1
|
Estivariz CF, Krow-Lucal ER, Mach O. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Infections: A Review of Epidemiology and Progress in Detection and Management. Pathogens 2024; 13:1128. [PMID: 39770387 PMCID: PMC11677883 DOI: 10.3390/pathogens13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017-2024 compared to 63 during 2009-2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs.
Collapse
Affiliation(s)
| | - Elisabeth R. Krow-Lucal
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30033, USA;
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| | - Ondrej Mach
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| |
Collapse
|
2
|
Al-Hakim A, Kacar M, Savic S. The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. J Clin Med 2024; 13:1717. [PMID: 38541942 PMCID: PMC10971312 DOI: 10.3390/jcm13061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 01/05/2025] Open
Abstract
Common Variable Immunodeficiency (CVID) is a heterogeneous primary immunodeficiency disorder characterised by impaired antibody production, leading to recurrent infections and an increased susceptibility to viral pathogens. This literature review aims to provide a comprehensive overview of CVID's relationship with viral infections, encompassing disease pathogenesis, key presenting features, specific monogenic susceptibilities, the impact of COVID-19, and existing treatment options. The pathogenesis of CVID involves complex immunological dysregulation, including defects in B cell development, antibody class switching, and plasma cell differentiation. These abnormalities contribute to an impaired humoral immune response against viral agents, predisposing individuals with CVID to a broad range of viral infections. Genetic factors play a prominent role in CVID, and monogenic drivers of CVID-like disease are increasingly identified through advanced genomic studies. Some monogenic causes of the CVID-like phenotype appear to cause specific viral susceptibilities, and these are explored in the review. The emergence of the COVID-19 pandemic highlighted CVID patients' heightened predisposition to severe outcomes with viral infections. This review explores the clinical manifestations, outcomes, and potential therapeutic approaches for COVID-19 in CVID patients. It assesses the efficacy of prophylactic measures for COVID-19, including vaccination and immunoglobulin replacement therapy, as well as trialled therapies.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| | - Mark Kacar
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Allergy and Clinical Immunology Unit, University Clinic Golnik, 36 Golnik, 4204 Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| |
Collapse
|
3
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
4
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
5
|
Shulman LM, Weil M, Somech R, Stauber T, Indenbaum V, Rahav G, Mendelson E, Sofer D. Underperformed and Underreported Testing for Persistent Oropharyngeal Poliovirus Infections in Primary Immune Deficient Patients-Risk for Reemergence of Polioviruses. J Pediatric Infect Dis Soc 2021; 10:326-333. [PMID: 32538431 DOI: 10.1093/jpids/piaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Individuals with primary immune deficiencies (PIDs) may excrete poliovirus for extended periods and remain a major reservoir for polio after eradication. Poliovirus can spread by fecal-oral or oral-oral transmission. In middle- and high-income countries, oral-oral transmission may be more prevalent than fecal-oral transmission of polioviruses where PIDs patients survive longer. Our aim was to determine the prevalence of prolonged or persistent oropharyngeal poliovirus infections in PIDs. METHODS We performed a literature search for reports of prolonged (excreting poliovirus for ≥6 months and ≤5 years) or persistent (excreting poliovirus for >5 years) poliovirus infections in PIDs. RESULTS There were 140 PID cases with prolonged or persistent poliovirus infections. All had poliovirus-positive stools. Testing of oropharyngeal mucosa was only reported for 6 cases, 4 of which were positive. Molecular analyses demonstrated independent evolution of poliovirus in the gut and oropharyngeal mucosa in 2 cases. Seven PIDs had multiple lineages of the same poliovirus serotype in stools without information about polioviruses in oropharyngeal mucosa. CONCLUSIONS Testing for persistence of poliovirus in oropharyngeal mucosa of PID patients is rare, with virus recovered in 4 of 5 cases in whom stools were positive. Multiple lineages or serotypes in 7 additional PID cases may indicate separate foci of infection, some of which might be in oropharyngeal mucosa. We recommend screening throat swabs in addition to stools for poliovirus in PID patients. Containment protocols for reducing both oral-oral and fecal-oral transmission from PID patients must be formulated for hospitals and community settings.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Victoria Indenbaum
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
6
|
Goodnow CC. COVID-19, varying genetic resistance to viral disease and immune tolerance checkpoints. Immunol Cell Biol 2020; 99:177-191. [PMID: 33113212 PMCID: PMC7894315 DOI: 10.1111/imcb.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is a zoonosis like most of the great plagues sculpting human history, from smallpox to pandemic influenza and human immunodeficiency virus. When viruses jump into a new species the outcome of infection ranges from asymptomatic to lethal, historically ascribed to “genetic resistance to viral disease.” People have exploited these differences for good and bad, for developing vaccines from cowpox and horsepox virus, controlling rabbit plagues with myxoma virus and introducing smallpox during colonization of America and Australia. Differences in resistance to viral disease are at the core of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) crisis, yet our understanding of the mechanisms in any interspecies leap falls short of the mark. Here I review how the two key parameters of viral disease are countered by fundamentally different genetic mechanisms for resistance: (1) virus transmission, countered primarily by activation of innate and adaptive immune responses; and (2) pathology, countered primarily by tolerance checkpoints to limit innate and adaptive immune responses. I discuss tolerance thresholds and the role of CD8 T cells to limit pathological immune responses, the problems posed by tolerant superspreaders and the signature coronavirus evasion strategy of eliciting only short‐lived neutralizing antibody responses. Pinpointing and targeting the mechanisms responsible for varying pathology and short‐lived antibody were beyond reach in previous zoonoses, but this time we are armed with genomic technologies and more knowledge of immune checkpoint genes. These known unknowns must now be tackled to solve the current COVID‐19 crisis and the inevitable zoonoses to follow.
Collapse
Affiliation(s)
- Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Kalkowska DA, Pallansch MA, Thompson KM. Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters. Epidemiol Infect 2019; 147:e295. [PMID: 31647050 PMCID: PMC6813650 DOI: 10.1017/s095026881900181x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Conditions and evidence continue to evolve related to the prediction of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters, which affect assumptions related to forecasting risks and evaluating potential risk management options. Multiple recent reviews provided information about individual iVDPV excreters, but inconsistencies among the reviews raise some challenges. This analysis revisits the available evidence related to iVDPV excreters and provides updated model estimates that can support future risk management decisions. The results suggest that the prevalence of iVDPV excreters remains highly uncertain and variable, but generally confirms the importance of managing the risks associated with iVDPV excreters throughout the polio endgame in the context of successful cessation of all oral poliovirus vaccine use.
