McLoughlin P, Baugh JA. The effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulation. Pulm Circ 2021; 10:2045894020941352. [PMID: 33447370 PMCID: PMC7780187 DOI: 10.1177/2045894020941352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
While it is well established that the haemodynamic cause of hypoxic pulmonary hypertension is increased pulmonary vascular resistance, the molecular pathogenesis of the increased resistance remains incompletely understood. Macrophage migration inhibitory factor is a pleiotropic cytokine with endogenous tautomerase enzymatic activity as well as both intracellular and extracellular signalling functions. In several diseases, macrophage migration inhibitory factor has pro-inflammatory roles that are dependent upon signalling through the cell surface receptors CD74, CXCR2 and CXCR4. Macrophage migration inhibitory factor expression is increased in animal models of hypoxic pulmonary hypertension and macrophage migration inhibitory factor tautomerase inhibitors, which block some of the functions of macrophage migration inhibitory factor, and have been shown to attenuate hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. However, because of the multiple pathways through which it acts, the integrated actions of macrophage migration inhibitory factor during the development of hypoxic pulmonary hypertension were unclear. We report here that isolated lungs from adult macrophage migration inhibitory factor knockout (MIF-/- ) mice maintained in normoxic conditions showed greater acute hypoxic vasoconstriction than the lungs of wild type mice (MIF+/+ ). Following exposure to hypoxia for three weeks, isolated lungs from MIF-/- mice had significantly higher pulmonary vascular resistance than those from MIF+/+ mice. The major mechanism underlying the greater increase in pulmonary vascular resistance in the hypoxic MIF-/- mice was reduction of the pulmonary vascular bed due to an impairment of the normal hypoxia-induced expansion of the alveolar capillary network. Taken together, these results demonstrate that macrophage migration inhibitory factor plays a central role in the development of the pulmonary vascular responses to chronic alveolar hypoxia.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Simon C Rowan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Katherine Howell
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Adam Russell-Hallinan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Abstract
Initially identified as a T lymphocyte-elicited inhibitor of macrophage motility, macrophage migration inhibitory factor (MIF) has since been found to be expressed by nearly every immune cell type examined and overexpressed in most solid and hematogenous malignant cancers. It is localized to both extracellular and intracellular compartments and physically interacts with more than a dozen different cell surface and intracellular proteins. Although classically associated with and characterized as a mediator of pro-inflammatory innate immune responses, more recent studies demonstrate that, in malignant disease settings, MIF contributes to anti-inflammatory, immune evasive, and immune tolerant phenotypes in both innate and adaptive immune cell types. This review will summarize the studies describing MIF in tumor-specific innate and adaptive immune responses and attempt to reconcile these various pleiotropic functions in normal physiology.
Collapse
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Safi W, Kraus A, Grampp S, Schödel J, Buchholz B. Macrophage migration inhibitory factor is regulated by HIF-1α and cAMP and promotes renal cyst cell proliferation in a macrophage-independent manner. J Mol Med (Berl) 2020; 98:1547-1559. [PMID: 32885302 PMCID: PMC7591438 DOI: 10.1007/s00109-020-01964-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Progressive cyst growth leads to decline of renal function in polycystic kidney disease. Macrophage migration inhibitory factor (MIF) was found to be upregulated in cyst-lining cells in a mouse model of polycystic kidney disease and to promote cyst growth. In addition, MIF can be secreted by tubular cells and may contribute to cyst growth in an autocrine manner. However, the underlying mechanisms leading to induction of MIF in cyst-lining cells remained elusive. Here, we demonstrate that hypoxia-inducible transcription factor (HIF) 1α upregulates MIF in cyst-lining cells in a tubule-specific PKD1 knockout mouse. Pharmacological stabilization of HIF-1α resulted in significant increase of MIF in cyst epithelial cells whereas tubule-specific knockout of HIF-1α prevented MIF upregulation. Identical regulation could be found for ABCA1, which has been shown to act as a transport protein for MIF. Furthermore, we show that MIF and ABCA1 are direct target genes of HIF-1α in human primary tubular cells. Next to HIF-1α and hypoxia, we found MIF being additionally regulated by cAMP which is a strong promotor of cyst growth. In line with these findings, HIF-1α- and cAMP-dependent in vitro cyst growth could be decreased by the MIF-inhibitor ISO-1 which resulted in reduced cyst cell proliferation. In conclusion, HIF-1α and cAMP regulate MIF in primary tubular cells and cyst-lining epithelial cells, and MIF promotes cyst growth in the absence of macrophages. In line with these findings, the MIF inhibitor ISO-1 attenuates HIF-1α- and cAMP-dependent in vitro cyst enlargement. KEY MESSAGES: • MIF is upregulated in cyst-lining cells in a polycystic kidney disease mouse model. • MIF upregulation is mediated by hypoxia-inducible transcription factor (HIF) 1α. • ABCA1, transport protein for MIF, is also regulated by HIF-1α in vitro and in vivo. • MIF is additionally regulated by cAMP, a strong promotor of cyst growth. • MIF-inhibitor ISO-1 reduces HIF-1α- and cAMP-dependent cyst growth.
