1
|
V V A, S N, P P A, M V A, K A, S Mohan A, M R R, Kesavan D, Philip R. Insights into the antifungal properties and modes of action of a recombinant hepcidin, rAd-Hep from the shrimp scad, Alepes djedaba (Forsskål, 1775). Microb Pathog 2025; 203:107518. [PMID: 40164398 DOI: 10.1016/j.micpath.2025.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Antimicrobial peptides are short, mostly cationic and amphipathic molecules crucial for host defence. Among these, hepcidins are a family of cysteine rich peptides, with HAMP1 hepcidins playing a dual role in iron metabolism and antimicrobial defense. Recently, recombinantly produced Alepes djedaba hepcidin, rAd-Hep was characterized and its antibacterial potential against various pathogens have been discerned. Herein, we investigated the antifungal nature and modes of action of rAd-Hep against some fungal pathogens. The peptide was found to be active against both filamentous fungi and yeasts viz., Aspergillus flavus, Aspergillus sydowii, Fusarium solani, Penicillium citrinum, Candida albicans and Saccharomyces cerevisiae. The peptide acted via membrane permeabilization creating pores of ∼0.7-1.4 nm radii, ROS generation, chromatin condensation and DNA binding. The recombinant hepcidin, rAd-Hep can be considered as a promising candidate for future endeavors in antifungal therapies.
Collapse
Affiliation(s)
- Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India; Department of Zoology, St. Albert's College, Kochi, Kerala, 682018, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Anjali S Mohan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Revathy M R
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Dhanya Kesavan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
2
|
Ramos-Alcántara S, Napan MAC, Campana GL, Ortiz JT. Potential Inhibitory Effect of the Peptide Melittin Purified from Apis mellifera Venom on CTX-M-Type Extended-Spectrum β-Lactamases of Escherichia coli. Antibiotics (Basel) 2025; 14:403. [PMID: 40298530 DOI: 10.3390/antibiotics14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background. Extended-spectrum β-lactamases (ESBLs) hydrolyze nearly all β-lactam antibiotics, affecting one of the most important groups of antimicrobials used in Gram-negative infections. Among them, CTX-M is the most widespread type of ESBL. This study aimed to evaluate the hydrolytic activity of CTX-M-type ESBLs following exposure to the antimicrobial peptide Melittin. Methods. Melittin was purified from Apis mellifera venom through ultrafiltration and characterized by SDS-PAGE. The minimum inhibitory concentration (MIC) of Melittin against ESBL-producing E. coli was determined by the broth microdilution method. The inhibition of ESBL's hydrolytic activity following exposure to sub-MIC doses of Melittin was quantified using a kinetic assay based on hydrolyzed nitrocefin. Additionally, the effect of Melittin on the expression of the blaCTX-M gene was evaluated via RT-PCR. Results. The peptide fraction of Apitoxin smaller than 10 kDa exhibited a protein band corresponding to Melittin, devoid of higher molecular weight proteins. The MIC of Melittin ranged from 50 to 80 µg/mL. Exposure to Melittin at sub-MIC doses significantly inhibited ESBL hydrolytic activity, reducing it by up to 67%. However, the transcription of the blaCTX-M gene in the presence of Melittin revealed no significant changes. Conclusions. Melittin is able to inhibit ESBL's hydrolytic activity but not blaCTX-M transcription possibly indicating an effect at the translational or post-translational level.
Collapse
Affiliation(s)
- Sheril Ramos-Alcántara
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - María Alejandra Cornejo Napan
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Giovanni Lopez Campana
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Jesus Tamariz Ortiz
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
3
|
Del Río MV, Radicioni MB, Cutine AM, Mariño KV, Mora-Montes HM, Cagnoni AJ, Regente MC. The sunflower jacalin Helja: biological and structural insights of its antifungal activity against Candida albicans. Glycobiology 2024; 34:cwae058. [PMID: 39088584 DOI: 10.1093/glycob/cwae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024] Open
Abstract
The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall mannans of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.
Collapse
Affiliation(s)
- Marianela V Del Río
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina
| | - Melisa B Radicioni
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Héctor M Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto, C.P. 36050, México
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Mariana C Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina
| |
Collapse
|
4
|
Ahmed MBM, El-ssayad MF, Yousef SY, Salem SH. Bee venom: A potential natural alternative to conventional preservatives for prolonging the shelf-life of soft cheese 'Talaga'. Heliyon 2024; 10:e28968. [PMID: 38601605 PMCID: PMC11004823 DOI: 10.1016/j.heliyon.2024.e28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The study aims to explore bee venom (honey-BV) as a potential natural preservative for "Tallaga" soft cheese. Characterization of the active compounds in honey-BV was conducted via chromatographic analyses. Antimicrobial efficacy against pathogenic bacteria and fungi was evaluated, and minimum inhibitory concentration (MIC) was determined. Subsequently, honey-BV was applied to Tallaga cheese at 15 mg/g concentrations. The main active ingredients identified in bee venom were apamin (2%) and melittin (48.7%). Both concentrations of bee venom (100 and 200 mg/mL) exhibited significant antifungal and antibacterial properties against tested organisms, with MIC values varied from 0.2 to 0.5 mg/mL for bacteria to 3-13 mg/mL for fungi. Application of honey-BV in Tallaga cheese resulted in complete elimination of Staphylococcal populations after 2 weeks of cold storage, with no detectable growth of molds or yeasts throughout the storage period. Additionally, a steady decrease in aerobic plate count was observed over time. In summary, honey-BV holds promise as a natural preservative for soft cheese, however, more investigation is required to optimize the concentration for economic viability, taking into account health benefits and safety considerations.
Collapse
Affiliation(s)
- Mohamed Bedair M. Ahmed
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| | - Mohamed Fathy El-ssayad
- Dairy Sciences Department, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| | | | - Salah H. Salem
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Li Z, Shui Y, Wang H, Li S, Deng B, Zhang W, Gao S, Zhao L. In Vitro and In Vivo Anti-Candida albicans Activity of a Scorpion-Derived Peptide. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10233-3. [PMID: 38372937 DOI: 10.1007/s12602-024-10233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The increasing infection and drug resistance frequency has encouraged the exploration of new and effective anti-Candida albicans agents. In this study, CT-K3K7, a scorpion antimicrobial peptide derivative, effectively inhibit the growth of C. albicans. CT-K3K7 killed C. albicans cells in a dose-dependent manner, mainly by damaging the plasma membrane. CT-K3K7 could also disrupt the nucleus and interact with nucleic acid. Moreover, CT-K3K7 induced C. albicans cells necrosis via a reactive oxygen species (ROS)-related pathway. Furthermore, CT-K3K7 inhibited the hyphal and biofilm formation of C. albicans. In the mouse skin subcutaneous infection model, CT-K3K7 significantly prevented skin abscess formation and reduced the number of C. albicans cells recovered from the infection area. Taken together, CT-K3K7 has the potential to be a therapeutic for C. albicans skin infections.
