1
|
Wang Y, Gu C, Zhao H, Li Z, Thirupathi A. Redox signaling‑mediated muscle atrophy in ACL injury: Role of physical exercise (Review). Mol Med Rep 2025; 31:119. [PMID: 40052558 PMCID: PMC11904765 DOI: 10.3892/mmr.2025.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Muscle atrophy frequently occurs in patients with anterior cruciate ligament (ACL) injury, despite active participation in muscle strengthening programs. Without appropriate countermeasures such as exercise and pharmacological interventions, the atrophy may worsen. At the cellular and molecular levels, various protein synthesis‑related pathways and redox‑dependent molecules regulate processes associated with atrophy by activating or deactivating key signaling pathways. Muscle atrophy and the associated dysfunction can be reversed by physical exercise, which increases protein synthesis, thereby improving muscle strength and function around the ACL. However, the influence of different features of exercise protocols, including exercise type, intensity and duration, as well as the individual capacity of the patient, on the activity of the aforementioned pathways requires further investigation. Additionally, the mechanism by which redox‑sensitive molecules attenuate atrophy in ACL injury remains to be fully understood. The present review discusses exercise, signaling pathways and muscle atrophy in ACL injury, and highlights potential therapeutic strategies. These findings may also have implications for other joint diseases associated with ACL‑related injury.
Collapse
Affiliation(s)
- Yucong Wang
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Chunxiao Gu
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Hui Zhao
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Zhongzheng Li
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Keshri PK, Singh SP. Unraveling the AKT/ERK cascade and its role in Parkinson disease. Arch Toxicol 2024; 98:3169-3190. [PMID: 39136731 DOI: 10.1007/s00204-024-03829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Parkinson disease represents a significant and growing burden on global healthcare systems, necessitating a deeper understanding of their underlying molecular mechanisms for the development of effective treatments. The AKT and ERK pathways play crucial roles in the disease, influencing multiple cellular pathways that support neuronal survival. Researchers have made notable progress in uncovering how these pathways are controlled by upstream kinases and how their downstream effects contribute to cell signalling. However, as we delve deeper into their intricacies, we encounter increasing complexity, compounded by the convergence of multiple signalling pathways. Many of their targets overlap with those of other kinases, and they not only affect specific substrates but also influence entire signalling networks. This review explores the intricate interplay of the AKT/ERK pathways with several other signalling cascades, including oxidative stress, endoplasmic reticulum stress, calcium homeostasis, inflammation, and autophagy, in the context of Parkinson disease. We discuss how dysregulation of these pathways contributes to disease progression and neuronal dysfunction, highlighting potential therapeutic targets for intervention. By elucidating the complex network of interactions between the AKT/ERK pathways and other signalling cascades, this review aims to provide insights into the pathogenesis of Parkinson disease and describe the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Yu J, Zheng C, Guo Q, Yin Y, Duan Y, Li F. LPS-related muscle loss is associated with the alteration of Bacteroidetes abundance, systemic inflammation, and mitochondrial morphology in a weaned piglet model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1970-1988. [PMID: 38913237 DOI: 10.1007/s11427-023-2552-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/19/2024] [Indexed: 06/25/2024]
Abstract
We previously demonstrated that lipopolysaccharide (LPS) injection-induced immune stress could impair muscle growth in weaned piglets, but the precise mechanisms behind this remain elusive. Here, we found that chronic immune stress induced by LPS resulted in a significant reduction of 36.86% in the total muscle mass of piglets at 5 d post-treatment compared with the control group. At 1 d, prior to muscle mass loss, multiple alterations were noted in response to LPS treatment. These included a reduction in the abundance of Bacteroidetes, an increase in serum concentrations of pro-inflammatory cytokines, compromised mitochondrial morphology, and an upregulation in the expression of dynamin-related protein 1 (Drp1), a critical protein involved in mitochondrial fission. We highlight a strong negative correlation between Bacteroidetes abundance and the levels of serum pro-inflammatory cytokines, corroborated by in vivo intervention strategies in the musculature of both pig and mouse models. Mechanistically, the effects of Bacteroidetes on inflammation and muscle mass loss may involve the signaling pathway of the tauro-β-muricholic acid-fibroblast growth factor 15. Furthermore, the induction of overexpression of inflammatory cytokines, achieved without LPS treatment through oral administration of recombinant human IL-6 (rhIL-6), led to increased levels of circulating cytokines, subsequently causing a decrease in muscle mass. Notably, pre-treatment with Mdivi-1, an inhibitor of Drp-1, markedly attenuated the LPS-induced elevation in reactive oxygen species levels and rescued the associated decline in muscle mass. Collectively, these data indicate that LPS-induced muscle mass loss was linked to the reduction of Bacteroidetes abundance, increased inflammation, and the disruption of mitochondrial morphology. These insights offer promising avenues for the identification of potential therapeutic targets aimed at mitigating muscle mass loss.