Collapse
Affiliation(s)
- Wajima Safi
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, Ulmenweg 18, D - 91054, Erlangen, Germany.
| |
Collapse
|
21
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
22
|
Ma Y, Su KN, Pfau D, Rao VS, Wu X, Hu X, Leng L, Du X, Piecychna M, Bedi K, Campbell SG, Eichmann A, Testani JM, Margulies KB, Bucala R, Young LH. Cardiomyocyte d-dopachrome tautomerase protects against heart failure. JCI Insight 2019; 4:128900. [PMID: 31484822 DOI: 10.1172/jci.insight.128900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanisms contributing to heart failure remain incompletely understood. d-dopachrome tautomerase (DDT) is a member of the macrophage migration inhibitory factor family of cytokines and is highly expressed in cardiomyocytes. This study examined the role of cardiomyocyte DDT in the setting of heart failure. Patients with advanced heart failure undergoing transplantation demonstrated decreased cardiac DDT expression. To understand the effect of loss of cardiac DDT in experimental heart failure, cardiomyocyte-specific DDT-KO (DDT-cKO) and littermate control mice underwent surgical transverse aortic constriction (TAC) to induce cardiac pressure overload. DDT-cKO mice developed more rapid cardiac contractile dysfunction, greater cardiac dilatation, and pulmonary edema after TAC. Cardiomyocytes from DDT-cKO mice after TAC had impaired contractility, calcium transients, and reduced expression of the sarcoplasmic reticulum calcium ATPase. The DDT-cKO hearts also exhibited diminished angiogenesis with reduced capillary density and lower VEGF-A expression after TAC. In pharmacological studies, recombinant DDT (rDDT) activated endothelial cell ERK1/2 and Akt signaling and had proangiogenic effects in vitro. The DDT-cKO hearts also demonstrated more interstitial fibrosis with enhanced collagen and connective tissue growth factor expression after TAC. In cardiac fibroblasts, rDDT had an antifibrotic action by inhibiting TGF-β-induced Smad-2 activation. Thus, endogenous cardiomyocyte DDT has pleiotropic actions that are protective against heart failure.
Collapse
Affiliation(s)
- Yina Ma
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Kevin N Su
- Yale Cardiovascular Research Center.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Pfau
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Veena S Rao
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Xiaohong Wu
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Lin Leng
- Department of Internal Medicine, and
| | - Xin Du
- Department of Internal Medicine, and
| | | | - Kenneth Bedi
- The Cardiovascular Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stuart G Campbell
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne Eichmann
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Jeffrey M Testani
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and
| | - Kenneth B Margulies
- The Cardiovascular Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Lawrence H Young
- Yale Cardiovascular Research Center.,Department of Internal Medicine, and.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Agarwal S, Cho TY. Biochemical and structural characterization of a novel cooperative binding mode by Pit-1 with CATT repeats in the macrophage migration inhibitory factor promoter. Nucleic Acids Res 2019; 46:929-941. [PMID: 29186613 PMCID: PMC5778499 DOI: 10.1093/nar/gkx1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Overexpression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is linked to a number of autoimmune diseases and cancer. MIF production has been correlated to the number of CATT repeats in a microsatellite region upstream of the MIF gene. We have characterized the interaction of pituitary-specific positive transcription factor 1 (Pit-1) with a portion of the MIF promoter region flanking a microsatellite polymorphism (-794 CATT5-8). Using fluorescence anisotropy, we quantified tight complex formation between Pit-1 and an oligonucleotide consisting of eight consecutive CATT repeats (8xCATT) with an apparent Kd of 35 nM. Using competition experiments we found a 23 base pair oligonucleotide with 4xCATT repeats to be the minimum DNA sequence necessary for high affinity interaction with Pit-1. The stoichiometry of the Pit-1 DNA interaction was determined to be 2:1 and binding is cooperative in nature. We subsequently structurally characterized the complex and discovered a completely novel binding mode for Pit-1 in contrast to previously described Pit-1 complex structures. The affinity of Pit-1 for the CATT target sequence was found to be highly dependent on cooperativity. This work lays the groundwork for understanding transcriptional regulation of MIF and pursuing Pit-1 as a therapeutic target to treat MIF-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Sorabh Agarwal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
25
|
Perveen S, Ayasolla K, Zagloul N, Patel H, Ochani K, Orner D, Benveniste H, Salerno M, Vaska P, Zuo Z, Alabed Y, Nasim M, Miller EJ, Ahmed M. MIF inhibition enhances pulmonary angiogenesis and lung development in congenital diaphragmatic hernia. Pediatr Res 2019; 85:711-718. [PMID: 30759452 DOI: 10.1038/s41390-019-0335-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/31/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a complex birth anomaly with significant mortality and morbidity. Lung hypoplasia and persistent pulmonary hypertension (PPHN) limit survival in CDH. Macrophage migration inhibitory factor (MIF), a key regulator of innate immunity, is involved in hypoxia-induced vascular remodeling and PPHN. We hypothesized that antenatal inhibition of MIF in CDH fetuses, would reduce vascular remodeling, and improve angiogenesis and lung development. METHODS Pregnant rats were randomized into three groups: Control, nitrofen, and nitrofen + ISO-92. Lung volumes of pups were measured by CT scanning. Right ventricular systolic pressure (RVSP) and vascular wall thickness (VWT) were measured together with MIF concentration, angiogenesis markers, lung morphometry, and histology. RESULTS Prenatal treatment with ISO-92, an MIF inhibitor, improved normalization of static lung volume, lung volume-to-body weight ratio, decreased alveolar septal thickness, RVSP and VWT and improved radial alveolar count as compared to the non-treated group. Expression of MIF was unaffected by ISO-92; however, ISO-92 increased p-eNOS and VEGF activities and reduced arginase 1, 2 and Sflt-1. CONCLUSION Prenatal inhibition of MIF activity in CDH rat model improves angiogenesis and lung development. This selective intervention may be a future therapeutic strategy to reduce the morbidity and mortality of this devastating condition.