Collapse
Affiliation(s)
- Zhongjie Li
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, China.
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Key Laboratory of Microbiota and Esophageal Cancer Prevention and Control, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yingbin Shui
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Huayi Wang
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shasha Li
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Bo Deng
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Wenlu Zhang
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shegan Gao
- Henan Provincial Key Laboratory of Microbiota and Esophageal Cancer Prevention and Control, Henan University of Science and Technology, Luoyang, 471000, China.
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, China.
| | - Lingyu Zhao
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Sun D, Li S, Huang H, Xu L. Neurotoxicity of melittin: Role of mitochondrial oxidative phosphorylation system in synaptic plasticity dysfunction. Toxicology 2023; 497-498:153628. [PMID: 37678661 DOI: 10.1016/j.tox.2023.153628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Melittin (Mel), a main active peptide component of bee venom, has been proven to possess strong antitumor activity. Previous studies have shown that Mel caused severe cell membrane lysis and acted on the central nervous system (CNS). Here, this study was designed to investigate the effects of Mel on CNS and explore the potential mechanism. We confirmed the neurotoxic effect of melittin by in vivo and in vitro experiments. After subcutaneous administration of Mel (4 mg/kg, 8 mg/kg) for 14 days, the mice exhibited obvious depression-like behavior in a dose dependent manner. Besides, RNA-sequencing analysis revealed that oxidative phosphorylation (OXPHOS) signaling pathway was mostly enriched in hippocampus. Consistently, we found that Mel distinctly inhibited the activity of OXPHOS complex I and induced oxidative stress injury. Moreover, Mel significantly induced synaptic plasticity dysfunction in hippocampus via BDNF/TrkB/CREB signaling pathway. Taken together, the neurotoxic effect of Mel was involved in impairing OXPHOS system and hippocampal synaptic plasticity. These novel findings provide new insights into fully understanding the health risks of Mel and are conducive to the development of Mel related drugs.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
7
|
Sharma K, Aaghaz S, Maurya IK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Ring-Modified Histidine-Containing Cationic Short Peptides Exhibit Anticryptococcal Activity by Cellular Disruption. Molecules 2022; 28:molecules28010087. [PMID: 36615282 PMCID: PMC9821961 DOI: 10.3390/molecules28010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The N-1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan. In vitro analysis revealed that peptides Trp-His[1-(3,5-di-tert-butylbenzyl)-5-iodo]-OMe (10d, IC50 = 2.20 μg/mL; MIC = 4.01 μg/mL) and Trp-His[1-(2-iodophenyl)-5-iodo)]-OMe (10o, IC50 = 2.52 μg/mL; MIC = 4.59 μg/mL) exhibit promising antifungal activities against C. neoformans. When administered in combination with standard drug amphotericin B (Amp B), a significant synergism was observed, with 4- to 16-fold increase in the potencies of both peptides and Amp B. Electron microscopy analysis with SEM and TEM showed that the dipeptides primarily act via membrane disruption, leading to pore formation and causing cell lysis. After entering the cells, the peptides interact with the intracellular components as demonstrated by confocal laser scanning microscopy (CLSM).
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Indresh Kumar Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
- Correspondence:
| |
Collapse
|
8
|
Sharma K, Aaghaz S, Kumar Maurya I, Sharma KK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Synthetic Amino Acids-Derived Peptides Targets Cryptococcus neoformans by Inducing Cell Membrane Disruption. Bioorg Chem 2022; 130:106252. [DOI: 10.1016/j.bioorg.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
9
|
Peng C, Liu Y, Shui L, Zhao Z, Mao X, Liu Z. Mechanisms of Action of the Antimicrobial Peptide Cecropin in the Killing of Candida albicans. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101581. [PMID: 36295016 PMCID: PMC9604627 DOI: 10.3390/life12101581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
The development of drug resistance has caused fungal infections to become a global health concern. Antimicrobial peptides (AMPs) offer a viable solution to these pathogens due to their resistance to drug resistance and their diverse mechanisms of actions, which include direct killing and immunomodulatory properties. The peptide Cecropin, which is expressed by genetically engineered bacteria, has antifungal effects on Candida albicans. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of Candida albicans were 0.9 μg/mL and 1.8 μg/mL, respectively, detected by the micro-broth dilution method. According to the killing kinetics, the MFC of Cecropin could kill Candida albicans in 40 min. The electron microscope indicated that Cecropin could cause the cell wall to become rough and nicked, eventually killing Candida albicans. The effects of Cecropin on the cell membrane of treated C. albicans, using the 1,6-diphenyl-1,3,5-hexatriene and propidium iodide protocol, showed that they could change the permeability and fluidity, destroy it, and lead to cell necrosis. In addition, Cecropin can also induce cells to produce excessive reactive oxygen species, causing changes in the mitochondrial membrane potential. Therefore, this study provides a certain theoretical basis for the antifungal infection of new antifungal agents.