Collapse
Affiliation(s)
| | - M. A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Bandyopadhyay AS, Singh H, Fournier-Caruana J, Modlin JF, Wenger J, Partridge J, Sutter RW, Zaffran MJ. Facility-Associated Release of Polioviruses into Communities-Risks for the Posteradication Era. Emerg Infect Dis 2019; 25:1363-1369. [PMID: 31082331 PMCID: PMC6590745 DOI: 10.3201/eid2507.181703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Global Polio Eradication Initiative continues to make progress toward the eradication target. Indigenous wild poliovirus (WPV) type 2 was last detected in 1999, WPV type 3 was last detected in 2012, and over the past 2 years WPV type 1 has been detected only in parts of 2 countries (Afghanistan and Pakistan). Once the eradication of poliomyelitis is achieved, infectious and potentially infectious poliovirus materials retained in laboratories, vaccine production sites, and other storage facilities will continue to pose a risk for poliovirus reintroduction into communities. The recent breach in containment of WPV type 2 in an inactivated poliovirus vaccine manufacturing site in the Netherlands prompted this review, which summarizes information on facility-associated release of polioviruses into communities reported over >8 decades. Successful polio eradication requires the management of poliovirus containment posteradication to prevent the consequences of the reestablishment of poliovirus transmission.
Collapse
|
9
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
10
|
Costa-Carvalho BT, Sullivan KE, Fontes PM, Aimé-Nobre F, Gonzales IGS, Lima ES, Granato C, de Moraes-Pinto MI. Low Rates of Poliovirus Antibodies in Primary Immunodeficiency Patients on Regular Intravenous Immunoglobulin Treatment. J Clin Immunol 2018; 38:628-634. [PMID: 30006913 DOI: 10.1007/s10875-018-0531-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Poliovirus has been nearly eliminated as part of a world-wide effort to immunize and contain circulating wild-type polio. Nevertheless, poliovirus has been detected in water supplies and represents a threat to patients with humoral immunodeficiencies where infection can be fatal. To define the risk, we analyzed antibodies to poliovirus 1, 2, and 3 in serum samples collected over a year from patients with primary immunodeficiency diseases (PID) on regular intravenous immunoglobulin (IVIG) replacement. METHODS Twenty-one patients on regular IVIG replacement therapy were evaluated: Twelve patients with common variable immune deficiency (CVID), six with X-linked agammaglobulinemia (XLA), and three with hyper IgM syndrome (HIGM). Over 1 year, four blood samples were collected from each of these patients immediately before immunoglobulin infusion. One sample of IVIG administered to each patient in the month before blood collection was also evaluated. Poliovirus antibodies were quantified by seroneutralization assay. RESULTS All IVIG samples had detectable antibodies to the three poliovirus serotypes. Despite that, only 52.4, 61.9, and 19.0% of patients showed protective antibody titers for poliovirus 1, 2, and 3, respectively. Only two patients (9.5%) had protective antibodies for the three poliovirus serotypes on all samples. Most patients were therefore susceptible to all three poliovirus serotypes. CONCLUSIONS This study demonstrates the need for ongoing vigilance regarding exposure of patients with PID to poliovirus in the community.
Collapse
Affiliation(s)
- Beatriz T Costa-Carvalho
- Division of Allergy Clinical Immunology and Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patrícia M Fontes
- Division of Allergy Clinical Immunology and Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Aimé-Nobre
- Division of Allergy Clinical Immunology and Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isabela G S Gonzales
- Division of Allergy Clinical Immunology and Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elaine S Lima
- Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Celso Granato
- Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil.
- Research Laboratory, Division of Pediatric Infectious Diseases, Federal University of Sao Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
11
|
Shaghaghi M, Soleyman-Jahi S, Abolhassani H, Yazdani R, Azizi G, Rezaei N, Barbouche MR, McKinlay MA, Aghamohammadi A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018; 36:1711-1719. [PMID: 29478755 DOI: 10.1016/j.vaccine.2018.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Widespread administration of oral poliovirus vaccine (OPV) has decreased global incidence of poliomyelitis by ≈99.9%. However, the emergence of vaccine-derived polioviruses (VDPVs) is threatening polio-eradication program. Primary immunodeficiency (PID) patients are at higher risks of vaccine-associated paralytic poliomyelitis (VAPP) and prolonged excretion of immunodeficiency-associated VDPV (iVDPV). We searched Embase, Medline, Science direct, Scopus, Web of Science, and CDC and WHO databases by 30 September 2016, for all reports of iVDPV cases. Patient-level data were extracted form eligible studies. Data on immunization coverage and income-level of countries were extracted from WHO/UNICEF and the WORLD BANK databases, respectively. We assessed bivariate associations between immunological, clinical, and virological parameters, and exploited multivariable modeling to identify independent determinants of poliovirus evolution and patients' outcomes. Study protocol was registered with PROSPERO (CRD42016052931). 4329 duplicate-removed titles were screened. A total of 107 iVDPV cases were identified from 68 eligible articles. The majority of cases were from higher income countries with high polio-immunization coverage. 74 (69.81%) patients developed VAPP. Combined immunodeficiency patients showed lower rates of VAPP (p < .001) and infection clearance (p = .02), compared to humoral immunodeficiency patients. The rate of poliovirus genomic evolution was higher at early stages of replication, decreasing over time until reaching a steady state. Independent of replication duration, higher extent (p = .04) and rates (p = .03) of genome divergence contributed to a less likelihood of virus clearance. PID type (p < .001), VAPP occurrence (p = .008), and income-level of country (p = .04) independently influenced patients' survival. With the use of OPV, new iVDPVs will emerge independent of the rate of immunization coverage. Inherent features of PIDs contribute to the clinical course of iVDPV infection and virus evolution. This finding could shed further light on poliomyelitis pathogenesis and iVDPV evolution pattern. It also has implications for public health, the polio eradication effort and the development of effective antiviral interventions.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Soleyman-Jahi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El-Manar, Tunis, Tunisia
| | - Mark A McKinlay
- Center for Vaccine Equity, Task Force for Global Health, Atlanta, GA, United States
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
12
|
Macklin G, Liao Y, Takane M, Dooling K, Gilmour S, Mach O, Kew OM, Sutter RW. Prolonged Excretion of Poliovirus among Individuals with Primary Immunodeficiency Disorder: An Analysis of the World Health Organization Registry. Front Immunol 2017; 8:1103. [PMID: 28993765 PMCID: PMC5622164 DOI: 10.3389/fimmu.2017.01103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Individuals with primary immunodeficiency disorder may excrete poliovirus for extended periods and will constitute the only remaining reservoir of virus after eradication and withdrawal of oral poliovirus vaccine. Here, we analyzed the epidemiology of prolonged and chronic immunodeficiency-related vaccine-derived poliovirus cases in a registry maintained by the World Health Organization, to identify risk factors and determine the length of excretion. Between 1962 and 2016, there were 101 cases, with 94/101 (93%) prolonged excretors and 7/101 (7%) chronic excretors. We documented an increase in incidence in recent decades, with a shift toward middle-income countries, and a predominance of poliovirus type 2 in 73/101 (72%) cases. The median length of excretion was 1.3 years (95% confidence interval: 1.0, 1.4) and 90% of individuals stopped excreting after 3.7 years. Common variable immunodeficiency syndrome and residence in high-income countries were risk factors for long-term excretion. The changing epidemiology of cases, manifested by the greater incidence in recent decades and a shift to from high- to middle-income countries, highlights the expanding risk of poliovirus transmission after oral poliovirus vaccine cessation. To better quantify and reduce this risk, more sensitive surveillance and effective antiviral therapies are needed.