Collapse
Affiliation(s)
- Shahana Perveen
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Kamesh Ayasolla
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nahla Zagloul
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Hardik Patel
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Kanta Ochani
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Orner
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Salerno
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Paul Vaska
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Zhang Zuo
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Yousef Alabed
- Department of Medicinal Chemistry, Center for Molecular Innovation, Manhasset, NY, USA
| | - Mansoor Nasim
- Department of Pathology, Northwell Health, New Hyde Park, NY, USA
| | - Edmund J Miller
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohamed Ahmed
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
26
|
Penticuff JC, Woolbright BL, Sielecki TM, Weir SJ, Taylor JA. MIF family proteins in genitourinary cancer: tumorigenic roles and therapeutic potential. Nat Rev Urol 2019; 16:318-328. [DOI: 10.1038/s41585-019-0171-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Ahmed M, Miller E. Macrophage migration inhibitory factor (MIF) in the development and progression of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2018; 2018:14. [PMID: 30083544 PMCID: PMC6062764 DOI: 10.21542/gcsp.2018.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the inflammatory cascade by promoting the release of other inflammatory cytokines such as TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs can synthesize and release MIF, many studies have investigated the potential role of MIF as a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using anti-MIFs as a new therapeutic modality for PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Neonatal-Perinatal Medicine, Pediatrics Department Cohen Children’s Hospital at New York, Northwell Health System
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Edmund Miller
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| |
Collapse
|
28
|
Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, Wu PH, Kumar BNP, Bharti R, Dey G, Banerjee K, Rajput S, Bharadwaj D, Pal I, Dey KK, Rajesh Y, Jena BC, Biswas A, Banik P, Pradhan AK, Das SK, Das AK, Dhara S, Fisher PB, Wirtz D, Mills GB, Mandal M. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene 2018; 37:4546-4561. [PMID: 29743594 DOI: 10.1038/s41388-018-0272-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/23/2018] [Accepted: 02/09/2018] [Indexed: 11/09/2022]
Abstract
Although there is a strong correlation between multinucleated cells (MNCs) and cancer chemo-resistance in variety of cancers, our understanding of how multinucleated cells modulate the tumor micro-environment is limited. We captured multinucleated cells from triple-negative chemo-resistant breast cancers cells in a time frame, where they do not proliferate but rather significantly regulate their micro-environment. We show that oxidatively stressed MNCs induce chemo-resistance in vitro and in vivo by secreting VEGF and MIF. These factors act through the RAS/MAPK pathway to induce chemo-resistance by upregulating anti-apoptotic proteins. In MNCs, elevated reactive oxygen species (ROS) stabilizes HIF-1α contributing to increase production of VEGF and MIF. Together the data indicate, that the ROS-HIF-1α signaling axis is very crucial in regulation of chemo-resistance by MNCs. Targeting ROS-HIF-1α in future may help to abrogate drug resistance in breast cancer.
Collapse
Affiliation(s)
- Aditya Parekh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sheetal Parida
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sanjaya K Mallick
- BD Biosciences-Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Pei-Hsun Wu
- Department of chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - B N Prashanth Kumar
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kacoli Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Deblina Bharadwaj
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kaushik Kumar Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Yetirajam Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Payel Banik
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Denis Wirtz
- Department of chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Gordon B Mills
- Department of Systems Biology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
29
|
Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P, Nicoletti F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 2018; 9:17951-17970. [PMID: 29707160 PMCID: PMC5915168 DOI: 10.18632/oncotarget.24885] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Formative Processes, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Mattugini N, Merl-Pham J, Petrozziello E, Schindler L, Bernhagen J, Hauck SM, Götz M. Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia 2018; 66:1644-1662. [PMID: 29573353 DOI: 10.1002/glia.23329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury frequently affects the cerebral cortex, yet little is known about the differential effects that occur if only the gray matter (GM) is damaged or if the injury also involves the white matter (WM). To tackle this important question and directly compare similarities and differences in reactive gliosis, we performed stab wound injury affecting GM and WM (GM+) and one restricted to the GM (GM-) in the adult murine cerebral cortex. First, we examined glial reactivity in the regions affected (WM and GM) and determined the influence of WM injury on reactive gliosis in the GM comparing the same area in the two injury paradigms. In the GM+ injury microglia proliferation is increased in the WM compared with GM, while proliferating astrocytes are more abundant in the GM than in the WM. Interestingly, WM lesion exerted a strong influence on the proliferation of the GM glial cells that was most pronounced at early stages, 3 days post lesion. While astrocyte proliferation was increased, NG2 glia proliferation was decreased in the GM+ compared with GM- lesion condition. Importantly, these differences were not observed when a lesion of the same size affected only the GM. Unbiased proteomic analyses further corroborate our findings in support of a profound difference in GM reactivity when WM is also injured and revealed MIF as a key regulator of NG2 glia proliferation.