Collapse
|
10
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
11
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
12
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
13
|
Del Rio M, Radicioni MB, Mello ÉO, Ribeiro SFF, Taveira GB, Carvalho AO, de la Canal L, Gomes VM, Regente M. A plant mannose-binding lectin and fluconazole: key targets combination against Candida albicans. J Appl Microbiol 2022; 132:4310-4320. [PMID: 35332971 DOI: 10.1111/jam.15544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/19/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
AIMS This study aimed to evaluate the combined effect of a mannose-binding lectin Helja with fluconazole (FLC) on Candida albicans and to get insights about the joint action mechanism. METHODS AND RESULTS The fungal growth was assessed following the optical density at 630 nm. Fungal cell morphology and nucleus integrity were analyzed by flow cytometry and confocal laser scanning microscopy using Calcofluor White (CFW) and 4',6-diamidino-2-phenylindole (DAPI) staining, respectively. The basis of Helja+FLC action on cell wall and plasma membrane was analyzed using perturbing agents. The Helja+FLC combination exhibited an inhibitory effect of fungal growth about three times greater than the sum of both compounds separately and inhibited fungal morphological plasticity, an important virulence attribute associated with drug resistance. Cells treated with Helja+FLC showed morphological changes, nucleus disintegration and formation of multimera structures, leading to cell collapse. CONCLUSIONS Our findings indicate that the Helja+FLC combination exhibited a potent antifungal activity based on their simultaneous action on different microbial cell targets. SIGNIFICANCE AND IMPACT OF STUDY The combination of a natural protein with conventional drugs might be helpful for the design of effective therapeutic strategies against Candida, contributing to minimize the development of drug resistance and host cell toxicity.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Melisa B Radicioni
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Érica O Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Suzanna F F Ribeiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel B Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - André O Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Valdirene M Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
14
|
Influence of Acetylation on the Mechanism of Action of Antimicrobial Peptide L163. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Discovery of polypyridyl iridium(III) complexes as potent agents against resistant Candida albicans. Eur J Med Chem 2022; 233:114250. [DOI: 10.1016/j.ejmech.2022.114250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
|
16
|
Huang JY, Peng SF, Chueh FS, Chen PY, Huang YP, Huang WW, Chung JG. Melittin suppresses epithelial-mesenchymal transition and metastasis in human gastric cancer AGS cells via regulating Wnt/BMP associated pathway. Biosci Biotechnol Biochem 2021; 85:2250-2262. [PMID: 34482401 DOI: 10.1093/bbb/zbab153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
Gastric cancer has a poor prognosis; once cancer has metastasized, it can easily lead to patient death. Melittin is one of the major components extracted from the bee venom. It has been shown that melittin emerges antitumor activities against many human cancer cell lines. Our results indicated that melittin at 0.2-0.5 µm significantly reduced total cell viability in human gastric cancer AGS cells. At low concentrations (0.05-0.15 µm), melittin displayed antimetastasis effects and inhibited cell adhesion and colony formation. Besides, it inhibited cell motility and suppressed cell migration and invasion. Melittin inhibited the activities of MMP-2 and MMP-9 and the integrity of cell membrane in AGS cells. Furthermore, Western blotting results showed that melittin decreased the protein expressions of Wnt/BMP and MMP-2 signaling pathways. Based on these observations, melittin inhibited cell migration and invasion of AGS cells through multiple signaling pathways. It may be used to treat metastasized gastric cancers in the future.
Collapse
Affiliation(s)
- Jye-Yu Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021; 193:114769. [PMID: 34543656 DOI: 10.1016/j.bcp.2021.114769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.
Collapse
Affiliation(s)
- Shantanu Guha
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA
| | - Ryan P Ferrie
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Jenisha Ghimire
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Cristina R Ventura
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Eric Wu
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Leisheng Sun
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Sarah Y Kim
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Gregory R Wiedman
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Kalina Hristova
- Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD, USA.
| | - Wimley C Wimley
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA.
| |
Collapse
|
18
|
Sun FJ, Li M, Gu L, Wang ML, Yang MH. Recent progress on anti-Candida natural products. Chin J Nat Med 2021; 19:561-579. [PMID: 34419257 DOI: 10.1016/s1875-5364(21)60057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Candida is an intractable life-threatening pathogen. Candida infection is extremely difficult to eradicate, and thus is the major cause of morbidity and mortality in immunocompromised individuals. Morevover, the rapid spread of drug-resistant fungi has led to significant decreases in the therapeutic effects of clinical drugs. New anti-Candida agents are urgently needed to solve the complicated medical problem. Natural products with intricate structures have attracted great attention of researchers who make every endeavor to discover leading compounds for antifungal agents. Their novel mechanisms and diverse modes of action expand the variety of fungistatic agents and reduce the emergence of drug resistance. In recent decades, considerable effort has been devoted to finding unique antifungal agents from nature and revealing their unusual mechanisms, which results in important progress on the development of new antifungals, such as the novel cell wall inhibitors YW3548 and SCY-078 which are being tested in clinical trials. This review will present a brief summary on the landscape of anti-Candida natural products within the last decade. We will also discuss in-depth the research progress on diverse natural fungistatic agents along with their novel mechanisms.
Collapse
Affiliation(s)
- Fu-Juan Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Min Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Gu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Ling Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
El-Ashram S, El-Samad LM, Basha AA, El Wakil A. Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacol Res 2021; 170:105749. [PMID: 34214630 DOI: 10.1016/j.phrs.2021.105749] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
This review summarizes the four processes of wound healing in the human body (hemostasis, inflammatory, proliferation, and remodeling) and the most current research on the most important factors affecting cutaneous wound healing and the underlying cellular and/or molecular pathways. Local factors, including temperature, oxygenation, and infection, and systemic factors, such as age, diabetes, sex hormones, genetic components, autoimmune diseases, psychological stress, smoking and obesity are also addressed. A better understanding of the role of these factors in wound repair could result in the development of therapeutics that promote wound healing and resolve affected wounds. Additionally, natural products obtained from plants and animals are critical targets for the discovery of novel biologically significant pharmacophores, such as medicines and agrochemicals. This review outlines the most recent advances in naturally derived targeted treatment for wound healing. These are plant-derived natural products, insect-derived natural products, marine-derived natural products, nanomaterial-based wound-healing therapeutics (metal- and non-metal-based nanoparticles), and natural product-based nanomedicine to improve the future direction of wound healing. Natural products extracted from plants and animals have advanced significantly, particularly in the treatment of wound healing. As a result, the isolation and extraction of bioactive compounds from a variety of sources can continue to advance our understanding of wound healing. Undescribed bioactive compounds or unexplored formulations that could have a role in today's medicinal arsenal may be contained in the abundance of natural products and natural product derivatives.
Collapse
Affiliation(s)
- Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
20
|
Sharma KK, Ravi R, Maurya IK, Kapadia A, Khan SI, Kumar V, Tikoo K, Jain R. Modified histidine containing amphipathic ultrashort antifungal peptide, His[2-p-(n-butyl)phenyl]-Trp-Arg-OMe exhibits potent anticryptococcal activity. Eur J Med Chem 2021; 223:113635. [PMID: 34147743 DOI: 10.1016/j.ejmech.2021.113635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
In pursuit of ultrashort peptide-based antifungals, a new structural class, His(2-aryl)-Trp-Arg is reported. Structural changes were investigated on His-Trp-Arg scaffold to demonstrate the impact of charge and lipophilic character on the biological activity. The presence and size of the aryl moiety on imidazole of histidine modulated overall amphiphilic character, and biological activity. Peptides exhibited IC50 of 0.37-9.66 μg/mL against C. neoformans. Peptide 14f [His(2-p-(n-butyl)phenyl)-Trp-Arg-OMe] exhibited two-fold potency (IC50 = 0.37 μg/mL, MIC = 0.63 μg/mL) related to amphotericin B, without any cytotoxic effects up to 10 μg/mL. Peptide 14f act by nuclear fragmentation, membranes permeabilization, disruption and pore formations in the microbial cells as determined by the mechanistic studies employing Trp-quenching, CLSM, SEM, and HR-TEM. The amalgamation of short sequence, presence of appropriate aryl group on l-histidine, potent anticryptococcal activity, no cytotoxicity, and detailed mechanistic studies directed to the identification of 14f as a new antifungal structural lead.