Collapse
Affiliation(s)
| | - Yi Liao
- World Health Organization, Geneva, Switzerland.,University of Tokyo, Tokyo, Japan
| | | | | | | | - Ondrej Mach
- World Health Organization, Geneva, Switzerland
| | - Olen M Kew
- Centers for Disease Control and Prevention, Atlanta, GA, United States.,Taskforce for Child Health, Atlanta, GA, United States
| | | | | |
Collapse
|
13
|
Sullivan KE, Bassiri H, Bousfiha AA, Costa-Carvalho BT, Freeman AF, Hagin D, Lau YL, Lionakis MS, Moreira I, Pinto JA, de Moraes-Pinto MI, Rawat A, Reda SM, Reyes SOL, Seppänen M, Tang MLK. Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. J Clin Immunol 2017; 37:650-692. [PMID: 28786026 PMCID: PMC5693703 DOI: 10.1007/s10875-017-0426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
In today's global economy and affordable vacation travel, it is increasingly important that visitors to another country and their physician be familiar with emerging infections, infections unique to a specific geographic region, and risks related to the process of travel. This is never more important than for patients with primary immunodeficiency disorders (PIDD). A recent review addressing common causes of fever in travelers provides important information for the general population Thwaites and Day (N Engl J Med 376:548-560, 2017). This review covers critical infectious and management concerns specifically related to travel for patients with PIDD. This review will discuss the context of the changing landscape of infections, highlight specific infections of concern, and profile distinct infection phenotypes in patients who are immune compromised. The organization of this review will address the environment driving emerging infections and several concerns unique to patients with PIDD. The first section addresses general considerations, the second section profiles specific infections organized according to mechanism of transmission, and the third section focuses on unique phenotypes and unique susceptibilities in patients with PIDDs. This review does not address most parasitic diseases. Reference tables provide easily accessible information on a broader range of infections than is described in the text.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Hamid Bassiri
- Division of Infectious Diseases and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed A Bousfiha
- Clinical Immunology Unit, Infectious Department, Hopital d'Enfant Abderrahim Harouchi, CHU Ibn Rochd, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Federal University of São Paulo, Rua dos Otonis, 725, São Paulo, SP, 04025-002, Brazil
| | - Alexandra F Freeman
- NIAID, NIH, Building 10 Room 12C103, 9000 Rockville, Pike, Bethesda, MD, 20892, USA
| | - David Hagin
- Division of Allergy and Immunology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Yu L Lau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Rm 106, 1/F New Clinical Building, Pok Fu Lam, Hong Kong.,Queen Mary Hospital, 102 Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | - Ileana Moreira
- Immunology Unit, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| | - Jorge A Pinto
- Division of Immunology, Department of Pediatrics, Federal University of Minas Gerais, Av. Alfredo Balena 190, room # 161, Belo Horizonte, MG, 30130-100, Brazil
| | - M Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Federal University of São Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil
| | - Amit Rawat
- Pediatric Allergy and Immunology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shereen M Reda
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Av Iman 1, Torre de Investigacion, Piso 9, Coyoacan, 04530, Mexico City, Mexico
| | - Mikko Seppänen
- Harvinaissairauksien yksikkö (HAKE), Rare Disease Center, Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mimi L K Tang
- Murdoch Children's Research Institute, The Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Wild and vaccine-derived poliovirus circulation, and implications for polio eradication. Epidemiol Infect 2016; 145:413-419. [PMID: 27866483 DOI: 10.1017/s0950268816002569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polio cases due to wild virus are reported by only three countries in the world. Poliovirus type 2 has been globally eradicated and the last detection of poliovirus type 3 dates to November 2012. Poliovirus type 1 remains the only circulating wild strain; between January and September 2016 it caused 26 cases (nine in Afghanistan, 14 in Pakistan, three in Nigeria). The use of oral polio vaccine (OPV) has been the key to success in the eradication effort. However, paradoxically, moving towards global polio eradication, the burden caused by vaccine-derived polioviruses (VDPVs) becomes increasingly important. In this paper circulation of both wild virus and VDPVs is reviewed and implications for the polio eradication endgame are discussed. Between April and May 2016 OPV2 cessation has been implemented globally, in a coordinated switch from trivalent OPV to bivalent OPV. In order to decrease the risk for cVDPV2 re-emergence inactivated polio vaccine (IPV) has been introduced in the routine vaccine schedule of all countries. The likelihood of re-emergence of cVDPVs should markedly decrease with time after OPV cessation, but silent circulation of polioviruses cannot be ruled out even a long time after cessation. For this reason, immunity levels against polioviruses should be kept as high as possible in the population by the use of IPV, and both clinical and environmental surveillance should be maintained at a high level.