Collapse
Affiliation(s)
- Nicola Mattugini
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Ludwig-Maximilians University (LMU), Großhaderner Str. 2, Planegg/Martinsried, 82152, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU), Großhadernerstr. 9, Planegg/Martinsried, 82152, Germany
| | - Lisa Schindler
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| |
Collapse
|
31
|
Hahne M, Schumann P, Mursell M, Strehl C, Hoff P, Buttgereit F, Gaber T. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor. Microvasc Res 2018; 116:34-44. [DOI: 10.1016/j.mvr.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
32
|
Abdul-Aziz AM, Shafat MS, Sun Y, Marlein CR, Piddock RE, Robinson SD, Edwards DR, Zhou Z, Collins A, Bowles KM, Rushworth SA. HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia. Oncogene 2018; 37:2676-2686. [PMID: 29487418 DOI: 10.1038/s41388-018-0151-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/30/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML.
Collapse
Affiliation(s)
- Amina M Abdul-Aziz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Manar S Shafat
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Yu Sun
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Christopher R Marlein
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Rachel E Piddock
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Stephen D Robinson
- School of Biological Sciences, The University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dylan R Edwards
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Angela Collins
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom.
| |
Collapse
|
33
|
Bradford JR, Wappett M, Beran G, Logie A, Delpuech O, Brown H, Boros J, Camp NJ, McEwen R, Mazzola AM, D'Cruz C, Barry ST. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget 2018; 7:20773-87. [PMID: 26980748 PMCID: PMC4991491 DOI: 10.18632/oncotarget.8014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.
Collapse
Affiliation(s)
- James R Bradford
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Mark Wappett
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Garry Beran
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Armelle Logie
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Oona Delpuech
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Henry Brown
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Joanna Boros
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Robert McEwen
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Anne Marie Mazzola
- Oncology iMED, AstraZeneca Pharmaceuticals, Gatehouse Park, Massachusetts, USA
| | - Celina D'Cruz
- Oncology iMED, AstraZeneca Pharmaceuticals, Gatehouse Park, Massachusetts, USA
| | - Simon T Barry
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| |
Collapse
|
34
|
Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C, Meckley M, Wong J, Stewart L, D’Jamoos C, Altman N, Imamura Kawasawa Y, Du Z, Honaas L, Abraham T. "Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0184451. [PMID: 28957348 PMCID: PMC5619717 DOI: 10.1371/journal.pone.0184451] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma (PDAC) patients. The MTFs were generally aneuploidy, and immunophenotypic characterizations showed that the MTFs express markers characteristic of PDAC and stem cells, as well as M2-polarized macrophages. Single cell RNASeq analyses showed that the MTFs express many transcripts implicated in cancer progression, LINE1 retrotransposons, and very high levels of several long non-coding transcripts involved in metastasis (such as MALAT1). When cultured MTFs were transplanted orthotopically into mouse pancreas, they grew as obvious well-differentiated islands of cells, but they also disseminated widely throughout multiple tissues in "stealth" fashion. They were found distributed throughout multiple organs at 4, 8, or 12 weeks after transplantation (including liver, spleen, lung), occurring as single cells or small groups of cells, without formation of obvious tumors or any apparent progression over the 4 to 12 week period. We suggest that MTFs form continually during PDAC development, and that they disseminate early in cancer progression, forming "niches" at distant sites for subsequent colonization by metastasis-initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Ping Xin
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Christopher McGovern
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Eric Wafula
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Claude dePamphilis
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Morgan Meckley
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Joyce Wong
- Department of Surgery, HMC, PSU, Hershey, PA, United States of America
| | - Luke Stewart
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Christopher D’Jamoos
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Naomi Altman
- Department of Statistics, Eberly College, UP, PSU, University Park, PA, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, HMC, PSU, Hershey, PA, United States of America
| | - Zhen Du
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Loren Honaas
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Thomas Abraham
- Department of Neural & Behavioral Sciences and Microscopy Imaging Facility, HMC, PSU, Hershey, PA, United States of America
| |
Collapse
|
35
|
Rödling L, Schwedhelm I, Kraus S, Bieback K, Hansmann J, Lee-Thedieck C. 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci Rep 2017; 7:4625. [PMID: 28676663 PMCID: PMC5496931 DOI: 10.1038/s41598-017-04808-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in the bone marrow are able to differentiate into all types of blood cells and supply the organism each day with billions of fresh cells. They are applied to cure hematological diseases such as leukemia. The clinical need for HSCs is high and there is a demand for being able to control and multiply HSCs in vitro. The hematopoietic system is highly proliferative and thus sensitive to anti-proliferative drugs such as chemotherapeutics. For many of these drugs suppression of the hematopoietic system is the dose-limiting toxicity. Therefore, biomimetic 3D models of the HSC niche that allow to control HSC behavior in vitro and to test drugs in a human setting are relevant for the clinics and pharmacology. Here, we describe a perfused 3D bone marrow analog that allows mimicking the HSC niche under steady-state and activated conditions that favor either HSC maintenance or differentiation, respectively, and allows for drug testing.