Collapse
Affiliation(s)
- Jiayi Yu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Wang H, Liu J, Zhang Z, Peng J, Wang Z, Yang L, Wang X, Hu S, Hong L. β-Sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic Biol Med 2024; 214:137-157. [PMID: 38364944 DOI: 10.1016/j.freeradbiomed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound β-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zhi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Xinqi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Siyuan Hu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Li Hong
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| |
Collapse
|
5
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
6
|
Wang L, Yin J, Liao C, Cheng R, Chen F, Yu H, Zhang X. Selenium deficiency-induced high concentration of reactive oxygen species restricts hypertrophic growth of skeletal muscle in juvenile zebrafish by suppressing TORC1-mediated protein synthesis. Br J Nutr 2023; 130:1841-1851. [PMID: 37246564 DOI: 10.1017/s0007114523000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
| | - Jiaojiao Yin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Chenlei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Feifei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan430070, People's Republic of China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan430070, People's Republic of China
| |
Collapse
|
7
|
Guffens L, Derua R, Janssens V. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discov 2023; 9:265. [PMID: 37500619 PMCID: PMC10374899 DOI: 10.1038/s41420-023-01572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- SyBioMa, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
8
|
Thome T, Kim K, Dong G, Ryan TE. The Role of Mitochondrial and Redox Alterations in the Skeletal Myopathy Associated with Chronic Kidney Disease. Antioxid Redox Signal 2023; 38:318-337. [PMID: 36245209 PMCID: PMC9986033 DOI: 10.1089/ars.2022.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022]
Abstract
Significance: An estimated 700 million people globally suffer from chronic kidney disease (CKD). In addition to increasing cardiovascular disease risk, CKD is a catabolic disease that results in a loss of muscle mass and function, which are strongly associated with mortality and a reduced quality of life. Despite the importance of muscle health and function, there are no treatments available to prevent or attenuate the myopathy associated with CKD. Recent Advances: Recent studies have begun to unravel the changes in mitochondrial and redox homeostasis within skeletal muscle during CKD. Impairments in mitochondrial metabolism, characterized by reduced oxidative phosphorylation, are found in both rodents and patients with CKD. Associated with aberrant mitochondrial function, clinical and preclinical findings have documented signs of oxidative stress, although the molecular source and species are ill-defined. Critical Issues: First, we review the pathobiology of CKD and its associated myopathy, and we review muscle cell bioenergetics and redox biology. Second, we discuss evidence from clinical and preclinical studies that have implicated the involvement of mitochondrial and redox alterations in CKD-associated myopathy and review the underlying mechanisms reported. Third, we discuss gaps in knowledge related to mitochondrial and redox alterations on muscle health and function in CKD. Future Directions: Despite what has been learned, effective treatments to improve muscle health in CKD remain elusive. Further studies are needed to uncover the complex mitochondrial and redox alterations, including post-transcriptional protein alterations, in patients with CKD and how these changes interact with known or unknown catabolic pathways contributing to poor muscle health and function. Antioxid. Redox Signal. 38, 318-337.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Huot JR, Baumfalk D, Resendiz A, Bonetto A, Smuder AJ, Penna F. Targeting Mitochondria and Oxidative Stress in Cancer- and Chemotherapy-Induced Muscle Wasting. Antioxid Redox Signal 2023; 38:352-370. [PMID: 36310444 PMCID: PMC10081727 DOI: 10.1089/ars.2022.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 12/31/2022]
Abstract
Significance: Cancer is frequently associated with the early appearance of cachexia, a multifactorial wasting syndrome. If not present at diagnosis, cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing the direct cause of death in up to one-third of all cancer patients. Cachexia, within its multiorgan affection, is characterized by severe loss of muscle mass and function, representing the most relevant subject of preclinical and clinical investigation. Recent Advances: The pathogenesis of muscle wasting in cancer- and chemotherapy-induced cachexia is complex, and encompasses heightened protein catabolism and reduced anabolism, disrupted mitochondria and energy metabolism, and even neuromuscular junction dismantling. The mechanisms underlying these alterations are still controversial, especially concerning the molecular drivers that could be targeted for anticachexia therapies. Inflammation and mitochondrial oxidative stress are among the principal candidates; the latter being extensively discussed in the present review. Critical Issues: Several approaches have been tested to modulate the redox homeostasis in tumor hosts, and to counteract cancer- and chemotherapy-induced muscle wasting, from exercise training to distinct classes of direct or indirect antioxidants. We herein report the most relevant results obtained from both preclinical and clinical trials. Future Directions: Including the assessment and the treatment of altered redox balance in the clinical management of cancer patients is still a big challenge. The available evidence suggests that fortifying the antioxidant defenses by either pharmacological or nonpharmacological strategies will likely improve cachexia and eventually the outcome of a broad cancer patient population. Antioxid. Redox Signal. 38, 352-370.