Collapse
Affiliation(s)
- Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Ravikant Ravi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Technology, Panjab University, Sector 25, Chandigarh 160 014, India
| | - Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
21
|
Maaroufi H, Potvin M, Cusson M, Levesque RC. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly-L-aspartic acid C-terminus. Proteins 2021; 89:1205-1215. [PMID: 33973678 DOI: 10.1002/prot.26142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
Cecropins form a family of amphipathic α-helical cationic peptides with broad-spectrum antibacterial properties and potent anticancer activity. The emergence of bacteria and cancer cells showing resistance to cationic antimicrobial peptides (CAMPs) has fostered a search for new, more selective and more effective alternatives to CAMPs. With this goal in mind, we looked for cecropin homologs in the genome and transcriptome of the spruce budworm, Choristoneura fumiferana. Not only did we find paralogs of the conventional cationic cecropins (Cfcec+ ), our screening also led to the identification of previously uncharacterized anionic cecropins (Cfcec- ), featuring a poly-l-aspartic acid C-terminus. Comparative peptide analysis indicated that the C-terminal helix of Cfcec- is amphipathic, unlike that of Cfcec+ , which is hydrophobic. Interestingly, molecular dynamics simulations pointed to the lower conformational flexibility of Cfcec- peptides, relative to that of Cfcec+ . Phylogenetic analysis suggests that the evolution of distinct Cfcec+ and Cfcec- peptides may have resulted from an ancient duplication event within the Lepidoptera. Finally, we found that both anionic and cationic cecropins contain a BH3-like motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) that could interact with Bcl-2, a protein involved in apoptosis; this observation is congruent with previous reports indicating that cecropins induce apoptosis. Altogether, our observations suggest that cecropins may provide templates for the development of new anticancer drugs. We also estimated the antibacterial activity of Cfcec-2 and a ∆Cfce-2 peptide as AMPs by testing directly their ability in inhibiting bacterial growth in a disk diffusion assay and their potential for development of novel therapeutics.
Collapse
Affiliation(s)
- Halim Maaroufi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Marianne Potvin
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Canada
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS) and Faculté de médecine, Université Laval, Quebec City, Canada
| |
Collapse
|
22
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|
24
|
Bai Y, Zhang H, Wang Y, Zhu L, Shi T, Wei H, Xiao J, Zhang Y, Wang Z. Novel Oxovanadium Complex VO(hntdtsc)(NPIP): Anticancer Activity and Mechanism of Action on HeLa Cells. Front Pharmacol 2021; 11:608218. [PMID: 33628179 PMCID: PMC7897675 DOI: 10.3389/fphar.2020.608218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023] Open
Abstract
Oxovanadium complexes, particularly vanadyl (IV) derivatives with hybrid ligands of Schiff base and polypyridyl, have been demonstrated to possess great anticancerous therapeutic efficacy. However, most of the studies on the activity of these oxovanadium complexes have mainly focused on in vitro studies, and animal studies in vivo are extremely scarce. Based on the antitumor test results of four novel oxovanadium complexes in our previous work, this work further conducted a comprehensive antitumor activity study in vitro and in vivo on VO(hntdtsc)(NPIP), which owned the strongest inhibitory activity in vitro on multiple tumor cell proliferation. The cellular mechanism study suggested that VO(hntdtsc)(NPIP) inhibited the cell proliferation via arresting the cell cycle at G0/G1 phase through the p16-cyclin D1-CDK4-p-Rb pathway and inducing cell apoptosis through mitochondrial-dependent apoptosis pathway on HeLa cells. Inconsistent with the effects in vitro, VO(hntdtsc)(NPIP) significantly inhibited the growth of tumor and induced the apoptosis of cancer cells in mice xenograft models according to the results of nude mice in vivo image detection, H&E pathological examination, and immunohistochemical detection of p16/Ki-67 protein expression. Collectively, all the results, particularly studies in vivo, demonstrated that VO(hntdtsc)(NPIP) hold a potential to be the lead compound and further to be an anticervical cancer drug.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yali Wang
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Longqing Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hangzhi Wei
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Bee Venom in Wound Healing. MOLECULES (BASEL, SWITZERLAND) 2020; 26:molecules26010148. [PMID: 33396220 PMCID: PMC7795515 DOI: 10.3390/molecules26010148] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023]
Abstract
Bee venom (BV), also known as api-toxin, is widely used in the treatment of different inflammatory diseases such as rheumatoid arthritis or multiple sclerosis. It is also known that BV can improve the wound healing process. BV plays a crucial role in the modulation of the different phases of wound repair. It possesses anti-inflammatory, antioxidant, antifungal, antiviral, antimicrobial and analgesic properties, all of which have a positive impact on the wound healing process. The mentioned process consists of four phases, i.e., hemostasis, inflammation, proliferation and remodeling. The impaired wound healing process constitutes a significant problem especially in diabetic patients, due to hypoxia state. It had been found that BV accelerated the wound healing in diabetic patients as well as in laboratory animals by impairing the caspase-3, caspase-8 and caspase-9 activity. Moreover, the activity of BV in wound healing is associated with regulating the expression of transforming growth factor (TGF-β1), vascular endothelial growth factor and increased collagen type I. BV stimulates the proliferation and migration of human epidermal keratinocytes and fibroblasts. In combination with polyvinyl alcohol and chitosan, BV significantly accelerates the wound healing process, increasing the hydroxyproline and glutathione and lowering the IL-6 level in wound tissues. The effect of BV on the wounds has been proved by numerous studies, which revealed that BV in the wound healing process brings about a curative effect and could be applied as a new potential treatment for wound repair. However, therapy with bee venom may induce allergic reactions, so it is necessary to assess the existence of the patient’s hypersensitivity to apitoxin before treatment.