Collapse
Affiliation(s)
- Lisa Rödling
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ivo Schwedhelm
- Institute for Tissue Engineering and Regenerative Medicine, University of Würzburg, 97070, Würzburg, Germany
| | - Saskia Kraus
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology Mannheim, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Donor Service Baden-Württemberg-Hessen, 68167, Mannheim, Germany
| | - Jan Hansmann
- Institute for Tissue Engineering and Regenerative Medicine, University of Würzburg, 97070, Würzburg, Germany
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
36
|
Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 2017; 301:83-91. [PMID: 28679106 DOI: 10.1016/j.expneurol.2017.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions. More recently, a chaperone-like activity has been added to its repertoire. In this review, we focus on the implication of MIF in the central nervous system and peripheries, its role in neurological disorders, and the mechanisms by which MIF is regulated. Numerous studies have associated MIF with various disease settings. MIF plays an important role in advocating tumorigenic processes, Alzheimer's disease, and is also upregulated in autism-spectrum disorders and spinal cord injury where it contributes to the severity of the injured area. The protective effect of MIF has been reported in amyotrophic lateral sclerosis by its reduction of aggregated misfolded SOD1, subsequently reducing the severity of this disease. Interestingly, a protective as well as pathological role for MIF has been implicated in stroke and cerebral ischemia, as well as depression. Thus, the role of MIF in neurological disorders appears to be diverse with both beneficial and adversary effects. Furthermore, its modulation is rather complex and it is regulated by different proteins, either on a molecular or protein level. This complexity might be dependent on the pathophysiological context and/or cellular microenvironment. Hence, further clarification of its diverse roles in neurological pathologies is warranted to provide new mechanistic insights which may lead in the future to the development of therapeutic strategies based on MIF, to fight some of these neurological disorders.
Collapse
|
37
|
Krause M, Foks H, Gobis K. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives. Molecules 2017; 22:molecules22030399. [PMID: 28273868 PMCID: PMC6155225 DOI: 10.3390/molecules22030399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
The structural resemblance between the fused imidazopyridine heterocyclic ring system and purines has prompted biological investigations to assess their potential therapeutic significance. They are known to play a crucial role in numerous disease conditions. The discovery of their first bioactivity as GABAA receptor positive allosteric modulators divulged their medicinal potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary for the proper functioning of cancerous cells, pathogens, components of the immune system, enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and biophysical properties foregrounded their medicinal significance in central nervous system, digestive system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of imidazopyridines using various catalysts have been described. The present manuscript to the best of our knowledge is the complete compilation on the synthesis and medicinal aspects of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines reported from the year 2000 to date, including structure–activity relationships.
Collapse
Affiliation(s)
- Malwina Krause
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Henryk Foks
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Katarzyna Gobis
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| |
Collapse
|
38
|
Wang SS, Cen X, Liang XH, Tang YL. Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget 2017; 8:10650-10661. [PMID: 27788497 PMCID: PMC5354689 DOI: 10.18632/oncotarget.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory cytokine, has been showed to be associated with the immunopathogenesis of many diseases. Recent study demonstrated that MIF promoted tumorigenesis and tumor progression and played a critical role in various kinds of human cancer including head and neck squamous cell carcinoma(HNSCC). Hence, in this paper we retrospected the relationship between MIF and angiogenesis, epithelial-mesenchymal transition (EMT), inflammation, immune response, hypoxia microenvironment, and discussed whether it is a promising biomarker for diagnosis and supervisor of HNSCC.