Collapse
Affiliation(s)
- Joshua R. Huot
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dryden Baumfalk
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Aridai Resendiz
- Department of Oncology, Surgical Oncology and Digestive Surgery Unit, S Luigi University Hospital, University of Torino, Torino, Italy
| | - Andrea Bonetto
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Otolaryngology–Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
10
|
Chen TH, Koh KY, Lin KMC, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci 2022; 23:12926. [PMID: 36361713 PMCID: PMC9653750 DOI: 10.3390/ijms232112926] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kok-Yean Koh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
11
|
Shen Y, Li M, Wang K, Qi G, Liu H, Wang W, Ji Y, Chang M, Deng C, Xu F, Shen M, Sun H. Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies. Front Endocrinol (Lausanne) 2022; 13:917113. [PMID: 35846289 PMCID: PMC9279556 DOI: 10.3389/fendo.2022.917113] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a typical chronic disease that can be divided into 2 types, dependent on insulin deficiency or insulin resistance. Incidences of diabetic complications gradually increase as the disease progresses. Studies in diabetes complications have mostly focused on kidney and cardiovascular diseases, as well as neuropathy. However, DM can also cause skeletal muscle atrophy. Diabetic muscular atrophy is an unrecognized diabetic complication that can lead to quadriplegia in severe cases, seriously impacting patients' quality of life. In this review, we first identify the main molecular mechanisms of muscle atrophy from the aspects of protein degradation and synthesis signaling pathways. Then, we discuss the molecular regulatory mechanisms of diabetic muscular atrophy, and outline potential drugs and treatments in terms of insulin resistance, insulin deficiency, inflammation, oxidative stress, glucocorticoids, and other factors. It is worth noting that inflammation and oxidative stress are closely related to insulin resistance and insulin deficiency in diabetic muscular atrophy. Regulating inflammation and oxidative stress may represent another very important way to treat diabetic muscular atrophy, in addition to controlling insulin signaling. Understanding the molecular regulatory mechanism of diabetic muscular atrophy could help to reveal new treatment strategies.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Guangdong Qi
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Nanjing Institute of Tissue Engineering and Regenerative Medicine Technology, Nanjing, China
| |
Collapse
|
12
|
Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022; 54:102374. [PMID: 35738088 PMCID: PMC9233275 DOI: 10.1016/j.redox.2022.102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are malleable and undergo rapid remodeling in response to increased contractile activity (i.e., exercise) or prolonged periods of muscle inactivity (e.g., prolonged bedrest). Exploration of the cell signaling pathways regulating these skeletal muscle adaptations reveal that redox signaling pathways play a key role in the control of muscle remodeling during both exercise and prolonged muscle inactivity. In this regard, muscular exercise results in an acute increase in the production of reactive oxygen species (ROS) in the contracting fibers; however, this contraction-induced rise in ROS production rapidly declines when contractions cease. In contrast, prolonged muscle disuse results in a chronic elevation in ROS production within the inactive fibers. This difference in the temporal pattern of ROS production in muscle during exercise and muscle inactivity stimulates divergent cell-signaling pathways that activate both genomic and nongenomic mechanisms to promote muscle remodeling. This review examines the role that redox signaling plays in skeletal muscle adaptation in response to both prolonged muscle inactivity and endurance exercise training. We begin with a summary of the sites of ROS production in muscle fibers followed by a review of the cellular antioxidants that are responsible for regulation of ROS levels in the cell. We then discuss the specific redox-sensitive signaling pathways that promote skeletal muscle adaptation in response to both prolonged muscle inactivity and exercise. To stimulate future research, we close with a discussion of unanswered questions in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA.
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA
| |
Collapse
|
13
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
15
|
A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants (Basel) 2021; 10:antiox10081241. [PMID: 34439489 PMCID: PMC8389308 DOI: 10.3390/antiox10081241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked muscle wasting disease with no cure. While the precise mechanisms of progressive dystropathology remain unclear, oxidative stress caused by excessive generation of oxidants is strongly implicated. Blood biomarkers that could track oxidant levels in tissues would be valuable to measure the effectiveness of clinical treatments for DMD; our research has focused on developing such biomarkers. One target of oxidants that has the potential to be harnessed as a clinical biomarker is the thiol side chain of cysteine 34 (Cys34) of the blood protein albumin. This study using the mdx mouse model of DMD shows that in plasma, albumin Cys34 undergoes thiol oxidation and these changes correlate with levels of protein thiol oxidation and damage of the dystrophic muscles. A comparison with the commonly used biomarker protein carbonylation, confirmed that albumin thiol oxidation is the more sensitive plasma biomarker of oxidative stress occurring in muscle tissue. We show that plasma albumin oxidation reflects muscle dystropathology, as increased after exercise and decreased after taurine treatment of mdx mice. These data support the use of albumin thiol oxidation as a blood biomarker of dystropathology to assist with advancing clinical development of therapies for DMD.