Collapse
|
26
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
27
|
|
28
|
El-Seedi H, Abd El-Wahed A, Yosri N, Musharraf SG, Chen L, Moustafa M, Zou X, Al-Mousawi S, Guo Z, Khatib A, Khalifa S. Antimicrobial Properties of Apis mellifera's Bee Venom. Toxins (Basel) 2020; 12:toxins12070451. [PMID: 32664544 PMCID: PMC7404974 DOI: 10.3390/toxins12070451] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Bee venom (BV) is a rich source of secondary metabolites from honeybees (Apis mellifera L.). It contains a variety of bioactive ingredients including peptides, proteins, enzymes, and volatile metabolites. The compounds contribute to the venom’s observed biological functions as per its anti-inflammatory and anticancer effects. The antimicrobial action of BV has been shown in vitro and in vivo experiments against bacteria, viruses, and fungi. The synergistic therapeutic interactions of BV with antibiotics has been reported. The synergistic effect contributes to a decrease in the loading and maintenance dosage, a decrease in the side effects of chemotherapy, and a decrease in drug resistance. To our knowledge, there have been no reviews on the impact of BV and its antimicrobial constituents thus far. The purpose of this review is to address the antimicrobial properties of BV and its compounds.
Collapse
Affiliation(s)
- Hesham El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- Correspondence: (H.E.-S.); (S.K.); Tel.: +46-18-4714207 (H.E.-S.)
| | - Aida Abd El-Wahed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Nermeen Yosri
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Moustafa Moustafa
- Department of Chemistry, Faculty of Science, University of Kuwait, Safat 13060, Kuwait; (M.M.); (S.A.-M.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Saleh Al-Mousawi
- Department of Chemistry, Faculty of Science, University of Kuwait, Safat 13060, Kuwait; (M.M.); (S.A.-M.)
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia;
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Correspondence: (H.E.-S.); (S.K.); Tel.: +46-18-4714207 (H.E.-S.)
| |
Collapse
|
29
|
Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol 2020; 104:6513-6526. [PMID: 32500268 DOI: 10.1007/s00253-020-10701-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Many fungal diseases remain poorly addressed by public health authorities, despite posing a substantial threat to humans, animals, and plants. More worryingly, few classes of anti-fungals have been developed to combat fungal infections thus far. These medications also have certain drawbacks in terms of toxicity, spectrum of activity, and pharmacokinetic properties. Hence, there is a dire need for discovery of novel anti-fungal agents. Melittin, the main constituent in the venom of European honeybee Apis mellifera, has attracted considerable attention among researchers owing to its potential therapeutic applications. To our knowledge, there has been no review pertinent to anti-fungal properties of melittin, prompting us to synopsize the results of experimental investigations with a special emphasis upon underlying mechanisms. In this respect, melittin inhibits a broad spectrum of fungal genera including Aspergillus, Botrytis, Candida, Colletotrichum, Fusarium, Malassezia, Neurospora, Penicillium, Saccharomyces, Trichoderma, Trichophyton, and Trichosporon. Melittin hinders fungal growth by several mechanisms such as membrane permeabilization, apoptosis induction by reactive oxygen species-mediated mitochondria/caspase-dependent pathway, inhibition of (1,3)-β-D-glucan synthase, and alterations in fungal gene expression. Overall, melittin will definitely open up new avenues for various biomedical applications, from medicine to agriculture. KEYPOINTS: • Venom-derived peptides have potential for development of anti-microbial agents. • Many fungal pathogens are susceptible to melittin at micromolar concentrations. • Melittin possesses multi-target mechanism of action against fungal cells.
Collapse
|
30
|
Kurek-Górecka A, Górecki M, Rzepecka-Stojko A, Balwierz R, Stojko J. Bee Products in Dermatology and Skin Care. Molecules 2020; 25:molecules25030556. [PMID: 32012913 PMCID: PMC7036894 DOI: 10.3390/molecules25030556] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
Honey, propolis, bee pollen, bee bread, royal jelly, beeswax and bee venom are natural products which have been used in medicine since ancient times. Nowadays, studies indicate that natural bee products can be used for skin treatment and care. Biological properties of these products are related to flavonoids they contain like: chrysin, apigenin, kaempferol, quercetin, galangin, pinocembrin or naringenin. Several pharmacological activities of phenolic acids and flavonoids, and also 10-hydroxy-trans-2-decenoic acid, which is present in royal jelly, have been reported. Royal jelly has multitude of pharmacological activities: antibiotic, antiinflammatory, antiallergenic, tonic and antiaging. Honey, propolis and pollen are used to heal burn wounds, and they possess numerous functional properties such as: antibacterial, anti-inflammatory, antioxidant, disinfectant, antifungal and antiviral. Beeswax is used for production of cosmetics and ointments in pharmacy. Due to a large number of biological activities, bee products could be considered as important ingredients in medicines and cosmetics applied to skin.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Silesian Academy of Medical Sciences in Katowice, Mickiewicza 29, 40-085 Katowice, Poland;
- Correspondence:
| | - Michał Górecki
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (A.R.-S.)
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (A.R.-S.)
| | - Radosław Balwierz
- Silesian Academy of Medical Sciences in Katowice, Mickiewicza 29, 40-085 Katowice, Poland;
| | - Jerzy Stojko
- Department of Toxycology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| |
Collapse
|
31
|
Seyedjavadi SS, Khani S, Eslamifar A, Ajdary S, Goudarzi M, Halabian R, Akbari R, Zare-Zardini H, Imani Fooladi AA, Amani J, Razzaghi-Abyaneh M. The Antifungal Peptide MCh-AMP1 Derived From Matricaria chamomilla Inhibits Candida albicans Growth via Inducing ROS Generation and Altering Fungal Cell Membrane Permeability. Front Microbiol 2020; 10:3150. [PMID: 32038583 PMCID: PMC6985553 DOI: 10.3389/fmicb.2019.03150] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023] Open
Abstract