Collapse
|
15
|
Foiadelli T, Savasta S, Battistone A, Kota M, Passera C, Fiore S, Bino S, Amato C, Lozza A, Marseglia GL, Fiore L. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis. BMC Infect Dis 2016; 16:277. [PMID: 27287521 PMCID: PMC4903009 DOI: 10.1186/s12879-016-1587-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/14/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vaccine-associated paralytic poliomyelitis (VAPP) and immunodeficient long-term polio excretors constitute a significant public health burden and are a major concern for the WHO global polio eradication endgame. CASE PRESENTATION Poliovirus type 3 characterized as Sabin-like was isolated from a 5-month-old Albanian child with X-linked agammaglobulinemia and VAPP after oral polio vaccine administration. Diagnostic workup and treatment were performed in Italy. Poliovirus replicated in the gut for 7 months. The 5' non coding region (NCR), VP1, VP3 capsid proteins and the 3D polymerase genomic regions of sequential isolates were sequenced. Increasing accumulation of nucleotide mutations in the VP1 region was detected over time, reaching 1.0 % of genome variation with respect to the Sabin reference strain, which is the threshold that defines a vaccine-derived poliovirus (VDPV). We identified mutations in the 5'NCR and VP3 regions that are associated with reversion to neurovirulence. Despite this, all isolates were characterized as Sabin-like. Several amino acid mutations were identified in the VP1 region, probably involved in growth adaptation and viral persistence in the human gut. Intertypic recombination with Sabin type 2 polio in the 3D polymerase region, possibly associated with increased virus transmissibility, was found in all isolates. Gamma-globulin replacement therapy led to viral clearance and neurological improvement, preventing the occurrence of persistent immunodeficiency-related VDPV. CONCLUSIONS This is the first case of VAPP in an immunodeficient child detected in Albania through the Acute Flaccid Paralysis surveillance system and the first investigated case of vaccine associated poliomyelitis in Italy since the introduction of an all-Salk schedule in 2002. We discuss over the biological and clinical implications in the context of the Global Polio Eradication Program and emphasize on the importance of the Acute Flaccid Paralysis surveillance.
Collapse
Affiliation(s)
- Thomas Foiadelli
- Department of Pediatrics, University of Pavia, Policlinico San Matteo IRCCS Foundation, Pavia, Italy.
| | - Salvatore Savasta
- Department of Pediatrics, University of Pavia, Policlinico San Matteo IRCCS Foundation, Pavia, Italy
| | - Andrea Battistone
- National Center for Immunobiologicals Control and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Majlinda Kota
- Control of Communicable Disease Department, Institute of Public Health, Tirana, Albania
| | - Carolina Passera
- Department of Pediatrics, University of Pavia, Policlinico San Matteo IRCCS Foundation, Pavia, Italy
| | - Stefano Fiore
- National Center for Immunobiologicals Control and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Bino
- Control of Communicable Disease Department, Institute of Public Health, Tirana, Albania
| | - Concetta Amato
- National Center for Immunobiologicals Control and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Lozza
- National Neurological Institute IRCCS Foundation C. Mondino, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, University of Pavia, Policlinico San Matteo IRCCS Foundation, Pavia, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Control and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infect Dis 2015; 15:379. [PMID: 26382043 PMCID: PMC4574619 DOI: 10.1186/s12879-015-1115-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023] Open
Abstract
Background A small number of individuals with B-cell-related primary immunodeficiency diseases (PIDs) may exhibit long-term (prolonged or chronic) excretion of immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) following infection with oral poliovirus vaccine (OPV). These individuals pose a risk of live poliovirus reintroduction into the population after global wild poliovirus eradication and subsequent OPV cessation. Treatment with polio antiviral drugs may potentially stop excretion in some of these individuals and thus may reduce the future population risk. Methods We developed a discrete event simulation model to characterize the global prevalence of long-term iVDPV excretors based on the best available evidence. We explored the impact of different assumptions about the effectiveness of polio antiviral drugs and the fraction of long-term excretors identified and treated. Results Due to the rarity of long-term iVDPV excretion and limited data on the survival of PID patients in developing countries, uncertainty remains about the current and future prevalence of long-term iVDPV excretors. While the model suggests only approximately 30 current excretors globally and a rapid decrease after OPV cessation, most of these excrete asymptomatically and remain undetected. The possibility that one or more PID patients may continue to excrete iVDPVs for several years after OPV cessation represents a risk for reintroduction of live polioviruses after OPV cessation, particularly for middle-income countries. With the effectiveness of a single polio antiviral drug possibly as low as 40 % and no system in place to identify and treat asymptomatic excretors, the impact of passive use of a single polio antiviral drug to treat identified excretors appears limited. Higher drug effectiveness and active efforts to identify long-term excretors will dramatically increase the benefits of polio antiviral drugs. Conclusions Efforts to develop a second polio antiviral compound to increase polio antiviral effectiveness and/or to maximize the identification and treatment of affected individuals represent important risk management opportunities for the polio endgame. Better data on the survival of PID patients in developing countries and more longitudinal data on their exposure to and recovery from OPV infections would improve our understanding of the risks associated with iVDPV excretors and the benefits of further investments in polio antiviral drugs.