Collapse
|
16
|
Wang L, Yin JJ, Zhang F, Yu HD, Chen FF, Zhang ZY, Zhang XZ. Selenium Status Affects Hypertrophic Growth of Skeletal Muscle in Growing Zebrafish by Mediating Protein Turnover. J Nutr 2021; 151:1791-1801. [PMID: 33982120 DOI: 10.1093/jn/nxab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jiao-Jiao Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Hao-Dong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Fei-Fei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Zi-Yi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Xue-Zhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| |
Collapse
|
17
|
Zamorano Cuervo N, Fortin A, Caron E, Chartier S, Grandvaux N. Pinpointing cysteine oxidation sites by high-resolution proteomics reveals a mechanism of redox-dependent inhibition of human STING. Sci Signal 2021; 14:14/680/eaaw4673. [PMID: 33906974 DOI: 10.1126/scisignal.aaw4673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein function is regulated by posttranslational modifications (PTMs), among which reversible oxidation of cysteine residues has emerged as a key regulatory mechanism of cellular responses. Given the redox regulation of virus-host interactions, the identification of oxidized cysteine sites in cells is essential to understand the underlying mechanisms involved. Here, we present a proteome-wide identification of reversibly oxidized cysteine sites in oxidant-treated cells using a maleimide-based bioswitch method coupled to mass spectrometry analysis. We identified 2720 unique oxidized cysteine sites within 1473 proteins with distinct abundances, locations, and functions. Oxidized cysteine sites were found in numerous signaling pathways, many relevant to virus-host interactions. We focused on the oxidation of STING, the central adaptor of the innate immune type I interferon pathway, which is stimulated in response to the detection of cytosolic DNA by cGAS. We demonstrated the reversible oxidation of Cys148 and Cys206 of STING in cells. Molecular analyses led us to establish a model in which Cys148 oxidation is constitutive, whereas Cys206 oxidation is inducible by oxidative stress or by the natural ligand of STING, 2'3'-cGAMP. Our data suggest that the oxidation of Cys206 prevented hyperactivation of STING by causing a conformational change associated with the formation of inactive polymers containing intermolecular disulfide bonds. This finding should aid the design of therapies targeting STING that are relevant to autoinflammatory disorders, immunotherapies, and vaccines.
Collapse
Affiliation(s)
- Natalia Zamorano Cuervo
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9 Québec, Canada
| | - Audray Fortin
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9 Québec, Canada
| | - Elise Caron
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9 Québec, Canada
| | - Stéfany Chartier
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9 Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9 Québec, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7 Québec, Canada
| |
Collapse
|
18
|
Li C, Wu Q, Li Z, Wang Z, Tu Y, Chen C, Sun S, Sun S. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy. Exp Biol Med (Maywood) 2021; 246:1156-1166. [PMID: 33554647 DOI: 10.1177/1535370221990322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated sarcopenia is a complex metabolic syndrome marked by muscle mass wasting. Muscle wasting is a serious complication that is a primary contributor to cancer-related mortality. The underlying molecular mechanisms of cancer-associated sarcopenia have not been completely described to date. In general, evidence shows that the main pathophysiological alterations in sarcopenia are associated with the degradation of cellular components, an exceptional inflammatory secretome and mitochondrial dysfunction. Importantly, we highlight the prospect that several miRNAs carried by tumor-derived exosomes that have shown the ability to promote inflammatory secretion, activate catabolism, and even participate in the regulation of cellular degradation pathways can be delivered to and exert effects on muscle cells. In this review, we aim to describe the current knowledge about the functions of exosomal miRNAs in the induction of cancer-associated muscle wasting and propose potential treatment strategies.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
19
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
20
|
Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 2020; 33:542-558. [PMID: 32037856 DOI: 10.1089/ars.2020.8041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The management of cancer patients is frequently complicated by the occurrence of a complex syndrome known as cachexia. It is mainly characterized by muscle wasting, a condition that associates with enhanced protein breakdown and with negative energy balance. While the mechanisms underlying cachexia have been only partially elucidated, understanding the pathogenesis of muscle wasting in cancer hosts is mandatory to design new targeted therapeutic strategies. Indeed, most of cancer patients will experience cachexia during the course of their disease, and about 25% of cancer-related deaths are due to this syndrome, rather than to the tumor itself. Recent Advances: Compelling evidence suggests that an altered redox homeostasis likely contributes to cancer-induced muscle protein depletion, directly or indirectly activating the intracellular degradative pathways. In addition, oxidative stress impinges on both mitochondrial number and function; the other way round, altered mitochondria lead to enhanced redox imbalance, creating a vicious loop that eventually results in negative energy metabolism. Critical Issues: The present review focuses on the possibility that pharmacological and nonpharmacological strategies able to restore a physiologic redox balance could be useful components of treatment schedules aimed at counteracting cancer-induced muscle wasting. Future Directions: Exercise and the use of exercise mimetic drugs represent the most promising approaches capable of reinforcing the muscle antioxidant defenses of cancer patients. The results from ongoing and new clinical trials are needed to validate the preclinical studies and provide effective therapies for cancer cachexia. Antioxid. Redox Signal. 33, 542-558.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
22
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
23
|
Quan Y, Hua S, Li W, Zhan M, Li Y, Lu L. Resveratrol bidirectionally regulates insulin effects in skeletal muscle through alternation of intracellular redox homeostasis. Life Sci 2019; 242:117188. [PMID: 31863772 DOI: 10.1016/j.lfs.2019.117188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
AIMS Reactive oxygen species (ROS) bidirectionally regulate insulin sensitivity in skeletal muscle. Insulin-induced ROS generation elevates insulin-regulated metabolic effects; however, chronic oxidative stress causes severe insulin resistance in skeletal muscle. Resveratrol (RV), as a natural antioxidant, eliminates intracellular ROS. It's unclear that whether it has different roles in insulin signaling pathway in skeletal muscle. MAIN METHODS C57BL/6J mice and C2C12 myotubes were used to assess metabolic regulation effects of RV. Protein activation was detected using Immunofluorescence and Western Blot analysis. ROS were analyzed using confocal microscope and flow cytometry sorting (FACS). Intracellular reducing molecules were detected using an enzymatic method. Glucose uptake was measured using a fluorescent deoxyglucose analog (2-NBDG). KEY FINDINGS We found that RV attenuated insulin-stimulated AKT phosphorylation via elimination of insulin-induced ROS generation in skeletal muscle, suggesting that RV decreased activation of the insulin-induced AKT signaling. In skeletal muscle of insulin resistance, RV reduced oxidative stress, restored intracellular glutathione (GSH) level, and enhanced insulin-induced AKT activation and glucose absorption. These results suggested that RV ameliorated insulin resistance by change of redox levels in skeletal muscle. SIGNIFICANCE This study revealed bidirectional regulation effects of RV on insulin-stimulated metabolism in skeletal muscle through alternation of intracellular redox homeostasis, which might provide a guidance role for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yingyao Quan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Shengni Hua
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Wei Li
- Department of General Surgery, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affilated with Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, PR China.