The rise of antifungal drug resistance in Candida species responsible for life threatening candidiasis is considered as an increasing challenge for the public health. MCh-AMP1 has previously been reported as a natural peptide from Matricaria chamomilla L. flowers with broad-spectrum antifungal activity against human pathogenic molds and yeasts. In the current study, the mode of action of synthetic MCh-AMP1 was investigated against Candida albicans, the major etiologic agent of life-threatening nosocomial candidiasis at cellular and molecular levels. Candida albicans ATCC 10231 was cultured in presence of various concentrations of MCh-AMP1 (16-64 μg/mL) and its mode of action was investigated using plasma membrane permeabilization assays, reactive oxygen species (ROS) induction, potassium ion leakage and ultrastructural analyses by electron microscopy. MCh-AMP1 showed fungicidal activity against Candida albicans at the concentrations of 32 and 64 μg/mL. The peptide increased fungal cell membrane permeability as evidenced by elevating of PI uptake and induced potassium leakage from the yeast cells. ROS production was induced by the peptide inside the fungal cells to a maximum of 64.8% at the concentration of 64 μg/mL. Scanning electron microscopy observations showed cell deformation as shrinkage and folding of treated yeast cells. Transmission electron microscopy showed detachment of plasma membrane from the cell wall, cell depletion and massive destruction of intracellular organelles and cell membrane of the fungal cells. Our results demonstrated that MCh-AMP1 caused Candida albicans cell death via increasing cell membrane permeability and inducing ROS production. Therefore, MCh-AMP1 could be considered as a promising therapeutic agent to combat Candida albicans infections.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Li R, Chen C, Zhang B, Jing H, Wang Z, Wu C, Hao P, Kuang Y, Yang M. The chromogranin A-derived antifungal peptide CGA-N9 induces apoptosis in Candida tropicalis. Biochem J 2019; 476:3069-3080. [PMID: 31652303 PMCID: PMC6824672 DOI: 10.1042/bcj20190483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
CGA-N9, a peptide derived from human chromogranin A (CGA), was found to have antimicrobial activity in our previous investigation, but its mechanism of action remains unclear. Herein, the mechanism of action of CGA-N9 was investigated. We found that CGA-N9 induced the depolarization of the cell membrane and uptake of calcium ions into the cytosol and mitochondria. With the disruption of the mitochondrial membrane potential, the generation of intracellular reactive oxygen species (ROS) increased. Accordingly, we assessed apoptotic processes in Candida tropicalis cells post-treatment with CGA-N9 and found cytochrome c leakage, chromatin condensation and DNA degradation. The interaction of CGA-N9 with DNA in vitro showed that CGA-N9 did not degrade DNA but bound to DNA via an electrostatic interaction. In conclusion, CGA-N9 exhibits antifungal activity by inducing apoptosis in C. tropicalis.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chen Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongjuan Jing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunling Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pu Hao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Kuang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Minghang Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
33
|
Hashemi MM, Rovig J, Holden BS, Taylor MF, Weber S, Wilson J, Hilton B, Zaugg AL, Ellis SW, Yost CD, Finnegan PM, Kistler CK, Berkow EL, Deng S, Lockhart SR, Peterson M, Savage PB. Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. J Antimicrob Chemother 2019; 73:1537-1545. [PMID: 29635279 DOI: 10.1093/jac/dky085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background Candida auris has emerged as a serious threat to human health. Of particular concern are the resistance profiles of many clinical isolates, with some being resistant to multiple classes of antifungals. Objectives Measure susceptibilities of C. auris isolates, in planktonic and biofilm forms, to ceragenins (CSAs). Determine the effectiveness of selected ceragenins in gel and cream formulations in eradicating fungal infections in tissue explants. Materials and methods A collection of 100 C. auris isolates available at CDC was screened for susceptibility to a lead ceragenin. A smaller collection was used to characterize antifungal activities of other ceragenins against organisms in planktonic and biofilm forms. Effects of ceragenins on fungal cells and biofilms were observed via microscopy. An ex vivo model of mucosal fungal infection was used to evaluate formulated forms of lead ceragenins. Results Lead ceragenins displayed activities comparable to those of known antifungal agents against C. auris isolates with MICs of 0.5-8 mg/L and minimum fungicidal concentrations (MFCs) of 2-64 mg/L. No cross-resistance with other antifungals was observed. Fungal cell morphology was altered in response to ceragenin treatment. Ceragenins exhibited activity against sessile organisms in biofilms. Gel and cream formulations including 2% CSA-44 or CSA-131 resulted in reductions of over 4 logs against established fungal infections in ex vivo mucosal tissues. Conclusions Ceragenins demonstrated activity against C. auris, suggesting that these compounds warrant further study to determine whether they can be used for topical applications to skin and mucosal tissues for treatment of infections with C. auris and other fungi.
Collapse
Affiliation(s)
- Marjan M Hashemi
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - John Rovig
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Brett S Holden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Maddison F Taylor
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Scott Weber
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - John Wilson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Brian Hilton
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Aaron L Zaugg
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Samuel W Ellis
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Connor D Yost
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | | | | | - Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| |
Collapse
|
34
|
Kim H, Park SY, Lee G. Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature Review. Toxins (Basel) 2019; 11:toxins11070374. [PMID: 31252651 PMCID: PMC6669657 DOI: 10.3390/toxins11070374] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 01/03/2023] Open
Abstract
Skin is larger than any other organ in humans. Like other organs, various bacterial, viral, and inflammatory diseases, as well as cancer, affect the skin. Skin diseases like acne, atopic dermatitis, and psoriasis often reduce the quality of life seriously. Therefore, effective treatment of skin disorders is important despite them not being life-threatening. Conventional medicines for skin diseases include corticosteroids and antimicrobial drugs, which are effective in treating many inflammatory and infectious skin diseases; however, there are growing concerns about the side effects of these therapies, especially during long-term use in relapsing or intractable diseases. Hence, many researchers are trying to develop alternative treatments, especially from natural sources, to resolve these limitations. Bee venom (BV) is an attractive candidate because many experimental and clinical reports show that BV exhibits anti-inflammatory, anti-apoptotic, anti-fibrotic, antibacterial, antiviral, antifungal, and anticancer effects. Here, we review the therapeutic applications of BV in skin diseases, including acne, alopecia, atopic dermatitis, melanoma, morphea, photoaging, psoriasis, wounds, wrinkles, and vitiligo. Moreover, we explore the therapeutic mechanisms of BV in the treatment of skin diseases and killing effects of BV on skin disease-causing pathogens, including bacteria, fungi and viruses.
Collapse
Affiliation(s)
- Haejoong Kim
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Korea
| | - Soo-Yeon Park
- Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Korea.
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Korea.