Collapse
Affiliation(s)
| | - Mark A Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | |
Collapse
|
17
|
Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infect Dis 2015. [PMID: 26382043 DOI: 10.1186/s12879-12015-11115-12875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND A small number of individuals with B-cell-related primary immunodeficiency diseases (PIDs) may exhibit long-term (prolonged or chronic) excretion of immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) following infection with oral poliovirus vaccine (OPV). These individuals pose a risk of live poliovirus reintroduction into the population after global wild poliovirus eradication and subsequent OPV cessation. Treatment with polio antiviral drugs may potentially stop excretion in some of these individuals and thus may reduce the future population risk. METHODS We developed a discrete event simulation model to characterize the global prevalence of long-term iVDPV excretors based on the best available evidence. We explored the impact of different assumptions about the effectiveness of polio antiviral drugs and the fraction of long-term excretors identified and treated. RESULTS Due to the rarity of long-term iVDPV excretion and limited data on the survival of PID patients in developing countries, uncertainty remains about the current and future prevalence of long-term iVDPV excretors. While the model suggests only approximately 30 current excretors globally and a rapid decrease after OPV cessation, most of these excrete asymptomatically and remain undetected. The possibility that one or more PID patients may continue to excrete iVDPVs for several years after OPV cessation represents a risk for reintroduction of live polioviruses after OPV cessation, particularly for middle-income countries. With the effectiveness of a single polio antiviral drug possibly as low as 40% and no system in place to identify and treat asymptomatic excretors, the impact of passive use of a single polio antiviral drug to treat identified excretors appears limited. Higher drug effectiveness and active efforts to identify long-term excretors will dramatically increase the benefits of polio antiviral drugs. CONCLUSIONS Efforts to develop a second polio antiviral compound to increase polio antiviral effectiveness and/or to maximize the identification and treatment of affected individuals represent important risk management opportunities for the polio endgame. Better data on the survival of PID patients in developing countries and more longitudinal data on their exposure to and recovery from OPV infections would improve our understanding of the risks associated with iVDPV excretors and the benefits of further investments in polio antiviral drugs.
Collapse
Affiliation(s)
| | - Mark A Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | |
Collapse
|
18
|
Naeini AE, Ghazavi M, Moghim S, Sabaghi A, Fadaei R. Acute flaccid paralysis surveillance: A 6 years study, Isfahan, Iran. Adv Biomed Res 2015; 4:99. [PMID: 26015925 PMCID: PMC4434443 DOI: 10.4103/2277-9175.156670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/24/2015] [Indexed: 11/05/2022] Open
Abstract
Background: Poliomyelitis is still an endemic disease in many areas of the world including Africa and South Asia. Iran is polio free since 2001. However, due to endemicity of polio in neighboring countries of Iran, the risk of polio importation and re-emergence of wild polio virus is high. Case definition through surveillance system is a well-defined method for maintenance of polio eradication in polio free countries. Methods: In a cross-sectional survey from 2007 to 2013, we reviewed all the records of under 15 years old patients reported to Acute Flaccid Paralysis Committee (AFPC) in Isfahan province, Iran. All cases were visited by members of the AFPC. Three stool samples were collected from each reported case within 2 weeks of onset of paralysis and sent to National Polio Laboratory in Tehran, Iran, for poliovirus isolation. Data were analyzed by SSPS software (version 22). Student's t-test and Chi-square was used to compare variables. Statistical significance level was set at P < 0.05. Results: In this 6-year period 85 cases were analyzed, 54 patients were male (63.5%) and 31 were female (36.5%). The mean age of patients was 5.7 ± 3.9 years. The most common cause of paralysis among these patients was Guillian–Barré syndrome (83.5%). We did not found any poliomyelitis caused by wild polio virus. Only one case of vaccine associated poliomyelitis was reported. Conclusion: Since 1992, Iran has a routine and high percent coverage of polio vaccination program for infants (>94%), with six doses of oral polio vaccine (OPV). Accurate surveillance for poliomyelitis is essential for continuing eradication.
Collapse
Affiliation(s)
- Alireza Emami Naeini
- Department of Infectious Diseases and Tropical Medicine, Infectious Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadreza Ghazavi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of General Physician, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Sabaghi
- Department of Virology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Fadaei
- Department of Infectious Diseases Specialist, Health Care Center, Isfahan, Iran
| |
Collapse
|
19
|
Reda SM, Cant AJ. The importance of vaccination and immunoglobulin treatment for patients with primary immunodeficiency diseases (PIDs) - World PI Week April 22-29, 2015. Eur J Immunol 2015; 45:1285-6. [DOI: 10.1002/eji.201570054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Andrew J. Cant
- President of ESID, Great North Children's Hospital; Newcastle upon Tyne Hospitals NHS Foundation Trust & Institute of Cellular Medicine; Newcastle University; Lead UK
| |
Collapse
|
20
|
Rao CD, Maiya PP, Babu MA. Non-diarrhoeal increased frequency of bowel movements (IFoBM-ND): enterovirus association with the symptoms in children. BMJ Open Gastroenterol 2015; 1:e000011. [PMID: 26462266 PMCID: PMC4533327 DOI: 10.1136/bmjgast-2014-000011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Infectious and non-infectious causes are associated with increased frequency of bowel movements (IFoBM). But, a viral aetiology to non-diarrhoeal IFoBM (IFoBM-ND) has not been described. Owing to an accidental infection by an echovirus 19 strain, persistent diarrhoea-associated virus, isolated from a child with persistent diarrhoea, DCR experienced persistent IFoBM-ND with an urgency to pass apparently normal stools more than once each day for about 3 months. A follow-up study was undertaken to determine the prevalence of IFoBM-ND, and association of non-polio enteroviruses (NPEVs) with the symptom in infants from birth to 2 years. DESIGN A cohort of 140 newborns was followed for 6 months to 2 years from birth for IFoBM-ND. Stool samples collected every 14 days were examined for NPEVs, rotavirus and other viral/bacterial agents for their possible association with IFoBM-ND and diarrhoea. RESULTS Of 403 NPEV infection episodes among 4545 oral polio vaccine strains-negative stool samples, approximately 29% were associated with IFoBM-ND (15% acute and 14% persistent), including resolution of 74% of constipation episodes, and 18% with diarrhoea, suggesting that about 47% of NPEV infection episodes in children below 2 years of age are associated with gastrointestinal symptoms. About 83% of IFoBM-ND episodes are associated with the NPEV infection and 17% of the episodes are of unknown aetiology. CONCLUSIONS NPEV is the single most frequently detected viral agent in children with IFoBM-ND and its association with the symptom is highly significant, warranting detailed investigations on the role of NPEVs in gastrointestinal diseases.