| |
Collapse
|
24
|
Kumagai Y, Akiyama M, Unoki T. Adaptive Responses to Electrophilic Stress and Reactive Sulfur Species as their Regulator Molecules. Toxicol Res 2019; 35:303-310. [PMID: 31636841 PMCID: PMC6791667 DOI: 10.5487/tr.2019.35.4.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
We are exposed to numerous xenobiotic electrophiles on a daily basis through the environment, lifestyle, and dietary habits. Although such reactive species have been associated with detrimental effects, recent accumulated evidence indicates that xenobiotic electrophiles appear to act as signaling molecules. In this review, we introduce our findings on 1) activation of various redox signaling pathways involved in cell proliferation, detoxification/excretion of electrophiles, quality control of cellular proteins, and cell survival during exposure to xenobiotic electrophiles at low concentrations through covalent modification of thiol groups in sensor proteins, and 2) negative regulation of reactive sulfur species (RSS) in the modulation of redox signaling and toxicity caused by xenobiotic electrophiles.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
25
|
Kawamura A, Aoi W, Abe R, Kobayashi Y, Wada S, Kuwahata M, Higashi A. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice. Nutrition 2019; 69:110561. [PMID: 31539816 DOI: 10.1016/j.nut.2019.110561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The antioxidant factors, astaxanthin, β-carotene, and resveratrol, have a potential effect on protein synthesis in skeletal muscle and a combined intake may have a greater cumulative effect than individual intake. The aim of this study was to investigate the combined effects on skeletal muscle mass and protein metabolic signaling during the hypertrophic process from atrophy in mice. METHODS Male ICR mice were divided into five dietary groups consisting of seven animals each: normal, astaxanthin, β-carotene, resveratrol, and all three antioxidants. Equal concentrations (0.06% [w/w]) of the respective antioxidants were included in the diet of each group. In the mixed group, three antioxidants were added in equal proportion. One leg of each mouse was casted for 3 wk to induce muscle atrophy. After removal of the cast, the mice were fed each diet for 2 wk. The muscle tissues were collected, weighed, and examined for protein metabolism signaling and oxidative damage. RESULTS The weight of the soleus muscle was increased in the astaxanthin, β-carotene, and resveratrol groups to a greater extent than in the normal group; this was accelerated by intake of the mixed antioxidants (P = 0.007). Phosphorylation levels of mammalian target of rapamycin and p70 S6 K in the muscle were higher in the mixed antioxidant group than in the normal group (P = 0.025; P = 0.020). The carbonylated protein concentration was lower in the mixed antioxidant group than in the normal group (P = 0.021). CONCLUSIONS These results suggested that a combination of astaxanthin, β-carotene, and resveratrol, even in small amounts, promoted protein synthesis during the muscle hypertrophic process following atrophy.