Collapse
Affiliation(s)
- Sha-sha Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People’s Republic of China
| |
Collapse
|
39
|
Roger T, Schlapbach LJ, Schneider A, Weier M, Wellmann S, Marquis P, Vermijlen D, Sweep FCGJ, Leng L, Bucala R, Calandra T, Giannoni E. Plasma Levels of Macrophage Migration Inhibitory Factor and d-Dopachrome Tautomerase Show a Highly Specific Profile in Early Life. Front Immunol 2017; 8:26. [PMID: 28179905 PMCID: PMC5263165 DOI: 10.3389/fimmu.2017.00026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic, constitutively expressed, pro-inflammatory cytokine and an important regulator of immune responses. d-dopachrome tautomerase (DDT), a newly described member of the MIF protein superfamily, shares sequence homology and biological activities with MIF. We recently reported that high expression levels of MIF sustain innate immune responses in newborns. Here, we elected to further characterize age-dependent MIF expression and to define whether DDT shares a similar expression profile with MIF. Therefore, we delineated the circulating concentrations of MIF and DDT throughout life using a large cohort of 307 subjects including fetuses, newborns, infants, children, and adults. Compared to levels measured in healthy adults (median: 5.7 ng/ml for MIF and 16.8 ng/ml for DDT), MIF and DDT plasma concentrations were higher in fetuses (median: 48.9 and 29.6 ng/ml), increased further at birth (median: 82.6 and 52.0 ng/ml), reached strikingly elevated levels on postnatal day 4 (median: 109.5 and 121.6 ng/ml), and decreased to adult levels during the first months of life. A strong correlation was observed between MIF and DDT concentrations in all age groups (R = 0.91, P < 0.0001). MIF and DDT levels correlated with concentrations of vascular endothelial growth factor, a protein upregulated under low oxygen tension and implicated in vascular and lung development (R = 0.70, P < 0.0001 for MIF and R = 0.65, P < 0.0001 for DDT). In very preterm infants, lower levels of MIF and DDT on postnatal day 6 were associated with an increased risk of developing bronchopulmonary dysplasia and late-onset neonatal sepsis. Thus, MIF and DDT plasma levels show a highly specific developmental profile in early life, supporting an important role for these cytokines during the neonatal period.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Lausanne University Hospital , Lausanne , Switzerland
| | - Luregn J Schlapbach
- Paediatric Intensive Care Unit, Lady Cilento Children's Hospital, Children's Health Queensland, South Brisbane, QLD, Australia; Paediatric Critical Care Research Group, Mater Research Institute, University of Queensland, Brisbane, QLD, Australia; Department of Pediatrics, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anina Schneider
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuela Weier
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sven Wellmann
- Department of Neonatology, University of Basel Children's Hospital (UKBB) , Basel , Switzerland
| | - Patrick Marquis
- Service of Neonatology, Lausanne University Hospital , Lausanne , Switzerland
| | - David Vermijlen
- Department of Biopharmacy, Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Centre , Nijmegen , Netherlands
| | - Lin Leng
- Department of Medicine, Yale University , New Haven, CT , USA
| | - Richard Bucala
- Department of Medicine, Yale University , New Haven, CT , USA
| | - Thierry Calandra
- Infectious Diseases Service, Lausanne University Hospital , Lausanne , Switzerland
| | - Eric Giannoni
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
40
|
Cordani M, Butera G, Pacchiana R, Donadelli M. Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochim Biophys Acta Rev Cancer 2016; 1867:19-28. [PMID: 27871965 DOI: 10.1016/j.bbcan.2016.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
An increasing number of studies highlight the role of mutant p53 proteins in cancer cell growth and in the worsening of cancer patients' clinical outcome. Autophagy has been widely recognized as a main biological event involved in both the regulation of cancer cell proliferation and in the response of several anticancer drugs. A thorough analysis of scientific literature underlines the reciprocal interplay between mutant p53 proteins and autophagy regulation. In this review, we analytically summarize recent findings, which indicate that gain-of-function (GOF) mutant p53 proteins counteract the autophagic machinery by various molecular mechanisms including the regulation of AMPK and Akt/mTOR pathways, autophagy-related genes (ATGs), HIF-1α target genes, and the mitochondrial citrate carrier CIC. Moreover, we report that mutant p53 protein stability is affected by lysosome-mediated degradation through macroautophagy or chaperone-mediated autophagy, suggesting the use of autophagy stimulators to counteract mutant p53 oncogenic activity. Finally, we discuss the functional role of the interplay between mutant p53 proteins and autophagy in cancer progression, a fundamental knowledge to design more effective therapies against cancers bearing mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
41
|
Reduction of obliterative bronchiolitis (OB) by prolyl-hydroxylase-inhibitors activating hypoxia-inducible transcription factors in an experimental mouse model. Transpl Immunol 2016; 39:66-73. [DOI: 10.1016/j.trim.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/20/2016] [Indexed: 11/19/2022]
|
42
|
Luo QQ, Qian ZM, Zhou YF, Zhang MW, Wang D, Zhu L, Ke Y. Expression of Iron Regulatory Protein 1 Is Regulated not only by HIF-1 but also pCREB under Hypoxia. Int J Biol Sci 2016; 12:1191-1202. [PMID: 27766034 PMCID: PMC5069441 DOI: 10.7150/ijbs.16437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
The inconsistent of responses of IRP1 and HIF-1 alpha to hypoxia and the similar tendencies in the changes of IRP1 and pCREB contents led us to hypothesize that pCREB might be involved in the regulation of IRP1 under hypoxia. Here, we investigated the role of pCREB in IRP1 expression in HepG2 cells under hypoxia using quantitative PCR, western blot, immunofluorescence, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). We demonstrated that 1) Hypoxia increased pCREB levels inside of the nucleus; 2) Putative CREs were found in the IRP1 gene; 3) Nuclear extracts of HepG2 cells treated with hypoxia could bind to CRE1 and CRE3, and 100-fold competitor of putative CREs could abolish the binding activity to varying degrees; 4) pCREB was found in the CRE1 and CRE3 DNA-protein complexes of EMSA; 5) CRE1 and CRE3 binding activity of IRP1 depended on CREB activation but not on HIF-1; 6) Increased IRP1 expression under hypoxia could be prevented by LY294002; 7) ChIP assays demonstrated that pCREB binds to IRP1 promoter; and 8) HIF-1 and/or HIF-2 siRNA had no effect on the expression of pCREB and IRP1 proteins in cells treated with hypoxia for 8 hours. Our findings evidenced for the involvement of pCREB in IRP1 expression and revealed a dominant role of PI3K/Akt pathway in CREB activation under hypoxia and also suggested that dual-regulation of IRP1 expression by HIF-1 and pCERB or other transcription factor(s) under hypoxia might be a common mechanism in most if not all of hypoxia-inducible genes.