Collapse
Affiliation(s)
- C Durga Rao
- Department of Microbiology & Cell Biology , Indian Institute of Science , Bangalore, Karnataka , India
| | - P P Maiya
- Department of Microbiology & Cell Biology , Indian Institute of Science , Bangalore, Karnataka , India ; Department of Paediatrics , M. S. R. T. Hospital, and Agadi Hospital , Bangalore, Karnataka , India
| | - M Ananda Babu
- Department of Microbiology & Cell Biology , Indian Institute of Science , Bangalore, Karnataka , India ; Department of Paediatrics , R. M. V. Hospital, and Arpita Clinic , Bangalore, Karnataka , India
| |
Collapse
|
21
|
Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine 2015; 33:1235-42. [PMID: 25600519 DOI: 10.1016/j.vaccine.2015.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/16/2014] [Accepted: 01/07/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Vaccine-derived polioviruses (VDPVs), strains of poliovirus mutated from the oral polio vaccine, pose a challenge to global polio eradication. Immunodeficiency-related vaccine-derived polioviruses (iVDPVs) are a type of VDPV which may serve as sources of poliovirus reintroduction after the eradication of wild-type poliovirus. This review is a comprehensive update of confirmed iVDPV cases published in the scientific literature from 1962 to 2012, and describes clinically relevant trends in reported iVDPV cases worldwide. METHODS We conducted a systematic review of published iVDPV case reports from January 1960 to November 2012 from four databases. We included cases in which the patient had a primary immunodeficiency, and the vaccine virus isolated from the patient either met the sequencing definition of VDPV (>1% divergence for serotypes 1 and 3 and >0.6% for serotype 2) and/or was previously reported as an iVDPV by the World Health Organization. RESULTS We identified 68 iVDPV cases in 49 manuscripts reported from 25 countries and the Palestinian territories. 62% of case patients were male, 78% presented clinically with acute flaccid paralysis, and 65% were iVDPV2. 57% of cases occurred in patients with predominantly antibody immunodeficiencies, and the overall all-cause mortality rate was greater than 60%. The median age at case detection was 1.4 years [IQR: 0.8, 4.5] and the median duration of shedding was 1.3 years [IQR: 0.7, 2.2]. We identified a poliovirus genome VP1 region mutation rate of 0.72% per year and a higher median percent divergence for iVDPV1 cases. More cases were reported from high income countries, which also had a larger age variation and different distribution of immunodeficiencies compared to upper and lower middle-income countries. CONCLUSION Our study describes the incidence and characteristics of global iVDPV cases reported in the literature in the past five decades. It also highlights the regional and economic disparities of reported iVDPV cases.
Collapse
|
22
|
Abstract
The attenuated oral poliovirus vaccine (OPV) has many properties favoring its use in polio eradication: ease of administration, efficient induction of intestinal immunity, induction of durable humoral immunity, and low cost. Despite these advantages, OPV has the disadvantage of genetic instability, resulting in rare and sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) and the emergence of genetically divergent vaccine-derived polioviruses (VDPVs). Whereas VAPP is an adverse event following exposure to OPV, VDPVs are polioviruses whose genetic properties indicate prolonged replication or transmission. Three categories of VDPVs are recognized: (1) circulating VDPVs (cVDPVs) from outbreaks in settings of low OPV coverage, (2) immunodeficiency-associated VDPVs (iVDPVs) from individuals with primary immunodeficiencies, and (3) ambiguous VDPVs (aVDPVs), which cannot be definitively assigned to either of the first 2 categories. Because most VDPVs are type 2, the World Health Organization's plans call for coordinated worldwide replacement of trivalent OPV with bivalent OPV containing poliovirus types 1 and 3.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Olen M Kew
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
23
|
Kouiavskaia D, Mirochnitchenko O, Dragunsky E, Kochba E, Levin Y, Troy S, Chumakov K. Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study. J Infect Dis 2014; 211:1447-50. [PMID: 25391313 DOI: 10.1093/infdis/jiu624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost.
Collapse
Affiliation(s)
- Diana Kouiavskaia
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | - Olga Mirochnitchenko
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | - Eugenia Dragunsky
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | | | | | | | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| |
Collapse
|
24
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015488 DOI: 10.1016/b978-0-444-0.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:225-47. [PMID: 25015488 DOI: 10.1016/b978-0-444-53488-0.00010-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Salas-Peraza D, Avila-Agüero ML, Morice-Trejos A. Switching from OPV to IPV: are we behind the schedule in Latin America? Expert Rev Vaccines 2014; 9:475-83. [DOI: 10.1586/erv.10.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, Bousvaros A, Dhanireddy S, Sung L, Keyserling H, Kang I. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2013; 58:e44-100. [PMID: 24311479 DOI: 10.1093/cid/cit684] [Citation(s) in RCA: 576] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An international panel of experts prepared an evidenced-based guideline for vaccination of immunocompromised adults and children. These guidelines are intended for use by primary care and subspecialty providers who care for immunocompromised patients. Evidence was often limited. Areas that warrant future investigation are highlighted.
Collapse
Affiliation(s)
- Lorry G Rubin
- Division of Pediatric Infectious Diseases, Steven and Alexandra Cohen Children's Medical Center of New York of the North Shore-LIJ Health System, New Hyde Park
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mir MU, Bhamani M. Poliomyelitis: threats to eradication. Lancet 2013; 382:1096. [PMID: 24075048 DOI: 10.1016/s0140-6736(13)62021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Highly divergent type 2 and 3 vaccine-derived polioviruses isolated from sewage in Tallinn, Estonia. J Virol 2013; 87:13076-80. [PMID: 24049178 DOI: 10.1128/jvi.01174-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Highly divergent vaccine-derived polioviruses (VDPVs) have been isolated from sewage in Tallinn, Estonia, since 2002. Sequence analysis of VDPVs of serotypes 2 and 3 showed that they shared common noncapsid region recombination sites, indicating origination from a single trivalent oral polio vaccine dose, estimated to have been given between 1986 and 1998. The sewage isolates closely resemble VDPVs chronically excreted by persons with common variable immunodeficiency, but no chronic excretors have yet been identified in Estonia.
Collapse
|
30
|
Hovi T, Paananen A, Blomqvist S, Savolainen-Kopra C, Al-Hello H, Smura T, Shimizu H, Nadova K, Sobotova Z, Gavrilin E, Roivainen M. Characteristics of an environmentally monitored prolonged type 2 vaccine derived poliovirus shedding episode that stopped without intervention. PLoS One 2013; 8:e66849. [PMID: 23935826 PMCID: PMC3729856 DOI: 10.1371/journal.pone.0066849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/09/2013] [Indexed: 12/05/2022] Open
Abstract
Vaccine derived poliovirus (VDPV) type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003–2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s) of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5′UTR, P1, P2, P3, and 3′UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV), including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1) individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2) genetic divergence of VDPV strains may remain extensive during years long replication in humans.