Collapse
Affiliation(s)
- Aki Kawamura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Sports Science Research Promotion Center, Nippon Sport Science University, Tokyo, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Wakayama Medical University Hospital, Wakayama, Japan
| | - Yukiko Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
26
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
27
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
28
|
Guimera AM, Shanley DP, Proctor CJ. Modelling the role of redox-related mechanisms in musculoskeletal ageing. Free Radic Biol Med 2019; 132:11-18. [PMID: 30219703 DOI: 10.1016/j.freeradbiomed.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
The decline in the musculoskeletal system with age is driven at the cellular level by random molecular damage. Cells possess mechanisms to repair or remove damage and many of the pathways involved in this response are regulated by redox signals. However, with ageing there is an increase in oxidative stress which can lead to chronic inflammation and disruption of redox signalling pathways. The complexity of the processes involved has led to the use of computational modelling to help increase our understanding of the system, test hypotheses and make testable predictions. This paper will give a brief background of the biological systems that have been modelled, an introduction to computational modelling, a review of models that involve redox-related mechanisms that are applicable to musculoskeletal ageing, and finally a discussion of the future potential for modelling in this field.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Carole J Proctor
- Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
29
|
Lee MY, Wu MF, Cherng SH, Chiu LY, Yang TY, Sheu GT. Tissue transglutaminase 2 expression is epigenetically regulated in human lung cancer cells and prevents reactive oxygen species-induced apoptosis. Cancer Manag Res 2018; 10:2835-2848. [PMID: 30197536 PMCID: PMC6112806 DOI: 10.2147/cmar.s155582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Tissue transglutaminase 2 (TG2) is a stress-regulated protein and associated with cancer cell survival. However, the effects of TG2 expression in human non-small-cell lung cancer (NSCLC) cells on reactive oxygen species (ROS) production and redox homeostasis have not been fully elucidated. Materials and methods We investigated the TG2 expression and activity in A549, H1299, H1355, and H460 lung cancer cells by Western blots and quantitative polymerase chain reaction assay. The enzyme-linked immunosorbent assay was used for transglutaminase activity. The epigenetic expression was characterized with histone deacetylase inhibitor trichostatin A and DNA methyltransferase inhibitor 5-Aza treatment. TG2 expression was inhibited by siRNA transfection and the intracellular calcium was measured by Flow-3AM assay, apoptosis was analyzed by Annexin V/propidium iodide assay, and intracellular ROS was detected by fluorescence-activated cell sorting analysis. The ROS scavenger N-acetyl-L-cysteine (NAC) was applied to reduce TG2-knockdown-induced oxidative stress. Results Only A549 cells expressing high levels of TG2 correlated with high TG2 activity. The expression of TG2 can be regulated by epigenetic regulation in A549, H1299, and H1355 cells. The data also show that TG2 reduction induces apoptosis in A549 and H1299 cells. Furthermore, increased intracellular ROS and calcium levels were both detected in TG2-reduced cells. Moreover, endoplasmic reticulum stress inhibitor (salubrinal) and antioxidant NAC were able to reduce ROS and calcium levels to recover cell viability. Interestingly, the extrinsic and intrinsic apoptosis pathways were activated with a p53 independence upon TG2 reduction. TG2 reduction not only attenuated AKT activation but also reduced superoxide dismutase 2 (SOD2) expression. Exogenous NAC partially recovered SOD2 expression, indicating that mitochondrial-mediated apoptosis accounts for a part of but not all of the TG2-reduction-related death. Conclusion TG2 plays a protection role in NSCLC cell lines. Regardless of the endogenous level of TG2 and p53 status, reduction of TG2 may result in oxidative stress that induces apop-tosis. Therefore, target TG2 expression represents a logical strategy for NSCLC management.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Chiayi City, Taiwan.,Graduate Institute of Natural Healing Science, Nanhua University, Chiayi City, Taiwan
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan,
| | - Shur-Hueih Cherng
- Department of Biotechnology, Hung Kuang University, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Tarng Sheu
- Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, .,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, .,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan,
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. CRITICAL ISSUES The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. FUTURE DIRECTIONS The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
31
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
32
|
Pinto-Almazán R, Segura-Uribe JJ, Soriano-Ursúa MA, Farfán-García ED, Gallardo JM, Guerra-Araiza C. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone. Neural Regen Res 2018; 13:440-448. [PMID: 29623928 PMCID: PMC5900506 DOI: 10.4103/1673-5374.228726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O3 exposure in rats.
Collapse
Affiliation(s)
- Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia J. Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Marvin A. Soriano-Ursúa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Eunice D. Farfán-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Juan M. Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| |
Collapse
|
33
|
Sakellariou GK, McDonagh B. Redox Homeostasis in Age-Related Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:281-306. [PMID: 30390257 DOI: 10.1007/978-981-13-1435-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and weakness, characterized by loss of lean muscle mass and function, has a significant effect on the independence and quality of life of older people. The cellular mechanisms that drive the age-related decline in neuromuscular integrity and function are multifactorial. Quiescent and contracting skeletal muscle can endogenously generate reactive oxygen and nitrogen species (RONS) from various cellular sites. Excessive RONS can potentially cause oxidative damage and disruption of cellular signaling pathways contributing to the initiation and progression of age-related muscle atrophy. Altered redox homeostasis and modulation of intracellular signal transduction processes have been proposed as an underlying mechanism of sarcopenia. This chapter summarizes the current evidence that has associated disrupted redox homeostasis and muscle atrophy as a result of skeletal muscle inactivity and aging.
Collapse
Affiliation(s)
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
34
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
35
|
Martinez Guimera A, Welsh CM, Proctor CJ, McArdle A, Shanley DP. 'Molecular habituation' as a potential mechanism of gradual homeostatic loss with age. Mech Ageing Dev 2017; 169:53-62. [PMID: 29146308 PMCID: PMC5846846 DOI: 10.1016/j.mad.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Constitutive signals indicate homeostatic dysregulation but their effect on signal transduction remains largely unexplored. A theoretical approach is undertaken to examine how oxidative stress may affect redox signal transduction. Constitutive signals can result in a ‘molecular habituation’ effect that interferes with information transmission. The robustness of such a theoretical observation to the underlying methodology hints at the generality of this principle.