Collapse
Affiliation(s)
- Qian-Qian Luo
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, 226001, China; Laboratory of Neuropharmacology, FudanUniversity School of Pharmacy,826 Zhang Heng Road, Pu Dong, Shanghai201203, China
| | - Zhong-Ming Qian
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, 226001, China; Laboratory of Neuropharmacology, FudanUniversity School of Pharmacy,826 Zhang Heng Road, Pu Dong, Shanghai201203, China
| | - Yu-Fu Zhou
- Laboratory of Neuropharmacology, FudanUniversity School of Pharmacy,826 Zhang Heng Road, Pu Dong, Shanghai201203, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| | - Meng-Wan Zhang
- Laboratory of Neuropharmacology, FudanUniversity School of Pharmacy,826 Zhang Heng Road, Pu Dong, Shanghai201203, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| | - Dang Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, 226001, China
| | - Li Zhu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, 226001, China
| | - Ya Ke
- Laboratory of Neuropharmacology, FudanUniversity School of Pharmacy,826 Zhang Heng Road, Pu Dong, Shanghai201203, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| |
Collapse
|
43
|
Cummins EP, Keogh CE. Respiratory gases and the regulation of transcription. Exp Physiol 2016; 101:986-1002. [DOI: 10.1113/ep085715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eoin P. Cummins
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| | - Ciara E. Keogh
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|
44
|
Li L, Watson CJ, Dubourd M, Bruton A, Xu M, Cooke G, Baugh JA. HIF-1-Dependent TGM1 Expression is Associated with Maintenance of Airway Epithelial Junction Proteins. Lung 2016; 194:829-38. [PMID: 27423780 DOI: 10.1007/s00408-016-9918-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hypoxia has been implicated in the pathogenesis of many inflammatory and fibrotic lung diseases. The effect of hypoxia on epithelial junction protein expression is yet to be fully elucidated but evidence suggests a protective role for the hypoxia-inducible transcription factor HIF-1 in stabilising occludin. Transglutaminase 1 (TGM1) has been shown to stabilise endothelial and keratinocyte cell junctions, and while its expression and function have been mostly studied in the skin, recent studies have reported its expression in the lung. We hypothesised that TGM1 is a hypoxia-induced regulator of pulmonary epithelial junction protein stability, and the aim of this study was to investigate the regulation of TGM1 expression by hypoxia. METHODS Hypoxia-responsive genes were identified in human small airway epithelial cells (SAECs) by DNA microarray. TGM1 mRNA expression in SAECs was measured by quantitative real-time PCR. Protein expression of TGM1 and junction proteins was investigated by western blotting. Hypoxia-induced TGM1 was analysed by immunohistochemistry in vivo. The TGM1 gene promoter was investigated by luciferase assay. RESULTS In vitro exposure of SAECs to hypoxia induced a significant increase in TGM1 expression at both mRNA and protein levels. TGM1 was also significantly upregulated in hypoxic mouse lung epithelium. The hypoxia-responsive region was mapped to a HIF-1-responsive element. Inhibition of HIF-1 expression abolished hypoxia-induced promoter activation. Overexpression of TGM1 in lung epithelial cells or exposure of SAECs to hypoxia led to upregulated expression of junction proteins. CONCLUSION Herein we report that TGM1 is a HIF-1-regulated gene that is associated with the upregulation of airway epithelial junction proteins, supporting a protective role for HIF-1 in the lung. Interventions that augment the expression of TGM1 may provide useful therapeutic strategies for maintaining pulmonary epithelial integrity during lung injury.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chris J Watson
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Building, Belfast, Northern Ireland, UK
| | - Mickael Dubourd
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aine Bruton
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gordon Cooke
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
45
|
Oghumu S, Knobloch TJ, Terrazas C, Varikuti S, Ahn-Jarvis J, Bollinger CE, Iwenofu H, Weghorst CM, Satoskar AR. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators. Int J Cancer 2016; 139:1379-90. [PMID: 27164411 DOI: 10.1002/ijc.30177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer.
Collapse
Affiliation(s)
- Steve Oghumu
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Thomas J Knobloch
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Cesar Terrazas
- Department of Pathology, Ohio State University Medical Center, Columbus, OH
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University Medical Center, Columbus, OH
| | - Jennifer Ahn-Jarvis
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH
| | - Claire E Bollinger
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH
| | - Hans Iwenofu
- Department of Pathology, Ohio State University Medical Center, Columbus, OH
| | - Christopher M Weghorst
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
46
|
Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial. Sports Med 2016; 46:1753-1766. [DOI: 10.1007/s40279-016-0505-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Yao J, Leng L, Sauler M, Fu W, Zheng J, Zhang Y, Du X, Yu X, Lee P, Bucala R. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest 2016; 126:732-44. [PMID: 26752645 DOI: 10.1172/jci81937] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.