| |
Collapse
|
35
|
Jia C, Zhang J, Yu L, Wang C, Yang Y, Rong X, Xu K, Chu M. Antifungal Activity of Coumarin Against Candida albicans Is Related to Apoptosis. Front Cell Infect Microbiol 2019; 8:445. [PMID: 30662877 PMCID: PMC6328497 DOI: 10.3389/fcimb.2018.00445] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Coumarin (1,2-benzopyrone), an aromatic oxygen-containing heterocyclic compound, has various biological functions. Previous studies have demonstrated that coumarin and its derivatives exhibit antifungal activity against Candida albicans. In this study, we investigated the exact mechanism by which coumarin works against this fungus using Annexin V-FITC/PI double staining, TUNEL assay, and DAPI staining, and found that it induced a series of apoptotic features, including phosphatidylserine (PS) externalization, DNA fragmentation, and nuclear condensation. Moreover, it also induced cytochrome c release from the mitochondria to the cytoplasm and metacaspase activation. Further study revealed that intracellular reactive oxygen species (ROS) levels were increased and mitochondrial functions, such as mitochondrial membrane potential and mitochondrial morphology, were altered after treatment with coumarin. Cytosolic and mitochondrial Ca2+ levels were also found to be elevated. However, pretreatment with ruthenium red (RR), a known mitochondrial Ca2+ channel inhibitor, attenuated coumarin-mediated DNA fragmentation and metacaspase activity, indicating that the coumarin-induced C. albicans apoptosis is associated with mitochondrial Ca2+ influx. Finally, coumarin was found to be low-toxic and effective in prolonging the survival of C. albicans-infected mice. This study highlights the antifungal activity and mechanism of coumarin against C. albicans and provides a potential treatment strategy for C. albicans infection.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Yu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglu Wang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yijia Yang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Leiter É, Csernoch L, Pócsi I. Programmed cell death in human pathogenic fungi - a possible therapeutic target. Expert Opin Ther Targets 2018; 22:1039-1048. [PMID: 30360667 DOI: 10.1080/14728222.2018.1541087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diseases caused by pathogenic fungi are increasing because of antibiotic overuse, the rise of immunosuppressive therapies, and climate change. The limited variety of antimycotics and the rapid adaptation of pathogenic fungi to antifungal agents serve to exacerbate this issue. Unfortunately, about 1.6 million people are killed by fungal infections annually. Areas covered: The discovery of the small antimicrobial proteins produced by microorganisms, animals, humans, and plants will hopefully overcome challenges in the treatment of fungal infections. These small proteins are highly stable and any resistance to them rarely evolves; therefore, they are potentially good candidates for the treatment and prevention of infections caused by pathogenic fungi. Some of these proteins target the programmed cell death machinery of pathogenic fungi; this is potentially a novel approach in antimycotic therapies. In this review, we highlight the elements of apoptosis in human pathogenic fungi and related model organisms and discuss the possible therapeutic potential of the apoptosis-inducing, small, antifungal proteins. Expert opinion: Small antimicrobial proteins may establish a new class of antimycotics in the future. The rarity of resistance and their synergistic effects with other frequently used antifungal agents may help pave the way for their use in the clinic.
Collapse
Affiliation(s)
- Éva Leiter
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| | - László Csernoch
- b Department of Physiology , University of Debrecen , Debrecen , Hungary
| | - István Pócsi
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
37
|
Tian J, Gan Y, Pan C, Zhang M, Wang X, Tang X, Peng X. Nerol-induced apoptosis associated with the generation of ROS and Ca 2+ overload in saprotrophic fungus Aspergillus flavus. Appl Microbiol Biotechnol 2018; 102:6659-6672. [PMID: 29860589 DOI: 10.1007/s00253-018-9125-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022]
Abstract
The contamination of food with Aspergillus flavus and subsequent aflatoxins is one of the most serious safety problems in the world. In this study of nerol (NEL)'s antifungal mechanism of action, we observed morphological and physiological changes in Aspergillus flavus. We found that NEL resulted in elevated levels of reactive oxygen species (ROS) and calcium ions (Ca2+). On ROS assays, compared with the controls, the proportion of fluorescent cells treated with concentrations of 0.25, 0.5, 1, and 2 μL/mL NEL increased to 8.4 ± 1.07%, 10.2 ± 1.72%, 13.4 ± 0.50%, and 26.2 ± 4.21%, respectively. Increased mitochondrial dysfunction and oxidative stress induced by the interactions between Ca2+ and ROS subsequently activate the release of cytochrome c and caspase activity. Characteristic changes of apoptosis were also observed via various detection methods, including phosphatidylserine externalization, nuclear condensation, and DNA fragmentation. Meanwhile, we found that the expression of CaMKs increased significantly in NEL-treated cells. In conclusion, our findings indicate that NEL has great potential as an eco-friendly antifungal agent for food preservation.
Collapse
Affiliation(s)
- Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China. .,Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, Guangdong, People's Republic of China.
| | - Yeyun Gan
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Chao Pan
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Man Zhang
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Xueyan Wang
- Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, Guangdong, People's Republic of China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, Guangdong, People's Republic of China.
| | - Xue Peng
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
38
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
39
|
Park J, Kwon O, An HJ, Park KK. Antifungal Effects of Bee Venom Components on Trichophyton rubrum: A Novel Approach of Bee Venom Study for Possible Emerging Antifungal Agent. Ann Dermatol 2018; 30:202-210. [PMID: 29606818 PMCID: PMC5839892 DOI: 10.5021/ad.2018.30.2.202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bee venom (BV) has been widely investigated for potential medical uses. Recent inadvertent uses of BV based products have shown to mitigate signs of fungal infections. However, the component mediating the antifungal effect has not been identified. OBJECTIVE This investigation compares bee venom in its whole and partial forms to evaluate the possible component responsible for the antifungal effect. METHODS Forty-eight plates inoculated with Trichophyton rubrum were allocated into four groups. The groups were treated with raw BV (RBV), melittin, apamin and BV based mist (BBM) respectively and each group was further allocated accordingly to three different concentrations. The areas were measured every other day for 14 days to evaluate the kinetic changes of the colonies. RESULTS The interactions of ratio differences over interval were confirmed in groups treated with RBV and BBM. In RBV, the level of differences were achieved in groups treated with 10 mg/100 µl (p=0.026) and 40 mg/100 µl (p=0.000). The mean difference of ratio in groups treated with RBV was evident in day 3 and day 5. The groups that were treated with melittin or apamin did not show any significant interaction. In BBM groups, the significant levels of ratio differences over time intervals were achieved in groups treated with 200 µl/100 µl (p=0.000) and 300 µl/100 µl (p=0.030). CONCLUSION The the bee venom in its whole form delivered a significant level of inhibition and we concluded that the venom in separated forms are not effective. Moreover, BV based products may exert as potential antifungal therapeutics.
Collapse
Affiliation(s)
- Joonsoo Park
- Department of Dermatology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Osung Kwon
- Department of Dermatology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hyun-Jin An
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kwan Kyu Park
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
40
|
Abstract
Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response.