The ability of reactive oxygen species (ROS) to cause molecular damage has meant that chronic oxidative stress has been mostly studied from the point of view of being a source of toxicity to the cell. However, the known duality of ROS molecules as both damaging agents and cellular redox signals implies another perspective in the study of sustained oxidative stress. This is a perspective of studying oxidative stress as a constitutive signal within the cell. In this work, we adopt a theoretical perspective as an exploratory and explanatory approach to examine how chronic oxidative stress can interfere with signal processing by redox signalling pathways in the cell. We report that constitutive signals can give rise to a ‘molecular habituation’ effect that can prime for a gradual loss of biological function. This is because a constitutive signal in the environment has the potential to reduce the responsiveness of a signalling pathway through the prolonged activation of negative regulators. Additionally, we demonstrate how this phenomenon is likely to occur in different signalling pathways exposed to persistent signals and furthermore at different levels of biological organisation.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Ciaran M Welsh
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom
| | - Carole J Proctor
- Institute of Cellular Medicine, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Anne McArdle
- Department of Musculoskeletal Biology, University of Liverpool (University, Not-for-profit), Institute of Ageing and Chronic Disease,William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom.
| |
Collapse
|
36
|
Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis. Crit Care Med 2017; 45:e971-e979. [PMID: 28538438 DOI: 10.1097/ccm.0000000000002520] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Skeletal muscle fiber atrophy develops in response to severe sepsis, but it is unclear as to how the proteolytic pathways that are involved in its development are differentially regulated. We investigated the link between sepsis-induced fiber atrophy and activation of the proteasome and autophagy pathways and whether the degree of activation is more severe and sustained in limb muscles than it is in the diaphragm. DESIGN Randomized controlled experiment. SETTING Animal research laboratory. SUBJECTS Adult male C57/BL6 mice. INTERVENTIONS Two groups of animals were studied. The sepsis group was subjected to a cecal ligation and perforation technique, whereas the control (sham) group was subjected to abdominal surgery without cecal ligation and perforation. Measurements for both groups were performed 24, 48, and 96 hours after the surgical procedure. MEASUREMENTS AND MAIN RESULTS Atrophy was quantified in the diaphragm and tibialis anterior by measuring fiber diameter. Autophagy was evaluated using electron microscopic detection of autophagosomes and by measuring LC3B protein lipidation and autophagy-related protein expressions. Proteasomal degradation was quantified by measuring chymotrypsin-like activity of the 26S proteasome and messenger RNA expressions of muscle-specific E3 ligases. Sepsis triggered transient fiber atrophy in the diaphragm that lasted for 24 hours and prolonged atrophy in the tibialis anterior that persisted for 96 hours. The autophagy and proteasome pathways were activated in both muscles at varying intensities over the time course of sepsis. Activation was more pronounced in the tibialis anterior than in the diaphragm. Sepsis inhibited the V-Akt thymoma viral oncogene homolog 1 and complex 1 of the mammalian target of rapamycin pathways and stimulated the AMP-activated protein kinase pathway in both muscles. CONCLUSIONS Sepsis triggers more severe and sustained muscle fiber atrophy in limb muscles when compared with respiratory muscle. This response is associated with enhanced proteasomal and autophagic proteolytic pathway activities and is triggered by inhibition of the AKT and complex 1 of the mammalian target of rapamycin pathways and activation of the AMPK pathway.
Collapse
|
37
|
Kumagai Y, Abiko Y, Cong NL. Chemical toxicology of reactive species in the atmosphere: two decades of progress in an electron acceptor and an electrophile. J Toxicol Sci 2017; 41:SP37-SP47. [PMID: 28003638 DOI: 10.2131/jts.41.sp37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Air pollutants such as diesel exhaust particles (DEP) are thought to cause pulmonary diseases such as asthma as a result of oxidative stress. While DEP contain a large number of polycyclic aromatic hydrocarbons, we have focused on 9,10-phenanthrenequinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ) because of their chemical properties based on their oxidative and chemical modification capabilities. We have found that 9,10-PQ interacts with electron donors such as NADPH (in the presence of enzymes) and dithiols, resulting in generation of excess reactive oxygen species (ROS) through redox cycling. We have also shown that 1,2-NQ is able to modify protein thiols, leading to protein adducts associated with activation of redox signal transduction pathways at lower concentrations and toxicity at higher concentrations. In this review, we briefly introduce our findings from the last two decades.
Collapse
|
38
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
39
|
Effect of mitochondrially targeted carboxy proxyl nitroxide on Akt-mediated survival in Daudi cells: Significance of a dual mode of action. PLoS One 2017; 12:e0174546. [PMID: 28426671 PMCID: PMC5398517 DOI: 10.1371/journal.pone.0174546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
Vicious cycles of mutations and reactive oxygen species (ROS) generation contribute to cancer progression. The use of antioxidants to inhibit ROS generation promotes cytostasis by affecting the mutation cycle and ROS-dependent survival signaling. However, cancer cells select mutations to elevate ROS albeit maintaining mitochondrial hyperpolarization (Δψm), even under hypoxia. From this perspective, the use of drugs that disrupt both ROS generation and Δψm is a viable anticancer strategy. Hence, we studied the effects of mitochondrially targeted carboxy proxyl nitroxide (Mito-CP) and a control ten carbon TPP moiety (Dec-TPP+) in the human Burkitt lymphoma cell line (Daudi) and normal peripheral blood mononuclear cells under hypoxia and normoxia. We found preferential localization, Δψm and adenosine triphosphate loss, and significant cytotoxicity by Mito-CP in Daudi cells alone. Interestingly, ROS levels were decreased and maintained in hypoxic and normoxic cancer cells, respectively, by Mito-CP but not Dec-TPP+, therefore preventing any adaptive signaling. Moreover, dual effects on mitochondrial bioenergetics and ROS by Mito-CP curtailed the cancer survival via Akt inhibition, AMPK-HIF-1α activation and promoted apoptosis via increased BCL2-associated X protein and poly (ADP-ribose) polymerase expression. This dual mode of action by Mito-CP provides a better explanation of the application of antioxidants with specific relevance to cancerous transformation and adaptations in the Daudi cell line.