Collapse
|
48
|
Russell KE, Chung KF, Clarke CJ, Durham AL, Mallia P, Footitt J, Johnston SL, Barnes PJ, Hall SR, Simpson KD, Starkey MR, Hansbro PM, Adcock IM, Wiegman CH. The MIF Antagonist ISO-1 Attenuates Corticosteroid-Insensitive Inflammation and Airways Hyperresponsiveness in an Ozone-Induced Model of COPD. PLoS One 2016; 11:e0146102. [PMID: 26752192 PMCID: PMC4709227 DOI: 10.1371/journal.pone.0146102] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/14/2015] [Indexed: 01/13/2023] Open
Abstract
Introduction Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively steroid insensitive inflammatory disease is unclear, however. Methods Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from non-smokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexamethasone before each exposure. BAL fluid and lung tissue were collected after the final exposure. Airway hyperresponsiveness (AHR) and lung function were measured using whole body plethysmography. HIF-1α binding to the Mif promoter was determined by Chromatin Immunoprecipitation assays. Results MIF levels in sputum and BAL macrophages from COPD patients were higher than those from non-smokers, with healthy smokers having intermediate levels. MIF expression correlated with that of HIF-1α in all patients groups and in ozone-exposed mice. BAL cell counts, cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR. Conclusion MIF and HIF-1α levels are elevated in COPD BAL macrophages and inhibition of MIF function blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may provide a novel anti-inflammatory approach in COPD.
Collapse
Affiliation(s)
- Kirsty E. Russell
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Colin J. Clarke
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Andrew L. Durham
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Joseph Footitt
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J. Barnes
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | | | | | - Malcolm R. Starkey
- Priority Research Centre for Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Coen H. Wiegman
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One 2016; 11:e0146482. [PMID: 26741693 PMCID: PMC4704778 DOI: 10.1371/journal.pone.0146482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) has been increasingly implicated in cancer development and progression by promoting inflammation, angiogenesis, tumor cell survival and immune suppression. MIF is overexpressed in a variety of solid tumor types in part due to its responsiveness to hypoxia inducible factor (HIF) driven transcriptional activation. MIF secretion, however, is a poorly understood process owing to the fact that MIF is a leaderless polypeptide that follows a non-classical secretory pathway. Better understanding of MIF processing and release could have therapeutic implications. Here, we have discovered that ionizing radiation (IR) and other DNA damaging stresses can induce robust MIF secretion in several cancer cell lines. MIF secretion by IR appears independent of ABCA1, a cholesterol efflux pump that has been implicated previously in MIF secretion. However, MIF secretion is robustly induced by oxidative stress. Importantly, MIF secretion can be observed both in cell culture models as well as in tumors in mice in vivo. Rapid depletion of MIF from tumor cells observed immunohistochemically is coincident with elevated circulating MIF detected in the blood sera of irradiated mice. Given the robust tumor promoting activities of MIF, our results suggest that an innate host response to genotoxic stress may mitigate the beneficial effects of cancer therapy, and that MIF inhibition may improve therapeutic responses.
Collapse
|
50
|
Hu S, Cao Q, Xu P, Ji W, Wang G, Zhang Y. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats. Exp Ther Med 2015; 11:1005-1010. [PMID: 26998028 DOI: 10.3892/etm.2015.2958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022] Open
Abstract
Rolipram, a phosphodiesterase-4 inhibitor, can activate the cyclic adenosine monophosphate (cAMP)/cAMP-responsive element binding protein (CREB) pathway to facilitate functional recovery following ischemic stroke. However, to date, the effects of rolipram on angiogenesis and cerebral ischemia-induced neuronal apoptosis are yet to be fully elucidated. In this study, the aim was to reveal the effect of rolipram on the angiogenesis and neuronal apoptosis following brain cerebral ischemia. Rat models of ischemic stroke were established following transient middle cerebral artery occlusion and rolipram was administered for three, seven and 14 days. The results were examined using behavioral tests, triphenyl tetrazolium chloride staining, immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to evaluate the effects of rolipram therapy on functional outcome, angiogenesis and apoptosis. Western blot analysis was used to show the phosphorylated- (p-)CREB protein level in the ischemic hemisphere. The rolipram treatment group exhibited a marked reduction in infarct size and modified neurological severity score compared with the vehicle group, and rolipram treatment significantly promoted the microvessel density in the ischemic boundary region and increased p-CREB protein levels in the ischemic hemisphere. Furthermore, a significant reduction in the number of TUNEL-positive cells was observed in the rolipram group compared with the vehicle group. These findings suggest that rolipram has the ability to attenuate cerebral ischemic injury, stimulate angiogenesis and reduce neuronal apoptosis though the cAMP/CREB pathway.
Collapse
Affiliation(s)
- Shouye Hu
- Department of Osteonecrosis and Joint Reconstruction, Xi'an Honghui Hospital, Xi'an, Shaanxi 710068, P.R. China; Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China
| | - Qingwen Cao
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Xu
- Department of Osteonecrosis and Joint Reconstruction, Xi'an Honghui Hospital, Xi'an, Shaanxi 710068, P.R. China; Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China
| | - Wenchen Ji
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China
| | - Gang Wang
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China; Department of Neurosurgery, Shaanxi Province People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yuelin Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710068, P.R. China; Department of Neurosurgery, Shaanxi Province People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|