Collapse
Affiliation(s)
- Heejeong Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science RDA, Jeonju, Republic of Korea
| | - Dong Gun Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
41
|
The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells. Biochimie 2017; 144:28-40. [PMID: 29054798 DOI: 10.1016/j.biochi.2017.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Reprogramming of cellular metabolism is now considered one of the hallmarks of cancer. Most malignant cells present with altered energy metabolism which is associated with elevated reactive oxygen species (ROS) generation. This is also evident for melanoma, the leading cause of skin cancer related deaths. Altered mechanisms affecting mitochondrial bioenergetics pose attractive targets for novel anticancer therapies. Antimicrobial peptides have been shown to exhibit selective anticancer activities. In this study, the anti-melanoma potential of the antimicrobial peptide, nisin Z, was evaluated in vitro. Nisin Z was shown to induce selective toxicity in melanoma cells compared to non-malignant keratinocytes. Furthermore, nisin Z was shown to negatively affect the energy metabolism (glycolysis and mitochondrial respiration) of melanoma cells, increase reactive oxygen species generation and cause apoptosis. Results also indicate that nisin Z can decrease the invasion and proliferation of melanoma cells demonstrating its potential use against metastasis associated with melanoma. As nisin Z seems to place a considerable extra burden on the energy metabolism of melanoma cells, combination therapies with known anti-melanoma agents may be effective treatment options.
Collapse
|
42
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
43
|
Sharma KK, Maurya IK, Khan SI, Jacob MR, Kumar V, Tikoo K, Jain R. Discovery of a Membrane-Active, Ring-Modified Histidine Containing Ultrashort Amphiphilic Peptide That Exhibits Potent Inhibition of Cryptococcus neoformans. J Med Chem 2017; 60:6607-6621. [DOI: 10.1021/acs.jmedchem.7b00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Krishna K. Sharma
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department
of Microbial Biotechnology, Panjab University, Sector 25, Chandigarh, 160 014, India
| | - Shabana I. Khan
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Melissa R. Jacob
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Kulbhushan Tikoo
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
44
|
Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol 2017; 85:114-122. [DOI: 10.1016/j.biocel.2017.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/20/2023]
|
45
|
Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem J 2017; 474:635-645. [PMID: 28008133 DOI: 10.1042/bcj20161039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
Centipedes, a type of arthropod, reportedly produce antimicrobial peptides as part of an innate immune response. Scolopendin (SPSEKAGLQPVGRIGRMLKK) is a novel antimicrobial peptide derived from Scolopendra subspinipes mutilans Many antifungal agents have more than one type of cell death mechanism. Although scolopendin is involved in membrane perturbation, the corresponding intracellular changes require further investigation. Therefore, we assessed the cell morphology and calcium ion concentration of the cytosol and mitochondria of scolopendin-treated cells. The treated cells were shrunken, and calcium ion homeostasis was disrupted in both the cytosol and mitochondria. These conditions attenuated mitochondrial homeostasis, disrupting mitochondrial membrane potential and cytochrome c levels. Fungal cells treated with scolopendin exhibited various apoptotic phenotypes such as reactive oxygen species accumulation, phosphatidylserine exposure, chromatin condensation, and nuclear fragmentation. Scolopendin-induced cell death also triggered metacaspase activation. In conclusion, treatment of Candida albicans with scolopendin induced the apoptotic response, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The antimicrobial peptide scolopendin from the centipede S.s. mutilans demonstrated a novel apoptotic mechanism as an antifungal agent.
Collapse
|
46
|
Lee H, Lee DG. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death. Biochimie 2016; 133:80-86. [PMID: 28027901 DOI: 10.1016/j.biochi.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
Bac8c (RIWVIWRR-NH2), an 8-mer peptide modified from amino acids 4-11 of Bac2a, shows broad-spectrum activity against pathogenic bacteria and yeast, and it has been the focus of attention owing to its low cost of synthesis. Although Bac8c is effective against Candida albicans, its mode of action needs to be investigated further. Bac8c causes yeast cell death in a dose-dependent manner by eliciting the production of reactive oxygen species, thereby attenuating the antioxidant defense system. It is also involved in Ca2+ signaling, and produces apoptotic features, such as phosphatidylserine externalization and DNA fragmentation. Bac8c induces cell death by oxidative stress-dependent apoptotic death via disruption of mitochondrial homeostasis and metacaspase activation. This suggests that the concentration of Bac8c is important for the induction of apoptotic death, which is not necessarily accompanied by cell cycle arrest in C. albicans.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
47
|
Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells. Microbiol Res 2016; 193:121-131. [PMID: 27825480 DOI: 10.1016/j.micres.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/30/2016] [Accepted: 10/08/2016] [Indexed: 12/22/2022]
Abstract
The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and β-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.
Collapse
|
48
|
Soares JR, José Tenório de Melo E, da Cunha M, Fernandes KVS, Taveira GB, da Silva Pereira L, Pimenta S, Trindade FG, Regente M, Pinedo M, de la Canal L, Gomes VM, de Oliveira Carvalho A. Interaction between the plant ApDef 1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochim Biophys Acta Gen Subj 2016; 1861:3429-3443. [PMID: 27614033 DOI: 10.1016/j.bbagen.2016.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef1-Saccharomyces cerevisiae interaction. METHODS ApDef1-S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. RESULTS ApDef1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef1 induced death. ApDef1-S. cerevisiae interaction resulted in membrane permeabilization, H2O2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. CONCLUSIONS ApDef1-S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. GENERAL SIGNIFICANCE We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef1-S. cerevisiae interaction.
Collapse
Affiliation(s)
- Júlia Ribeiro Soares
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Edésio José Tenório de Melo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Maura da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Kátia Valevski Sales Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lidia da Silva Pereira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Samy Pimenta
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fernanda Gomes Trindade
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Mariana Regente
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Marcela Pinedo
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
49
|
Ding Y, Li Z, Li Y, Lu C, Wang H, Shen Y, Du L. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis. RSC Adv 2016; 6:30895-30904. [PMID: 27594989 PMCID: PMC5006743 DOI: 10.1039/c5ra26092b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) belongs to polycyclic tetramate macrolactams (PTMs), which inhibits many fungal pathogens and is effective in inhibiting Candida albicans (C. albicans). In this study, we found that HSAF induced the apoptosis of Candida albicans SC5314 through inducing the production of reactive oxygen species (ROS). Nevertheless, we validated the efficacy of HSAF against candidiasis caused by C. albicans in a murine model in vivo, and HSAF significantly improved survival and reduced fungal burden compared to vehicles. A molecular dynamics (MD) simulation was also investigated, revealing the theoretical binding mode of HSAF to the β-tubulin of C. albicans. This study first found PTMs-induced fungal apoptosis through ROS accumulation in C. albicans and its potential as a novel agent for fungicides.
Collapse
Affiliation(s)
- Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Haoxin Wang
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
50
|
Shi W, Li C, Li M, Zong X, Han D, Chen Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol 2016; 100:5059-67. [PMID: 26948237 PMCID: PMC4866983 DOI: 10.1007/s00253-016-7400-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Caiyun Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Man Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Xicui Zong
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Dongju Han
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|