Collapse
Affiliation(s)
- Tapani Hovi
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, a WHO Collaborating Centre for Poliovirus Surveillance and Enterovirus Research, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hovi T, Savolainen-Kopra C, Smura T, Blomqvist S, Al-Hello H, Roivainen M. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall. PLoS One 2013; 8:e66836. [PMID: 23840537 PMCID: PMC3696017 DOI: 10.1371/journal.pone.0066836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2) were compared to those of type 1 and type 3 wild poliovirus (WPV) lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin) by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv) bias and strikingly lower Ts/Tv rate ratios at the 2(nd) codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd) codon position was also found in the large set of VP1 sequences of Nigerian circulating (c)VDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.
Collapse
Affiliation(s)
- Tapani Hovi
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
34
|
|
35
|
Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012; 11:609-28. [PMID: 22827246 DOI: 10.1586/erv.12.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.
Collapse
Affiliation(s)
- Vaia Pliaka
- University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology, Microbiology-Virology Laboratory, Larissa, Greece.
| | | | | |
Collapse
|
36
|
Hawken J, Troy SB. Adjuvants and inactivated polio vaccine: a systematic review. Vaccine 2012; 30:6971-9. [PMID: 23041122 DOI: 10.1016/j.vaccine.2012.09.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 11/17/2022]
Abstract
Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV.
Collapse
|
37
|
Feasibility of quantitative environmental surveillance in poliovirus eradication strategies. Appl Environ Microbiol 2012; 78:3800-5. [PMID: 22447593 DOI: 10.1128/aem.07972-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The progress of the Global Polio Eradication Initiative is monitored by acute flaccid paralysis (AFP) surveillance supplemented with environmental surveillance in selected areas. To assess the sensitivity of environmental surveillance, stools from (re)vaccinated elderly persons with a low seroprevalence and from wastewater were concurrently collected and analyzed in the Netherlands over a prolonged period of time. A total number of 228 healthy individuals with different levels of immunity were challenged with monovalent oral polio vaccine serotype 1 or 3. Poliovirus concentrations were determined by the titration of fecal suspensions on poliovirus-sensitive L20B cells and of sewage concentrates by L20B monolayer plaque assay. Almost half of the individuals (45%) shed poliovirus on day 3 after challenge, which peaked (57%) on day 8 with an average poliovirus excretion of 1.3 × 10(5) TCID(50) per g of feces and gradually decreased to less than 5% on day 42. The virus concentrations in sewage peaked on days 6 to 8 at approximately 100 PFU per liter, remained high until day 14, and subsequently decreased to less than 10 PFU per liter on day 29. The estimated poliovirus concentration in sewage approximated the measured initial virus excretion in feces, within 1 log(10) variation, resulting in a sensitivity of detection of 100 infected but mostly asymptomatic individuals in tens of thousands of individuals. An additional second peak observed in sewage may indicate secondary transmission missed by enterovirus or AFP surveillance in patients. This enables the detection of circulating poliovirus by environmental surveillance, supporting its feasibility as an early warning system.
Collapse
|
38
|
Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 2011; 3:1460-84. [PMID: 21994791 PMCID: PMC3185806 DOI: 10.3390/v3081460] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Collapse
|
39
|
Alirezaie B, Taqavian M, Aghaiypour K, Esna-Ashari F, Shafyi A. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate. J Med Virol 2011; 83:897-903. [PMID: 21412797 DOI: 10.1002/jmv.21804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV.
Collapse
Affiliation(s)
- Behnam Alirezaie
- Human Viral Vaccines Research and Production Department, Razi Vaccine and Serum Research Institute, Karaj, Tehran, Iran.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Poliovirus has been the subject of research for many virologists during the last 80 years. Research on the poliovirus biology has helped to understand the molecular basis of many biological processes, particularly RNA replication and virus-host cell interactions. Laboratory research has also been instrumental in the development of effective and safe vaccines against poliomyelitis and continues to be critical for the assessment of the quality of vaccines used in humans. The work carried out in diagnostic laboratories located in most countries of the world to isolate and characterize poliovirus from clinical samples is also essential to support the Global Polio Eradication Initiative, the most ambitious public health effort ever attempted by man. This chapter describes the most common techniques used in laboratories to isolate, identify, and characterize poliovirus isolates. They include cell culture isolation and typing techniques, virus purification methods, and molecular analyses of viral nucleic acids.
Collapse
|
41
|
Savolainen-Kopra C, Blomqvist S. Mechanisms of genetic variation in polioviruses. Rev Med Virol 2011; 20:358-71. [PMID: 20949639 DOI: 10.1002/rmv.663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polioviruses, as with all RNA viruses, are in a constant process of evolution driven by different mechanisms. With multiple mechanisms for genetic variability, they are successful conformists, adapting to changes in their habitat. The evolution of polioviruses may occur with generation of point mutations followed by genetic drift and selection. The mutation rate of polioviruses based on several studies is approximately 3 × 10(-2) mutations/synonymous site/year in the gene encoding viral protein 1. Genetic variation in polioviruses may also be increased by sharing of genetic data of two different poliovirus lineages by means of homologous recombination. According to the current view, recombination is considered usually to occur by strand-switching, but a non-replicative model has also been described. In recombination, polioviruses may either gain a set of advantageous mutations selected and fixed in previous generations of the parental viruses or get rid of deleterious ones. The prerequisites and constraints of the evolution mechanisms will be discussed. Furthermore, consequences of poliovirus evolution will be reviewed in the light of observations made on currently circulating polioviruses. We will also describe how polioviruses strike back: as wild type polioviruses approach eradication, vaccine derived strains increase their occurrence and genetic variability.