Collapse
|
40
|
Parker L, Shaw CS, Stepto NK, Levinger I. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling. Front Endocrinol (Lausanne) 2017; 8:87. [PMID: 28529499 PMCID: PMC5418238 DOI: 10.3389/fendo.2017.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis.
Collapse
Affiliation(s)
- Lewan Parker
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Lewan Parker, ,
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Nigel K. Stepto
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| |
Collapse
|
41
|
Kumagai Y, Abiko Y. Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides. Chem Res Toxicol 2016; 30:203-219. [DOI: 10.1021/acs.chemrestox.6b00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
42
|
Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 2016; 98:103-112. [PMID: 27184957 PMCID: PMC4975974 DOI: 10.1016/j.freeradbiomed.2016.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased autophagy leads to degeneration and weakness. A growing body of work suggests that reactive oxygen species (ROS) are important cellular signal transducers controlling autophagy. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major sources of ROS generation in skeletal muscle that are likely regulating autophagy through different signaling cascades based on localization of the ROS signals. This review aims to provide insight into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases.
Collapse
Affiliation(s)
- George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Reem Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
44
|
Jung KJ, Min KJ, Park JW, Park KM, Kwon TK. Carnosic acid attenuates unilateral ureteral obstruction-induced kidney fibrosis via inhibition of Akt-mediated Nox4 expression. Free Radic Biol Med 2016; 97:50-57. [PMID: 27212017 DOI: 10.1016/j.freeradbiomed.2016.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Fibrosis represents a common pathway to end-stage renal disease. Transforming growth factor-β (TGF-β) plays a critical role in the progression of kidney fibrosis. In the present study, we explored the effect of carnosic acid (CA) against TGF-β-induced fibroblast activation in vitro and unilateral ureteral obstruction (UUO)-induced kidney fibrosis in vivo. CA attenuated TGF-β-induced up-regulation of profibrogenic proteins, α-smooth muscle actin (α-SMA), collagen I (COLI), fibronectin (FN), and plasminogen activator inhibitor-1 (PAI-1) in kidney fibroblast cells (NRK-49F). CA inhibited TGF-β-induced hydrogen peroxide generation via inhibition of NADPH oxidase 4 (Nox4) expressions. In mice, CA-administration markedly mitigated the UUO-induced interstitial extension, collagen deposition, superoxide anion formation, hydrogen peroxide production, and lipid peroxidation. In addition, CA significantly attenuated the expression of α-SMA, COLI, FN, PAI-1, and Nox4 in UUO-induced kidneys. These results indicated that CA attenuated oxidative stress via inhibition of Nox4 expression in TGF-β-stimulated fibroblasts and UUO operated-kidneys, suggesting that CA may be useful for the treatment of fibrosis-related diseases.
Collapse
Affiliation(s)
- Kyong-Jin Jung
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Taegu 700-422, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| |
Collapse
|
45
|
Yamauchi H, Miura S, Owada T, Saitoh SI, Machii H, Yamada S, Ishigami A, Takeishi Y. Senescence marker protein-30 deficiency impairs angiogenesis under ischemia. Free Radic Biol Med 2016; 94:66-73. [PMID: 26912033 DOI: 10.1016/j.freeradbiomed.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Aging decreases collateral-dependent flow recovery following acute arterial obstruction. However, the mechanisms are partially understood, therefore critical management has been lacked in clinical setting. Senescence marker protein-30 (SMP30) is a novel aging marker, which is assumed to act as an anti-aging factor in various organs. Therefore, we studied the effect of SMP30 on ischemia-induced collateral growth in SMP30 knockout (KO) mice, young and old C57BL/6 mice. The SMP30 expression in gastrocnemius tissue was decreased in old mice compared to that of young mice. The recovery of cutaneous blood flow in hind limb after femoral artery ligation and tissue capillary density recoveries were suppressed in SMP30 KO and old mice compared to those in young mice. Nitric oxide generation induced by l-arginine and GSH/GSSG in aorta of SMP30 KO and old mice were lower than those in young mice. The levels of NADPH oxidase activity and superoxide production in the ischemic tissue were higher in SMP30 KO and old mice than in young mice. The phosphorylated eNOS and Akt levels and VEGF levels in ischemic muscle were lower in SMP30 KO and old mice than in young mice. Deficiency of SMP30 exacerbates oxidative stress related to NADPH oxidase activity enhancement and impairs eNOS activity, which leads to rarefaction of angiogenesis induced by ischemia. These results suggest that SMP30 plays a key role in disrupting collateral growth under ischemia in aging.
Collapse
Affiliation(s)
- Hiroyuki Yamauchi
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shunsuke Miura
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Takashi Owada
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shu-Ichi Saitoh
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Hirofumi Machii
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Yamada
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
46
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|