Collapse
Affiliation(s)
- Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Department of Infectious Disease Surveillance and Control, Unit of Intestinal Viruses, Helsinki, Finland.
| | | |
Collapse
|
42
|
|
43
|
Shahmahmoodi S, Mamishi S, Aghamohammadi A, Aghazadeh N, Tabatabaie H, Gooya MM, Zahraei SM, Mousavi T, Yousefi M, Farrokhi K, Mohammadpour M, Ashrafi MR, Nategh R, Parvaneh N. Vaccine-associated paralytic poliomyelitis in immunodeficient children, Iran, 1995-2008. Emerg Infect Dis 2010; 16:1133-6. [PMID: 20587188 PMCID: PMC3321898 DOI: 10.3201/eid1607.091606] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine the prevalence of vaccine-associated paralytic poliomyelitis (VAPP) in immunodeficient infants, we reviewed all documented cases caused by immunodeficiency-associated vaccine-derived polioviruses in Iran from 1995 through 2008. Changing to an inactivated polio vaccine vaccination schedule and introduction of screening of neonates for immunodeficiencies could reduce the risk for VAPP infection.
Collapse
|
44
|
Mugisha L, Pauli G, Opuda-Asibo J, Joseph OO, Leendertz FH, Diedrich S. Evaluation of poliovirus antibody titers in orally vaccinated semi-captive chimpanzees in Uganda. J Med Primatol 2010; 39:123-8. [PMID: 20102460 DOI: 10.1111/j.1600-0684.2010.00400.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND To understand immunological responses in chimpanzees vaccinated with live-attenuated vaccine (oral polio vaccine; OPV), serum neutralizing antibodies against poliovirus types 1, 2, and 3 were investigated over time. METHODS The neutralizing antibody titers against poliovirus types 1, 2, and 3 were determined by microneutralization test using 100 ID(50) of poliovirus types 1, 2, and 3 (Sabin strains). RESULTS Neutralizing antibodies against poliovirus types 1, 2, and 3 were detected in 85.7%, 71.4%, and 65% of the serum from 42 chimpanzees tested 9 years post-vaccination. The neutralizing antibody titers in chimpanzees were similar to the documented levels in human studies as an indicator of vaccine efficacy. CONCLUSIONS This study reveals persistence of neutralizing antibodies in chimpanzees for at least 9 years after vaccination with OPV. This first study in chimpanzees provides useful information for the evaluation of the success of vaccination with OPV in other captive apes.
Collapse
Affiliation(s)
- L Mugisha
- Chimpanzee Sanctuary & Wildlife Conservation Trust (CSWCT), Entebbe, Uganda.
| | | | | | | | | | | |
Collapse
|
45
|
When Nature turns cook: an epidemiological feast: report of the John Snow Society Pumphandle Lecture 2009, delivered by Dr David Heymann. Public Health 2009; 123:814-6. [PMID: 19958919 PMCID: PMC7131642 DOI: 10.1016/j.puhe.2009.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 11/21/2022]
|
46
|
Minor P. Vaccine-derived poliovirus (VDPV): Impact on poliomyelitis eradication. Vaccine 2009; 27:2649-52. [PMID: 19428874 DOI: 10.1016/j.vaccine.2009.02.071] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
The live attenuated strains used in the oral poliovirus (OPV) have been the main tool in the WHO polio eradication programme. However, these strains replicate in the human gut and are excreted for several weeks after immunisation. During this period, the attenuating mutations in the vaccine strains can rapidly revert. This may, in rare cases, cause vaccine-associated paralytic poliomyelitis (VAPP) in vaccinees or result in transmissible and neurovirulent circulating vaccine-derived poliovirus (cVDPV) strains. Outbreaks of poliomyelitis caused by VDPV have recently occurred in communities with long-term incomplete immunisation coverage. Hypogammaglobulinaemic vaccinees can chronically excrete immunodeficient VDPV (iVDPV) for several decades. As long as OPV is used, cVDPV and iVDPV pose a risk of causing poliomyelitis in unprotected individuals and threaten the goal of poliovirus eradication. VDPV cannot arise from the inactivated poliovirus vaccine (IPV), but financial and logistical barriers to replace OPV with IPV remain.
Collapse
Affiliation(s)
- Philip Minor
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshirre EN6 3QG, UK
| |
Collapse
|
47
|
Odoom JK, Yunus Z, Dunn G, Minor PD, Martín J. Changes in population dynamics during long-term evolution of sabin type 1 poliovirus in an immunodeficient patient. J Virol 2008; 82:9179-90. [PMID: 18596089 PMCID: PMC2546908 DOI: 10.1128/jvi.00468-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/29/2008] [Indexed: 11/20/2022] Open
Abstract
The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5' noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.
Collapse
Affiliation(s)
- John K Odoom
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN63QG, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Collett MS, Neyts J, Modlin JF. A case for developing antiviral drugs against polio. Antiviral Res 2008; 79:179-87. [DOI: 10.1016/j.antiviral.2008.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 12/27/2022]
|
49
|
Abstract
Poliomyelitis has long served as a model for studies of viral pathogenesis, but there remain many important gaps in our understanding of this disease. It is the intent of this review to highlight these residual but important questions, in light of a possible future moratorium on research with polioviruses. Salient questions include: (1) What cells in the gastrointestinal tract are initially infected and act as the source of excreted virus? (2) What is the receptor used by mouse-adapted strains of poliovirus and how can some polioviruses use both mouse and primate receptors? (3) What determines species differences in susceptibility of the gastrointestinal tract to polioviruses? Why cannot PVR transgenic mice be infected by the natural enteric route? (4) Why are neuroadapted polioviruses unable to infect nonneural cells? (5) What is the role of postentry blocks in replication as determinants of neurovirulence? (6) What route(s) does poliovirus take to enter the central nervous system and how does it cross the blood-brain barrier? (7) Why does poliovirus preferentially attack lower motor neurons in contrast to many other neuronal types within the central nervous system? (8) Does cellular immunity play any role in recovery from acute infection or in vaccine-induced protection? (9) In which cells does poliovirus persist in patients with gamma-globulin deficiencies? (10) Is there any evidence that poliovirus genomes can persist in immunocompetent hosts? (11) Why has type 2 poliovirus been eradicated while types 1 and 3 have not? (12) Can transmission of vaccine-derived polioviruses be prevented with inactivated poliovirus vaccine? (13) What is the best strategy to control and eliminate vaccine-derived polioviruses?
Collapse
|
50
|
|